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Uniformization of metric surfaces
using isothermal coordinates

Toni Ikonen

Abstract. We establish a uniformization result for metric surfaces—metric spaces that are

topological surfaces with locally finite Hausdorff 2-measure. Using the geometric definition of qua-

siconformality, we show that a metric surface that can be covered by quasiconformal images of

Euclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, we

construct an atlas of suitable isothermal coordinates.

Metristen pintojen uniformisaatio isotermisillä koordinaateilla

Tiivistelmä. Todistamme metristen pintojen uniformisaatiolauseen. Metrinen pinta on topo-

loginen pinta varustettuna etäisyysfunktiolla, jonka kaksiulotteinen Hausdorffin mitta on lokaalisti

äärellinen. Tutkimme milloin metrinen pinta on riemannilaisen pinnan geometrisesti kvasikonfor-

maalinen kuva. Osoitamme riittäväksi ehdoksi, että metrinen pinta voidaan peittää Eukleideen

avaruuden alueiden kvasikonformaalisilla kuvilla. Konstruoimme todistusta varten kartaston isoter-

misiä koordinaatteja.

1. Introduction

1.1. Overview. The Riemann mapping theorem states that given a simply
connected proper subdomain U of R

2, there exists a conformal map φ : D → U ,
where D is the Euclidean disk. Recall that conformal maps preserve angles but they
do not necessarily preserve lengths of paths or areas. We say that domains U and V
are conformally equivalent if there exists a conformal map from U to V .

When the topological type of U is more complicated, so is the classification result.
For example, if U = A(1, r) ⊂ R

2 in an Euclidean annulus of inner radius 1 and outer
radius r > 1, two such annuli A(1, r) and A(1, r′) are conformally equivalent if and
only if r = r′.

If we relax the definition of conformal map to allow for distortion of infinitesimal
balls in a uniformly controlled manner, we obtain the class of quasiconformal maps.
With this relaxation, it turns out that for every pair of outer radii 1 < r and 1 < r′,
there exists a quasiconformal map from A(1, r) onto A(1, r′). Such a map takes the
infinitesimal Euclidean balls in A(1, r) to infinitesimal ellipses in A(1, r′), and the
distortion is determined from the eccentricity of the ellipses.

Similar questions can be considered when the topology type of the surface is more
complicated. This is the domain of Teichmüller theory of surfaces; see for example
[Leh87, IT92, Hub06]. Roughly speaking, the Teichmüller theory classifies Riemann
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surfaces up to conformal maps, and quasiconformal maps measure how far apart two
Riemann surfaces are from one another.

Quasiconformal maps also arise when we try to find isothermal coordinates in
a given Riemannian surface, that is, a smooth surface with a smooth Riemannian
metric. Indeed, given a Riemannian surface (Y, g) and a smooth chart f : V →
U ⊂ R

2, by considering a smaller open set V ′ ⊂ V , we may assume without loss
of generality that f is quasiconformal. We interpret the Riemannian metric g on
V as a particular choice of an ellipse at each point of V . Then the chart f maps
these ellipses to ellipses in U . We ask whether it is possible to find a diffeomorphism
η : U →W ⊂ R

2 such that the particular ellipses in U are mapped to Euclidean balls
by η. The existence of such a diffeomorphism η is guaranteed by the measurable
Riemann mapping theorem; see, for example, [AB60, AIM09]. When we apply this
theorem to the ellipse field of f , the composition η ◦ f maps the ellipses in V to
Euclidean balls. Classically, the coordinates η ◦ f are called isothermal coordinates.

We are interested in two questions. Given a metric space (Y, dY ) homeomorphic
to a surface, what conditions guarantee that there exists a Riemannian surface Z
and a quasiconformal map f : Y → Z? Moreover, is it possible to find a good notion
of isothermal coordinates on Y ?

We use an approach based on [Raj17]. Let Y be a metric surface and V ⊂ Y
homeomorphic to R

2. We say that V is a reciprocal disk if there exists a quasicon-
formal homeomorphism f : V → U ⊂ R

2. Given such an f , the inverse f−1 has
an approximate metric differential, which defines a field of convex bodies on U . We
obtain a field of ellipses on U by associating to each of the convex bodies its distance
ellipse (see for example [Rom19, Section 2], [TJ89, Chapter 37] or Section 4). As
before, there exists a quasiconformal homeomorphism η : U →W ⊂ R

2 mapping the
field of distance ellipses to Euclidean balls. We call (V, η ◦ f) an isothermal chart of
Y . The reason we define the charts in this manner is that every isothermal chart is
(π/2)-quasiconformal; see [Rom19] or Section 4. We prove that whenever Y can be
covered by reciprocal disks, the isothermal charts form an atlas C on Y with tran-
sition maps holomorphic or antiholomorphic. Using the atlas C, we prove that Y is
quasiconformally equivalent to a Riemannian surface.

Given a metric surface, a cover by reciprocal disks can be found if the 2-dimensional
Hausdorff measure of any ball is bounded from above by a constant multiple of the
radius squared [Raj17, Theorem 1.6]. In fact, it suffices to require a (locally) uni-
form upper bound for the 2-dimensional Hausdorff upper density [RRR21, Propo-
sition 3.9]. Next, we give an example for which such a cover does not exist. To
this end, we consider a Cantor set E ⊂ R

2 of positive Lebesgue measure and any
continuous function ω : R2 → [0,∞) with E = {x : ω(x) = 0}. We define a distance
dω by setting dω(x, y) = inf

´

γ
ω ds, the infimum taken over absolutely continuous

paths joining x to y. The metric space (R2, dω) is homeomorphic to the plane but no
Lebesgue density point of E can be covered by a reciprocal disk V ⊂ (R2, dω) [Raj17,
Example 2.1].

1.2. Main results. A metric space (Y, dY ) with a locally finite Hausdorff 2-
measure is a metric surface if it is homeomorphic to a connected 2-manifold without
boundary.

Definition 1.1. A metric surface (Y, dY ) is a quasiconformal surface if every
point of (Y, dY ) is contained in a quasiconformal image of an open set U ⊂ R

2.
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A necessary and sufficient condition for Y to be a quasiconformal surface is given
by [Raj17, Theorem 1.4]. Note that every Riemannian surface is a quasiconformal
surface and being a quasiconformal surface is a quasiconformal invariant.

We now state the first of our main results.

Theorem 1.2. Every quasiconformal surface is quasiconformally equivalent to
a Riemannian surface.

To prove Theorem 1.2 for a given quasiconformal surface (Y, dY ), we construct
in Section 4 an atlas of isothermal charts for (Y, dY ). The atlas defines a conformal
structure C on (Y, dY ), uniquely determined from the distance dY . The classical
uniformization theorem implies the existence of a Riemannian norm field G on (Y, C)
of Gaussian curvature −1, 0, or 1 in such a way that the associated length distance
dG on Y is complete and that every element of C is an isothermal chart for the
Riemannian surface. The norm field G is not uniquely determined by C but different
choices of G are conformally equivalent. Having fixed such a G, the identity map from
(Y, dG) to (Y, dY ) is called the uniformization map and denoted by u. Theorem 1.2
follows from our next theorem.

Theorem 1.3. For every quasiconformal surface (Y, dY ), the uniformization map
u : (Y, dG) → (Y, dY ) is (π/2)-quasiconformal. More precisely, it satisfies

(1)
π

4
modΓ ≤ mod uΓ ≤ π

2
modΓ

for all path families Γ in (Y, dG).

In this generality, both the lower and upper bounds in (1) are best possible for any
quasiconformal map from a Riemannian surface onto (Y, dY ) [Raj17, Example 2.2].

As a particular application of Theorem 1.3, we consider a quasiconformal surface
(Y, dY ) homeomorphic to a domain in the sphere S

2. Using the notation from The-
orem 1.3, we recall the existence of a 1-quasiconformal embedding ψ : (Y, dG) → S

2

[AS60, Section III.4]. Then the composition f = ψ◦u−1 is a (π/2)-quasiconformal em-
bedding of (Y, dY ) into the sphere S2, satisfying the bounds (2/π)modΓ ≤ mod fΓ ≤
(4/π)modΓ for all path families in (Y, dY ). Romney proved in [Rom19] the existence
of such an embedding for reciprocal disks.

Next, we refer the reader to Section 6.2 for the definitions of Ahlfors 2-regularity,
linear local contractibility, and quasisymmetries.

Theorem 1.4. If (Y, dY ) is a compact, linearly locally contractible, and Ahlfors
2-regular metric surface, then (Y, dY ) is a quasiconformal surface. Furthermore, a
uniformization map u : (Y, dG) → (Y, dY ) is η-quasisymmetric with η depending only
on the data of (Y, dY ).

In the statement, the data of (Y, dY ) refers to the constants appearing in the
definitions of linear local contractibility and Ahlfors 2-regularity. When (Y, dY ) is
homeomorphic to S

2, we need to choose the uniformization map with care.
The main theorem from [BK02] proves that if (Y, dY ) is as in the statement

of Theorem 1.4 and homeomorphic to S
2, then there exists an η′-quasisymmetry

ψ : S2 → (Y, dY ). We recover this result from Theorem 1.4, since (Y, dG) is isometric
to S

2.
Theorem 1.2 of [GW18] proves that if (Y, dY ) is as in the statement of The-

orem 1.4, orientable and not homeomorphic to S
2, there exists a complete Rie-

mannian surface Z of constant curvature and an η′-quasisymmetric homeomorphism
φ : Z → (Y, dY ) with η′ depending only on the data of (Y, dY ). Using Theorem 1.3,
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our isothermal coordinates, and a modified version of their proof, we prove that
the uniformization map is η-quasisymmetric with η depending only on the data of
(Y, dY ). The modified proof also works for the non-orientable case.

We refer the interested reader to [BK02, Raj17, GW18], and references therein,
for further reading about the quasisymmetric uniformization problem.

2. Outline of the paper

In Section 3, we introduce our notations and recall some prerequisite knowledge.
In Section 4, we prove the existence of isothermal charts and the uniformization
mapping. In Section 5, we analyze quasiconformal homeomorphisms between qua-
siconformal surfaces. These results are applied in Section 6, where we introduce
isothermal parametrizations of quasiconformal surfaces by Riemannian surfaces. We
prove that up to a conformal diffeomorphism, the isothermal parametrizations are
uniquely determined by the uniformization mapping. We also prove Theorem 1.4 in
this section. In Section 7, we have some concluding remarks.

