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Sobolev boundedness and continuity for commutators
of the local Hardy–Littlewood maximal function

Feng Liu, Qingying Xue∗ and Kôzô Yabuta

Abstract. Let Ω be a subdomain in Rn and MΩ be the local Hardy–Littlewood maximal

function. In this paper, we show that both the commutator and the maximal commutator of MΩ

are bounded and continuous from the first order Sobolev spaces W 1,p1(Ω) to W 1,p(Ω) provided that

b ∈ W 1,p2(Ω), 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. These are done by establishing several

new pointwise estimates for the weak derivatives of the above commutators. As applications, the

bounds of these operators on the Sobolev space with zero boundary values are obtained.

Paikallisen Hardyn–Littlewoodin maksimaalifunktion kommutaattoreiden

rajoittuneisuus ja jatkuvuus Sobolevin avaruuksissa

Tiivistelmä. Olkoon Ω avaruuden Rn alue ja MΩ paikallinen Hardyn–Littlewoodin maksi-

maalifunktio. Tässä työssä osoitamme, että sekä operaattorin MΩ kommutaattori että sen maksi-

maalinen kommutaattori ovat rajoitettuja ja jatkuvia ensimmäisen kertaluvun Sobolevin avaruud-

esta W 1,p1(Ω) avaruuteen W 1,p(Ω), mikäli b ∈ W 1,p2(Ω), 1 < p1, p2, p < ∞ ja 1/p = 1/p1 + 1/p2.

Nämä tulokset seuraavat em. kommutaattorien heikkoja derivaattoja koskevista uusista pisteit-

täisistä arvioista, joita todistamme useita. Sovelluksina saamme nämä operaattorit rajoitetuiksi

nollareuna-arvoisissa Sobolevin avaruuksissa.

1. Introduction

1.1. Background. Let Ω be a subdomain in Rn and Ωc = Rn \ Ω. Let f
be a measurable function defined from the subdomain Ω to R. The local Hardy–
Littlewood maximal operator MΩ is defined by

MΩf(x) = sup
0<r<dist(x,Ωc)

1

|B(x, r)|

ˆ

B(x,r)

|f(y)|dy,

where B(x, r) is a ball in Rn centered at x with radius r. When Ω = Rn, the operator
MΩ coincides with the classical centered Hardy–Littlewood maximal operator M . It
was well known that M is Lp(Rn) bounded for 1 < p ≤ ∞, and is bounded from
L1(Rn) to L1,∞(Rn). A simple observation may yield that MΩf(x) ≤M(fχΩ)(x) for
all x ∈ Ω. Therefore, MΩ is also bounded on Lp(Ω) for 1 < p ≤ ∞ and is bounded
from L1(Ω) to L1,∞(Ω).

The regularity theory of maximal operators has been the subject of many recent
articles in Harmonic analysis. The first work was due to Kinnunen [16] who proved
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that M is bounded on the first order Sobolev space W 1,p(Rn) for 1 < p ≤ ∞. Later
on, Kinnunen’s result was extended to various cases. For example, see [17] for the
local case, [19] for the fractional case, [8, 21] for the multisublinear case. It is well
known that M is continuous on Lp(Rn) for all 1 < p ≤ ∞, which follows directly
from the well-known Lp bounds and the sublinearity. However, the continuity of
M : W 1,p(Rn) → W 1,p(Rn) for 1 < p < ∞ is certainly a nontrivial issue, since the
maximal operator is not necessarily sublinear at the derivative level. This continuity
property was investigated by Luiro [25] and later extensions were given in [26, 8].
More interesting works related to this topic may be found in [2, 6, 7, 9, 20, 22, 23],
see also the nice recent survey paper given by Carneiro in [5].

In the global case, Sobolev regularity results can even be extended to the situation
of sublinear operators that commute with translations [12]. It should be pointed out
that the methods of dealing the Sobolev regularity for maximal operators in global
case Ω = Rn and the local case Ω ( Rn are quite different. An important reason is
that the local maximal operatorMΩ lacks the commutativity with translations, which
plays a key role in the study of the W 1,p-bounds for M . The first result addressing
the local Ω ( Rn theory was given by Kinnunen and Lindqvist [17] who proved that
the map MΩ : W

1,p(Ω) → W 1,p(Ω) is bounded for all 1 < p ≤ ∞, where W 1,p(Ω) is
the first order Sobolev space as follows:

W 1,p(Ω) := {f : Ω → R : ‖f‖1,p,Ω = ‖f‖p,Ω + ‖∇f‖p,Ω <∞},

where ‖f‖p,Ω = ‖f‖Lp(Ω) and ∇f = (D1f, . . . , Dnf) is the weak gradient of f .
Actually, Kinnunen and Lindqvist obtained theW 1,p(Ω) bounds ofMΩ by proving

the following key estimate:

(1.1) |∇MΩf(x)| ≤ 2MΩ(∇f)(x)

for almost every x ∈ Ω and f ∈ W 1,p(Ω) for some 1 < p < ∞ (also see [12]). Later
on, the above result was extended to the fractional case in[14] and to the multilinear
case in [13].

The main purpose of this paper is to investigate the Sobolev boundedness and
continuity properties for two classes of commutators of the local Hardy–Littlewood
maximal function. We start with the definitions of the commutators.

Definition 1.1. Let b be a locally integrable function defined on Ω. The commu-
tator of the centered Hardy–Littlewood maximal function [b,MΩ] and the maximal
commutator of Mb,Ω are defined respectively by

[b,MΩ](f)(x) = b(x)MΩf(x)−MΩ(bf)(x), x ∈ Ω

and

Mb,Ωf(x) = sup
0<r<dist(x,Ωc)

1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)||f(y)| dy, x ∈ Ω.

When Ω = Rn, the operator [b,MΩ] (resp., Mb,Ω) coincides with the classical
commutator [b,M ] (resp., Mb). Milman and Schonbek [27] first proved the Lp (1 <
p < ∞) bounds of [b,M ]. The above result was improved by Bastero et al. [3]
for b ∈ BMO(Rn). Recently, Agcayazi et al. [1] established the end-point estimates
for [b,M ]. An important application is that the operator [b,M ] can be used in
studying the product of a function in H1(Rn) and a function in BMO(Rn) (see [4]
for instance). The boundedness of Mb has also been studied intensively by many
authors (see [1, 10, 15, 28]). Recently, the authors [24] investigated the regularity of
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commutators of the Hardy–Littlewood maximal function. More precisely, they gave
the following result.

Theorem A. [24] Let 1 < p1, p2, p <∞ and 1/p = 1/p1+1/p2. If b ∈ W 1,p2(Rn),
then the map [b,M ] : W 1,p1(Rn) → W 1,p(Rn) is bounded and continuous. Moreover,

the map Mb : W
1,p1(Rn) → W 1,p(Rn) is bounded. Especially, if f ∈ W 1,p1(Rn), it

holds pointwisely

|∇[b,M ](f)(x)| ≤ |∇b(x)|Mf(x) + |b(x)|M |∇f |(x) +M(|∇(bf)|)(x)

for almost every x ∈ Rn.

Based on the above analysis, a natural question arises

Question 1.2. What kinds of regularity properties do the commutators [b,MΩ]
and Mb,Ω enjoy?

Question 1.2 is the main motivation of the current work. However, as it was men-
tioned before, these operators lack the commutativity with translations. Therefore,
this question belongs to less fine questions. More obstacles must be overcome and
some new pointwise estimates should be established.

Before addressing this problem, let us point out some useful facts.

• The operator [b,MΩ] is neither positive nor sublinear. The map [b,MΩ] :
Lp1(Ω) → Lp(Ω) is bounded and continuous if b ∈ Lp2(Ω), 1 < p1, p2, p ≤ ∞
and 1/p = 1/p1 + 1/p2. Moreover, it holds that

(1.2) ‖[b,M ](f)‖p,Ω ≤ Cp1,p2,n‖f‖p1,Ω‖b‖p2,Ω.

• The operator Mb,Ω is positive and sublinear. The map Mb,Ω : L
p1(Ω) → Lp(Ω)

is bounded and continuous if b ∈ Lp2(Ω), 1 < p1, p2, p ≤ ∞ and 1/p =
1/p1 + 1/p2. Moreover,

(1.3) ‖Mb,Ωf‖p,Ω ≤ Cp1,p2,n‖f‖p1,Ω‖b‖p2,Ω.

This can be seen easily from the boundedness of MΩ and the fact that

(1.4) Mb,Ωf(x) ≤ |b(x)|MΩf(x) +MΩ(bf)(x), x ∈ Ω.

The main results in this paper are as follows:

Theorem 1.1. Let 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. If b ∈ W 1,p2(Ω),
then the map [b,MΩ] : W

1,p1(Ω) → W 1,p(Ω) is bounded and continuous. Moreover,

if f ∈ W 1,p1(Ω), then

|∇[b,MΩ](f)(x)| ≤ |∇b(x)||MΩf(x)|+ 2|b(x)|MΩ|∇f |(x)

+ 2MΩ(|∇b|f)(x) + 2MΩ(b|∇f |)(x),
(1.5)

for almost every x ∈ Ω. Consequently, it holds that

(1.6) ‖[b,MΩ](f)‖1,p,Ω ≤ Cp1,p2,n‖b‖1,p2,Ω‖f‖1,p1,Ω.

Theorem 1.2. Assume |Ω| <∞. Let 1 < p1, p2, p <∞ and 1/p = 1/p1+1/p2. If

b ∈ W 1,p2(Ω), then the map Mb,Ω : W 1,p1(Ω) → W 1,p(Ω) is bounded and continuous.

