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Baernstein’s star-function, maximum modulus
points and a problem of Erdős

Ivan I. Marchenko

To the memory of Albert Baernstein II on his 80th birth anniversary

Abstract. The paper is devoted to the development of Baernstein’s method of T ∗-function.

We consider the relationship between the number of separated maximum modulus points of a

meromorphic function and the T
∗-function. The results of Bergweiler, Bock, Edrei, Goldberg,

Heins, Ostrovskii, Petrenko, Wiman are generalized. We also give examples showing that the

obtained estimates are sharp.

Baernsteinin tähtifunktio, itseisarvon maksimipisteet ja Erdősin ongelma

Tiivistelmä. Tämä tutkimus keskittyy Baernsteinin T
∗-funktiomenetelmän kehittämiseen.

Tarkastelemme meromorfisen funktion ja T
∗-funktion erillään olevien itseisarvon maksimipistei-

den lukumäärän välistä suhdetta ja yleistämme Bergweilerin, Bockin, Edrein, Goldbergin, Heinsin,

Ostrovskiin, Petrenkon ja Wimanin tuloksia. Lisäksi osoitamme esimerkein, että saavutetut arviot

ovat tarkkoja.

1. Introduction

We shall use standard notations of value distribution theory of meromorphic
functions: m(r, a, f) for the proximity function, N(r, a, f) for the function counting
a-points, T (r, f) for Nevanlinna’s characteristic, δ(a, f) for Nevanlinna’s defect and
λ, ρ for the lower order and order, respectively [18, 25].

Let f 6≡ 0 be a meromorphic function in C. In 1972 Albert Baernstein II in
his paper ‘Proof of Edrei’s spread conjecture’ [2] introduced for the first time the
function, which is now widely referred to as Baernstein’s star-function:

T ∗(reiθ, f) = sup
E

1

2π

ˆ

E

log |f(reiϕ)| dϕ+N(r,∞, f),

where the supremum is taken over all the sets E ⊂ [−π, π] of the Lebesgue measure
|E| = mes E = 2θ.

Theorem A. [2, 3] Let f(z) be a meromorphic function in C. Then T ∗(z, f) is

a subharmonic function on {z ∈ C : Im z > 0} and is continuous on {z = reiθ : 0 <
r <∞, 0 ≤ θ ≤ π}.

Apart from the subharmonicity, the T ∗-function also possesses the following prop-
erties:

T ∗(reiθ, f) is a convex function of log r and nondecreasing on (0,∞) for θ ∈
[0, π];
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T ∗(reiθ, f) ≤ T (r, f) for θ ∈ [0, π] and r > 0;
T ∗(r, f) = N(r,∞, f) for r > 0;
dT ∗

dθ

∣∣∣
z=r

= logmax
|z|=r

|f(z)|, dT ∗

dθ

∣∣∣
z=−r

= logmin
|z|=r

|f(z)| for all r ∈ (0,∞) such

that there are no zeros nor poles of f on the circle {z : |z| = r}.
As can be seen the T ∗-function has various excellent properties and is applicable

not only in the Nevanlinna’s theory of value distribution of meromorphic functions
[18, 25], but also in Petrenko’s theory of growth of meromorphic functions [33]. Thus
it is hardly surprising that with the help of the star-function it was possible to solve
a number of previously open problems. We can list here just a few of them:

in 1972 Baernstein [2] proved Edrei’s spread conjecture ([9], 1967);
in 1994 Fryntov [11] solved Weitsman’s problem ([36], 1977);
in 1990 the author together with Shcherba [30] solved Petrenko’s problem
([33], 1978);
in 1999 the author [29] proved the Fuchs’s hypothesis ([12], 1958).

In 1974 Baernstein introduced the T ∗-function for δ-subharmonic functions [4].
Let us recall that a function u(z) is called a δ-subharmonic function on the domain
D if u(z) = u1(z) − u2(z), where u1(z), u2(z) are the subharmonic functions on D.
Let u(z) = u1(z)− u2(z) be a δ-subharmonic function in C. Then

T ∗(z, u) = sup
|E|=2θ

1

2π

ˆ

E

u(reiϕ) dϕ+N(r, u2),

where z = reiθ, N(r, u2) = 1
2π

´ 2π

0
u2(re

iϕ) dϕ. In the same paper [4] Baernstein
generalized Theorem A to the case of δ-subharmonic functions.

Theorem B. Let u(z) be a δ-subharmonic function in C. Then T ∗(z, u) is a

subharmonic function on {z ∈ C : Im z > 0} and a continuous function on {z =
reiθ : 0 < r <∞, 0 ≤ θ ≤ π}.

Let ν(r) be the number of maximum modulus points of an entire function f(z)
on the circle {z : |z| = r}. In 1964 Erdős posed the following questions ([19], Prob-
lem 2.16): Can we have a function f(z) 6= czn such that

(a) lim sup
r→∞

ν(r) = ∞;

(b) lim inf
r→∞

ν(r) = ∞?

In 1968 Herzog and Piranian [21] found a positive solution of the Erdős’s problem
(a). They gave a suitable example of an entire function of infinite lower order. In
the case of entire functions of finite lower order the question (a) is still open.

In 1977 Clunie stated the same question as formulated in the Erdős’s problem (b)
([1], Problem 2.49): Is it true that lim infr→∞ ν(r) <∞ for all the entire functions f?
In [1] it was not mentioned that this question had been posed by Erdős first. Thus
the author in [27] presented this problem as the Clunie’s problem. In 2002 Piranian
informed the author by letter that this problem belongs originally to Erdős and was
stated in 1964.

In 1995 the author introduced the term separated maximum modulus points
of meromorphic functions [27]. The number of such points can be assessed in the
following manner. Let f(z) be a meromorphic function in C. For any r ∈ (0,∞) we
denote by p(r,∞, f) the number of component intervals of the set

{θ : |f(reiθ)| > 1}
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possessing at least one maximum modulus point of the function f(z) on the circle
{z : |z| = r}. We set

p(∞, f) = lim inf
r→∞

p(r,∞, f).

Let us now come back to the star function of a δ-subharmonic function. Let then

u(z) = log+ |f(z)| = log+
∣∣∣∣
g1(z)

g2(z)

∣∣∣∣
= max (log |g1(z)|, log |g2(z)|)− log |g2(z)| := u1(z)− u2(z)

be a δ-subharmonic function,

N(r, u2) =
1

2π

ˆ 2π

0

u2(re
iϕ) dϕ =

1

2π

ˆ 2π

0

log |g2(reiϕ)| dϕ = N(r, 0, g2) = N(r,∞, f).

Hence

T ∗(reiθ, u) = sup
|E|=2θ

1

2π

ˆ

E

log+ |f(reiϕ)| dϕ+N(r,∞, f).

For each t : 0 < t <∞, let us consider the set

Ft = {reiϕ : u(reiϕ) > t}
and

ũ(reiϕ) = sup{t : reiϕ ∈ F ∗
t },

where F ∗
t is the symmetric rearrangement of the set Ft (see [17]).

The function ũ(reiϕ) is a non-negative and non-increasing function in the interval
[0, π] and is equimeasurable with u(reiϕ) in ϕ for each fixed r. Moreover, ũ(reiϕ)
satisfies the relations

ũ(r) = max
|z|=r

log+ |f(z)|,

ũ(−r) = min
|z|=r

log+ |f(z)|,

T ∗(z, u) =
1

π

ˆ θ

0

ũ(reiϕ) dϕ+N(r,∞, f), z = reiθ.

Let α(r) be the real valued function of a real variable r and let us define

Lα(r) = lim inf
h→0

α(reh) + α(re−h)− 2α(r)

h2
.

When α(r) is twice differentiable, then

Lα(r) = r
r

dr

(
r
d

dr
α(r)

)
.