Acknowledgements. Part of this paper was completed when the author was vis-
iting the University of Michigan, Ann Arbor. The author thanks the Department
of Mathematics for their hospitality. The author thanks his advisor Kai Rajala and
Matthew Romney for helpful conversations. The author thanks the anonymous ref-
eree for helpful comments.

3. Preliminaries

Let (Y, dY ) be a metric space. We drop the subscript from dY when convenient.
We recall the definition of Hausdorff measure. For all Q ≥ 0, the Q-dimensional
Hausdorff measure is defined by

HQ
Y (B) =

α(Q)

2Q
sup
δ>0

inf

{
∞∑

i=1

(diamBi)
Q : B ⊂

∞⋃

i=1

Bi, diamBi < δ

}

for all sets B ⊂ Y , where the normalization constant is chosen in such a way that
Hn

Rn coincides with the Lebesgue measure Ln for all positive integers n.
A path is a continuous function from a compact interval into a metric space. A

path in Y will typically be denoted by γ. The length of the path γ : [a, b] → Y is
defined as

ℓd(γ) = sup
n∑

j=1

d(γ(ti−1), γ(ti)),

where the supremum is taken over all finite sequences a = t0 ≤ t1 ≤ · · · ≤ tn = b. A
path is rectifiable if it has finite length.

The metric speed of a path γ : [a, b] → Y at the point t ∈ [a, b] is defined as

vγ(t) = lim
t6=s→t

d(γ(s), γ(t))

|t− s|
whenever this limit exists. If γ is rectifiable, its metric speed exists at L1-almost
every t ∈ [a, b] [Dud07, Theorem 2.1].

A rectifiable path γ : [a, b] → Y is absolutely continuous if for all a ≤ s ≤ t ≤ b,

d(γ(t), γ(s)) ≤
ˆ t

s

vγ(u) dL1(u)
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with vγ ∈ L1([a, b]) where L1 is the Lebesgue measure on the real line. Equivalently,
γ is absolutely continuous if it maps sets of L1-measure zero to sets of H1

Y -measure
zero in its image [Dud07, Section 3]. We refer to Chapter 5 of [HKST15] for further
details about rectifiable paths.

If γ : [a, b] → Y is rectifiable, then there exist a 1-Lipschitz path γ̃ : [0, ℓ(γ)] → Y
whose metric speed equals one L1-almost everywhere on [0, ℓ(γ)], and for which there
exists a non-decreasing surjective map ψ : [a, b] → [0, ℓ(γ)] with γ̃ ◦ ψ = γ.

Let ρ : Y → [0,∞] be a Borel function. The (path) integral of ρ over γ is defined
by

(2)

ˆ

γ

ρ ds =

ˆ ℓ(γ)

0

ρ ◦ γ̃ dL1.

A Borel function ρ is integrable over γ if (2) is finite. If γ is an absolutely continuous
path, then

ˆ

γ

ρ ds =

ˆ b

a

(ρ ◦ γ) vγ dL1;

see [Dud07]. A path is non-constant if ℓ(γ) > 0.
Let Γ be a family of paths in Y . A Borel function ρ : Y → [0,∞] is admissible

for Γ if for every rectifiable path in Γ,

(3)

ˆ

γ

ρ ds ≥ 1.

The (conformal) modulus of Γ is

(4) modΓ = inf

ˆ

Y

ρ2 dH2
Y ,

where the infimum is taken over all admissible functions ρ. A Borel function ρ : Y →
[0,∞] is weakly admissible for Γ if there exists a path family Γ′ ⊂ Γ such that
modΓ′ = 0 and for every γ ∈ Γ \ Γ′ (3) holds. We refer to [HKST15, Section 5.2]
and [Wil12, Lemma 2.2] for basic properties of modulus. We recall that Γ 7→ modΓ
is an outer measure on the collection of path families.

We say that a path family Γ is negligible if modΓ = 0. A property holds for almost
every path if the path family along which it fails is negligible. We recall that a family
Γ of non-constant paths is negligible if and only if there exists ρ ∈ L2(Y ) such that
the integral of ρ over every rectifiable γ ∈ Γ is infinite [HKST15, Lemma 5.2.8]. The
equivalence also holds for ρ ∈ L2

loc(Y ) by the countably subadditivity of modulus.
Let φ : (Y, dY ) → (Z, dZ) be a homeomorphism between metric surfaces. The map

φ is an element of the Sobolev space N1,2
loc (Y, Z) if there exists a non-negative Borel

function ρ ∈ L2
loc(Y ) such that for all non-constant rectifiable paths γ : [a, b] → Y ,

(5) dZ(φ(γ(a)), φ(γ(b))) ≤
ˆ

γ

ρ ds.

Such a function ρ is called an upper gradient of φ. A Borel function is a weak upper
gradient of φ if (5) holds for almost all non-constant paths. A weak upper gradient
ρ of φ ∈ N1,2

loc (Y, Z) is minimal if for every other weak upper gradient ρ̃ ∈ L2
loc(Y ),

ρ ≤ ρ̃ H2
Y -almost everywhere. Every φ ∈ N1,2

loc (Y, Z) has a minimal weak upper
gradient, uniquely defined H2

Y -almost everywhere, which we denote by ρφ. We refer
the reader to [HKST15] and [Wil12] for details.
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Let C ⊂ Y be a Borel set. The length of γ in C, denoted by ℓ(γ ∩ C), is the
integral of χC over γ. Then Γ+

C denotes those rectifiable paths that have positive
length in C.

Observe that if H2
Y (C) = 0, then Γ+

C is negligible; consider the admissible function
∞ · χC . We prove in Lemma 3.2 a partial converse of this fact. We use the converse
later on, since quasiconformal surfaces can have Borel subsets C ⊂ Y of positive
measure for which modΓ+

C = 0. See Remark 3.4 for further discussion.

Definition 3.1. For a metric surface (Y, dY ) and for each Borel set C ⊂ Y , we
denote νY (C) =

´

C
ρidY dH2

Y .

Lemma 3.2. Let (Y, dY ) be a metric surface. Then there exists a Borel set
C0 ⊂ Y such that ρidY = χY \C0

. Moreover, for each Borel set C ⊂ Y , modΓ+
C = 0 if

and only if νY (C) = 0.

Proof. Fix a Borel representative ρ of the minimal weak upper gradient ρidY .
Since ρ and χY are weak upper gradients of idY , so is their pointwise minimum.
Therefore, we may assume without loss of generality that ρ ≤ χY everywhere.

For A = {ρ < 1}, we have that modΓ+
A = 0, since otherwise ρ cannot be a weak

upper gradient of idY [HKST15, Proposition 6.3.3]. Therefore, ρ0 = ρχY \A = χY \A is
a weak upper gradient of idY , and ρ0 ≤ ρ implies that ρ0 is a representative of ρidY .
We denote C0 := A.

Consider ρ0 = χY \C0
as above. If C ⊂ Y is a Borel set with modΓ+

C = 0,
then ρ0χY \C is a representative of ρidY , so 0 = H2

Y (C \ C0) = νY (C). Conversely, if
0 = νY (C) = H2

Y (C \ C0), then modΓ+
C\C0

= 0. Also, modΓ+
C∩C0

≤ modΓ+
C0

= 0.

These facts imply that modΓ+
C = 0. The set C0 has the claimed properties. �

Consider a homeomorphism φ : (Y, dY ) → (Z, dZ) between metric surfaces. We
denote φ∗H2

Z(A) = H2
Z(φ(A)) for all sets A ⊂ Y . Then there exists a decomposition

φ∗H2
Z = JφH2

Y + µ⊥ with H2
Y and µ⊥ singular [Bog07, Sections 3.1–3.2, Volume I].

We refer to the density Jφ as the Jacobian of φ.
We say that φ satisfies Lusin’s Condition (N) if φ∗H2

Z is absolutely continuous
with respect to H2

Y . It satisfies Lusin’s Condition (N−1) if H2
Y is absolutely contin-

uous with respect to φ∗H2
Z .

A homeomorphism φ : (Y, dY ) → (Z, dZ) between metric surfaces is quasiconfor-
mal if there exist constants KO, KI ≥ 1 such that K−1

O modΓ ≤ modφΓ ≤ KI modΓ
for every path family Γ in (Y, dY ). Recalling [Wil12, Theorem 1.1], an equivalent
definition is obtained by requiring

φ ∈ N1,2
loc (Y, Z) and ρ2φ ≤ KOJφ H2

Y -a.e. and(6)

φ−1 ∈ N1,2
loc (Z, Y ) and ρ2φ−1 ≤ KIJφ−1 H2

Z-a.e.(7)

with the same constants KO and KI . The smallest constant KO (resp. KI) for
which (6) (resp. (7)) holds is called the outer dilatation of φ (resp. inner dilatation)
and denoted by KO(φ) (resp. KI(φ)). We say that a quasiconformal mapping is K-
quasiconformal if KO(φ) ≤ K and KI(φ) ≤ K. The smallest K ≥ 1 for which φ is
K-quasiconformal is called the maximal dilatation of φ.

Having defined quasiconformal mappings, we prove the following.

Lemma 3.3. Let φ : (Y, dY ) → (Z, dZ) be a quasiconformal homeomorphism be-
tween metric surfaces. Then for each Borel sets C ⊂ Y , the following four conditions
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are equivalent:

νY (C) = 0, modΓ+
C = 0, modΓ+

φ(C) = 0 and νZ(φ(C)) = 0.

Proof. Let K denote the maximal dilatation of φ. Fix Borel representatives of
ρφ and ρφ−1 ◦ φ. We denote ρ = ρφ (ρφ−1 ◦ φ). We recall from (6) and (7) that

(8) ρ2φ ≤ KJφ ∈ L1
loc(Y ) and ρ2φ−1 ≤ KJφ−1 ∈ L1

loc(Z)

hold H2
Y - and H2

Z-almost everywhere, respectively.
Proposition 6.3.3 of [HKST15] implies that for almost every non-constant abso-

lutely continuous path γ : [0, 1] → Y , the path φ ◦ γ is absolutely continuous and for
L1-almost every 0 ≤ t ≤ 1,

(9) vφ◦γ(t) ≤ (ρφ ◦ γ(t)) vγ(t) ∈ L1([0, 1]).

The right-hand side is interpreted to be zero in the set {vγ ≡ 0}. Let Γ1 denote the
collection of those non-constant paths for which (9) fails.