Moreover, if f ∈ W 1,p1(Ω), then

(1.7) |∇Mb,Ωf(x)| ≤ 2(Mb,Ω|∇f |(x) +MΩ(|∇b|f)(x)) + |∇b|(x)MΩf(x),

for almost every x ∈ Ω. Consequently, it holds that

(1.8) ‖Mb,Ωf‖1,p,Ω ≤ Cp1,p2,n‖b‖1,p2,Ω‖f‖1,p1,Ω.
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This paper will be organized as follows. Section 2 will be devoted to proving
Theorem 1.1. In Section 3 we shall prove Theorem 1.2. Finally, we shall prove
that the commutator of local Hardy–Littlewood maximal function preserves the zero
boundary values in Sobolev’s sense in Section 4. We would like to remark that our
main proofs are motivated by the ideas in [14, 17, 26], but our methods and techniques
are more complex than those of [14, 17, 26].

Throughout this paper, the letter C will stand for positive constants not nec-
essarily the same one at each occurrence but independent of the essential variables.
Especially, the letter Cα,β denote the positive constants that depend on the parame-
ters α, β.

2. Proof of Theorem 1.1

In this section we shall present the proof of Theorem 1.1. We start with presenting
the following proposition, which plays a key role in the proof of Theorem 1.2.

Proposition 2.1. [14, 17] Let 1 ≤ p ≤ ∞. If fk → f , gk → g weakly in Lp(Ω)
and fk ≤ gk (k = 1, 2, . . .) almost everywhere in Ω, then f ≤ g almost everywhere in

Ω.

The following lemma is the main ingredient of proving Theorem 1.1.

Lemma 2.2. Let 1 < p1, p2, p <∞ and 1/p = 1/p1 + 1/p2. If f ∈ W 1,p1(Ω) and

g ∈ W 1,p2(Ω), then fg ∈ W 1,p(Ω). Moreover,

(2.1) ∇(fg) = g∇f + f∇g,

almost everywhere in Ω. In particular, it holds that

(2.2) ‖fg‖1,p,Ω ≤ ‖f‖1,p1,Ω‖g‖1,p2,Ω.

Proof. Since f ∈ W 1,p1(Ω) and g ∈ W 1,p2(Ω), there exist a sequence {ϕj}
∞
j=1 of

functions in W 1,p1(Ω) ∩ C∞(Ω) and a sequence {ψj}∞j=1 of functions in W 1,p2(Ω) ∩
C∞(Ω) such that ϕj → f in W 1,p1(Ω) and ψj → g in W 1,p2(Ω) as j → ∞. Fix j ∈ N.
For all i = 1, 2, . . . , n and every x ∈ Ω, by Leibniz rule

(2.3) Di(ϕjψj) = (Diϕj)ψj + (Diψj)ϕj .

By Hölder’s inequality and Minkonwski’s inequality, one has

‖(Diϕj)ψj − (Dif)g‖p,Ω ≤ ‖(Diϕj −Dif)ψj +Dif(ψj − g)‖p,Ω

≤ ‖Diϕj −Dif‖p1,Ω‖ψj‖p2,Ω + ‖Dif‖p1,Ω‖ψj − g‖p2,Ω

≤ ‖ϕj − f‖1,p1,Ω(‖ψj − g‖p2,Ω + ‖g‖p2,Ω) + ‖Dif‖p1,Ω‖ψj − g‖p2,Ω.

which implies that (Diϕj)ψj → (Dif)g in Lp(Ω) as j → ∞. Similarly we get
(Diψj)ϕj → (Dig)f in Lp(Ω) as j → ∞. These facts together with (2.3) imply
that Di(ϕjψj) → g(Dif) + f(Dig) in Lp(Ω) as j → ∞. On the other hand, it is not
difficult to check that ϕjψj → fg in Lp(Ω) as j → ∞. Therefore, by the above facts
we have that for every φ ∈ C∞

0 (Ω),
ˆ

Ω

f(x)g(x)Diφ(x) dx = lim
j→∞

ˆ

Ω

ϕj(x)ψj(x)Diφ(x) dx

= − lim
j→∞

ˆ

Ω

Di(ϕjψj)(x)φ(x)

= − lim
j→∞

ˆ

Ω

φ(x)(g(x)Dif(x) + f(x)Dig(x)) dx,
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which yields that Di(fg) = gDif + fDig almost everywhere in Ω. This gives (2.1).
By (2.1) and Hölder’s inequality, we have

‖fg‖1,p,Ω ≤ ‖fg‖p,Ω + ‖∇(fg)‖p,Ω

≤ ‖f‖p1,Ω‖g‖p2,Ω + (‖g‖p2,Ω‖∇f‖p1,Ω + ‖f‖p1,Ω‖∇g‖p2,Ω)

≤ ‖f‖1,p1,Ω‖g‖1,p2,Ω,

which proves (2.2). �

We now prove Theorem 1.1.

Proof of Theorem 1.1. It follows from (1.1) that

(2.4) |∇MΩf(x)| ≤ 2MΩ|∇f |(x),

for almost every x ∈ Ω. Invoking Lemma 2.2 and (2.4), one has

|∇[b,MΩ](f)(x)| = |∇(bMΩf)(x)−∇MΩ(bf)(x)|

≤ |∇b(x)||MΩf(x)|+ |b(x)||∇MΩf(x)|+ 2MΩ|∇(bf)|(x)

≤ |∇b(x)||MΩf(x)|+ 2|b(x)|MΩ|∇f |(x) + 2MΩ|∇bf |(x) + 2MΩ|b∇f |(x),

for almost every x ∈ Ω, which proves (1.5). By (1.5), (1.2), Hölder’s inequality and
the Lp bounds for MΩ, one can get

‖[b,MΩ](f)‖1,p,Ω = ‖[b,MΩ](f)‖p,Ω + ‖∇[b,MΩ](f)‖p,Ω ≤ Cp1,p2,n‖b‖1,p2,Ω‖f‖1,p1,Ω,

which proves (1.6).
We now prove the continuity part. Let fj → f in W 1,p1(Ω). We want to show

that

(2.5) ‖[b,MΩ](fj)− [b,MΩ](f)‖1,p,Ω → 0 as j → ∞.

Invoking Lemma 2.2, we can get

(2.6) ‖bMΩfj−bMΩf‖1,p,Ω = ‖b(MΩfj−MΩf)‖1,p,Ω ≤ ‖b‖1,p2,Ω‖MΩfj−MΩf‖1,p1,Ω,

(2.7) ‖bfj − bf‖1,p,Ω = ‖b(fj − f)‖1,p,Ω ≤ ‖b‖1,p2,Ω‖fj − f‖1,p1,Ω.

It was shown in [26, Theorem 2.12] that

(2.8) ‖MΩfj −MΩf‖1,p1,Ω → 0 as j → ∞.

Combining (2.8) with (2.6) and (2.7) implies that

(2.9) ‖bMΩfj − bMΩf‖1,p,Ω → 0 as j → ∞,

(2.10) ‖MΩ(bfj)−MΩ(bf)‖1,p,Ω → 0 as j → ∞.

Then (2.5) follows directly from (2.9) and (2.10). This completes the proof of Theo-
rem 1.1. �

3. Proof of Theorem 1.2

3.1. Preliminaries, notations and lemmas. Let us give some notations and
lemmas. Set δ(x) = dist(x,Ωc). According to Rademacher’s theorem, as a Lipschitz
function δ is differentiable almost everywhere in Ω. Moreover, |∇δ(x)| = 1 for almost
every x ∈ Ω. Let b, f be two suitable functions defined on Ω. For 0 < t < 1, we
define the function At,b,f : Ω → [−∞,∞] by

(3.1) At,b,f (x) =
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|b(x)− b(y)|f(y) dy.
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We now establish the following result, which plays a pivotal role in the proof of
Theorem 1.2.

Lemma 3.1. Let f ∈ W 1,p1(Ω) and b ∈ W 1,p2(Ω) with 1 < p1, p2, p1p2/(p1+p2) <
∞. Assume that |Ω| <∞. Then At,b,f ∈ W 1,p(Ω) with p = p1p2/(p1 + p2) and

(3.2) |∇At,b,f(x)| ≤ 2(Mb,Ω|∇f |(x) +MΩ(|∇b|f)(x)) + |∇b|(x)MΩ|f |(x),

for almost every x ∈ Ω.

Proof. We divide the proof into two steps.
Step 1. The case b ∈ W 1,p2(Ω) ∩ C∞(Ω) and f ∈ W 1,p1(Ω) ∩ C∞(Ω). Let ̟n =

|B(0, 1)|. Fix i = 1, 2, . . . , n. By Leibniz rule, one gets

DiAt,b,f(x) = Di

(

1

̟n(tδ(x))n

)
ˆ

B(x,tδ(x))

|b(x)− b(y)|f(y) dy

+
1

̟n(tδ(x))n
·Di

(
ˆ

B(x,tδ(x))

|b(x)− b(y)|f(y) dy

)(3.3)

for almost every x ∈ Ω. For convenience, we denote by Di,xF the i-th weak partial
derivative of F in x. By the chain rule and the fact that

∂

∂r

ˆ

B(x,r)

f(y) dy =

ˆ

∂B(x,r)

f(y)dHn−1(y),

one obtains

Di

(
ˆ

B(x,tδ(x))

|b(x)− b(y)|f(y) dy

)

=

ˆ

B(x,tδ(x))

Di,x|b(x)− b(y)|f(y) dy +

ˆ

B(x,tδ(x))

Di,y(|b(x)− b(y)|f(y)) dy

+ t

ˆ

∂B(x,tδ(x))

|b(x)− b(y)|f(y) dHn−1(y) ·Diδ(x),

(3.4)

for almost every x ∈ Ω, where dHn−1 is the normalized (n−1)-dimensional Hausdorff
measure. Equalities (3.3) and (3.4) yield that

∇At,b,f (x) =
−n∇δ(x)