In [27] the author proved the following estimate of LT ∗.

Theorem C. For almost all θ ∈ [0, π] and for all r > 0 such that the function

f(z) has neither zeros nor poles on {z : |z| = r}, we have

LT ∗(reiθ, u) ≥ −p
2(r,∞, f)

π

∂ũ(reiθ)

∂θ
.

If T ∗(z, u) is twice differentiable, then Theorem A in this case can be written as

∆T ∗(z, u) ≥ 0,

z = x+ iy, ∆ = ∂2

∂x2 +
∂2

∂y2
- Laplace operator.
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Then

LT ∗(z, u) = r
r

dr

(
r
d

dr
T ∗(reiθ, u)

)
= r2∆T ∗(z, u)− ∂2

∂θ2
T ∗(reiθ, u)

≥ − ∂2

∂θ2
T ∗(reiθ, u) = −1

π

∂ũ(reiθ)

∂θ
.

Therefore in the case if T ∗(z, u) is twice differentiable then Theorem A is equivalent
to

(1) LT ∗(reiθ, u) ≥ −1

π

∂ũ(reiθ)

∂θ
.

If δ(∞, f) > 0 then p(r,∞, f) ≥ 1 for r > r0. Thus Theorem C can be considered as
a generalization of Theorem A, which additionally takes into account the number of
separated maximum modulus points. Inequality (1) is an inequality of the Gariepy–
Lewis type. In [13] an analogue of the inequality (1) was proved in the case of
δ-subharmonic functions in Rn (n ≥ 3).

Let L(r,∞, f) = max
|z|=r

log+ |f(z)|. The quantity

β(∞, f) = lim inf
r→∞

L(r,∞, f)

T (r, f)
, β(a, f) = β

(
∞,

1

f − a

)
(a ∈ C),

is called Petrenko’s magnitude of deviation of a meromorphic function f(z) at a ∈ C.
It is clear that δ(a, f) ≤ β(a, f), a ∈ C. In [27] the author obtained a sharp estimate
of β(∞, f) involving p(∞, f) for meromorphic functions of finite lower order λ.

Theorem D. For a meromorphic function f(z) of finite lower order λ we have

β(∞, f) ≤





πλ
p(∞,f)

if λ
p(∞,f)

≥ 1
2
,

πλ
sinπλ

if p(∞, f) = 1 and λ < 1
2
,

πλ
p(∞,f)

sin πλ
p(∞,f)

if p(∞, f) > 1 and λ
p(∞,f)

< 1
2
.

It is clear that if β(∞, f) > 0 then p(∞, f) ≥ 1. Then, by Theorem D we have
the following estimate.

Corollary D1. For a meromorphic function f(z) of finite lower order λ we have

β(∞, f) ≤
{
πλ if λ ≥ 1

2
, (2)

πλ
sinπλ

if λ < 1
2
. (3)

The result in Corollary D1 was obtained by Petrenko in 1969 [32]. In order to
prove this estimate Petrenko obtained a new method, which now is called Petrenko’s
formula. The inequality (3) was obtained by Goldberg and Ostrovskii in 1961 [14]. It
should be mentioned here that the conjecture that β(∞, f) ≤ πρ for entire functions
of order ρ with 1

2
≤ ρ < ∞ was stated in 1932 by Paley and proved in 1969 by

Govorov [16].

Corollary D2. For a meromorphic function f(z) of the finite lower order λ and

β(∞, f) > 0 we have

p(∞, f) ≤ max

([
πλ

β(∞, f)

]
, 1

)
<∞,

where [x] means the integral part of the number x.
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Corollary D3. For an entire function f(z) of finite lower order λ we have

p(∞, f) ≤ max ([πλ], 1) <∞.

In [27] the author presented a sharp estimate of spread involving δ(∞, f), β(∞, f)
and p(∞, f).

Theorem E. Let f(z) be a meromorphic function of finite lower order λ. Then

lim sup
r→∞

mes{θ ∈ [0, 2π] : |f(reiθ)| > 1} ≥ min

(
2π,

4p(∞, f)

λ
arcsin

√
δ(∞, f)

2

)
.

Corollary E1. For a meromorphic function f(z) of finite lower order λ

lim sup
r→∞

mes{θ ∈ [0, 2π] : |f(reiθ)| > 1} ≥ min

(
2π,

4

λ
arcsin

√
δ(∞, f)

2

)
.

The result of Corollary E1 was obtained by Baernstein in 1972 [2].

Theorem F. Let f(z) be a meromorphic function of the finite lower order λ.

Then

lim sup
r→∞

mes{θ ∈ [0, 2π] : |f(reiθ)| > 1} ≥ min

(
2π,

2p(∞, f)

λ
arcsin

p(∞, f)β(∞, f)

πλ

)
.

Corollary F1. Let f(z) be a meromorphic function of the finite lower order λ.

Then

lim sup
r→∞

mes{θ ∈ [0, 2π] : |f(reiθ)| > 1} ≥ min

(
2π,

2

λ
arcsin

β(∞, f)

πλ

)
.

Result of Corollary F1 was obtained by author in 1982 [26]. Let [5]

b(∞, f) = lim inf
r→∞

L(r,∞, f)

rT
′

−(r, f)
,

where T
′

−(r, f) is the left-hand derivative of T (r, f) at the point r. In 1998 the author
obtained a sharp estimate of b(∞, f) in terms of p(∞, f) for meromorphic functions
of the infinite lower order.

Theorem G. [28] Let f(z) be a meromorphic function of the infinite lower order.

Then

b(∞, f) ≤ π

p(∞, f)
.

If b(∞, f) > 0 then p(∞, f) ≥ 1. Therefore by Theorem G we have the following
estimate.

Corollary G1. For a meromorphic function f(z) of the infinite lower order

b(∞, f) ≤ π.

The result in Corollary G1 was obtained in 1994 by Bergweiler and Bock [5].

Corollary G2. For a meromorphic function f(z) of the infinite lower order and

b(∞, f) > 0 we have

p(∞, f) ≤
[

π

b(∞, f)

]
<∞.

In 2004 the author together with Ciechanowicz [6] introduced the following gen-
eralization of the notion of separated maximum modulus points of a meromorphic
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function. Let f(z) be a meromorphic function in C and let φ(r) be a positive non-
decreasing convex function of log r for r > 0, such that φ(r) = o(T (r, f)) (r → ∞).
We denote by p̂φ(r,∞, f) the number of the component intervals of the set

{θ : log |f(reiθ)| > φ(r)}
possessing at least one maximum modulus point of the function f(z) on the circle
{z : |z| = r}. Let

p̂φ(∞, f) = lim inf
r→∞

p̂φ(r,∞, f),

p̂(∞, f) = sup
φ

p̂φ(∞, f).

If δ(∞, f) > 0 or β(∞, f) > 0 or b(∞, f) > 0 then p̂(∞, f) ≥ p(∞, f) ≥ 1. For
entire functions we have δ(∞, f) = 1 and β(∞, f) ≥ 1. Thus for an entire function
f(z) we have p̂(∞, f) ≥ p(∞, f) ≥ 1.

In [6] it was possible to obtain a generalization of Theorems D, E and F involving
p̂(∞, f).

Theorem H. For a meromorphic function f(z) of the finite lower order λ we

have

β(∞, f) ≤





πλ
p̂(∞,f)

if λ
p̂(∞,f)

≥ 1
2
, (4)

πλ
sinπλ

if p̂(∞, f) = 1 and λ < 1
2
, (5)

πλ
p̂(∞,f)

sin πλ
p̂(∞,f)

if p̂(∞, f) > 1 and λ
p̂(∞,f)

< 1
2
. (6)

Corollary H1. For a meromorphic function f(z) of the finite lower order λ we

have

p̂(∞, f) ≤ max

([
πλ

β(∞, f)

]
, 1

)
.