As above, for almost every non-constant absolutely continuous path θ : [0, 1] →
V , the path φ−1 ◦ θ is absolutely continuous and for L1-almost every 0 ≤ t ≤ 1,

(10) vφ−1◦θ(t) ≤ (ρφ−1 ◦ θ(t)) vθ(t) ∈ L1([0, 1]).

Let Γ2 denote the collection of those paths γ in Y for which θ = φ ◦ γ fails (10).
Since φ is quasiconformal, mod(Γ1 ∪ Γ2) = 0. Therefore, for almost every ab-

solutely continuous γ : [0, 1] → Y and θ = φ ◦ γ both (9) and (10) hold L1-almost
everywhere. For such γ,

vγ(t) ≤ (ρ ◦ γ(t)) vγ(t)
for L1-almost every 0 ≤ t ≤ 1. This implies that ρ is a weak upper gradient of the
identity map idY : Y → Y , and we conclude from (8) that

(11) ρ ∈ L2
loc(Y ).

Similar reasoning as above yields that

(12) ρ ◦ φ−1 ∈ L2
loc(Z)

is a weak upper gradient of idZ .
Let Γ3 denote the collection of those absolutely continuous paths in U along

which ρ fails to be integrable or those γ for which ρ ◦φ−1 fails to be integrable along
φ ◦ γ. Then (11) and (12) imply that modΓ3 = 0 as well.

Consider Γ0 = Γ1∪Γ2∪Γ3. Observe that given a Borel set C ⊂ U , an absolutely
continuous path γ : [0, 1] → U 6∈ Γ0 has positive length in C, i.e.,

ˆ 1

0

(χC ◦ γ) vγ dL1 > 0

if and only if the absolutely continuous path φ ◦ γ has positive length in φ(C). Since
Γ0 and φΓ0 are negligible, we deduce from this that modΓ+

C = 0 if and only if
modΓ+

φ(C) = 0. Then Lemma 3.2 proves the claim. �

Remark 3.4. As a consequence of Lemma 3.2, a quasiconformal homeomor-
phism φ from (Y, dY ) into (Z, dZ) satisfies Lusin’s Conditions (N) and (N−1) with
respect to the measures νY and νZ . That is, for all Borel subsets B ⊂ Y , νY (B) = 0
if and only if νZ(φ(B)) = 0. We use this fact in Section 5.

As an application of Lemma 3.2, we fix a Borel set B0 ⊂ Y such that νY =
χY \B0

H2
Y and νZ = χZ\φ(B0)H2

Z . The product ρφ(ρφ−1 ◦ φ) is uniquely defined νY -
almost everywhere, since every representative of ρφ is zero H2

Y -almost everywhere
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in B0 and ρφ−1 zero H2
Z-almost everywhere in φ(B0). We apply this fact already in

Section 4.
If Z is an open subset of R

2 or a Riemannian surface, we have νZ ≡ H2
Z in

Lemma 3.3. Therefore, for such Z, any quasiconformal mapping φ as above satisfies
Lusin’s Condition (N). For such a Z, if we have ρidY = χY \B0

with H2
Y (B0) > 0,

φ fails Lusin’s Condition (N−1), with respect to the Hausdorff 2-measures, exactly
at Borel subsets of B0 of positive measure. We note that there are quasiconformal
surfaces for which H2

Y (B0) > 0; see [Raj17, Proposition 17.1]. Due to this fact, many
results in Section 5 are only phrased in terms of νY .

We sometimes write TU = U ×R
2 when U ⊂ R

2 is an open set. We refer to TU
as the tangent bundle of U . For each x ∈ U , we refer to {x} × R

2 as a fiber of TU
and denote it by TxU .

At times, we consider quasiconformal maps ψ : U → Ũ between open subsets of
R

2. Such maps have a differential Dψ L2-almost everywhere, which just means its
classical derivative. The differential defines a map

Dψ : TU → T Ũ,

where the fiber TxU is taken to Tψ(x)Ũ by the linear map Dxψ.
Next, we consider a measurable seminorm field N : TU → [0,∞]. This means

that we have a measurable map from TU into [0,∞] such that for L2-almost every
x ∈ U , the restriction of N to TxU is a seminorm. If the restriction of N to L2-almost
every fiber is a norm, we say that N is a norm field. In this case, the pair (TU,N) is
called a normed bundle, where the fibers refer to (TU,N)x := (TxU,N |TxU).

We sometimes consider the differential Dψ between two normed bundles, i.e., the
map

(13) Dψ : (TU,N) → (T Ũ, Ñ).

The operator norm ‖Dψ‖ of (13) at x ∈ U refers to the operator norm of the
linear map Dxψ : (TU,N)x → (TU,N)ψ(x). We denote the Jacobian of Dψ at x by
J2(Dψ)(x). The outer dilatation KO(Dψ) at x ∈ U is defined as

(14) KO(Dψ)(x) =
‖Dψ‖2 (x)
J2(Dψ)(x)

.

The inner dilatation KI(Dψ) at x ∈ U is defined by the formula

(15) KI(Dψ)(x) = KO(D(ψ−1))(ψ(x)).

The maximal dilatation K(Dψ) of Dψ at x ∈ U is the maximum of (14) and (15).
The objects (13), (14) and (15) are well-defined even if we consider norms {Nx}x∈U

and
{
Ñx

}
x∈U

together with linear maps Lx : (TU,N)|x → (TU, Ñ)|x. The objects
above are defined similarly when U is an open subset of a smooth surface.

4. Proof of Theorem 1.3

We define isothermal parametrizations in Section 4.1 and state some of their
properties. In Section 4.2, we analyze general quasiconformal maps from planar
domains into metric surfaces. Using results from that subsection, we prove the claims
from Section 4.1 in Section 4.3.

We construct the atlas of isothermal coordinates for (Y, dY ) in Section 4.4. We
define the uniformization map in Section 4.5 and prove Theorem 1.3 there.
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4.1. Isothermal parametrizations.

Definition 4.1. A quasiconformal homeomorphism φ : U → V ⊂ Y , with U ⊂
R

2 open, is an isothermal parametrization of V if for every other quasiconformal

homeomorphism φ̃ : Ũ → V with Ũ ⊂ R
2,

(16) ρφ(x) (ρφ−1 ◦ φ(x)) ≤ ρφ̃(x̃)
(
ρφ̃−1 ◦ φ̃(x̃)

)

for x̃ = (φ̃−1 ◦ φ)(x) and L2-almost every x ∈ U . If the image of φ is clear, we say
that φ is isothermal.

Here ρφ denotes a minimal weak upper gradient of φ and ρφ−1 a minimal weak
upper gradient of φ−1. Lemma 3.3 implies that both sides of (16) are independent
of the representatives we use.

It turns out that the left-hand side of (16) is the geometric mean of the pointwise
versions of the dilatations KO(φ) and KI(φ); this is made precise in (19) and the
discussion following (19). This observation implies that isothermal parametrizations
minimize the geometric mean of the pointwise dilatations; see Theorem 4.12 for the
precise statement. We highlight two consequences of Theorem 4.12.

Proposition 4.2. Let φ : U → V be K-quasiconformal, U ⊂ R
2 and V ⊂ Y

open. Then there exist a set Ũ ⊂ R
2 and a (4K/π)-quasiconformal homeomorphism

ψ : Ũ → U such that φ̃ = φ ◦ ψ is isothermal.

Proposition 4.3. Every isothermal parametrization φ : U → V satisfies

(17)
π

4
modΓ ≤ modφΓ ≤ π

2
modΓ

for all path families Γ ⊂ U . Moreover, if V ′ ⊂ V is open and φ′ : U ′ → V ′ is
quasiconformal with U ′ ⊂ R

2, φ′ is an isothermal parametrization of V ′ if and only
if φ−1 ◦ φ′ is holomorphic or antiholomorphic.

We see from Proposition 4.3 that isothermal parametrizations satisfy the same di-
latation bounds as the parametrizations constructed in [Rom19]. In fact, our isother-
mal parametrizations coincide with the parametrizations considered by Romney for
simply connected domains. This observation is not immediately apparent from our
definition, but is a corollary of Theorem 4.12.

4.2. Quasiconformal parametrizations. Before proving the existence of
isothermal parametrizations, we first analyze a given quasiconformal map φ : U →
V ⊂ Y with open U ⊂ R

2 and Y a metric surface. Since φ ∈ N1,2
loc (U, V ), there exists

a measurable seminorm field

Nφ : TU → R

that encodes the following geometric properties of φ.

Lemma 4.4. The following properties hold.

(a) The maximal stretching of Nφ,

L(Nφ)(x) := sup
‖v‖

2
≤1

Nφ(x, v) for x ∈ U,

defines a representative of the minimal weak upper gradient ρφ;
(b) The Jacobian function

x 7→ J2(Nφ)(x) :=
π

L2 ({v ∈ R2 : Nφ(x, v) ≤ 1})
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is a representative of the Jacobian Jφ of φ;
(c) For almost every non-constant absolutely continuous path γ : [a, b] → U ,

vφ◦γ(t) = Nφ ◦Dγ(t)
for L1-almost every t, where Dγ(t) = (γ(t), γ′(t)) is the derivative of γ at t.

See [LW18, Sections 3.3-3.4 and 3.6] for the proof of Lemma 4.4. The seminorm
field Nφ is refered to as the approximate metric differential of φ. Lemma 3.3 implies
that φ satisfies Lusin’s Condition (N−1) (see also Remark 3.4). Then the Sobolev
regularity of φ implies the following; see, for example, [Raj17, Lemma 14.1].

Lemma 4.5. The homeomorphism φ satisfies Lusin’s Condition (N−1) and there
exists a Borel set B0 ⊂ U with L2(B0) = 0 such that φ|U\B0

satisfies Lusin’s Condition
(N).

Lemma 4.5 implies the following.

Corollary 4.6. If B0 is as in Lemma 4.5, then the Jacobian of φ−1 equals 1/(Jφ◦
φ−1) H2

Y -almost everywhere in V \ φ(B0).

Rajala’s example [Raj17, Proposition 17.1] illustrates that the set φ(B0) can have
positive H2

Y -measure, so φ does not necessarily satisfy Lusin’s Condition (N).
Since φ satisfies Lusin’s Condition (N−1), the Jacobian of φ is non-zero L2-almost

everywhere in U . In other words, the approximate metric differential Nφ is a norm L2-
almost everywhere in U . Consequently, ω(Nφ)(x) := inf‖v‖

2
≥1Nφ(x, v) is an element

in (0,∞) for L2-almost every x ∈ U .