δ(x)

1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|b(x)− b(y)|f(y) dy

+
1

|B(x, tδ(x))|

(
ˆ

B(x,tδ(x))

∇x|b(x)− b(y)|f(y) dy

+

ˆ

B(x,tδ(x))

∇y(|b(x)− b(y)|f(y)) dy

)

+ t

ˆ

∂B(x,tδ(x))

|b(x)− b(y)|f(y) dHn−1(y) · ∇δ(x)

=
n∇δ(x)

δ(x)

(

1

|∂B(x, tδ(x))|

ˆ

∂B(x,tδ(x))

|b(x)− b(y)|f(y) dHn−1(y)

−
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|b(x)− b(y)|f(y) dy

)

(3.5)
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+
1

|B(x, tδ(x))|

(
ˆ

B(x,tδ(x))

∇x|b(x)− b(y)|f(y) dy

+

ˆ

B(x,tδ(x))

∇y(|b(x)− b(y)|f(y)) dy

)

,

for almost every x ∈ Ω. Here ∇x = (D1,x, . . . , Dn,x) and ∇y = (D1,y, . . . , Dn,y).
Fix x ∈ Ω. Let R > 0 be such that B(x,R) ⊂ Ω and F (x, y) be a function

defined on Ω× Ω. By Green’s first identity, one has
ˆ

∂B(x,R)

F (x, y)
∂µ

∂ν
(y) dHn−1(y)

=

ˆ

B(x,R)

(F (x, y)△µ(y) +∇yF (x, y) · ∇µ(y)) dy,

(3.6)

where ν(y) = y−x
R

is the unit outer normal of B(x,R) and µ is a suitable function.

Take µ(y) = |y−x|2

2
. Then ∇µ(y) = y − x, △µ(y) = n and ∂µ

∂ν
(y) = R. These facts

together with (3.6) imply that

1

|∂B(x,R)|

ˆ

∂B(x,R)

F (x, y) dHn−1(y)−
1

|B(x,R)|

ˆ

B(x,R)

F (x, y) dy

=
1

n

1

|B(x,R)|

ˆ

B(x,R)

∇yF (x, y) · (y − x) dy.

(3.7)

Applying (3.7) with R = tδ(x) and F (x, y) = |b(x) − b(y)|f(y), we get from (3.5)
that

|∇At,b,f(x)| ≤
|∇δ(x)|

δ(x)

1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|∇y(|b(x)− b(y)|f(y)) · (y − x)| dy

+
1

|B(x, tδ(x))|

(
ˆ

B(x,tδ(x))

|∇x|b(x)− b(y)|f(y)| dy

+

ˆ

B(x,tδ(x))

|∇y(|b(x)− b(y)|f(y))| dy

)

(3.8)

≤
2

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|∇y(|b(x)− b(y)|f(y))| dy

+
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|∇x|b(x)− b(y)|f(y)| dy.

Since |Ω| < ∞, we have that b(x) − b(·) ∈ W 1,p2(Ω) and |b(x) − b(·)| ∈ W 1,p2(Ω).
Invoking Lemma 2.2, we have that |b(x) − b(·)|f(·) ∈ W 1,p(Ω) and ∇y(|b(x) −
b(y)|f(y)) = f(y)∇y(|b(x)−b(y)|)+|b(x)−b(y)|∇yf(y) for almost every y ∈ Ω. More-
over, |∇y|b(x)−b(y)|| = |∇b(y)| for almost every y ∈ Ω and |∇x|b(x)−b(y)|| = |∇b(x)|
for almost every x ∈ Ω. These facts together with (3.8) lead to

|∇At,b,f(x)| ≤
2

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

(|b(x)− b(y)||∇f(y)|+ |∇b(y)||f(y)|) dy

+ |∇b(x)|
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|f(y)| dy

≤ 2Mb,Ω|∇f |(x) + 2MΩ(|∇b|f)(x) + |∇b|(x)MΩf(x),
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for almost every x ∈ Ω. This proves (3.2) for the case b ∈ W 1,p2(Ω) ∩ C∞(Ω) and
f ∈ W 1,p1(Ω) ∩ C∞(Ω).

Step 2. The general case. The proof in the general case follows from an approx-
imation argument. To this end, we first assume that b ∈ W 1,p2(Ω) and f ∈ W 1,p1(Ω)
for some p1, p2 with 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. There exist two se-
quences of functions {ϕj}∞j=1 in W 1,p1(Ω) ∩ C∞(Ω) and {ψj}∞j=1 in W 1,p2(Ω) ∩ C∞(Ω)
such that ϕj → f in W 1,p1(Ω) and ψj → b in W 1,p2(Ω) as j → ∞. Then there exists
a subsequence {ψjk}

∞
k=1 ⊂ {ψj}∞j=1 such that ψjk(x) → b(x) as k → ∞ for almost

every x ∈ Ω. Fix t ∈ (0, 1). Let

vk,t(x) =
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|ψjk(x)− ψjk(y)|ϕjk(y) dy.

Note that

|vk,t(x)−At,b,f (x)| ≤
|ψjk(x)− b(x)| + |b(x)|

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|ϕjk(y)− f(y)| dy

+
|ψjk(x)− b(x)|

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|f(y)| dy

+
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|ψjk(y)− b(y)||ϕjk(y)− f(y)| dy

+
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|ψjk(y)− b(y)||f(y)| dy

+
1

|B(x, tδ(x))|

ˆ

B(x,tδ(x))

|b(y)||ϕjk(y)− f(y)| dy

≤ |B(x, tδ(x))|−1/p1 |((|ψjk(x)− b(x)|+ |b(x)|)‖ϕjk − f‖p1,Ω

+ |ψjk(x)− b(x)|‖f‖p1,Ω)

+ |B(x, tδ(x))|−1/p(‖ψjk − b‖p2,Ω‖ϕjk − f‖p1,Ω

+ ‖ψjk − b‖p2,Ω‖f‖p1,Ω + ‖b‖p2,Ω‖ϕjk − f‖p1,Ω).

Therefore, for almost every x ∈ Ω, it holds that

lim
k→∞

vk,t(x) = At,b,f(x)

It is clear that |vk,t(x)| ≤Mψjk
,Ωϕjk(x) and

(3.9) |∇vk,t(x)| ≤ 2(Mψjk
,Ω|∇ϕjk|(x) +MΩ(|∇ψjk |ϕjk)(x)) + |∇ψjk |(x)MΩ|ϕjk|(x),

for almost every x ∈ Ω. By (3.9), (1.3), Hölder’s inequality and the boundedness for
MΩ, we have

‖vk,t‖1,p,Ω = ‖vk,t‖p,Ω + ‖∇vk,t‖p,Ω

≤ ‖Mψjk
,Ωϕjk‖p,Ω + 2‖Mψjk

,Ω|∇ϕjk|‖p,Ω + 2‖MΩ(|∇ψjk |ϕjk)‖p,Ω

+ ‖|∇ψjk|MΩ|ϕjk |‖p,Ω

≤ Cp1,p2,n‖ψjk‖p2,Ω‖ϕjk‖p1,Ω + Cp1,p2,n‖ψjk‖p2,Ω‖∇ϕjk‖p1,Ω

+ Cp,n‖|∇ψjk |ϕjk‖p,Ω + ‖∇ψjk‖p2,Ω‖MΩ|ϕjk|‖p1,Ω

≤ Cp1,p2,n‖ψjk‖1,p2,Ω‖ϕjk‖1,p1,Ω.

Hence, {vk,t}∞k=1 is a bounded sequence in W 1,p(Ω) and has a weakly converging
subsequence {vkℓ,t}

∞
ℓ=1 of {vk,t}∞k=1. Since vk,t(x) → At,b,f (x) as k → ∞ for almost
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every x ∈ Ω, we can conclude that the weak gradient ∇At,b,f exists almost everywhere
in Ω and that ∇vkℓ,t → ∇At,b,f weakly in Lp(Ω) as k → ∞.

On the other hand, one can easily check that

|Mψjk
,Ω|∇ϕjk|(x)−Mb,Ω|∇f |(x)|

≤ sup
0<r<dist(x,Ωc)

1

|B(x, r)|

ˆ

B(x,r)

||ψjk(x)− ψjk(y)||∇ϕjk(y)|

− |b(x)− b(y)||∇f(y)|| dy

≤ |ψjk(x)− b(x)|MΩ|∇f |(x) +MΩ((ψjk − b)|∇f |)(x)

+Mψjk
,Ω|∇(ϕjk − f)|(x).

(3.10)

By (3.10), the sublinearity of Mb,Ω, the Lp1 bounds for MΩ, Hölder’s inequality and
(1.4), we can get

‖Mψjk
,Ω|∇ϕjk| −Mb,Ω|∇f |‖p,Ω

≤ ‖(ψjk − b)|MΩ|∇f |‖p,Ω + ‖MΩ((ψjk − b)|∇f |)‖p,Ω

+ ‖Mψjk
,Ω|∇(ϕjk − f)|‖p,Ω

≤ ‖ψjk − b‖p2,Ω‖MΩ|∇f |‖p1,Ω + Cp,n‖(ψjk − b)|∇f |‖p,Ω

+ Cp1,p2,n‖ψjk‖p2,Ω‖∇(ϕjk − f)‖p1,Ω

≤ Cp1,p2,n‖ψjk − b‖p2,Ω‖∇f‖p1,Ω + Cp1,p2,n‖ψjk − b‖p2,Ω‖∇f‖p1,Ω

+ Cp1,p2,n‖ψjk‖p2,Ω‖∇(ϕjk − f)‖p1,Ω.