Corollary H2. For an entire function f(z) of the finite lower order λ we have

p̂(∞, f) ≤ max ([πλ] , 1) <∞.

Let Λ(r) be a positive nondecreasing continuous function such that Λ(r) =
o(T (r, f)). We denote

σΛ(r,∞, f) = mes{θ ∈ [0, 2π] : log |f(reiθ)| > Λ(r)}, ωΛ(∞, f)

= lim sup
r→∞

σΛ(r,∞, f).

The quantity

ω(∞, f) = inf
Λ
ωΛ(∞, f)

is called the spread of the meromorphic function f(z) introduced firstly by Edrei [9].

Theorem I. [6] Let f(z) be a meromorphic function f(z) of the finite lower

order λ. Then

ω(∞, f) ≥ min

(
2π,

4p̂(∞, f)

λ
arcsin

√
δ(∞, f)

2

)
.

Theorem J. [6] For every meromorphic function f(z) of the finite lower order

λ we have

ω(∞, f) ≥ min

(
2π,

2p̂(∞, f)

λ
arcsin

β(∞, f)p̂(∞, f)

πλ

)
.
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In the section 7 we give examples showing that the estimates in the theorems H,
I and J are sharp.

2. Main results

Theorem 1. Let f(z) be a meromorphic function of the finite lower order λ <
p̂(∞,f)

2
. Then

lim sup
r→∞

log+ µ(r, f)

T (r, f)
≥

πλ
p̂(∞,f)

sin πλ
p̂(∞,f)

(
δ(∞, f)− 1 + cos

πλ

p̂(∞, f)

)
,

where µ(r, f) = min|z|=r |f(z)|.
Corollary 1.1. Let f(z) be a meromorphic function of lower order λ < 1

2
. Then

lim sup
r→∞

log+ µ(r, f)

T (r, f)
≥ πλ

sin πλ
(δ(∞, f)− 1 + cosπλ),

where µ(r, f) = min|z|=r |f(z)|.
Notice that Corollary 1.1 was obtained earlier by Goldberg and Ostrovskii [15, 31].

Corollary 1.2. Suppose that f(z) is a meromorphic function of finite lower

order λ <
p̂(∞,f)

2
and δ(∞, f) > 1− cos πλ

p̂(∞,f)
. Then there exists a sequence of circles

{z : |z| = rk}, rk → ∞, on which f(z) tends to ∞ uniformly with respect to arg z.

Corollary 1.3. Suppose that f(z) is a meromorphic function of finite lower

order λ < 1
2

and δ(∞, f) > 1− cosπλ. Then there is a sequence rn → ∞, such that

f(rne
iθ) tends uniformly to ∞ for θ ∈ [0, 2π].

It should be mentioned that the result in Corollary 1.3 was obtained earlier by
Goldberg and Ostrovskii ([31], see also [15]) and Edrei [8]. It is necessary to admit
that in 1939 Teichmüller [35] proved that for the meromorphic function f(z) of the
order ρ < 1

2
such that δ(∞, f) > 1− cos πρ it holds for all θ ∈ [0, 2π]

lim sup
r→∞

|f(reiθ)| = ∞.

Therefore Teichmüller get the result of Corollary 1.3 in the case of δ(∞, f) > 1−cos πρ
1−ǫ cos πρ

,
where ǫ > 0, 0 < ǫ < 1.

Corollary 1.4. Let f(z) be an entire function of lower order λ <
p̂(∞,f)

2
. Then

there exists a sequence of circles {z : |z| = rk}, rk → ∞, on which f(z) tends to ∞
uniformly with respect to arg z.

Corollary 1.5. Let f(z) be an entire function of lower order λ < 1
2
. Then

there exists a sequence of circles {z : |z| = rk}, rk → ∞, on which f(z) tends to ∞
uniformly with respect to arg z.

The result in Corollary 1.5 was obtained by Heins [20] in 1948 and in case when
f(z) is an entire function of order ρ < 1

2
by Wiman [37] in 1905.

Corollary 1.6. If f(z) is an entire function of lower order λ <
p̂(∞,f)

2
then for

all a ∈ C we have δ(a, f) = 0, i.e. f(z) does not have finite defective values.
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Theorem 2. Let f(z) be a meromorphic function of lower order λ <
p̂(∞,f)

2
.

Then

lim sup
r→∞

log+ µ(r, f)

T (r, f)
≥ 1

cos πλ
p̂(∞,f)

(
β(∞, f)− πλ

p̂(∞, f)
sin

πλ

p̂(∞, f)

)
,

where µ(r, f) = min|z|=r |f(z)|.
Corollary 2.1. Let f(z) be a meromorphic function of lower order λ < 1

2
. Then

(2.1) lim sup
r→∞

log+ µ(r, f)

T (r, f)
≥ 1

cosπλ
(β(∞, f)− πλ sin πλ),

where µ(r, f) = min|z|=r |f(z)|.
It should be mentioned that the result stated in Corollary 2.1 was obtained by

the author in [27].

Corollary 2.2. Suppose that f(z) is a meromorphic function of finite lower

order λ <
p̂(∞,f)

2
and β(∞, f) > πλ

p̂(∞,f)
sin πλ

p̂(∞,f)
. Then there exists a sequence of

circles {z : |z| = rk}, rk → ∞, on which f(z) tends to ∞ uniformly with respect to

arg z.

Corollary 2.3. Suppose that f(z) is a meromorphic function of the finite lower

order λ < 1
2

and β(a, f) > πλ sin πλ. Then β(b, f) = 0 for all b 6= a.

Notice that the result in Corollary 2.3 was obtained earlier by Petrenko [33].

Theorem 3. Let f(z) be a meromorphic function of infinite lower order. Then

b(∞, f) ≤ π

p̂(∞, f)
.

Corollary 3.1. For a meromorphic function of infinite lower order and b(∞, f) >
0 we have

p̂(∞, f) ≤
[

π

b(∞, f)

]
<∞.

The method of the T ∗-function turns out to be very effective also in the study
of other structures. In 2016 the author together with Kowalski [22] (see also [24])
introduced and investigated the notion of separated maximum points of the norm
of meromorphic minimal surfaces. In 2019 we introduced the term of the separated
maximum points of the entire curves [23] (see also [38]).

I would like to mention about a method of Baernstein’s T ∗-function. Petrenko’s
method is right if the extremal function has only the one maximum modulus point
on the circle {z : |z| = r}. In the case of the single deviation β(∞, f) a Mittag-
Leffler’s function is the extremal function and has one maximum modulus point.
Petrenko considered the representation of the meromorphic function on the sector in
the neighborhood of the maximum modulus point (Petrenko’s formula) and he get
the sharp estimation of the deviation β(a, f). In the case of the sum of deviations the
extremal function is a Frithiof Nevanlinna’s function (see [15], p. 317), which has n
maximum modulus points (n = 2λ). In this case the Petrenko’s method is not sharp.
The Baernstein’s T ∗-function concerns all of the intervals in the neighborhood of the
all maximum modulus points. Therefore by means of the T ∗-function author and
Shcherba get the sharp estimation of

∑
a∈C β(a, f) (Petrenko’s problem).
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In 2021 there will be the 80th birth anniversary of Albert Baernstein II (1941–
2014). I was acquainted with him personally and I have been frequently applying his
brilliant function (star-function) while solving my research problems.

3. Auxiliary results

Let again f(z) be a meromorphic function and φ(r) be a positive non-decreasing
convex function of log r such that φ(r) = o(T (r, f)), (r → ∞). We first consider the
function

uφ(z) = max (log |f(z)|, φ(|z|)).
Lemma 1. [6] The function uφ(z) is δ-subharmonic function in C.