Lemma 4.7. Let B0 be as in Lemma 4.5 and

ρ̃(y) =

(
1

ω(Nφ)
◦ φ−1(y)

)
χV \φ(B0)(y) for each y ∈ V .

Here ρ̃ ≡ 0 in φ(B0). Then ρ̃ is a representative of the minimal upper gradient ρφ−1 .

Proof. The L2
loc-integrability of ρ̃ follows from the change of variables formula

for φ. Lemma 4.5 and Lemma 3.3 imply that modΓ+
φ(B0)

= 0.

We conclude that almost every non-constant path has zero length in φ(B0) and
that ρ̃ is integrable over the path. We may also assume that the image path γ in U
is absolutely continuous and satisfies Lemma 4.4 (c). These facts imply that ρ̃ is a
weak upper gradient of φ−1.

To see that ρ̃ is a minimal upper gradient, it suffices to fix a upper gradient ρ ∈
L2
loc(Y ) of φ−1 and to prove ρ̃ ≤ ρ H2

Y -almost everywhere. This is clear everywhere
in φ(B0). Since φ|U\B0

satisfies Lusin’s Condition (N) and (N−1), it suffices to verify
ρ̃(y0) ≤ ρ(y0) for y0 = φ(x0) for L2-almost every x0 ∈ U \ B0. We fix v0, w0 ∈ S

1

perpendicular to one another.
Consider now a rectangle R ⊂ U with a foliation γt(s) = x0 + tv + sw, for

−1 ≤ s, t ≤ 1, r = ‖v‖2 = ‖w‖2 with v = rv0 and w = rw0. For L1-almost every t,
Lemma 4.4 (c) holds for γt, and θt := φ ◦ γt is absolutely continuous. Then the upper
gradient inequality and Fubini’s theorem imply

ρ(φ(x)) Nφ((x, w)) ≥ ‖w‖2 for L2-almost every x ∈ R \B0.

Covering U by such rectangles implies

(18) ρ(φ(x)) ≥ 1

Nφ((x, w0))
for L2-almost every x ∈ U \B0.
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Since the inequality (18) holds for a countable dense set {wi}∞i=1 ⊂ S
1 for L2-almost

every x0 ∈ U \B0, taking the supremum over i yields ρ(φ(x)) ≥ ρ̃(φ(x)) for L2-almost
every x ∈ U \B0. This was sufficient for the claim. �

Definition 4.8. Let φ : U → V be quasiconformal. The pointwise outer dilata-
tion of φ at x ∈ U is

KO(φ)(x) =
ρ2φ(x)

Jφ(x)

and the pointwise inner dilatation of φ at x ∈ U is

KI(φ)(x) =
(
ρ2φ−1(φ(x))

)
Jφ(x)χU\B0

(x).

The pointwise maximum dilatation of φ at x ∈ U is the maximum of the correspond-
ing outer and inner dilatations.

We consider the differential

(19) Did : (TU, ‖·‖2) → (TU,Nφ)

as defined in (13). Then Lemma 4.4 (a) implies that the operator norm of Did from
(19) is a representative of ρφ. Similarly, Lemma 4.4 (b) implies that the Jacobian
J2(Did) is a representative of the Jacobian of φ. Lemma 4.7 and Corollary 4.6 yield
similar identities for the inverse of the map in (19). Consequently, the pointwise outer
(resp. inner) dilatation of φ and the differential in (19) coincide. These facts imply

that the left-hand side of (16) equals
√
KO(Did)KI(Did) L2-almost everywhere.

Therefore, the left-hand side in (16) is the geometric mean of the outer and inner
dilatations of the differential (19). This fact connects the definition of isothermal
parametrizations to convex analysis.

4.3. Banach–Mazur distance and isothermal parametrizations. In this
section, we associate a Beltrami differential to the approximate metric differential of
any given quasiconformal parametrization. For this purpose, we introduce Banach–
Mazur distance from convex analysis.

Definition 4.9. LetM andN be norms on R
2. Then GL2[M,N ] is the collection

of all invertible linear maps S : (R2,M) → (R2, N). An invertible linear map S ∈
GL2[M,N ] is a Banach–Mazur minimizer from M to N if S attains the infimum

ρ(M,N) = inf
T∈GL[M,N ]

√
KO(T )KI(T ).

If the domain and codomain of the linear map S are clear from the context, we say
that S is a Banach–Mazur minimizer. The number ρ(M,N) is the Banach–Mazur
distance from M to N .

If N is induced by an inner product, ρ(M,N) ≤
√
2 [TJ89, Proposition 9.12],

with ρ(M,N) =
√
2 if M is the supremum norm [TJ89, Proposition 37.6]. Therefore,

ρ(M,N) ≤ 2 for every pair of norms. Then a compactness argument implies that
Banach–Mazur minimizers exist for each pair of norms, see e.g. [TJ89, Section 37].

We recall some notations. The group O2 is the group of linear isometries of R2

and R+ · O2 denotes the group of invertible linear maps L = λ · S, where λ > 0 and
S ∈ O2. The group SO2 consists of the elements of O2 with determinant equal to 1.
The group R+ ·O2 are the linear conformal automorphisms of R2, and R+ · SO2 the
subgroup of R+ · O2 whose elements have positive determinant.
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Lemma 4.10. Let M be a norm on R
2 and L : (R2,M) → (R2, ‖·‖2) a Banach–

Mazur minimizer. Then
π

4
ρ2(M, ‖·‖2) ≤ KO (L) ≤ π

2
and(20)

2

π
ρ2(M, ‖·‖2) ≤ KI (L) ≤

4

π
.(21)

Moreover, L′ ∈ GL2[M, ‖·‖2] is a Banach–Mazur minimizer if and only if L′ ◦ L−1 ∈
R+ · O2.

Proof. The inequalities (20) and (21) are slight reformulations of Lemma 2.1 of
[Rom19]. Lemma 2.2 of [Rom19] proves that if L′ is a Banach–Mazur minimizer, then
L′◦L−1 ∈ R+ ·O2. Conversely, if L′ = S ◦L for some S ∈ R+ ·O2, the outer and inner
dilatations of L′ and L coincide. Therefore, L′ is a Banach–Mazur minimizer. �

If M is the supremum norm, we have that ρ2(M, ‖·‖2) = 2. Thus (20) and (21)
are equalities in this case. In fact, KO (L) = π/2 and KI (L) = 4/π for a Banach–
Mazur minimizer from M to ‖·‖2 if and only if M is isometric to the supremum norm
[TJ89, Proposition 37.4].

We identify R
2 with the complex plane in the following statement.

Corollary 4.11. Suppose that M is a norm on R
2. Then there exists a unique

complex number µM in the Euclidean ball D such that

TM = id + µM · id :
(
R

2,M
)
→

(
R

2, ‖·‖2
)

is a Banach–Mazur minimizer from M to ‖·‖2. Moreover, µM and TM depend con-
tinuously on the norm M .

Here µM ·id refers to the complex multiplication and id(w) = w1 + iw2 = w1−iw2

denotes the complex conjugation map.

Proof. Consider an orientation-preserving Banach–Mazur minimizer L : (R2,M)
→ (R2, ‖·‖2), the existence of which follows from Lemma 4.10.

Fix an orientation-preserving L′ ∈ GL2[M, ‖·‖2]. Lemma 4.10 implies that L′

is a Banach–Mazur minimizer if and only if L′ = S ◦ L for some S ∈ R+ · SO2.
Such an S exists if and only if L′ and L have the same Beltrami differential [AIM09,
Section 2.4]. Moreover, for a given L, there exists S ∈ R+ · SO2 such that L = S ◦ T
for some T = id + µ · id with µ ∈ D. So T = TM and µ = µM are uniquely defined.

Next, we establish the continuity of M 7→ µM and M 7→ TM . To this end, given
a sequence of norms (Mj)

∞
j=1 and a norm M , with Mj → M uniformly in compact

subsets of R2, we claim that TMj
→ TM . First, we note that Banach–Mazur distances

ρ(Mj , ‖·‖2) converge to ρ(M, ‖·‖2). Indeed, for every ǫ > 0, there exists j0 such that
for every j ≥ j0, the identity mapping from (R2,Mj) to (R2,M) is (1+ǫ)-bi-Lipschitz.
This implies the claimed convergence. This convergence implies that (TMj

)∞j=1 is a
normal family.

Consider a convergent subsequence with TMji
→ T . Then the sequence of outer

(resp. inner) dilatations of TMji
: (R2,Mji) → (R2, ‖·‖2) converge to the outer (resp.

inner) dilatation of T : (R2,M) → (R2, ‖·‖2). Therefore,

ρ(M, ‖·‖2) ≤
√
KO(T )KI(T ) = lim

i→∞

√
KO(Tji)KI(Tji) = lim

i→∞
ρ(Mji , ‖·‖2).

The right-hand side equals ρ(M, ‖·‖2), so T must be a Banach–Mazur minimizer.

Since every accumulation point of (TMj
)∞j=1 is of the form T = id+µ · id, we conclude



Uniformization of metric surfaces using isothermal coordinates 167

that T = TM by the uniqueness of TM . This implies µ = µM . Since (TMj
)∞j=1 has

a unique accumulation point, the sequence itself converges to TM . This also implies
µMj

→ µM . �

Let M and TM be as in Corollary 4.11. We call the ellipse

EM :=
{
v ∈ R

2 :
∥∥T−1

M

∥∥ ‖TM(v)‖2 ≤ 1
}

the distance ellipse of {M ≤ 1}. We note that for every ellipse E ⊂ {M ≤ 1} and
every λ > 0 with {M ≤ 1} ⊂ λE , we have λ ≥ ρ(M, ‖·‖2). The equality λ =
ρ(M, ‖·‖2) holds if and only if E is the distance ellipse. Observe that EM is an
Euclidean ball if and only if µM = 0.

In the following statement, φ : U → V ⊂ Y is a quasiconformal homeomorphism
with U ⊂ R

2 open. Furthermore, we denote µφ := µNφ
for the approximate metric

differential Nφ. We refer to µφ as the Beltrami differential of φ.

Theorem 4.12. Let W ⊂ R
2 be open and ψ : W → U be a quasiconformal map,

possibly orientation-reversing. Then the following are equivalent:

(a) The composition φ ◦ ψ is isothermal;
(b) The equality µφ◦ψ = 0 holds L2-almost everywhere.