(3.11)

The sublinearity and the bounds of MΩ together with Hölder’s inequality yield that

‖MΩ(|∇ψjk |ϕjk)−MΩ(|∇b|f)‖p,Ω

≤ ‖MΩ(|∇ψjk|ϕjk − |∇b|f)‖p,Ω

≤ Cp,n‖|∇ψjk |ϕjk − |∇b|f‖p,Ω

≤ Cp1,p2,n‖∇(ψjk − b)‖p2,Ω‖ϕjk‖p1,Ω + ‖∇b‖p2,Ω‖ϕjk − f‖p1,Ω

(3.12)

and

‖|∇ψjk |MΩϕjk − |∇b|MΩf‖p,Ω

≤ Cp1,n(‖∇ψjk‖p2,Ω‖ϕjk − f‖p1,Ω + ‖∇(ψjk − b)‖p2,Ω‖f‖p1,Ω).
(3.13)

Let gℓ = 2(Mψjkl
,Ω|∇ϕjkℓ |+MΩ(|∇ψjkℓ |ϕjkℓ))+|∇ψjkℓ |MΩϕjkℓ . It follows from (3.11)-

(3.13) that

(3.14) gℓ → 2(Mb,Ω|∇f |+MΩ(|∇b|f)) + |∇b|MΩf in Lp(Ω) as ℓ→ ∞.

Applying (3.9) and Proposition 2.1 to (3.14) with fℓ = |∇vkℓ,t|, we can get (3.2).
This completes the proof of Lemma 3.1. �

In order to prove the continuity result of Theorem 1.2, we need to introduce some
notations and establish some lemmas.

For A ⊂ Rn and x ∈ Rn, let d(x,A) := infa∈A |x − a| and A(λ) := {x ∈
Rn; d(x,A) ≤ λ} for λ ≥ 0. The notation K ⊂⊂ Ω means that K is open, bounded
and K ⊂ Ω. Let b ∈ Lp2(Ω) and f ∈ Lp1(Ω) for some 1 < p1, p2, p < ∞ with 1/p =
1/p1 + 1/p2. For every x ∈ Ω, we define the function ux,b,f(r) : [0, δ(x)] → [−∞,∞]
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by

ux,b,f(0) = 0,

ux,b,f(r) =
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|f(y) dy, r ∈ (0, δ(x)].

Define the set R(f)(x) by

R(f)(x) = {r ∈ [0, δ(x)]; Mb,Ωf(x) = ux,b,|f |(r)}.

For any x ∈ Ω, we have that |b(x) − b(·)| ∈ Lp2(Ω) since |Ω| < ∞. Thus |b(x) −
b(·)|f(·) ∈ Lp(Ω) by Hölder’s inequality. By the Lebesgue differentiation theorem,
we see that limr→0+ ux,b,f(r) = 0 for almost everywhere x ∈ Ω. It follows that the
functions ux,b,f are continuous on (0, δ(x)] for all x ∈ Ω and at r = 0 for almost every
x ∈ Ω.

Lemma 3.2. Let 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. Let b ∈ Lp2(Ω).
Suppose that fj → f in Lp1(Ω) when j → ∞. Let ΩR = Ω ∩ B(0, R). Then for all

R > 0 and λ > 0, it holds that

(3.15) lim
j→∞

|{x ∈ ΩR; R(fj)(x) * R(f)(x)(λ)}| = 0.

Proof. Let R > 0, λ > 0 and fix ǫ ∈ (0, 1). Without loss of generality we may
assume that all fj , f ≥ 0 since R(f)(x) = R(|f |)(x) and |fj| → |f | in Lp1(Ω) as
j → ∞. By the arguments similar to those used in the proof of [25, Lemma 2.2], we
see that the set {x ∈ ΩR; R(fj)(x) * R(f)(x)(λ)} is measurable for any j ∈ Z when
all fj and f are locally integrable functions. Moreover, for almost every x ∈ ΩR,
there exists γ(x) ∈ N \ {0} such that

(3.16) ux,b,f(r) < Mb,Ωf(x)− (γ(x))−1, when d(r,R(f)(x)) > λ.

Otherwise, for almost every x ∈ ΩR, there exists a bounded sequence of radii {rk}∞k=1

such that

lim
k→∞

ux,b,f(rk) =Mb,Ωf(x) and d(rk,R(f)(x)) > λ.

There exists a subsequence {sk}∞k=1 of {rk}∞k=1 such that sk → r as k → ∞. It follows
that r ∈ R(f)(x) and d(r,R(f)(x)) ≥ λ, which is a contradiction. Thus, (3.16)
holds.

It follows from (3.16) that there exist γ = γ(λ,R, ǫ) ∈ N \ {0} and a measurable
set E with |E| < ǫ such that

ΩR ⊂ {x ∈ ΩR : ux,b,f(r) < Mb,Ωf(x)− γ−1, if d(r,R(f)(x)) > λ} ∪ E

=: B ∪ E.
(3.17)

Fix x ∈ ΩR and r such that d(r,R(f)(x)) > λ. It is clear that

Mb,Ωf(x)− ux,b,f(r) ≤ |Mb,Ωfj(x)−Mb,Ωf(x)|+ |Mb,Ωfj(x)− ux,b,fj(r)|

+ |ux,b,fj(r)− ux,b,f(r)|,

which leads to

(3.18) B ⊂ A1,j ∪A2,j ∪ A3,j,

where

A1,j := {x ∈ ΩR : |Mb,Ωfj(x)−Mb,Ωf(x)| ≥ (4γ)−1},
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A2,j := {x ∈ ΩR : |ux,b,fj(r)− ux,b,f(r)| ≥ (2γ)−1 for some r

such that d(r,R(f)(x)) > λ},

A3,j := {x ∈ ΩR : ux,b,fj(r) < Mb,Ωfj(x)− (4γ)−1, if d(r,R(f)(x)) > λ}.

Observe that

A3,j ⊂ {x ∈ ΩR : R(fj)(x) ⊂ R(f)(x)(λ)},

which together with (3.18) yields that

(3.19) {x ∈ ΩR; R(fj)(x) * R(f)(x)(λ)} ⊂ E ∪A1,j ∪A2,j .

By the sublinearity of Mb,Ω, we can get

(3.20) A1,j ⊂ {x ∈ ΩR : Mb,Ω(fj − f)(x) ≥ (4γ)−1}.

Similarly we can obtain

(3.21) A2,j ⊂ {x ∈ ΩR : Mb,Ω(fj − f)(x) ≥ (2γ)−1}.

Since fj → f in Lp1(Ω) as j → ∞, there exists N0 = N0(ǫ, γ) ∈ N such that

(3.22) ‖fj − f‖p1,Ω < γ−1ǫ, ‖fj‖p1,Ω ≤ ‖f‖p1,Ω + 1

for any j ≥ N0. Hence, we get from (3.20)-(3.22) that

|{x ∈ ΩR; R(fj)(x) * R(f)(x)(λ)}|

≤ 2|{x ∈ ΩR : Mb,Ω(fj − f)(x) ≥ (4γ)−1}|+ |E|

≤ 2(4γ)p‖Mb,Ω(fj − f)‖pp,Ω + ǫ

≤ Cp1,p2,nγ
p‖b‖pp2,Ω‖fj − f‖pp1,Ωǫ ≤ Cp1,p2,nǫ

for all j ≥ N0. This yields (3.15) and finishes the proof of Lemma 3.2. �

For 1 ≤ l ≤ n, let el = (0, . . . , 0, 1, 0, . . . , 0) be the canonical l-th base vector in
Rn. For h 6= 0, 1 ≤ p < ∞, f ∈ Lp(Ω) and l ∈ {1, 2, . . . , n}, we define the functions

fh,l and fτ(h),l by setting fh,l(x) =
fτ(h),l(x)−f(x)

h
and fτ(h),l(x) = f(x+ hel). It is well

known that fτ(h),l → f in Lp(K) for all K ⊂⊂ Ω when h → 0, and if f ∈ W 1,p(Ω)
with p > 1 we have that fh,l → Dlf in Lp(K) when h→ 0 (see [11, 7.11]).

Let A, B be two subsets of Rn. The Hausdorff distance of A and B is defined by

π(A,B) := inf{δ > 0: A ⊂ B(δ) and B ⊂ A(δ)}.

The following lemma tells us how close the sets R(f)(x) and R(f)(x + hel) are
when h is small enough.

Lemma 3.3. Let 1 < p1, p2, p <∞ and 1/p = 1/p1 + 1/p2. Let f ∈ Lp1(Ω) and

b ∈ Lp2(Ω). Then for K ⊂⊂ Ω, λ > 0 and l = 1, 2, . . . , n, it holds that

(3.23) |{x ∈ K; π(R(f)(x),R(f)(x+ hel)) > λ}| → 0 when h→ 0.

Proof. Fix 1 ≤ l ≤ n. To prove (3.23), it is enough to prove that

(3.24) lim
h→0

|{x ∈ K : R(f)(x+ hel) * R(f)(x)(λ)}| = 0,

(3.25) lim
h→0

|{x ∈ K : R(f)(x) * R(f)(x+ hel)(λ)}| = 0.

We only prove (3.24) and (3.25) is analogous. The proof is motivated by the idea in
the proof of [26, Lemma 2.3]. Fix ǫ ∈ (0, 1) and λ > 0. Applying the same argument
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as in getting (3.17), there exist a positive integer γ = γ(λ, ǫ) and a measurable set E
with |E| < ǫ such that

(3.26) K ⊂ {x ∈ K : ux,b,f(r) < Mb,Ωf(x)−γ
−1, if d(r,R(f)(x)) > λ}∪E =: G∪E.