Proof. Let f(z) = g1(z)
g2(z)

, where g1(z) and g2(z) are entire functions without

common zeros. Then it is easy to see that

uφ(z) = max (log |g1(z)|, log |g2(z)| + φ(|z|))− log |g2(z)|.
The function φ(r) is a convex function of log r for r > 0. Therefore φ(|z|) is a
subharmonic function in C [34]. Also

v1(z) := max (log |g1(z)|, log |g2(z)|+ φ(|z|))
is a subharmonic function in C. Thus

uφ(z) = v1(z)− log |g2(z)| := v1(z)− v2(z)

is a δ-subharmonic function in C. �

Let

m∗(reiθ, uφ) = m∗(r, θ, uφ) = sup
|E|=2θ

1

2π

ˆ

E

uφ(re
iϕ) dϕ,

T ∗(reiθ, uφ) = T ∗(r, θ, uφ) = m∗(r, θ, uφ) +N(r,∞, f),

where r ∈ (0,∞), θ ∈ [0, π], E is a measurable set and |E| is the Lebesgue measure
of E. Now for each t ∈ (0,+∞), consider the set

Ft = {reiϕ : uφ(reiϕ) > t},
and let

ũφ(re
iϕ) = sup{t : reiϕ ∈ F ∗

t },
where F ∗

t is the symmetric rearrangement of the set Ft [17].
The function ũφ(re

iϕ) is non-negative and non-increasing in the interval [0, π],
even with respect to φ and for each fixed r equimeasurable with uφ(re

iϕ). Moreover,
it satisfies the equalities:

ũφ(r) = max(logmax
|z|=r

|f(z)|, φ(r)),

ũφ(re
iπ) = max(logmin

|z|=r
|f(z)|, φ(r)),

m∗(r, θ, uφ) = sup
|E|=2θ

1

2π

ˆ

E

uφ(z) dz =
1

π

ˆ θ

0

ũφ(re
iϕ) dϕ,

where ũ(r, ϕ) = ũ(reiϕ).
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From Theorem B the function T ∗(r, θ, uφ) is subharmonic in D = {reiθ : 0 < r <

∞, 0 < θ < π}, continuous in D ∪ (−∞, 0) ∪ (0,∞) and logarithmically convex in
r > 0 for each fixed θ ∈ [0, π]. Moreover,

T ∗(r, 0, uφ) = N(r,∞, f),

T ∗(r, π, uφ) = T (r, f) + o(T (r, f)) (r → ∞),

∂

∂θ
T ∗(r, θ, uφ) =

ũφ(re
iθ)

π
for 0 < θ < π.

Lemma 2. [6] For almost all θ ∈ [0, π] and for all r > 0 such that the function

f(z) has neither a zeros nor poles on the circle {z : |z| = r} we have

LT ∗(reiθ, uφ) ≥ −
p̂2φ(r,∞, f)

π

∂ũφ(re
iθ)

∂θ
.

Lemma 2 is a generalization of Theorem C. In [6] was given sketch of the proof
of Lemma 2. In this paper we give a complete proof of Lemma 2.

Proof. Let us assume that r0 is a number satisfying the hypothesis. Since

ũφ(r0, θ) = ũφ(r0e
iθ) is a non-increasing function of θ, the derivative

∂ũφ(r0,θ)

∂θ
ex-

ists for almost all θ ∈ (0, π). Let us choose θ ∈ (0, π) such that
∂ũφ(r0,θ)

∂θ
exists. If

ũφ(r0, θ) = φ(r0), then ũφ(r0, x) = φ(r0) for all x ∈ [θ, π) and so
∂ũφ(r0,θ)

∂θ
= 0. As

T ∗(r, θ, uφ) = T ∗(reiθ, uφ) is a convex function of log r, we see that LT ∗(r, θ, uφ) ≥ 0

for r > 0. Therefore the Lemma 2 is proved in the case when
∂ũφ(r0,θ)

∂θ
= 0 or when

ũφ(r0, θ) = φ(r0).

Let us assume now that
∂ũφ(r0,θ)

∂θ
< 0 and ũφ(r0, θ) > φ(r0). By [4] there exists a

set E(r0, θ), such that

{ϕ ∈ [0, 2π] : uφ(r0, ϕ) > ũφ(r0, θ)} ⊂ E(r0, θ) ⊂ {ϕ ∈ [0, 2π] : uφ(r0, ϕ) ≥ ũφ(r0, θ)},

m∗(r0, θ, uφ) =
1

2π

ˆ

E(r0,θ)

uφ(r0, ϕ) dϕ.(3.1)

We will prove that the set {ϕ ∈ [0, 2π] : uφ(r0, ϕ) = ũφ(r0, θ)} is finite. Let us
assume that the set {ϕ ∈ [0, 2π] : uφ(r0, ϕ) = ũφ(r0, θ)} is not finite. Thus there is a
sequence {ϕn}∞n=1, such that ϕn 6= ϕk (n 6= k), ϕn → ϕ0 (n → ∞) and uφ(r0, ϕn) =
ũφ(r0, θ) for all n ∈ N. Since ũφ(r0, θ) > φ(r0) then log |f(r0eiϕn)| = ũφ(r0, θ). There
is neither zeros nor poles of the function f(z) on the circle {z : |z| = r0}. Hence
the function F (ϕ) = log |f(r0eiϕ)| is analytic for all ϕ ∈ [0, 2π]. Moreover F (ϕn) =
ũφ(r0, θ) for all n ∈ N and ϕn 6= ϕk (n 6= k), ϕn → ϕ0 (n→ ∞). Thus by uniqueness
theorem we have F (ϕ) = ũφ(r0, θ) for ϕ ∈ [0, 2π]. Hence uφ(r0, ϕ) = ũφ(r0, θ) for

ϕ ∈ [0, 2π]. Thus ũφ(r0, ϕ) = ũ(r0, θ) for ϕ ∈ [0, 2π] and
∂ũφ(r0,θ)

∂ϕ
= 0, which is a

contradiction. Hence the set {ϕ ∈ [0, 2π] : uφ(r0, ϕ) = ũφ(r0, θ)} is finite.
Let E1(r0, θ) = {ϕ ∈ [0, 2π] : uφ(r0, ϕ) > ũφ(r0, θ)}. By (3.1) we have

m∗(r0, θ, uφ) =
1

2π

ˆ

E1(r0,θ)

uφ(r0, ϕ) dϕ.

Let us now consider for r > 0 the function [13]

Ψ(r) =
1

2π

ˆ

E1(r0,θ)

uφ(r, ϕ) dϕ.
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We have m∗(r0, θ, uφ) = Ψ(r0) and m∗(r, θ, uφ) ≥ Ψ(r) for all r > 0. Hence

(3.2) Lm∗(r0, θ, uφ) ≥ LΨ(r0).

Since the set E1(r0, θ) ⊂ [0, 2π] is open it implies that E1(r0, θ) =
⋃

k(αk, βk). In the
points αk and βk we have F (αk) = F (βk) = ũφ(r0, θ) and F (ϕ) = log |f(r0eiϕ)|. It
follows again from the uniqueness theorem that the family of intervals {(αk, βk)} is
finite. Let m = m(r0) denote the number of those intervals, i.e.

E1(r0, θ) = {ϕ ∈ [0, 2π] : uφ(r0, ϕ) > ũφ(r0, θ)} =
m⋃

k=1

(αk, βk), m = m(r0) <∞.