If either one of the conditions hold and φ is K-quasiconformal, then ψ is (4K/π)-
quasiconformal. Moreover, the above conditions are equivalent to any one of the
following.

(c) Either ψ−1 or ψ−1 is an orientation-preserving solution of the Beltrami equa-
tion ∂zf = µφ∂zf ;

(d) The map DidW : (TW,Nφ◦ψ) → (TW, ‖·‖2) is a Banach–Mazur minimizer
pointwise L2-almost everywhere;

(e) The pointwise dilatations satisfy the equality

KO(φ ◦ ψ)KI(φ ◦ ψ) = ρ2(‖·‖2 ,Nφ◦ψ)

L2-almost everywhere in W .

We discussed normed bundles (TU,Nφ) in Section 3. We refer the reader to
[AIM09, Chapter 5] for the basics of Beltrami equations and the measurable Riemann
mapping theorem.

Proof of Theorem 4.12. Lemma 4.10 yields that

D(ψ−1) : (TU,Nφ) → (TW, ‖·‖2)
is a Banach–Mazur minimizer L2-almost everywhere if and only if there exists a mea-
surable map x 7→ S(x) ∈ R+ · O2 such that D(ψ−1) = S ◦ TNφ

pointwise L2-almost
everywhere. The map ψ is orientation-preserving if and only if S is orientation-
preserving L2-almost everywhere. In that case µψ−1 = µφ holds L2-almost every-

where. Otherwise, ψ−1 is orientation-preserving and µψ−1 = µφ holds L2-almost
everywhere. These facts and the chain rule Nφ◦ψ = Nφ ◦Dψ now imply that Proper-
ties (c) and (d) are equivalent.

We recall from (19) and the following discussion that the pointwise dilatations
satisfy KO(φ ◦ ψ) = KO(DidW ) and KI(φ ◦ ψ) = KI(DidW ) L2-almost everywhere.
Therefore, the dilatations also satisfy

KO(φ ◦ ψ)KI(φ ◦ ψ) ≥ ρ2(‖·‖2 ,Nφ◦ψ) L2-almost everywhere.(22)

Moreover, the equality (22) holds L2-almost everywhere if and only if Property (d)
holds.
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Also, if ψ1 and ψ2 are two maps for which φ ◦ ψ1 and φ ◦ ψ2 are isothermal
parametrizations, the pointwise dilatations satisfy

KO(φ ◦ ψ1)KI(φ ◦ ψ1) = [KO(φ ◦ ψ2)KI(φ ◦ ψ2)] ◦ (ψ−1
2 ◦ ψ1)(23)

L2-almost everywhere.
By applying (22) and (23), the equivalence of Properties (c) to (e) and Property

(a) follows if it can be shown that there exists a quasiconformal map ψ such that the
equality in (22) holds L2-almost everywhere. By Property (c), it suffices to solve the
Beltrami equation µf = µφ induced by φ.

Suppose that we know that the L∞-norm of µφ is bounded from above by some
constant C < 1. Then we extend µφ as zero to the Euclidean plane and let f be the
normalized solution to the corresponding Beltrami equation. The existence of f is
guaranteed by the measurable Riemann mapping theorem; see for example [AIM09].
The restriction of f−1 to the appropriate open set is the desired map ψ.

Lemma 4.10 implies that

‖µφ‖L∞(U) ≤
4
π
K − 1

4
π
K + 1

=: C,

where we use the fact that φ is K-quasiconformal. This inequality also implies that
the maximal dilatation of ψ is bounded from above by (4K/π).

By expressing φ ◦ ψ as (φ ◦ ψ) ◦ idW , we see that Property (b) is equivalent to
the other properties. �

Proof of Proposition 4.2. Let ψ−1 solve the Beltrami equation ∂zf = µφ∂zf
induced by φ. Then Theorem 4.12 proves that ψ is (4K/π)-quasiconformal and

φ̃ = φ ◦ ψ isothermal. �

Proof of Proposition 4.3. The outer and inner dilatation bounds follow from
Theorem 4.12 (d) and the dilatation bounds in Lemma 4.10.

Next, consider an open set U ′ ⊂ R
2, V ′ ⊂ V and a quasiconformal homeomor-

phism φ′ : U ′ → V ′. Here φ′ = φ ◦ ψ for ψ = φ−1 ◦ φ′. Theorem 4.12 (d) proves that
φ′ is isothermal if and only if ψ−1, or ψ−1, is orientation-preserving and its Beltrami
differential equals µφ = 0. Thus, [AIM09, Weyl’s lemma] yields that φ′ is isothermal
if and only if ψ is holomorphic or antiholomorphic. �

4.4. Conformal surfaces. We fix a quasiconformal surface (Y, d) for this
section. Given an open set V ⊂ (Y, d) and a quasiconformal homeomorphism
φ′ : U ′ → V with U ′ ⊂ R

2, Proposition 4.2 yields the existence of an isothermal
parametrization φ : U → V of V . Given such a φ, we denote f := φ−1 and call the
pair (V, f) an isothermal chart of (Y, d).

Let Id = {(Vi, fi)}i∈I denote the collection of all isothermal charts of (Y, d). Since
a quasiconformal surface (Y, d) can be covered by quasiconformal images of planar
domains, we conclude that

⋃
i∈I Vi = Y . The subscript d refers to the dependence of

the collection on the distance of Y .

Definition 4.13. A conformal atlas D is an atlas whose transition maps are
holomorphic or antiholomorphic maps. A conformal atlas D is maximal if for every
other conformal atlas D′ with D ∩ D′ 6= ∅, we have D′ ⊂ D. If D is a maximal
conformal atlas, the pair (Y,D) is a conformal surface. A smooth surface is defined
analogously.
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Proposition 4.14. The pair (Y, Id) is a conformal surface.

Proof. Proposition 4.3 implies that restrictions of isothermal charts to open sub-
sets of their domains are isothermal charts, and that the transition maps between
isothermal charts are holomorphic or antiholomorphic. Consequently, Id is a confor-
mal atlas. The maximality of Id also follows from Proposition 4.3. �

We define and recall some terminology from Riemannian geometry. A Riemann-
ian norm (field) G on a conformal (or a smooth) surface (Y,A) is a map G : TY → R

for which there exists a smooth Riemannian metric g such that G(v) = [g(v, v)]1/2

for v ∈ TY . Here TY is the tangent bundle of Y .
The length distance induced by g is denoted by dG. We say that dG is the

Riemannian distance induced by G. The metric space (Y, dG) has constant curvature
k if the corresponding Riemannian metric g has constant curvature k. The curvature
refers to Gaussian curvature.

A Riemannian surface is a conformal (or smooth) surface with a Riemannian
norm field. A map ψ : (Y1, G1) → (Y2, G2) between Riemannian surfaces is conformal
in the Riemannian sense if ψ is a diffeomorphism and there exists a positive smooth
function h : Y2 → (0,∞) such that the pushforward Riemannian norm field ψ∗G1

equals h ·G2. A Riemannian norm G is compatible with a conformal atlas I if every
chart (V, f) ∈ I is conformal in the Riemannian sense.

Proposition 4.15. The conformal surface (Y, Id) has a Riemannian distance
dG such that G is compatible with the isothermal charts Id of Y and (Y, dG) is
complete and has constant curvature −1, 0 or 1. Additionally, Id = IdG and the
charts (V, f) ∈ IdG are conformal in the Riemannian sense.

Proof. The existence of G follows from the classical uniformization theorem.
Theorem 4.12 Property (e) and [AIM09, Weyl’s lemma] imply that the elements of
IdG are conformal in the Riemannian sense. The construction of G implies that when
the elements of Id are considered as maps from Euclidean domains into (Y, dG), then
they are conformal in the Riemannian sense. Thus Id = IdG . �

4.5. Uniformization map. Let dG denote the Riemannian distance obtained
from Proposition 4.15. We define YG = (Y, dG) and let Y = (Y, d). We denote the
Hausdorff 2-measure of YG by H2

G.
We call the map u = idY : YG → Y the uniformization map. Proposition 4.15

implies that every isothermal parametrization of V ⊂ Y can be written in the form
u ◦ φ for an isothermal parametrization φ : U → u−1(V ).

Let Y be a quasiconformal surface. If u ◦ φ1 and u ◦ φ2 are isothermal charts
and ψ = φ−1

2 ◦ φ1, then Nu◦φ2 ◦Dψ = Nu◦φ1 by the chain rule. Since Dψ is a
diffeomorphism, the equality actually holds everywhere whenever the left-hand side
or the right-hand side are defined.

Remark 4.16. For a given quasiconformal surface Y , there is a norm field N on
YG such that for every isothermal parametrization u ◦ φ : U → V , its approximate
metric differential Nu◦φ satisfies Nu◦φ = N ◦Dφ everywhere.

Corollary 4.17. Let u be the uniformization map. Then the pointwise dilata-
tions of u satisfy

(24) ρ2(G,N) = KO(u)KI(u) H2
G-almost everywhere,

where ρ(G,N) is the Banach–Mazur distance between (TY,G) and (TY,N). In par-
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ticular,

(25)
π

4
modΓ ≤ mod uΓ ≤ π

2
modΓ

for all path families Γ in YG.

Proof. It suffices to verify (24) and (25) in any given planar domain V ⊂ YG.
Consider an isothermal parametrization φ : U → V ⊂ YG. Remark 4.16 yields
N ◦Dφ = Nu◦φ and Proposition 4.15 implies G ◦ Dφ = ω ‖·‖2 for some smooth
function ω. The equality (24) follows from the corresponding claim about u ◦ φ, see
Theorem 4.12. The inequalities (25) follow the corresponding property of u ◦ φ, see
Proposition 4.3. �

Proof of Theorem 1.3. The claim was that the uniformization map satisfies
KO(u) ≤ 4/π and KI(u) ≤ π/2. These inequalities follow from (25). �

Lemma 4.18. The map u : (Y,H2
G) → (Y, νY ) satisfies Lusin’s Conditions (N)

and (N−1).

Proof. This follows from Lemma 3.3 since νYG ≡ H2
G. �

We sometimes consider the differential

Du : (TY,G) → (TY,N),

where the norm field N is understood to be well-defined νY -almost everywhere in Y .
This makes sense due to Lemma 4.18.