Fix h ∈ R, and let

B1,h := {x ∈ K : |Mb,Ωf(x+ hel)−Mb,Ωf(x)| > (4γ)−1},

B2,h := {x ∈ K : |bτ(h),l(x)− b(x)|MΩfτ(h),l(x) +MΩ((bτ(h),l − b)fτ(h),l)(x)

+Mb,Ω(fτ(h),l − f)(x) > (2γ)−1},

B3,h := {x ∈ Ω: ∃ r ∈ [δ(x)− 2|h|, δ(x+ hel)] such that

|ux+hel,b,f(r)− ux+hel,b,f(δ(x+ hel)− |h|)| > (8γ)−1}.

Firstly we prove that

(3.27) {x ∈ K : R(f)(x+hel) * R(f)(x)(2λ)} ⊂ B1,h∪B2,h∪ (B3,h−hel)∪E =: Bh

when h is small enough. Choose h0 ∈ (0, λ) such that K(2h0) ⊂ Ω. It suffices to
show that for x ∈ G \Bh with |h| < 1

2
min{h0, δ(x)}, there exists r ∈ R(f)(x+ hel)

such that d(r,R(f)(x)) ≤ 2λ. Otherwise, assume that d(r,R(f)(x)) > 2λ. We will
consider the following two cases:

Case (i): r < δ(x)− |h|. It follows from (3.26) that

Mb,Ωf(x+ hel) = ux+hel,b,f(r) ≤ ux+hel,b,f(r)− ux,b,f(r) + ux,b,f(r)

≤ |ux+hel,b,f(r)− ux,b,f(r)|+Mb,Ωf(x)− γ−1.
(3.28)

Note that

|ux+hel,b,f(t)− ux,b,f(t)|

≤
1

|B(x, t)|

∣

∣

∣

∣

ˆ

B(x+hel,t)

|b(x+ hel)− b(y)|f(y) dy

−

ˆ

B(x,t)

|b(x)− b(y)|f(y) dy

∣

∣

∣

∣

≤
1

|B(x, t)|

ˆ

B(x,t)

||bτ(h),l(x)− bτ(h),l(y)|fτ(h),l(y)− |b(x)− b(y)|f(y)| dy

≤
|bτ(h),l(x)− b(x)|

|B(x, t)|

ˆ

B(x,t)

|fτ(h),l(y)| dy(3.29)

+
1

|B(x, t)|

ˆ

B(x,t)

|bτ(h),l(y))− b(y)||fτ(h),l(y)| dy

+
1

|B(x, t)|

ˆ

B(x,t)

|b(x)− b(y)||fτ(h),l(y)− f(y)| dy

≤ |bτ(h),l(x)− b(x)|MΩfτ(h),l(x) +MΩ((bτ(h),l − b)fτ(h),l)(x)

+Mb,Ω(fτ(h),l − f)(x)

for any t ∈ (0,min{δ(x), δ(x+ hel)}). Combining (3.28) with (3.29) yields that

Mb,Ωf(x+ hel) ≤ |bτ(h),l(x)− b(x)|MΩfτ(h),l(x) +MΩ((bτ(h),l − b)fτ(h),l)(x)

+Mb,Ω(fτ(h),l − f)(x) +Mb,Ωf(x)− γ−1

≤ (2γ)−1 +Mb,Ωf(x)− γ−1 ≤Mb,Ωf(x)− (2γ)−1.
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This yields that |Mb,Ωf(x)−Mb,Ωf(x+ hel)| ≥ (2γ)−1, which yields x ∈ B1,h and a
contradiction.

Case (ii): r ∈ [δ(x)− |h|, δ(x+ hel)]. It is clear that d(δ(x)− |h|,R(f)(x)) > λ,
δ(x+ hel)− |h| < δ(x) and δ(x+ hel)− r ∈ [0, 2|h|]. Hence,

|r − (δ(x+ hel)− |h|)| = ||h| − (δ(x+ hel)− r)| ≤ |h|

and

d(δ(x+ hel)− |h|,R(f)(x)) ≥ d(r,R(f)(x))− |r− (δ(x+ hel)− |h|)| > 2λ− |h| > λ.

Inequality (3.29) together with (3.26) implies that

Mb,Ωf(x+ hel) = ux+hel,b,f(r)

≤ |ux+hel,b,f(r)− ux+hel,b,f(δ(x+ hel)− |h|)|

+ |ux+hel,b,f(δ(x+ hel)− |h|)− ux,b,f(δ(x+ hel)− |h|)|+ ux,b,f(δ(x+ hel)− |h|)

≤ (8γ)−1 + (2γ)−1 +Mb,Ωf(x)− γ−1 ≤ Mb,Ωf(x)− (4γ)−1.

This yields that |Mb,Ωf(x) −Mb,Ωf(x + hel)| > (4γ)−1 and further x ∈ B1,h, which
is a contradiction and (3.27) is proved.

Secondly we show that

(3.30) lim
h→0

|Bh| = 0.

It is clear that |B3,h − hel| → 0 when h → 0. Note that Mb,Ωf ∈ Lp(Ω). It follows
that (Mb,Ωf)τ(h),l →Mb,Ωf in Lp(K) when h→ 0. Hence, one has

(3.31) |B1,h| ≤ (4γ)p‖(Mb,Ωf)τ(h),l −Mb,Ωf‖
p
p,Ω → 0 as h→ 0.

By (1.4), the Lp bounds for MΩ and Hölder’s inequality, it holds that

|B2,h| ≤ (4γ)p‖|bτ(h),l − b|MΩfτ(h),l +MΩ((bτ(h),l − b)fτ(h),l) +Mb,Ω(fτ(h),l − f)‖pp,Ω
≤ Cp,γ(‖|bτ(h),l − b|MΩfτ(h),l‖

p
p,Ω + ‖MΩ((bτ(h),l − b)fτ(h),l)‖

p
p,Ω

+ ‖Mb,Ω(fτ(h),l − f)‖pp,Ω)

≤ Cp1,p2,n,γ(‖bτ(h),l − b‖pp2,Ω‖fτ(h),l‖
p
p1,Ω

+ ‖b‖pp2,Ω‖fτ(h),l − f‖pp1,Ω),

which together with (3.31) leads to |B1,h∪B2,h| → 0 when h→ 0. Then (3.30) holds.
Combining (3.27) with (3.30) yields (3.24). This finishes the proof of Lemma 3.3. �

The following key lemma will play a pivotal role in the proof of the continuity of
Theorem 1.2.

Lemma 3.4. Let f ∈ W 1,p1(Ω) and b ∈ W 1,p2(Ω) with 1 < p1, p2, p1p2/(p1+p2) <
∞. Assume that |Ω| <∞, then

(i) For any l ∈ {1, 2, . . . , n}, almost every x ∈ Ω and r ∈ R(f)(x) with 0 < r <
δ(x), it holds that

DlMb,Ωf(x) =
1

|B(x, r)|

ˆ

B(x,r)

(Dl,y(|b(x)− b(y)|) +Dl,x(|b(x)− b(y)|)|f(y)| dy

+
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|Dl|f |(y) dy.(3.32)

(ii) For any l ∈ {1, 2, . . . , n}, almost every x ∈ Ω and 0 ∈ R(f)(x), it holds that

(3.33) DlMb,Ωf(x) = 0.
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Proof. Without loss of generality we may assume that f ≥ 0. Fix l ∈ {1, 2, . . . , n}.
For convenience, we define the function Fb : Ω × Ω → R by Fb(x, y) = |b(x) − b(y)|.
Note that Fb(x, ·) ∈ W 1,p2(Ω) for all x ∈ Ω and Fb(·, y) ∈ W 1,p2(Ω) for all y ∈ Ω since
|Ω| < ∞. Since Fb(·, y) ∈ W 1,p2(Ω) for all y ∈ Ω, then for any fixed y ∈ Ω, we have
that |∇xFb(x, y)| = |∇b(x)| for almost every x ∈ Ω. Therefore, |∇xFb(x, ·)| ∈ Lp2(Ω)
because of |Ω| < ∞. It follows that |Dl,xFb(x, ·)| ∈ Lp2(Ω). Let K ⊂⊂ Ω. By
Lemma 3.3, we can choose a sequence {sk}∞k=1, sk > 0 and sk → 0 such that

lim
k→∞

π(R(f)(x),R(f)(x+ skel)) = 0

for almost every x ∈ K.
For convenience, we define the functions

(Fx,b)sk,l(y) =
1

sk
(Fb(x, y+skel)−Fb(x, y)), (Fy,b)sk,l(x) =

1

sk
(Fb(x+skel, y)−Fb(x, y)).

Then we have

max{‖fτ(sk),l − f‖p1,K , ‖bτ(sk),l − b‖p2,K} → 0 as k → ∞,

max{‖fsk,l −Dlf‖p1,K , ‖bsk,l −Dlb‖p2,K} → 0 as k → ∞,

‖(Fx,b)sk,l −Dl,yFb(x, ·)‖p2,K → 0 as k → ∞,

‖(Fy,b)sk,l −Dl,xFb(·, y)‖p2,K → 0 as k → ∞,

‖MΩ(fτ(sk),l − f)‖p1,K → 0 as k → ∞,

‖MΩ((fτ(sk),l − f)(bsk,l −Dlb))‖p,K → 0 as k → ∞,

‖MΩ(f(bsk,l −Dlb))‖p,K → 0 as k → ∞,

‖MΩ(((Fx,b)sk,l −Dl,yFb(x, ·))(fτ(sk),l − f))‖p,K → 0 as k → ∞,

‖MΩ(((Fx,b)sk,l −Dl,yFb(x, ·))f)‖p,K → 0 as k → ∞,

‖MΩ(Dl,yFb(x, ·)(fτ(sk),l − f))‖p,K → 0 as k → ∞,

‖MDlb,Ω(fτ(sk),l − f)‖p,K → 0 as k → ∞,

‖Mb,Ω(fsk,l −Dlf)‖p,K → 0 as k → ∞.