The function log |f(z)| is harmonic on a certain neighborhood of the circle {z : |z| =
r0} as f(z) has neither zeros nor poles on this circle. Therefore

LΨ(r0) =
1

2π

m∑

k=1

ˆ βk

αk

r0
d

dr
r
d

dr
uφ(re

iϕ)

∣∣∣∣
r=r0

dϕ

=
1

2π

m∑

k=1

ˆ βk

αk

r0
d

dr
r
d

dr
log |f(reiϕ)|

∣∣∣∣
r=r0

dϕ

=
1

2π

m∑

k=1

ˆ βk

αk

(
−∂

2 log |f(r0eiϕ)|
∂ϕ2

)
dϕ

= − 1

2π

m∑

k=1

ˆ βk

αk

∂2uφ(r0, ϕ)

∂ϕ2
dϕ = − 1

2π

m∑

k=1

[
∂uφ(r0, ϕ)

∂ϕ

]∣∣∣∣
βk

αk

(3.3)

It is easy to see that there are neighborhoods of the points αk, βk, (k = 1, . . . , m)
where the function F (ϕ) = log |f(r0eiϕ)| is strictly increasing and strictly decreasing,
respectively. For if not, then at least one of the numbers {αk, βk} is such that there
exists a sequence {ϕn}∞n=1 tending to this number and for which F ′(ϕn) = 0 for n ∈ N.
But the function F ′(ϕ) is analytic in ϕ ∈ [0, 2π] and hence f ′(ϕ) = 0 for all ϕ ∈ [0, 2π].
Hence for all ϕ ∈ [0, 2π] we have F (ϕ) = log |f(r0eiϕ)| = ũφ(r0, θ). However, we have

assumed that ∂ũ(r0,θ)
∂θ

= 0, which is a contradiction. Thus, there exist neighborhoods
of the points αk, βk, (k = 1, . . . , m) in which the function log |f(r0eiϕ)| is strictly
monotonic. Since ũφ(r0, θ) > φ(r0), there exist neighborhoods of the points αk, βk
where uφ(r0, ϕ) = log |f(r0eiϕ)|. Consequently, uφ(r0, ϕ) is strictly monotonic in a
neighborhood of each point αk, βk (k = 1, . . . , m).

We claim that
∂uφ(r0,αk)

∂ϕ
> 0,

∂uφ(r0,βk)

∂ϕ
< 0 for all k = 1, . . . , m. Let us choose

h > 0, such that uφ(r0, ϕ) is strictly increasing in the h-neighborhood of the point
αk. Then we have

mes{ϕ ∈ [0, 2π] : uφ(r0, ϕ) ≥ uφ(r0, αk + h)} ≤ 2θ − h,

where mes is the Lebesgue measure. In view of the properties of the function ũφ(r, ϕ),
we have

mes

{
ϕ : uφ(r0, ϕ) ≥ ũφ

(
r0, θ −

h

2

)}
= mes

{
ϕ : ũφ(r0, ϕ) ≥ ũφ

(
r0, θ −

h

2

)}

= 2θ − h.

Thus

uφ(r0, αk + h) ≥ ũφ

(
r0, θ −

h

2

)
.
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Hence, since uφ(r0, αk) = ũφ(r0, θ),

∂uφ(r0, αk)

∂ϕ
≥ −1

2

∂ũφ(r0, θ)

∂θ
> 0, (k = 1, . . . , m).

Similarly,
∂uφ(r0, βk)

∂ϕ
< 0 (k = 1, . . . , m).

For brevity of notation, in place of uφ(r0, ϕ) and ũφ(r0, ϕ) we shall write u(ϕ) and
ũ(ϕ), respectively. Thus, u′(αk), u

′(βk) < 0 (k = 1, . . . , m). Let h0 be a positive
number such that for all ϕ ∈ [−h0, h0], we have αk+h0 < βk−h0 and u′(αk+ϕ) > 0,
u′(αk + ϕ) < 0 (k = 1, . . . , m). Further, denote by ηk the smallest value of the
function u(ϕ) in the interval [αk + h0, βk − h0]. Set η = min1≤k≤m ηk. Clearly
u(α1 + h0) ≥ η > u(α1) = ũ(θ). Choose a number h1 such that 0 < h1 ≤ h0
and u(α1 + h1) = η. By the choice of h1, the equations u(βk − x) = u(α1 + h),
u(αk + y) = u(α1 + h) have unique solutions for all 0 < h < h1, which we denote
respectively by xk, yk. Thus xk = xk(h), yk = yk(h) for h : 0 < h < h1.

From the continuity of the function u(ϕ) and since u(βk) = u(αk) = ũ(θ) (k =
1, . . . , m), it follows that as h → +0 the functions xk = xk(h), yk = yk(h) tends to
zero. By the differentiability of the function u(ϕ), we have

u(βk)− u′(βk)xk + o(xk) = u(α1) + u′(α1)h+ o(h) (h→ +0).

Hence

xk = −u
′(α1)

u′(βk)
h+ o(h) (h→ +0, k = 1, . . . , m).

Similarly

yk =
u′(α1)

u′(αk)
h+ o(h) (h→ +0, k = 1, . . . , m).

From the choice of xk, yk it follows that

mes{ϕ ∈ [0, 2π] : u(ϕ) ≥ u(α1 + h)} = 2θ −
m∑

k=1

(xk + yk)

= 2θ −
m∑

k=1

(
u′(α1)

u′(αk)
− u′(α1)

u′(βk)

)
h+ o(h)

:= 2θ −A(h).

However, mes{ϕ ∈ [0, 2π] : ũ(ϕ) ≥ ũ(θ − 1
2
A(h))} = 2θ −A(h). Thus

ũ

(
θ − 1

2
A(h)

)
= u(α1 + h).

The function ũ(ϕ) is differentiable at the point θ, therefore

ũ(θ)− 1

2
ũ

′

(θ)A(h) + o(A(h)) = u(α1) + u′(α1)h+ o(h) (h→ +0).

Hence, recalling that u(α1) = ũ(θ), we obtain

−1

2
ũ

′

(θ)
m∑

k=1

(
1

u′(αk)
− 1

u′(βk)

)
u′(α1)h = u′(α1)h+ o(h) (h→ +0).
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Since u′(α1) > 0, it follows immediately from the previous formula that

−1

2
ũ

′

(θ)
m∑

k=1

(
1

u′(αk)
− 1

u′(βk)

)
= 1.

Multiplying this equality by
∑m

j=1 (u
′(αj)− u′(βj)), we have

m∑

j=1

(u′(αj)− u′(βj)) = −1

2
ũ

′

(θ)

m∑

k,j=1

(u′(αj)− u′(βj))

(
1

u′(αk)
− 1

u′(βk)

)
.

Next, we shall use a simple inequality, which can easily be proved by induction: for
positive numbers ak > 0, bk > 0 (k = 1, . . . , m) we have the inequality

m∑

k,j=1

(aj + bj)

(
1

ak
+

1

bk

)
≥ 4m2.

It follows from this and the above inequality that
m∑

j=1

(u′(αj)− u′(βj)) ≥ −2m2ũ
′

(θ).(3.4)

In view (3.2), (3.3) and (3.4) we have

Lm∗(r0, θ, uφ) ≥ −m
2

π
ũ

′

(θ).

Clearly, m ≥ p̂(r0,∞, f) and LT ∗(r0, θ, uφ) ≥ Lm∗(r0, θ, uφ). The assertion of
Lemma 2 now follows from these inequalities. �

Lemma 3. [27] Let the function f(x) be non decreasing on the interval [a, b]
and let ϕ(x) be a non negative function having a bounded derivative of the interval

[a, b]. Then
ˆ b

a

f ′(x)ϕ(x) dx ≤ f(b)ϕ(b)− f(a)ϕ(a)−
ˆ b

a

ϕ′(x)f(x) dx.