5. Quasiconformal maps between quasiconformal surfaces

Given two quasiconformal surfaces Y1 = (Y1, d1) and Y2 = (Y2, d2), we let YGi
=

(Yi, dGi
) and ui : YGi

→ Yi be as in Section 4.5 for i = 1, 2. For i = 1, 2, we denote
νi = νYi for the measures from Definition 3.1.

Our goal is to understand an analog of Corollary 4.17 for the quasiconformal
surfaces Y1 and Y2 and for an arbitrary quasiconformal map

(26) Ψ: Y1 → Y2.

A technical difficulty is posed by the fact that Ψ can fail to satisfy Lusin’s Condition
(N) and (N−1) with respect to Hausdorff measures. As a consequence, the pointwise
results we prove hold only ν1-almost everywhere.

We observe that the mapping

Ψ̃ = u−1
2 ◦Ψ ◦ u1 : YG1

→ YG2

is quasiconformal as a map between two Riemannian surfaces, it is classically differ-
entiable H2

G1
-almost everywhere and it satisfies Lusin’s Conditions (N) and (N−1).

Then Lemma 4.18 implies the following.

Lemma 5.1. The differential

(27) DΨ: (TY1,N1) → (TY2,N2)

is well-defined ν1-almost everywhere. Moreover,

D(Ψ−1) ◦DΨ = DidY1 : (TY1,N1) → (TY1,N1)

ν1-almost everywhere.
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Lemma 5.1 implies that we can compute the operator norm and the Jacobian
of (27) ν1-almost everywhere. These objects are defined as in Section 3. The chain
rule implies that the inverse of (27) is well-defined ν2-almost everywhere. We define
pointwise outer and inner dilatations KO(Ψ) = ρ2Ψ/JΨ and KI(Ψ) = ρ2Ψ−1JΨ, which
are uniquely defined ν1-almost everywhere.

Theorem 5.2. The equalities KO(Ψ) = KO(DΨ) and KI(Ψ) = KI(DΨ) hold
ν1-almost everywhere. In particular, the pointwise dilatations satisfy

(28) KO(DΨ)KI(DΨ) ≥ ρ2(N1,N2 ◦DΨ)

ν1-almost everywhere. The equality (28) holds ν1-almost everywhere if and only if
the differential

DΨ: (TY1,N1) → (TY2,N2)

is a Banach–Mazur minimizer ν1-almost everywhere.

Since Ψ is 1-quasiconformal if and only if the pointwise dilatations satisfyKO(Ψ) =
χY1 and KI(Ψ) = χY1 ν1-almost everywhere, Theorem 5.2 implies the following.

Corollary 5.3. A quasiconformal homeomorphism Ψ: Y1 → Y2 is 1-quasicon-
formal if and only if there exists a Borel function ω : Y1 → (0,∞) such that N2 ◦Dψ =
ωN1 ν1-almost everywhere.

The rest of the section is spent on proving Theorem 5.2. To this end, let B0 ⊂ YG1

be a Borel set of H2
G1

-measure zero such that the restrictions of u1 and u2 ◦ Ψ̃ to
YG1

\B0 satisfy Conditions (N) and (N−1). The existence of such a set is guaranteed

by Lemma 4.18 and by the fact that Ψ̃ satisfies Conditions (N) and (N−1). We fix
such a set for the rest of this section.

Lemma 5.4. The Jacobian JΨ of Ψ equals J2(DΨ) H2
Y1

-almost everywhere in
Y1 \ u1(B0). In particular, this identity holds ν1-almost everywhere.

Proof. The claim is local, so it suffices to consider the claim using isothermal
charts of Y1 and Y2. The isothermal charts satisfy Conditions (N) and (N−1) when
restricted to the complement of u1(B0) and Ψ ◦ u1(B0), respectively. Then the claim
follows from the chain rule of Jacobians of linear maps between Banach spaces [AK00,
Lemma 4.2] and the corresponding Euclidean results formulated in Lemma 4.4 and
Corollary 4.6. �

We fix a Borel set B1 ⊃ B0 of zero H2
G1

-measure for which the following properties
hold:

(a) The maps Y1 \ u1(B1) ∋ y 7→ N1(y) and Y2 \ Ψ(u1(B1)) ∋ y 7→ N2(y) are
norms everywhere and also Borel measurable;

(b) The maps Y1\u1(B1) ∋ y 7→ DΨ(y) and Y2\Ψ(u1(B1)) ∋ y 7→ D(Ψ−1)(y) are
Borel measurable and the chain rule D(Ψ−1) ◦DΨ = DidY1 holds everywhere
in Y1 \ u1(B1).

The set B1 is defined to guarantee that the operator norms of DΨ and its inverse
D(Ψ−1) are well-defined everywhere in the complement of u1(B1) and Ψ(u1(B1)), re-
spectively. Also, the restriction of Ψ to the complement of u1(B1) satisfies Conditions
(N) and (N−1).

Proposition 5.5. The Borel functions x 7→ ‖DΨ‖ (x)
(
χY1\u1(B1)(x)

)
=: IΨ(x)

and x 7→ ‖D(Ψ−1)‖ (x)
(
χY2\Ψ(u1(B1))(x)

)
=: IΨ−1(x) are minimal weak upper gradi-

ents of Ψ and Ψ−1, respectively.
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Proof. First, for almost every non-constant absolutely continuous path θ : [0, 1] →
Y1, the paths u−1

1 ◦θ, Ψ◦θ, and u−1
2 ◦Ψ◦θ are absolutely continuous, and the measures

on [0, 1] induced by their metric speeds are absolutely continuous with respect to one
another.

Second, Lemma 3.3 and Lemma 4.18 imply that the path families Γ+
u1(B1)

and

Γ+
Ψ◦u1(B1)

are negligible. The fact that IΨ is a minimal weak upper gradient of Ψ is a

local property. For this reason, we fix isothermal parametrizations ui ◦ φi : Ui → Vi
for i = 1, 2 with Φ(V1) = V2. Now for almost every path θ : [0, 1] → V1, Lemma 4.4
(c) holds for (u1 ◦ φ1)

−1 ◦ θ and for (u2 ◦ φ2)
−1 ◦ (Ψ ◦ θ).

The previous two paragraphs imply that IΨ is a weak upper gradient of Ψ. To
see the minimality of IΨ, we fix an upper gradient ρ ∈ L2

loc(V1) of Ψ. Fix a rectangle
R ⊂ U1 with a foliation γt(s) = x0 + tv + sw, for −1 ≤ s, t ≤ 1, with v and w
orthogonal. By arguing as in the proof of Lemma 4.7, Fubini’s theorem implies for
L2-almost every x ∈ R \ φ−1

1 (B1) and y = u1(φ1(x)),

(29) ρ(y) Nu1◦φ1((x, w)) ≥ NΨ◦(u1◦φ1)((x, w)).

By slightly modifying the corresponding argument from the proof of Lemma 4.7, the
inequality (29) implies ρ(y) ≥ IΨ(y)H2

Y1
-almost everywhere in V1\u1(B1). Therefore,

IΨ is a representative of ρΨ. The claim for IΨ−1 follows from symmetry, given the
fact from Lemma 3.3 that ν1(B) = 0 if and only if ν2(Ψ(B)) = 0. �

Proof of Theorem 5.2. Lemma 5.4 proves that the Jacobian of Ψ and the
Jacobian J2(DΨ) coincide ν1-almost everywhere. Proposition 5.5 implies that the
operator norm of DΨ determines the minimal weak upper gradient of Ψ ν1-almost
everywhere. This implies that the pointwise outer dilatation of Ψ is determined by
the outer dilatation of DΨ. Similar reasoning holds for the inner dilatation.

The inequality (28) follows from the fact thatDΨ is a linear map between Banach
spaces. The defining property of a Banach–Mazur minimizer yields that DΨ is a
Banach–Mazur minimizer ν1-almost everywhere if and only if the inequality (28) is
an equality ν1-almost everywhere. �

6. Applications

In Section 6.1, we establish the uniqueness of the uniformization map up to
conformal diffeomorphisms. We prove Theorem 1.4 in Section 6.2.

6.1. Isothermal parametrizations using Riemannian surfaces. We start
this section by considering global isothermal parametrizations of quasiconformal sur-
faces.

Definition 6.1. (Isothermal parametrizations) Let Z be a Riemannian surface
and Ψ: Z → Y a quasiconformal map. The pair (Z,Ψ) is an isothermal parametriza-

tion of Y if for every other Riemannian surface Z̃ and quasiconformal map Ψ̃ : Z̃ → Y
we have that

(30) (KO(Ψ)KI(Ψ))(z) ≤ (KO(Ψ̃)KI(Ψ̃))(z̃)

for z̃ = (Ψ̃−1 ◦ Ψ)(z) at H2
Z-almost every z ∈ Z. If the image of the map (Z,Ψ) is

clear from the context, we say that (Z,Ψ) is isothermal. If also the domain is clear,
we simply say that Ψ is isothermal.

The following theorem is a global version of Theorem 4.12.
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Theorem 6.2. The uniformization map u is isothermal. Moreover, the following
are equivalent for every Riemannian surface Z and a quasiconformal homeomorphism
Ψ: Z → Y :

(a) The map Ψ is isothermal;
(b) The composition u−1 ◦Ψ is conformal in the Riemannian sense;
(c) The pointwise dilatations satisfy

(31) (KO(Ψ)KI(Ψ)) ◦ (Ψ−1 ◦ u) = KO(u)KI(u)

H2
G-almost everywhere in YG.

(d) The differential DΨ: (TZ,G) → (TY,N) is a Banach–Mazur minimizer at
H2
Z-almost every point z ∈ Z.

Proof. Since Ψ: Z → Y is quasiconformal, Theorem 5.2 shows that

KO(Ψ)KI(Ψ) ≥ ρ2(GZ ,N ◦DΨ)(32)

= ρ2(GZ ◦D(Ψ−1) ◦Du,N ◦Du) ◦ (u−1 ◦Ψ)

H2
Z-almost everywhere in Z. The composition GZ ◦D(Ψ−1) ◦Du is a norm induced

by a Riemannian norm H2
G-almost everywhere in Y . Therefore the identity

ρ2(GZ ◦D(Ψ−1) ◦Du,N ◦Du) ◦ (u−1 ◦Ψ) = ρ2(G,N ◦Du) ◦ (u−1 ◦Ψ)

holds H2
Z-almost everywhere in Z. Applying Corollary 4.17 to the latter term shows

that

ρ2(GZ ◦D(Ψ−1) ◦Du,N ◦Du) ◦ (u−1 ◦Ψ) = (KO(u)KI(u)) ◦ (u−1 ◦Ψ)(33)

H2
Z-almost everywhere in Z. Now (32) and (33) show that

(34) (KO(Ψ)KI(Ψ)) ◦ (Ψ−1 ◦ u) ≥ KO(u)KI(u)

H2
G-almost everywhere in YG. We deduce from (34) that u is isothermal.