By the boundedness result in Theorem 1.2, we have that Mb,Ωf ∈ W 1,p(Ω).
Furthermore, we get

‖(Mb,Ωf)sk,l −DlMb,Ωf‖p,K → 0 as k → ∞.

From the above facts, we can conclude that there exists a subsequence {hk}∞k=1 of
{sk}∞k=1 and a measurable set B1 ⊂ K such that |K \B1| = 0 and for any x ∈ B1, it
holds that

lim
k→∞

MΩ((fτ(hk),l − f)(bhk,l −Dlb))(x) = 0,

lim
k→∞

MΩ(f(bhk,l −Dlb))(x) = 0,

lim
k→∞

bhk,l(x) = Dlb(x),

lim
k→∞

MΩ(fτ(hk),l − f)(x) = 0,

lim
k→∞

Mb,Ω(fhk,l −Dlf)(x) = 0,

lim
k→∞

MΩ(((Fx,b)hk,l −Dl,yFb(x, ·))(fτ(hk),l − f))(x) = 0,

lim
k→∞

MΩ(((Fx,b)hk,l −Dl,yFb(x, ·))f)(x) = 0,
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lim
k→∞

(Fy,b)hk,l(x) = Dl,xFb(x, y) for all y ∈ Ω,

lim
k→∞

MDlb,Ω(fτ(hk),l − f)(x) = 0,

lim
k→∞

MΩ(Dl,yFb(x, ·)(fτ(hk),l − f))(x) = 0,

lim
k→∞

(Mb,Ω(f))hk,l(x) = DlMb,Ωf(x),

lim
k→∞

π(R(f)(x),R(f)(x+ hkel)) = 0.

We set

B2 := {x ∈ K : Mb,Ωf(x) = ux,b,f(0) if 0 ∈ R(f)(x)},

B3 :=
∞
⋂

k=1

{x ∈ K : Mb,Ωf(x+ hkel) = ux+hkel,b,f(0) if 0 ∈ R(f)(x+ hkel)},

B4 :=
{

x ∈ K : lim
r→0

1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|Dlf(y) dy = 0
}

,

B5 :=
{

x ∈ K : lim
r→0

1

|B(x, r)|

ˆ

B(x,r)

|Dlb(x)−Dlb(y)|f(y) dy = 0
}

.

One can easily check that |K \ Bi| = 0 for any i = 2, 3, 4, 5. Let x ∈
⋂5
i=1Bi and

r ∈ R(f)(x) with r < δ(x). Since limk→∞ π(R(f)(x),R(f)(x+ hekel)), there exists
radii rk ∈ R(f)(x + hkel) such that limk→∞ rk = r. Without loss of generality we
assume that all rk < δ(x). We consider two cases:

Case A. r > 0. In this case we may assume that all rk ∈ (0, δ(x)). We can write

DlMb,Ωf(x) = lim
k→∞

1

hk
(Mb,Ωf(x+ hkel)−Mb,Ωf(x))

≤ lim
k→∞

1

hk
(ux+hkel,b,f(rk)− ux,b,f(rk))

= lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

Fb(x+ hkel, y + hkel)fτ(hk),l(y)− Fb(x, y)f(y)

hk
dy(3.34)

= lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)|fhk,l(y) dy

+ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

Fb(x+ hkel, y + hkel)− Fb(x, y)

hk
fτ(hk),l(y) dy.

By the fact that |Ω| < ∞ and Hölder’s inequality it holds easily that |b(x) −
b(·)|Dlf(·) ∈ L1(Ω), which together with the fact that limk→∞ rk = r implies that

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)−b(y)|Dlf(y) dy =
1

|B(x, r)|

ˆ

B(x,r)

|b(x)−b(y)|Dlf(y) dy.

It follows that
∣

∣

∣
lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)|fhk,l(y) dy

−
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|Dlf(y) dy
∣

∣

∣
(3.35)
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≤ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||fhk,l(y)−Dlf(y)| dy

≤ lim
k→∞

Mb,Ω(fhk,l −Dlf)(x) = 0.

On the other hand, it is easy to see that

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

Fb(x+ hkel, y + hkel)− Fb(x, y)

hk
fτ(hk),l(y) dy

= lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

(Fx,b)hk,l(y)fτ(hk),l(y) dy

+ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

(Fy+hkel,b)hk,l(x)fτ(hk),l(y) dy.

(3.36)

One can easily check that

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

Dl,yFb(x, y)f(y) dy =
1

|B(x, r)|

ˆ

B(x,r)

Dl,yFb(x, y)f(y) dy

since Dl,yFb(x, ·)f(·) ∈ L1(Ω). Therefore, one has
∣

∣

∣

∣

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

(Fx,b)hk,l(y)fτ(hk),l(y) dy

−
1

|B(x, r)|

ˆ

B(x,r)

Dl,yFb(x, y)f(y) dy

∣

∣

∣

∣

≤ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|(Fx,b)hk,l(y)fτ(hk),l(y)−Dl,yFb(x, y)f(y)| dy

≤ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|(Fx,b)hk,l(y)−Dl,yFb(x, y)||fτ(hk),l(y)− f(y)| dy

+ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|(Fx,b)hk,l(y)−Dl,yFb(x, y)||f(y)| dy

+ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|Dl,yFb(x, y)||fτ(hk),l(y)− f(y)| dy

≤ lim
k→∞

(MΩ(((Fx,b)hk,l −Dl,yFb(x, ·))(fτ(hk),l − f))(x)

+MΩ(((Fx,b)hk,l −Dl,yFb(x, ·))f)(x) +MΩ(Dl,yFb(x, ·)(fτ(hk),l − f))(x))

= 0.

(3.37)

We now prove that

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

(Fy+hkel,b)hk,l(x)fτ(hk),l(y) dy

=
1

|B(x, r)|

ˆ

B(x,r)

Dl,xFb(x, y)f(y) dy.

(3.38)

Note that

|(Fy+hkel,b)hk,l(x)| ≤
||b(x+ hkel)− b(y + hkel)| − |b(x)− b(y + hkel)||

hk
≤ |bhk,l(x)|.
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It follows that
∣

∣

∣

∣

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

(Fy+hkel,b)hk,l(x)(fτ(hk),l(y)− f(y)) dy

∣

∣

∣

∣

≤ lim
k→∞

(|bhk,l(x)−Dlb(x)|+ |Dlb(x)|)MΩ(fτ(hk),l − f)(x) = 0.
(3.39)

Hence, to prove (3.38), it suffices to show that

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

(Fy+hkel,b)hk,l(x)f(y) dy

=
1

|B(x, r)|

ˆ

B(x,r)

Dl,xFb(x, y)f(y) dy.

(3.40)

Note thatDl,xFb(x, ·)f(·) ∈ L1(Ω). This together with the fact that limk→∞ χB(x,rk) =
χB(x,r) yields that

1

|B(x, r)|

ˆ

B(x,r)

Dl,xFb(x, y)f(y) dy = lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

Dl,xFb(x, y)f(y) dy.

It follows that
∣

∣

∣

∣

lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

(Fy+hkel,b)hk,l(x)f(y) dy

−
1

|B(x, r)|

ˆ

B(x,r)

Dl,xFb(x, y)f(y) dy

∣

∣

∣

∣

≤ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y)|f(y) dy

≤ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|f(y) dy

+ lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|Dl,xFb(x, y + hkel)−Dl,xFb(x, y)|f(y) dy.

(3.41)

Note that rk ∈ (0, δ(x)) for k ≥ 1. Take r < r′ < δ(x) satisfying hk + rk < r′

for large k. Hence B(x, rk) ⊂ B(x, r′) ⊂⊂ Ω and B(x + hkel, rk) ⊂ Ω. By Hölder’s
inequality and the change of variables, one has

1

|B(x, rk)|

ˆ

B(x,rk)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|f(y) dy

≤ |B(x, rk)|
−1/p

(
ˆ

B(x,rk)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|
p2 dy

)1/p2

×

(
ˆ

B(x,rk)

|f(y)|p1 dy

)1/p1

≤ |B(x, rk)|
−1/p

(
ˆ

B(x,rk)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|
p2 dy

)1/p2

(3.42)

×

(
ˆ

Ω

|f(y)|p1 dy

)1/p1
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≤ |B(x, rk)|
−1/p‖f‖p1,Ω

(
ˆ

B(x+hkel,rk)

|(Fy,b)hk,l(x)−Dl,xFb(x, y)|
p2 dy

)1/p2

≤ |B(x, rk)|
−1/p‖f‖p1,Ω‖(F·,b)hk,l(x)−Dl,xFb(x, ·)‖p2,B(x,r′).

Similarly we can get

1

|B(x, rk)|

ˆ

B(x,rk)

|Dl,xFb(x, y + hkel)−Dl,xFb(x, y)|f(y) dy

≤ |B(x, rk)|
−1/p‖f‖p1,Ω‖(Dl,xFb)τ(hk),l(x, ·)−Dl,xFb(x, ·)‖p2,B(x,r′).

(3.43)

Since B(x, r′) ⊂⊂ Ω, in the proof of Lemma 3.4 we noted that

lim
k→∞

‖(F·,b)hk,l(x)−Dl,xFb(x, ·)‖p2,B(x,r′) = 0,

which together with (3.42) leads to

(3.44) lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|f(y) dy = 0.

Since |Dl,xFb(x, ·)| ∈ Lp2(Ω), then

‖(Dl,xFb)τ(hk),l(x, ·)−Dl,xFb(x, ·)‖p2,B(x,r′) → 0 as k → ∞.

This together with (3.43) implies that

(3.45) lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|Dl,xFb(x, y + hkel)−Dl,xFb(x, y)|f(y) dy = 0.