Lemma 4. [33] Let f(z) be a meromorphic function of lower order λ. Then for

each ǫ > 0 there exist sequences Sk, Rk tending to infinity such that lim
k→∞

Sk

Rk
= 0 and

for k ≥ k0(ǫ)

T (2Rk, f)

Rλ
k

+
T (2Sk, f)

Sλ
k

< ǫ

ˆ Rk

2Sk

T (r, f)

rλ+1
dr.

Bergweiler and Bock in [5] introduced a generalization of Pólya peaks to functions
of infinite lower order. Let’s remind the basic facts of this construction.

For all sequences Mj → ∞, ǫj → 0 there exist sequences ρj → ∞ and µj → ∞
such that, for all r’s fulfilling the inequality | log r

ρj
| ≤ Mj

µj
, we have

(3.5) T (r, f) ≤ (1 + ǫj)

(
r

ρj

)µj

T (ρj, f).

We can choose the sequences µj and Mj such that

µj = o(log
3

2 T (ρj, f)), Mj = o(log T (ρj , f)), j → ∞.

Let’s put

Pj = ρje
−

Mj

µj , Qj = ρje
Mj

µj .
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Then the inequality (3.5) is true for all r ∈ [Pj, Qj ]. We shall assume that Mj > 1.
Let’s consider the sets

Aj =

{
r ∈ [ρj , Qj] : T (r, f) ≤

1
√
µj

(
r

ρj

)µj

T (ρj, f)

}
,

Bj =

{
r ∈ [Pj, ρj ] : T (r, f) ≤

1
√
µj

(
r

ρj

)µj

T (ρj , f)

}
.

Let’s put

Rj =

{
minAj , if Aj 6= ∅,
Qj, if Aj = ∅, tj =

{
maxBj, if Bj 6= ∅,
Pj, if Bj = ∅,

Sj = e
− 1

µjRj, Tj = e
− 2

µjRj .

Then

tj < ρj < Tj < Sj < Rj

In [5] it is shown that

(3.6)
T (Rj, f)

R
µj

j

+
T (tj, f)

t
µj

j

= o

(
µj

ˆ Tj

tj

T (r, f)

rµj+1
dr

)
, j → ∞.

4. Proof of Theorem 1

If p̂(∞, f) = +∞ then by Theorem H we have β(∞, f) = 0, Thus δ(∞, f) = 0,
so the right side of inequality in the statement of the Theorem 1 is equal to zero and
left side is non-negative.

Let now p̂(∞, f) < ∞. If δ(∞, f) ≤ 1 − cos πλ
p̂(∞,f)

then the Theorem 1 is

obviously. Let δ(∞, f) > 1 − cos πλ
p̂(∞,f)

> 0. Then δ(∞, f) > 0 and for every φ(r)

we have p̂φ(∞, f) ≥ 1. Let us consider the case λ > 0. Now we choose the number
α and ψ satisfying the inequalities

0 < α ≤ min

(
π,
πp̂φ(∞, f)

2λ

)
,

−πp̂φ(∞, f)

2λ
≤ ψ ≤ πp̂φ(∞, f)

2λ
− α.

We put [10, 13, 27]

σ(r) =

ˆ α

0

T ∗(r, ϕ, uφ) cos
λ

p̂φ(∞, f)
(ϕ+ ψ) dϕ,

where T ∗(r, ϕ, uφ) = T ∗(reiϕ, uφ).
Since T ∗(reiϕ, uφ) is a convex function of log r, it follows that for all r > 0 and

h > 0 we have

T ∗(reh, ϕ, uφ) + T ∗(re−h, ϕ, uφ)− 2T ∗(r, ϕ, uφ) ≥ 0.

Thus by Fatou’s lemma for all r > 0 we have

(4.1) Lσ(r) ≥
ˆ α

0

LT ∗(r, θ, uφ) cos
λ

p̂φ(∞, f)
(θ + ψ) dθ ≥ 0.
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It follows from this inequality that σ(r) is a convex function of log r, and so rσ
′

−(r)
is an increasing function on (0,∞). Therefore, for almost all r > 0

Lσ(r) = r
d

dr
rσ

′

−(r).

It follows from (4.1)and Lemma 2 that for almost all r > 0

(4.2) r
d

dr
rσ

′

−(r) ≥ −
ˆ α

0

p̂2φ(r,∞, f)

π

∂ũφ(r, θ)

∂θ
cos

λ(θ + ψ)

p̂φ(r,∞, f)
dθ.

By definition p̂φ(r,∞, f) takes only the integral values. Thus for r ≥ r0 we have
p̂φ(∞, f) ≤ p̂φ(r,∞, f). From this and (4.2) it follows that for almost all r ≥ r0

(4.3) r
d

dr
rσ

′

−(r) ≥ −
ˆ α

0

p̂2φ(∞, f)

π

∂ũφ(r, θ)

∂θ
cos

λ(θ + ψ)

p̂φ(∞, f)
dθ.

If there are neither zeros nor poles of f(z) on the circle {z : |z| = r} for r > 0,
the function uφ(r, θ) = max (log |f(reiθ)|, φ(r)) fulfills the Lipschitz condition in θ.
Therefore ũφ(r, θ) also fulfills the Lipschitz condition on [0, π] [17]. It implies that
the function ũφ(r, θ) is absolutely continuous on [0, π]. Integrating twice by parts,
we have for almost all r ≥ r0

r
d

dr
rσ

′

−(r) ≥ −
p̂2φ(∞, f)

π
ũφ(r, α) cos

λ

p̂φ(∞, f)
(α+ ψ)

+
p̂2φ(∞, f)

π

(
max (logmax

|z|=r
|f(z)|, φ(r))

)
cos

λψ

p̂φ(∞, f)

− πλ

p̂φ(∞, f)
T ∗(r, α, uφ) sin

λ(α+ ψ)

p̂φ(∞, f)

+ λp̂φ(∞, f)N(r,∞, f) sin
λψ

p̂φ(∞, f)
+ λ2σ(r) := h(r) + λ2σ(r).(4.4)

Dividing both sides of (4.4)by rλ+1 and integrating by parts over the interval [2Sk, Rk],
where Sk, Rk are the sequences described in Lemma 4 we have

(4.5)

ˆ Rk

2Sk

h(r)

rλ+1
dr + λ2

ˆ Rk

2Sk

σ(r)

rλ+1
dr ≤

ˆ Rk

2Sk

1

rλ
d

dr
rσ

′

−(r) dr = I.

Invoking Lemma 3 we get

(4.6) I ≤ σ
′

−(r)

rλ+1

∣∣∣∣
Rk

2Sk

+ λ

ˆ Rk

2Sk

σ
′

−(r)

rλ
dr.

The function σ(r) is a convex function of log r on the interval (0,+∞), i.e. g(t) =
σ(et) is convex on (−∞,∞).Thus the function g(t) satisfies a Lipschitz condition
on each interval [a, b] ⊂ (0,+∞), so is also absolutely continuous on each interval.
Then the function σ(r) = g(log r) is also absolutely continuous on the intervals
[a, b] ⊂ (0,+∞). Integrating by parts the integral in the inequality (4.6) we have

(4.7)

ˆ Rk

2Sk

σ
′

−(r)

rλ
dr =

ˆ Rk

2Sk

σ′(r)

rλ
dr =

σ(Rk)

Rλ
k

− σ(2Sk)

(2Sk)λ
+ λ

ˆ Rk

2Sk

σ(r)

rλ+1
dr.

By (4.5), (4.6) and (4.7) we have

(4.8)

ˆ Rk

2Sk

h(r)

rλ+1
dr ≤

(
σ

′

−(r)

rλ−1
+ λ

σ(r)

rλ

)∣∣∣∣
Rk

2Sk

.
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By definition of σ(r) we get

(4.9) 0 ≤ σ(R) ≤ π(1 + o(1))T (R, f) < 2πT (R, f) (R → ∞).