The map Ψ is isothermal if and only if the inequality in (34) is an equality
H2
G-almost everywhere, and, by (32) and (33), this happens if and only if

(35) DΨ: (TZ,GZ) → (TY,N)

is a Banach–Mazur minimizer H2
Z-almost everywhere. Hence, Properties (a), (c),

and (d) are equivalent.
Having verified that Properties (a) and (d) are equivalent, we see that the prop-

erty of being isothermal is a local property. Hence, the equivalence of Properties (a)
and (b) follow after we verify the equivalence in the domain of an arbitrary isothermal
chart of Z.

Let φ1 : U1 → V1 ⊂ Z be an isothermal parametrization of a domain V1 ⊂ Z.
Then Nφ1 = GZ ◦Dφ1 = ω ‖·‖2 for some smooth function ω > 0. Observe that Ψ|V1
is isothermal if and only if Ψ ◦ φ1 is isothermal. Proposition 4.15 implies that the
latter property holds if and only if u−1 ◦ (Ψ ◦ φ1) is conformal in the Riemannian
sense if and only if u−1 ◦Ψ|V1 is conformal in the Riemannian sense. This establishes
the claim. �

Theorem 6.2 can be applied, for example, in the following manner. Given an
isothermal map Φ: Z → Y and a 1-quasiconformal homeomorphism f : Y → Y , the
mapping Φ−1 ◦ f ◦ Φ: Z → Z is conformal in the Riemannian sense. To see why, we
first apply Corollary 5.3 to show that f ◦Φ is isothermal. Then Theorem 6.2 implies
that Φ−1◦(f ◦Φ) is conformal in the Riemannian sense. This fact imposes a structure
and size restriction on the group generated by such f . A similar reasoning implies that
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for any given 1-quasiconformal homeomorphism f : Y1 → Y2 and isothermal Φi : Zi →
Yi, the homeomorphism Φ−1

2 ◦f ◦Φ1 : Z1 → Z2 is conformal in the Riemannian sense.

6.2. Quasisymmetries. In this section, we investigate properties of isothermal
charts of (Y, dY ) under the assumption that (Y, dY ) is compact, Ahlfors 2-regular,
and linearly locally contractible.

6.2.1. Basic definitions. Let Y and Z be metric spaces. For a homeomorphism
φ : Y → Z, y ∈ Y and r > 0, let

Lφ(y, r) = sup {dZ(φ(y), φ(w)) | dY (y, w) ≤ r} and

lφ(y, r) = inf {dZ(φ(y), φ(w)) | dY (y, w) ≥ r} .
The map φ is quasisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞)
for which for every y ∈ Y and 0 < r1, r2 < diamY ,

(36) Lφ(y, r1) ≤ η

(
r1
r2

)
lφ(y, r2).

Such a homeomorphism η is called a (quasisymmetric) distortion function of φ and
we say that φ is η-quasisymmetric.

A metric surface Y is Ahlfors 2-regular if there exists a constant CA ≥ 1 such
that for every y ∈ Y and diamY > r > 0,

(37) C−1
A r2 ≤ H2

Y (B(y, r)) ≤ CAr
2.

Here B(y, r) ⊂ Y is the closed ball of radius r centered at y.
Let λ ≥ 1. A metric surface Y is λ-linearly locally contractible if for every y ∈ Y

and 0 < r < diamY
λ

, the metric ball B(y, r) is contractible inside the ball B(y, λr).
That is, there exists y0 ∈ B(y, λr) and a continuous map H : B(y, r) × [0, 1] →
B(y, λr) such that H(z, 0) = z and H(z, 1) = y0 for every z ∈ B(y, r).

6.2.2. Global parametrizations of compact surfaces. When we say that
something in this section depends only on the data of Y , we mean that it depends
only on CA and λ, defined as above. Theorem 1.4 is an immediate consequence of
Theorem 6.3 and Theorem 6.4.

Theorem 6.3. Suppose that Y is an Ahlfors 2-regular metric surface that is
linearly locally contractible and homeomorphic to S

2. Then there exists a Riemannian
distance dG′ on Y of constant curvature 1 for which

u′ = idY : YG′ → Y

is isothermal and η-quasisymmetric with η depending only on the data of Y .

Proof. Let (Y, dG) = YG denote the Riemannian surface obtained from Propo-
sition 4.15. The surface has curvature equal to one. The uniformization map
u = idY : YG → Y is isothermal, and therefore π

2
-quasiconformal.

We fix an isometry I : S2 → YG, and choose three points p1, p2, p3 ∈ Y such
that dY (pi, pj) ≥ diamY/2 for each i 6= j. There exists a Möbius transformation
M : S2 → S

2 so that v′ = u◦I◦M takes the north pole to p1, the south pole to p3, and a
point from the equator to p2. Since v′ is (π/2)-quasiconformal, v′ is η-quasisymmetric
with η depending only on the data of Y ; see [BK02, Proposition 9.1 and Section 3].
We denote dG′(x, y) := dS2((I ◦ M)−1(x), (I ◦ M)−1(y)) for all x, y ∈ YG and set
YG′ := (Y, dG′). Then the identity mapping u′ : (Y, dG′) → (Y, dY ) is isothermal and
η-quasisymmetric. �
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Theorem 6.4. Suppose that Y is a compact Ahlfors 2-regular and linearly lo-
cally contractible metric surface that is not homeomorphic to S

2. Then the uni-
formization map

(38) u = idY : YG → Y

is η-quasisymmetric, where η depends only on the data of Y .

We postpone the proof of Theorem 6.4 until the end of this section.

Lemma 6.5. Let Y be a quasiconformal surface and suppose that φ : D → V ⊂
Y is an η-quasisymmetric homeomorphism. Then φ is K-quasiconformal with K de-
pending only on η. Moreover, there exists a (4K/π)-quasiconformal homeomorphism
ψ : D → D such that ψ(0) = 0 and φ ◦ ψ is an isothermal η′-quasisymmetric map
with η′ depending only on η.

Proof. It follows from [Tys00, Theorem 3.13] that the outer dilatation of φ
is bounded by some constant KO depending only on η. Since V has a (π/2)-
quasiconformal chart, the inner dilatation bound (π/2)2KO of φ follows from Eu-
clidean regularity results [AIM09, Definition 3.1.1 and Theorem 3.7.7]. Therefore, φ
is K-quasiconformal with K = (π/2)2KO.

Proposition 4.2 and the Riemann mapping theorem, together with Proposi-
tion 4.3, imply the existence of a (4K/π)-quasiconformal mapping ψ : D → D with
ψ(0) = 0 such that φ ◦ ψ is isothermal. Corollary 3.10.4 of [AIM09] implies that ψ
is η̃-quasisymmetric with η̃ depending only on the maximal dilatation of ψ. Hence,
φ◦ψ is η ◦ η̃-quasisymmetric. Since K and η̃ depend only on η, the claim follows. �

Proposition 6.6. Let YG be a complete Riemannian surface of curvature −1, 0,
or 1 and

φ : D → YG

a conformal embedding. Suppose that YG is not homeomorphic to the sphere S
2 or

that
2 diamφ(D) ≤ diamYG.

Then there is a constant 2−1 > β > 0 and a distortion function η̃ for which

(39) φ(βD) ⊂ BG

(
φ(0),

lφ(0,
1
2
)

6

)

and the restriction of φ to βD is η̃-quasisymmetric. The constant β and distortion
function η̃ are independent of φ and the surface YG.

Proof. First, suppose that YG is not homeomorphic to the sphere S
2. The surface

YG has a universal cover π : Ω → YG, where π is a local isometry and where Ω is
either the hyperbolic disk Dhyp, the Euclidean plane R

2, or the Riemann sphere S
2.

If Ω = S
2, the covering group of π is generated by the antipodal map.

Suppose that φ : D → YG is as in the claim. Then there exists a conformal
embedding ψ : D → Ω for which φ = π ◦ ψ. Since φ is an embedding, so are ψ and
the restriction of π to the image of ψ.

Claim (1): There exists a 2−1 > β ′ > 0 and a distortion function η for which the
restriction of ψ to β ′

D is η-quasisymmetric.
Proof of Claim (1): If Ω is the hyperbolic disk or the Euclidean plane, the

existence of β ′ and η follows from Propositions 5 and 7 of [GW18] (which are stated
for the case when ψ is orientable. However, the non-orientable case follows from the
orientable one by applying the conjugate map z 7→ z in the Euclidean unit disk D).
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Consider the case Ω = S
2. We rotate the sphere S

2 in such a way that ψ(0) =
(0, 0,−1). Moreover, we identify S

2 with the extended plane R
2 ∪ {∞} using the

stereographic projection τ : S2 → R
2∪{∞} which fixes the equator S

1 = S
1×{0} ⊂ R

3

and maps the south pole (0, 0,−1) to 0. With this identification, τ maps the southern
hemisphere to the unit disk D. Recall that τ is a conformal map.

By construction, the restriction of π to the image of ψ is injective. We claim
that ψ(10−1

D) is contained in the southern hemisphere. We prove this by employing
the following growth estimate for conformal embeddings [Dur83, Theorem 2.6]: If
0 < r < 1 and ‖x‖2 = r, then

(40) ‖D(τ ◦ ψ)‖ (0) r

(1 + r)2
≤ ‖τ ◦ ψ‖2 (x) ≤ ‖D(τ ◦ ψ)‖ (0) r

(1− r)2
.

If ψ(10−1
D) is not contained in the southern hemisphere, then (40) implies that

(41)
81

10
≤ ‖D(τ ◦ ψ)‖ (0).

Then (40) and (41) imply that τ ◦ ψ(2−1
D) contains the closed unit disk D. This is

a contradiction with the injectivity of π in the image of ψ.
The restriction of the stereographic projection τ to the southern hemisphere is a

biLipschitz map. Also, the restriction of τ ◦ψ to the disk 10−1
D is η′-quasisymmetric

with η′ independent of ψ [AIM09, Theorem 3.6.2]. The existence of β ′ and η follows.
Claim (2): Let β ′ > 0 be as in Claim (1). There exists a constant β ′ > β ′′ > 0

such that

(42) ψ(β ′′
D) ⊂ BdΩ

(
ψ(0),

lψ(0,
1
2
)

6

)
.