Combining (3.45) with (3.44) and (3.41) yields (3.40). It follows from (3.34)-(3.38)
that

DlMb,Ωf(x) ≤
1

|B(x, r)|

ˆ

B(x,r)

(Dl,y(|b(x)− b(y)|) +Dl,x(|b(x)− b(y)|))f(y) dy

+
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|Dlf(y) dy.(3.46)

On the other hand, we obtain that

DlMb,Ω(f)(x) = lim
k→∞

1

hk
(Mb,Ωf(x+ hkel)−Mb,Ωf(x))

≥ lim
k→∞

1

hk
(ux+hkel,b,f(r)− ux,b,f(r))

= lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

Fb(x+ hkel, y + hkel)fτ(hk),l(y)− Fb(x, y)f(y)

hk
dy

= lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|fhk,l(y) dy

+ lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

Fb(x+ hkel, y + hkel)− Fb(x, y)

hk
fτ(hk),l(y) dy.

(3.47)
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Similar arguments to those in getting (3.35), (3.37) and (3.38) give that

lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|fhk,l(y) dy(3.48)

=
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|Dlf(y) dy,

lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

(Fx,b)hk,l(y)fτ(hk),l(y) dy(3.49)

=
1

|B(x, r)|

ˆ

B(x,r)

Dl,yFb(x, y)f(y) dy,

lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

(Fy+hkel,b)hk,l(x)fτ(hk),l(y) dy(3.50)

=
1

|B(x, r)|

ˆ

B(x,r)

Dl,xFb(x, y)f(y) dy.

Observe that

lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

Fb(x+ hkel, y + hkel)− Fb(x, y)

hk
fτ(hk),l(y) dy

= lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

(Fx,b)hk,l(y)fτ(hk),l(y) dy

+ lim
k→∞

1

|B(x, r)|

ˆ

B(x,r)

(Fy+hkel,b)hk,l(x)fτ(hk),l(y) dy.

(3.51)

It follows from (3.47)-(3.51) that

DlMb,Ωf(x) ≥
1

|B(x, r)|

ˆ

B(x,r)

(Dl,y|b(x)− b(y)|+Dl,x|b(x)− b(y)|)f(y) dy

+
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|Dlf(y) dy.(3.52)

Combining (3.46) with (3.52) implies that (3.32) holds for almost every x ∈ K.
Case B. r = 0. Since 0 ∈ R(f)(x), it holds that Mb,Ωf(x) = ux,b,f(0) = 0. Then

we have |b(x)− b(y)|f(y) = 0 for almost every y ∈ B(x, δ(x)). Hence, we can write

(3.53) DlMb,Ωf(x) = lim
k→∞

1

hk
Mb,Ωf(x+ hkel) = lim

k→∞

1

hk
ux+hkel,b,f(rk).

If we have rk = 0 for infinitely many k, then we have DlMb,Ωf(x) = 0. Otherwise,
there exists k0 ∈ N such that rk > 0 when k ≥ k0. Note that |b(x) − b(y)|f(y) = 0
for almost every y ∈ B(x, δ(x)). Then we have

ux+hk,b,f(rk) =
1

|B(x, rk)|

ˆ

B(x+hkel,rk)

|b(x+ hkel)− b(y)|f(y) dy

=
1

|B(x, rk)|

ˆ

B(x,rk)

|b(x+ hkel)− b(y + hkel)|f(y + hkel) dy

≤
1

|B(x, rk)|

ˆ

B(x,rk)

|b(x+ hkel)− b(y + hkel)− (b(x)− b(y))|f(y + hkel) dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||f(y + hkel)− f(y)| dy.
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It follows that

1

hk
ux+hk,b,f(rk) ≤

1

|B(x, rk)|

ˆ

B(x,rk)

|bhk,l(x)− bhk ,l(y)|f(y + hkel) dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||fhk,l(y)| dy.

(3.54)

We can write

1

|B(x, rk)|

ˆ

B(x,rk)

|bhk,l(x)− bhk,l(y)|f(y + hkel) dy

≤
1

|B(x, rk)|

ˆ

B(x,rk)

|bhk,l(x)− bhk,l(y)− (Dlb(x)−Dlb(y))|f(y + hkel) dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|Dlb(x)−Dlb(y)|f(y + hkel) dy

≤
|bhk,l(x)−Dlb(x)|

|B(x, rk)|

ˆ

B(x,rk)

f(y + hkel) dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|bhk,l(y)−Dlb(y)|f(y + hkel) dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|Dlb(x)−Dlb(y)||f(y + hkel)− f(y)| dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|Dlb(x)−Dlb(y)|f(y) dy

≤ |bhk,l(x)−Dlb(x)|(MΩ(fτ(hk),l − f) +MΩf(x))

+
1

|B(x, rk)|

ˆ

B(x,rk)

|bhk,l(y)−Dlb(y)||f(y + hkel)− f(y)| dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|bhk,l(y)−Dlb(y)|f(y) dy

+MDlb,Ω(fτ(hk),l − f)(x) +
1

|B(x, rk)|

ˆ

B(x,rk)

|Dlb(x)−Dlb(y)|f(y) dy

≤ |bhk,l(x)−Dlb(x)|(MΩ(fτ(hk),l − f) +MΩf(x))

+MΩ((bhk,l −Dlb)(fτ(hk),l − f))(x) +MΩ((bhk,l −Dlb)f)(x)

+MDlb,Ω(fτ(hk),l − f)(x) +
1

|B(x, rk)|

ˆ

B(x,rk)

|Dlb(x)−Dlb(y)|f(y) dy.

Consequently, one can get

(3.55) lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|bhk,l(x)− bhk,l(y)|f(y + hkel) dy = 0.

On the other hand, we can get

1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||fhk,l(y)| dy
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≤
1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||fhk,l(y)−Dlf | dy

+
1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||Dlf(y)| dy

≤Mb,Ω(fhk,l −Dlf)(x) +
1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||Dlf(y)| dy.

This yields

(3.56) lim
k→∞

1

|B(x, rk)|

ˆ

B(x,rk)

|b(x)− b(y)||fhk,l(y)| dy = 0.

It follows from (3.53)–(3.56) that (3.33) holds for almost every x ∈ K. Since K ⊂⊂ Ω
is arbitrary, this gives the claim in Ω. �

Lemma 3.5. Let f ∈ W 1,p1(Ω) and b ∈ W 1,p2(Ω) with 1 < p1, p2, p1p2/(p1 +
p2) < ∞. Let hk be positive real numbers so that hk → 0 and define the function

Fb(x, y) : Ω × Ω → R by Fb(x, y) = |b(x) − b(y)|. Assume that |Ω| < ∞ and there

exists l ∈ {1, 2, . . . , n} such that δ(x) ≤ δ(x + hkel) for almost every x ∈ Ω and all

k ≥ 1. Then, for almost every x ∈ Ω, it holds that

lim
k→∞

ˆ

B(x,δ(x))

Fb(x+ hkel, y + hkel)fτ(hk),l(y)− Fb(x, y)f(y)

hk
dy

=

ˆ

B(x,δ(x))

(Dl,yFb(x, y) +Dl,xFb(x, y))f(y) dy+

ˆ

B(x,δ(x))

Fb(x, y)Dlf(y) dy.

(3.57)

Proof. Observe that

lim
k→∞

ˆ

B(x,δ(x))

Fb(x+ hkel, y + hkel)fτ(hk),l(y)− Fb(x, y)f(y)

hk
dy

= lim
k→∞

ˆ

B(x,δ(x))

Fb(x, y)fhk,l(y) dy + lim
k→∞

ˆ

B(x,δ(x))

(Fx,b)hk,l(y)fτ(hk),l(y) dy

+ lim
k→∞

ˆ

B(x,δ(x))

(Fy+hkel,b)hk,l(x)fτ(hk),l(y) dy,

(3.58)

where

(Fx,b)hk,l(y) =
1

hk
(Fb(x, y + hkel)− Fb(x, y)),

(Fy,b)hk,l(x) =
1

hk
(Fb(x+ hkel, y)− Fb(x, y)).

Note that fhk,l → Dlf in Lp1loc(Ω) and Fb(x, ·) ∈ Lp2(Ω) for any x ∈ Ω. It follows that
Fb(x, ·)fhk,l → Fb(x, ·)Dlf in Lploc(Ω) by Hölder’s inequality, which imply that

(3.59) lim
k→∞

ˆ

B(x,δ(x)−t)

Fb(x, y)fhk,l(y) dy =

ˆ

B(x,δ(x)−t)

Fb(x, y)Dlf(y) dy,

for all x ∈ Ω and a fixed t ∈ (0, δ(x)]. On the other hand, since δ(x) ≤ δ(x + hkel),
we have that B(x, δ(x)) ∪ B(x + hkel, δ(x)) ⊂ Ω. Moreover, for almost every y ∈ Ω,
we see that y + hkel is a Lebesgue point of f for all k ≥ 1. By [26, Lemma 2.8] we
can get

(3.60) |fhk,l(y)| ≤ C(M(|∇f |χΩ)(y) +M(|∇f |χΩ)(y + hkel)) =: CΓ1(y)
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for almost every y ∈ B(x, δ(x)). By the Lp1 bounds for M and Minkowski’s in-
equality, one can easily check that ‖Γ1‖p1 ≤ C‖∇f‖p1,Ω. This together with the fact
that Fb(x, ·) ∈ Lp2(Ω), Hölder’s inequality, (3.60) and the absolute continuity of the
integral implies that for every ǫ > 0, there exists t0 > 0 such that

∣

∣

∣

∣

ˆ

B(x,δ(x))\B(x,δ(x)−t)