The function rσ
′

−(r) is non-decreasing on (0,∞), hence

σ(2R) ≥ σ(2R)− σ(R) =

ˆ 2R

R

σ′(r) dr =

ˆ 2R

R

rσ
′

−(r)

r
dr ≥ Rσ

′

−(R)

ˆ 2R

R

dr

r

= Rσ
′

−(R) log 2.

Consequently, for R > R0 we have

(4.10) Rσ
′

−(R) ≤
1

log 2
σ(2R) ≤ 2π

log 2
T (2R, f).

Moreover, in view of the monotonicity of Rσ
′

−(R) we have for R ≥ 1

(4.11) Rσ
′

−(R) ≥ σ
′

−(1) = C.

By (4.8), (4.9), (4.10) and (4.11) we have
ˆ Rk

2Sk

h(r)

rλ+1
dr ≤ 2π

(
1

log 2
+ λ

)
T (2Rk, f)

Rλ
k

− C

(2Sk)λ
(k → ∞).

It follows from the Lemma 4 that for k ≥ k0(ǫ)
ˆ Rk

2Sk

h(r)

rλ+1
dr < ǫ

ˆ Rk

2Sk

T (r, f)

rλ+1
dr.

Therefore there exists a sequence rk ∈ [2Sk, Rk] such that h(rk) < εT (rk, f). Since
Sk → ∞ it follows that rk → ∞ as k → ∞.

Recalling the definition of h(r) we have for k ≥ k0

p̂2φ(∞, f)

π

(
max (logmax

|z|=r
|f(z)|, φ(r)) cos λψ

p̂φ(∞,f)
− πλ

p̂φ(∞,f)
T ∗(rk, α, uφ) sin

λ(α+ψ)

p̂φ(∞,f)

)

+ λp̂φ(∞, f)N(rk,∞, f) sin
λψ

p̂φ(∞, f)
−
p̂2φ(∞, f)

π
ũφ(rk, α) cos

λ(α + ψ)

p̂φ(∞, f)
< ǫT (rk, f).

Hence

log+ max
|z|=rk

|f(z)| cos λψ

p̂φ(∞, f)
− πλ

p̂φ(∞, f)
T ∗(k, α, uφ) sin

λ(α + ψ)

p̂φ(∞, f)

+
πλ

p̂φ(∞, f)
N(rk,∞, f) sin

λψ

p̂φ(∞, f)
− ũφ(rk, α) cos

λ(α + ψ)

p̂φ(∞, f)

< ǫT (rk, f) (k > k0).(4.12)

The quantity p̂φ(∞, f) is an entire non-negative number. Since p̂(∞, f) = supφ p̂φ(∞, f)
there is the function φ(r), such that p̂φ(∞, f) = p̂(∞, f). If we apply the inequality
(4.12) to the function φ then we have

log+ max
|z|=rk

|f(z)| cos λψ

p̂(∞, f)
− πλ

p̂(∞, f)
T ∗(rk, α, uφ) sin

λ(α + ψ)

p̂(∞, f)

+
πλ

p̂(∞, f)
N(rk,∞, f) sin

λψ

p̂(∞, f)
− ũφ(rk, α) cos

λ(α + ψ)

p̂(∞, f)

< ǫT (rk, f) (k > k0).(4.13)
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Let α = π, ψ = −πp̂(∞,f)
2λ

. Then by (4.13) we have

πλ

p̂(∞, f)
T (rk, f) cos

πλ

p̂(∞, f)
− πλ

p̂(∞, f)
N(rk,∞, f)− ũφ(rk, π) sin

πλ

p̂(∞, f)

< ǫT (rk, f).

Since δ(∞, f) = 1− lim sup
r→∞

N(r,∞,f)
T (r,f)

, then

N(r,∞, f) < (1− δ(∞, f) + ǫ)T (r, f) (r > r0).

Hence

ũφ(r, π) = max (min
|z|=r

log |f(z)|, φ(r)) = max (min
|z|=r

log+ |f(z)|, φ(r))

≤ min
|z|=r

log+ |f(z)|+ φ(r) = log+ µ(r, f) + o(T (r, f)) (r → ∞),

and

πλ

p̂(∞, f)
T (rk, f) cos

πλ

p̂(∞, f)
− πλ

p̂(∞, f)
(1− δ(∞, f) + ǫ)T (rk, f)

− log+ µ(rk, f) sin
πλ

p̂(∞, f)
< ǫT (rk, f).

Therefore

sin
πλ

p̂(∞, f)
lim sup
r→∞

log+ µ(r, f)

T (r, f)
≥ πλ

p̂(∞, f)

(
δ(∞, f)− 1 + cos

πλ

p̂(∞, f)
− ǫ

)
− ǫ.

Taking ǫ→ 0+ we get statement of Theorem 1.

5. Proof of Theorem 2

In (4.13) we set α = π and ψ = 0. Then there exist the sequence rk → ∞, such
that for k ≥ k0

log+ max
|z|=rk

|f(z)| − πλ

p̂(∞, f)
T ∗(rk, α, uφ) sin

πλ

p̂(∞, f)
− log+ µ(rk, f) cos

πλ

p̂(∞, f)

< ǫT (rk, f).

Thus

cos
πλ

p̂(∞, f)
lim sup
r→∞

log+ µ(r, f)

T (r, f)
≥ β(∞, f)− πλ

p̂(∞, f)
sin

πλ

p̂(∞, f)
− ǫ,

If ǫ→ 0, then we get statement of the Theorem 2.

6. Proof of Theorem 3

Let p be the number such that 1 ≤ p ≤ max (1, p̂(∞, f)),

σ(r) =

ˆ

πp
2µj

0

T ∗(r, θ, uφ) cos
µjθ

p
dθ,

where µj is defined in (3.5). Applying Lemma 2 and Fatou’s lemma we obtain that
for almost all r ≥ r0

r
d

dr
rσ

′

−(r) ≥ −
ˆ

πp

2µj

0

p2

π

∂ũφ(r, θ)

∂θ
cos

µjθ

p
dθ.
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After applying integration by parts to the right side of the above inequality we have
for almost all r ≥ r0

r
d

dr
rσ

′

−(r) ≥ p2h(r, µj) + µ2
jσ(r),

where h(r, µj) = L(r,∞, f)− πµj

p
T ∗
(
r, πp

2µj
, uφ

)
.

By dividing the inequality above by rµj+1 and integrating over an interval [tj, Tj ] we
have

(6.1)

ˆ Tj

tj

1

rµj

d

dr
rσ

′

−(r) dr ≥ p2
ˆ Tj

tj

h(r, µj)

rµj+1
dr + µ2

j

ˆ Tj

tj

σ(r)

rµj+1
dr,

where tj , Tj are defined in (3.6).
Integrating by parts the left side of (6.1) and applying the monotonicity of rσ

′

−(r),
we obtain

(6.2) p2
ˆ Tj

tj

h(r, µj)

rµj+1
dr ≤

(
σ

′

−(r)

rµj−1
+ µj

σ
′

−(r)

rµj

)∣∣∣∣
Tj

tj

.

The definition of σ(r) implies that

σ(r) ≤ p

µj

(T (r, f) + o(T (r, f))).

Since rσ
′

−(r) is monotonically increasing on [tj , Tj] we have

σ(sj)− σ(Tj) =

ˆ Sj

Tj

σ
′

−(r)dr =

ˆ Sj

Tj

rσ
′

−(r)
dr

r

≥ Tjσ
′

−(Tj)

ˆ Sj

Tj

dr

r
= Tjσ

′

−(Tj) log
Sj

Tj
=

1

µj

Tjσ
′

−(Tj).