Proof of Claim (2): Suppose that β ′ > 0 and η are as in Claim (1) and consider
β ′ > β ′′ > 0. Since the restriction of ψ to the disk β ′

D is η-quasisymmetric,

Lψ(0, β
′′) ≤ η

(
β ′′

β ′

)
lψ(0, β

′) ≤ η

(
β ′′

β ′

)
lψ

(
0,

1

2

)
.

Therefore, it suffices to pick β ′′ > 0 so small that η
(
β′′

β′

)
< 1

6
. Claim (2) follows.

We complete the proof of the claim using Claims (1) and (2) (when YG is not
homeomorphic to S

2). Recall that the restriction of π to ψ(D) is injective. Let β ′′ > 0
be as in Claim (2). Since

BdΩ

(
ψ(0), lψ

(
0,

1

2

))
⊂ ψ

(
2−1

D
)
,

the restriction of π to BdΩ

(
ψ(0), 6−1lψ

(
0, 1

2

))
is an isometry onto its image. This is

an immediate consequence of the fact that

dG(x, y) = inf
{
dΩ(x

′, y′) | x′ ∈ π−1(x) and y′ ∈ π−1(y)
}
.

In conclusion, the map ψ can be replaced with φ and Ω with YG everywhere in
Claims (1) and (2). We define β = β ′′ as in Claim (2) and η̃ = η as in Claim (1) to
conclude the proof of Proposition 6.6 when YG is not homeomorphic to S

2.
We are left to consider the case when YG is homeomorphic to S

2. Then there exists
an isometry π : S2 → YG. Therefore, there exists a conformal embedding ψ : D → S

2

for which φ = π ◦ ψ. By rotating the sphere, we can assume that ψ(0) is the south
pole. The diameter bound on the image of φ implies that ψ(10−1

D) is contained in
the southern hemisphere. The rest of the proof is argued as above. �
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For the rest of the section, we assume that diamY = 1. This can be done without
loss of generality since the properties we study are left unchanged by rescaling. The
diameter normalization is needed for the results we use from [GW18]. We formulate
the following corollary of [GW18, Theorem 9] and Lemma 6.5.

Proposition 6.7. There is a quantity A0 ≥ 1 and a distortion function η, each
depending only on the data of Y , such that for every 0 < R ≤ 1

A0
and y ∈ Y , there

is a neighbourhood U of y for which

(a) B(y, R
A0
) ⊂ U ⊂ B(y, A0R);

(b) there exists an η-quasisymmetric homeomorphism f : U → D that is an
isothermal chart of Y with f(y) = 0.

The only difference between [GW18, Theorem 9] and Proposition 6.7 is the con-
dition that f is an isothermal chart. We state next a modified version of [GW18,
Lemma 10].

Lemma 6.8. Suppose that 2−1 > β > 0 is the constant in Proposition 6.6 and
η is as in Proposition 6.7. Then there exist radii α and r0 > 0 and a positive integer
n such that the following statements hold.

(a) There exists an atlas Aβ = {(Uj, fj)}nj=1, where fj(Uj) = D and each fj is an
η-quasisymmetric isothermal chart of Y .

(b) Let xj = f−1
j (0). The collection {B(xj , r0)}nj=1 is pairwise disjoint.

(c) The collection {B(xj , 2r0)}nj=1 covers Y .

(d) For each j = 1, . . . , n, we have B(xj , 10r0) ⊂ Uj and

αD ⊂ fj(B(xj , r0)) ⊂ fj(B(xj , 10r0)) ⊂ βD.

The radii α and r0, and the integer n depend only on the data of Y and β.

Lemma 6.8 is proved exactly as [GW18, Lemma 10], but instead of applying
[GW18, Theorem 9] as in the proof of [GW18, Lemma 10], we apply Proposition 6.7.

Proof of Theorem 6.4. Let (Y, dG) = YG denote the Riemannian surface obtained
from Proposition 4.15. The surface YG has curvature equal to 1, 0, or −1 and is not
homeomorphic to S

2. Let u = idY : YG → Y denote the uniformization map.
Recall that the claim is that u is quasisymmetric with distortion depending only

on the data of Y . It suffices to prove that v = u−1 = idY : Y → YG is quasisymmetric
with quasisymmetric distortion function depending only on the data of Y .

For the duration of the proof, we use the notations introduced in Lemma 6.8,
and denote ψj = v ◦ f−1

j : D → YG. We first observe that for each j = 1, 2, . . . , n,

(43) v
∣∣
B(xj ,10r0)

= ψj ◦ fj
∣∣
B(xj ,10r0)

is η1-quasisymmetric

with η1 = η̃ ◦ η, where η is from Lemma 6.8 and η̃ from Proposition 6.6. Recall that
η̃ is independent of Y and the η depends only on the data of Y .

Next, we claim that for each x, x′ ∈ Y with dY (x, x
′) = 4r0,

(44) dG(v(x), v(x
′)) ≥ δ = C−1 diamYG,

where C depends only on the data of Y . To this end, since {B(xj , 2r0)}nj=1 covers Y ,

the union
⋃n
j=1 ψj(βD) covers YG. As YG is connected, we conclude

(45) max
j

{diamψj(βD)} ≥ diamYG
n

.
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Consider a pair of indices i, k = 1, 2, . . . , n with dY (xi, xk) < 4r0. Then xk ∈
B(xi, 10r0), so Lemma 6.8 implies dG(v(xi), v(xk)) ≤ Lψi

(0, β). If i and k are distinct,
dY (xi, xk) > r0, so the same lemma implies dG(v(xi), v(xk)) ≥ ℓψi

(0, α). Observe that

ℓψi
(0, α) ≥ Lψi

(0, β)

η̃
(
β
α

) ≥ diamψi(βD)

2η̃
(
β
α

) .

We have now verified that the quantities

(46) ℓψi
(0, α), Lψi

(0, β), diamψi(βD), dG(v(xi), v(xk))

are comparable with constants depending only on the data of Y .
Observe that for every pair i, j = 1, 2, . . . , n with i 6= j, there exists m ≤ n and

a chain {xik}mk=1 with xi1 = xi and xim = xj , and 4r0 > dY (xik , xik+1
) > r0 for each

k = 1, 2, . . .m − 1. Recall from Lemma 6.8 that n depends only on the data of Y .
This fact and (46) imply that there exists C0 > 0, depending only on the data of Y ,
such that for every pair i, j = 1, 2, . . . , n,

(47) ℓψi
(0, α) ≥ diamψj(βD)

C0

.

Given the inequalities (45) and (47), we have

(48) ℓψi
(0, α) ≥ diamYG

nC0

for every i.

Suppose that x, x′ ∈ Y with dY (x, x
′) = 4r0. Then there exist i and k such that

dY (x, xi) < 2r0 and dY (x
′, xk) < 2r0. As 2r0 ≤ dY (x

′, xi) ≤ 6r0, we have x, x′, xk ∈
B(xi, 10r0). Then (43) implies

(49) dG(v(x
′), v(x)) ≥ dG(v(x

′), v(xi))

η1(3/2)
.

Since x′ ∈ Y \BY (xi, r0), the inequality (48) yields that

(50) dG(v(x
′), v(xi)) ≥ ℓψi

(0, α) ≥ diamYG
nC0

.

The inequality (44) follows from the inequalities (49) and (50).
Lastly, Lemma 6.8 implies that L = 8r0 is a Lebesgue number of {B(xj , 10r0)}nj=1.

Then a theorem by Tukia and Väisälä, as formulated in [GW18, Theorem 4], states
that v is η2-quasisymmetric, where η2 depends only on η1 from (43) and the ratios
diamY
L

= 1
L

and diamYG
δ

, where δ is from (44). Hence η2 depends only on the data of
Y . This implied the claim. �

7. Concluding remarks

The classical uniformization theorem states that every smooth Riemannian sur-
face Y is 1-quasiconformally equivalent to a complete Riemannian surface of curva-
ture −1, 0, or 1. For such Y , our uniformization map u : YG → Y is 1-quasiconformal.
Given this observation, we pose the following question.

Open Problem A. Let Y be a quasiconformal surface. Is Y 1-quasiconformally
equivalent to a metric surface Z with desirable geometric properties?

One might ask if Open Problem A holds in such a way that Z is bi-Lipschitz
equivalent to the space YG obtained from Proposition 4.15, or even if the space is√
2-bi-Lipschitz equivalent to YG.
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When (Y, dY ) is constructed from a sufficiently regular norm field on a smooth
surface, such a Z can be constructed using John’s theorem and regularity results for
Beltrami differential equations. However, we cannot always take in Open Problem A
the surface Z to be bi-Lipschitz equivalent to YG, or to any other Riemannian surface.

Theorem 7.1. [IRar, Theorem 1.6] There exists a distance d on R
2 such that

the identity map ι : (R2, ‖·‖2) → (R2, d) is an isothermal parametrization, but ι does
not factor as ι = ι̂ ◦ P , where (Z, dZ) is a metric surface, ι̂ : (Z, dZ) → (R2, d)
is quasiconformal with distortion H(ι̂) <

√
2 and P : (R2, ‖·‖2) → (Z, dZ) is bi-

Lipschitz.

Here H(ι̂) = ess sup
√
KO(ι̂)(x)KI(ι̂)(x) for the pointwise dilatations of ι̂. The-

orem 7.1 shows that we cannot require in Open Problem A Z to be bi-Lipschitz
equivalent to YG, even if we allow for non-conformal distortion 1 < H(ι̂) <

√
2. We

note that the isothermal parametrization ι in Theorem 7.1 has distortion exactly
H(ι) =

√
2.

It is not clear whether Z in Open Problem A can be chosen in such a way that Z
is locally quasisymmetrically equivalent to some Riemannian surface, or even what
is the answer to the following problem.

Open Problem B. Is every quasiconformal surface 1-quasiconformally equiva-
lent to a metric surface Z that is locally Ahlfors 2-regular and locally linearly locally
contractible?

We note that Open Problem A is trivially true for each quasiconformal surface for
which the uniformization map is 1-quasiconformal. This holds, for example, when
(Y, dY ) has bounded integral curvature [Res01] and [BL03], or (Y, dY ) ⊂ R

N for
N ≥ 2.
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