Hence

Tjσ
′

−(Tj) ≤ µjσ(Sj) ≤ p(T (Sj, f) + o(T (Sj, f))) < 2pT (Sj, f) (j → ∞).

Apart from that, for all r ≥ 1 we have

rσ
′

−(r) ≥ σ
′

−(1).

Now, applying (6.2) and (3.6) we have

p2
ˆ Tj

tj

h(r, µj)

rµj+1
dr ≤ 3pT (Sj, f)

T
µj

j

− σ
′

1

t
µj

j

≤ 3pe2T (Rj , f)

R
µj

j

+
T (tj, f)

t
µj

j

< ǫµj

ˆ Tj

tj

T (r, f)

rµj+1
dr (j → ∞),(6.3)

T ∗(r, α, uφ) ≤ T (r, f) + o(T (r, f)) (r → ∞).

h(r, µj) = L(r,∞, f)− πµj

p
T ∗(r,

πp

2µj

, uφ)

≥ L(r,∞, f)− πµj

p
(T (r, f) + o(T (r, f))).

Therefore
ˆ Tj

tj

L(r,∞, f)

rµj+1
dr < (

π

p
+ ǫ)µj

ˆ Tj

tj

T (r, f)

rµj+1
dr.(6.4)
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Using integrating by parts and applying (3.6), we obtain

µj

ˆ Tj+1

tj

T (r, f)

rµj+1
dr =

T (tj , f)

t
µj

j

− T (Tj, f)

T
µj

j

+

ˆ Tj+1

tj

rT
′

−(r, f)

rµj+1
dr <

< (1 + ǫ)

ˆ Tj+1

tj

rT
′

−(r, f)

rµj+1
dr (j → ∞).

Hence
ˆ Tj

tj

L(r,∞, f)

rµj+1
dr <

(
π

p
+ ǫ

)
(1 + ǫ)

ˆ Tj+1

tj

rT
′

−(r, f)

rµj+1
dr.

Therefore there is a sequence rj ∈ [tj , Tj] such that

L(rj,∞, f) <

(
π

p
+ ǫ

)
(1 + ǫ)rjT

′

−(rj, f).

The definition of sequences {tj} implies that tj ≥ Pj = pje
−

Mj
µj , where pj → ∞,

Mj

µj
→ 0. The sequence pj → ∞ as j → ∞. Thus tj → ∞ and rj → ∞ as j → ∞.

From the definition of b(∞, f) and from (6.4) we get

b(∞, f) ≤
(
π

p
+ ǫ

)
(1 + ǫ).

As it is true for any ǫ > 0 then for all number 1 ≤ p ≤ p̂(∞, f) we have

(6.5) b(∞, f) ≤ π

p

If p̂(∞, f) < ∞ then putting in (6.5) p = p̂(∞, f) we obtain the statement. If, on
the other hand, p̂(∞, f) = ∞ then the inequality (6.5) is true for all numbers p ≥ 1.
Hence in this case b(∞, f) = 0. This completes the proof of Theorem 3.

7. Examples

Let Eρ(z) =
∑∞

k=0
zk

Γ(1+ k
ρ)

be the Mittag-Leffer function of order ρ > 0 (λ = ρ).

Let n ∈ N and λ : λ
n
≥ 1

2
. Let us consider the entire function

F1(z) = Eλ
n
(zn).

It is clear that F1(z) is an entire function of lower order λ. From the asymptotics of
the function Eρ(z) ([15, p. 114]) it follows easily that p̂(∞, F1) = n, β(∞, F1) =

πλ
n

.
Thus the estimate (4) of Theorem H is attained for the function F1(z). The estimate
(5) is attained for the function Eλ(z) for 0 < λ < 1

2
.

To prove the sharpness of the estimate (6) for λ > 0 we consider for n ∈ N

the meromorphic function F2(z) = fλ
n
(zn), where fρ(z) is the function given by

Teichmüller [35] (see also [15, p. 282]). The function fρ(z) is of the order ρ : 0 < ρ < 1
2
,

δ(∞, fρ) = 1− cosπρ, β(∞, fρ) = πρ sin πρ and |f(−r)| ≤ 2 for r ∈ [0,∞). Clearly,
F2(z) = fλ

n
(zn) is of the finite lower order λ : 0 < λ

n
< 1

2
(λ = ρ), p̂(∞, F2) = n,

β(∞, F2) = πλ
n
sin πλ

n
, δ(∞, F2) = 1 − cos πλ

n
. Consequently, the estimate (6) is

attained for the function F2(z) for λ > 0.
If λ = 0 and β(∞, f) > 0 then by Corollary 3.2 we have p̂(∞, f) = 1. The

function f0(z) =
∏∞

n=1

(
1− z

en

)
is of the order 0 and β(∞, f0) = 1. Therefore in the

case of λ = 0 the estimate (5) of Theorem H are attained for the function f0(z).
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Let notice that the estimates in Theorem I and Theorem J are attained for the
functions F1(z) and F2(z) introduced earlier in this section.

The example of the function F2(z) proves that if δ(∞, f) = 1−cos πλ
p̂(∞,f)

, then the

statement of Corollary 1.2 not always is true, i.e. the condition δ(∞, f) > 1−cos πλ
p̂(∞,f)

can not be replaced by δ(∞, f) ≥ 1− cos πλ
p̂(∞,f)

. The function F2(z) also shows that

the condition β(∞, f) > πλ
p̂(∞,f)

sin πλ
p̂(∞,f)

in Corollary 2.2 can not be changed to

β(∞, f) ≥ πλ
p̂(∞,f)

sin πλ
p̂(∞,f)

.

Let us consider the function F3(z) = cos (z
n
2 ) =

∞∑
k=0

(−1)kznk

(2k)!
, (n ∈ N). Then

p̂(∞, F3) = n, ρ(F3) =
n

2
and |F3(x)| = | cosxn

2 | ≤ 1 for x > 0.

The example of the function F3(z) shows that if λ = p̂(∞,f)
2

, then the Corollary 1.4
may not hold.

For the function from the Example 1 ([15, p. 277]) we have fuv(z) = f(z,u)
f(−z,v)

,

where f(z, u) is a Weierstrass product with positive zeros and n(r, 0) ∼ urλ (r → ∞),
0 < λ < 1. It is easy to check (see [15], p. 277–278) that the function fuv(z) is a
meromorphic function of lower order λ (λ = ρ) and for 0 < λ < 1

2
we have

β(∞, fuv) =
πλ

sin πλ

(u− v cos πλ)

u
,

lim sup
r→∞

log+ µ(r, fuv)

T (r, fuv)
=

πλ

sin πλ

(u cosπλ− v)

u
=

1

cosπλ
(β(∞, fuv)− πλ sin πλ).

Hence for all λ : 0 < λ < 1
2

there exists a meromorphic function of lower order λ such
that in the estimate (2.1) we have an equality.

To prove the sharpness of the Theorem 3 we consider the entire function E0(z)
of infinite order [18, p. 126]. For E0(z) we have (see [18, p. 128])

E0(z) =

{
exp (ez + z) +O( 1

|z|2
), if z ∈ A0,

O( 1
|z|2

), if z 6∈ A0,

where A0 = {z = x+ iy ∈ C : x > 0, −π ≤ y ≤ π} and

L(r,∞, E0) ∼ er, T (r, E0) ∼
er

πr
(r → ∞).

For each n ∈ N we consider the function

F4(z) = E0(z
n).

It is easy to see that for this function we have p̂(∞, F4) = n, L(r,∞, F4) ∼ er
n

,

T (r, F4) ∼ er
n

πrn
, rT

′

−(r, F4) ∼ ner
n

π
(r → ∞) and b(∞, F4) = π

n
. Thus estimate of

theorem 3 is attained fot function F4(z).
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