Fb(x, y)fhk,l(y) dy

∣

∣

∣

∣

≤ C|B(x, δ(x))|1−1/p

(
ˆ

B(x,δ(x))\B(x,δ(x)−t)

|Fb(x, y)|
p2 dy

)1/p2

×

(
ˆ

B(x,δ(x))\B(x,δ(x)−t)

|Γ1(y)|
p1 dy

)1/p1

≤ C‖∇f‖p1,Ω|B(x, δ(x))|1−1/p

(
ˆ

B(x,δ(x))\B(x,δ(x)−t)

|Fb(x, y)|
p2 dy

)1/p2

≤ Cǫ,

(3.61)

whenever t ≤ t0. Here the above constant C > 0 is independent of ǫ. Combining
(3.61) with (3.59) yields that

(3.62) lim
k→∞

ˆ

B(x,δ(x))

Fb(x, y)fhk,l(y) dy =

ˆ

B(x,δ(x))

Fb(x, y)Dlf(y) dy

for almost every x ∈ Ω.
Next, for every ε > 0, there exists t1 > 0 such that the same estimates as

(3.61) hold for (Fx,b)hk,l(y)fτ(hk),l(y), Dl,yFb(x, y)f(y), (Fy+hkel,b)hk,l(x)fτ(hk),l(y) and
Dl,xFb(x, y)f(y), whenever 0 < t ≤ t1. So, we have only to show that for any fixed
0 < t < min{δ(x), t1} with hk < t for large k ∈ N,

lim
k→∞

ˆ

B(x,δ(x)−t)

(Fx,b)hk,l(y)fτ(hk),l(y) dy =

ˆ

B(x,δ(x)−t)

Dl,yFb(x, y)f(y) dy,(3.63)

lim
k→∞

ˆ

B(x,δ(x)−t)

(Fy+hkel,b)hk,l(x)fτ(hk),l(y) dy =

ˆ

B(x,δ(x)−t)

Dl,xFb(x, y)f(y) dy,(3.64)

for almost every x ∈ Ω.
Fix x ∈ Ω. By the above analysis as in getting (3.60), we have that

|(Fx,b)hk,l(y)| ≤

∣

∣

∣

∣

b(y + hkel)− b(y)

hk

∣

∣

∣

∣

≤ C(M(|∇b|χΩ)(y) +M(|∇b|χΩ)(y + hkel)) =: CΓ2(y)

(3.65)

for almost every y ∈ B(x, δ(x)). The fact that |∇b| ∈ Lp2(Ω) together with the Lp2

bounds for M gives that ‖Γ2‖p2 ≤ C‖∇b‖p2,Ω. This together with (3.60), (3.65) and
Hölder’s inequality implies that
ˆ

B(x,δ(x)−t)

|(Fx,b)hk,l(y)(fτ(hk),l(y)− f(y))| dy

≤ C|hk|

ˆ

B(x,δ(x))

Γ1(y)Γ2(y) dy

≤ C|hk||B(x, δ(x))|1−1/p‖Γ1‖p1‖Γ2‖p2 ≤ C|hk||B(x, δ(x))|1−1/p‖∇f‖p1,Ω‖∇b‖p2,Ω,
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for almost every x ∈ Ω, which leads to

(3.66) lim
k→∞

ˆ

B(x,δ(x)−t)

|(Fx,b)hk,l(y)(fτ(hk),l(y)− f(y))| dy = 0.

By the arguments similar to those used in deriving (3.62) we can prove that

(3.67) lim
k→∞

ˆ

B(x,δ(x)−t)

(Fx,b)hk,l(y)f(y) dy =

ˆ

B(x,δ(x)−t)

Dl,yFb(x, y)f(y) dy

for all x ∈ Ω. Equality (3.67) together with (3.66) leads to (3.63).
It remains to show (3.64). Since b ∈ W 1,p2(Ω), it follows that for almost every

x ∈ Ω, limk→∞ bhk,l(x) exists, and hence for such x, there exists Cx,b > 0 such that
|bhk,l(x)| ≤ Cx,b. Therefore, we can get

|(Fy+hkel,b)hk,l(x)| ≤
||b(x+ hkel)− b(y + hkel)| − |b(x)− b(y + hkel)||

hk
≤ |bhk,l(x)| ≤ Cx,b

(3.68)

for every y ∈ B(x, δ(x)). Combining (3.68) with (3.60) and Hölder’s inequality yields
that

ˆ

B(x,δ(x))

|(Fy+hkel,b)hk,l(x)(fτ(hk),l(y)− f(y))| dy

≤ C|hk|

ˆ

B(x,δ(x))

Γ1(y) dy

≤ C|hk||B(x, δ(x))|1−1/p1‖Γ1‖p1 ≤ C|hk||B(x, δ(x))|1−1/p1‖∇f‖p1,Ω,

which gives that

(3.69) lim
k→∞

ˆ

B(x,δ(x))

|(Fy+hkel,b)hk,l(x)(fτ(hk),l(y)− f(y))| dy = 0.

Hence, equality (3.64) reduces to the following

(3.70) lim
k→∞

ˆ

B(x,δ(x)−t)

(Fy+hkel,b)hk,l(x)f(y) dy =

ˆ

B(x,δ(x)−t)

Dl,xFb(x, y)f(y) dy.

We can write
∣

∣

∣

∣

lim
k→∞

ˆ

B(x,δ(x)−t)

(Fy+hkel,b)hk,l(x)f(y) dy −

ˆ

B(x,δ(x)−t)

Dl,xFb(x, y)f(y) dy

∣

∣

∣

∣

≤ lim
k→∞

ˆ

B(x,δ(x)−t)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y)|f(y) dy

≤ lim
k→∞

ˆ

B(x,δ(x)−t)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|f(y) dy

+ lim
k→∞

ˆ

B(x,δ(x)−t)

|Dl,xFb(x, y + hkel)−Dl,xFb(x, y)|f(y) dy.

(3.71)

By the argument similar to that used in deriving (3.42) we have that
∣

∣

∣

ˆ

B(x,δ(x)−t)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|f(y) dy

≤ |B(x, δ(x)− t)|1−1/p1−1/p2‖f‖p1,Ω‖(F·,b)hk,l(x)−Dl,xFb(x, ·)‖p2,B(x,δ(x)),

(3.72)
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because B(x, δ(x)− t) + hkel ⊂ B(x, δ(x)− t + hk) ⊂ B(x, δ(x)). Similarly, it holds
that

ˆ

B(x,δ(x)−t)

|Dl,xFb(x, y + hkel)−Dl,xFb(x, y)|f(y) dy

≤ |B(x, δ(x)− t)|1−1/p‖f‖p1,Ω‖(Dl,xFb)τ(hk),l(x, ·)−Dl,xFb(x, ·)‖p2,B(x,δ(x)).

(3.73)

Since B(x, δ(x)) ⊂⊂ Ω, we can see in the proof of Lemma 3.4 that

lim
k→∞

‖(F·,b)hk,l(x)−Dl,xFb(x, ·)‖p2,B(x,δ(x)) = 0,

which together with (3.72) yields that

(3.74) lim
k→∞

ˆ

B(x,δ(x)−t)

|(Fy+hkel,b)hk,l(x)−Dl,xFb(x, y + hkel)|f(y) dy = 0

for almost every x ∈ Ω. In the proof of Lemma 3.4 we also see that

(3.75) ‖(Dl,xFb)τ(hk),l(x, ·)−Dl,xFb(x, ·)‖p2,B(x,δ(x)) → 0 as k → ∞

for all x ∈ Ω. Combining (3.75) with (3.73) leads to

(3.76) lim
k→∞

ˆ

B(x,δ(x)−t)

|Dl,xFb(x, y + hkel)−Dl,xFb(x, y)|f(y) dy = 0

for all x ∈ Ω. It follows from (3.71), (3.74) and (3.76) that (3.70) holds for almost
every x ∈ Ω. Consequently, inequality (3.57) follows from (3.58) and (3.62)–(3.64).

�

By the arguments similar to those used to derive Lemma 3.5, we can get the
following result. The details are omitted.

Lemma 3.6. Let f ∈ W 1,p1(Ω) and b ∈ W 1,p2(Ω) with 1 < p1, p2, p1p2/(p1 +
p2) < ∞. Let hk be positive real numbers so that hk → 0 and define the function

Fb(x, y) : Ω × Ω → R by Fb(x, y) = |b(x) − b(y)|. Assume that |Ω| < ∞ and there

exists l ∈ {1, 2, . . . , n} such that δ(x) ≥ δ(x + hkel) for almost every x ∈ Ω and all

k ≥ 1. Then, for almost every x ∈ Ω, we have

lim
k→∞

ˆ

B(x,δ(x+hkel))

Fb(x+ hkel, y + hkel)fτ(hk),l(y)− Fb(x, y)f(y)

hk
dy

=

ˆ

B(x,δ(x))

(Dl,yFb(x, y) +Dl,xFb(x, y))f(y) dy +

ˆ

B(x,δ(x))

Fb(x, y)Dlf(y) dy.

Lemma 3.7. [26, Lemma 2.11] Let Aj ⊂ Rn be measurable sets and let hk ∈ Rn

such that |hk| → 0 when k → ∞. Then we can find a subsequence of {hki} such that

for every j and for almost every x ∈ Aj we have x+hki ∈ Aj when i is large enough.

Lemma 3.8. Let 1 < p1, p2, p < ∞, 1/p = 1/p1 + 1/p2, f ∈ W 1,p1(Ω) and

b ∈ W 1,p2(Ω). Let {fj}∞j=1 ( W 1,p1(Ω) such that fj → f in W 1,p1(Ω) as j → ∞.

Assume that |Ω| <∞ and K ⊂⊂ Ω. Then for all l ∈ {1, 2, . . . , n}, we have

(3.77) lim
j→∞

‖DlMb,Ωfj −DlMb,Ωf‖p,Kj
= 0,

where

Kj := {x ∈ K : δ(x) ∈ R(fj)(x) ∩R(f)(x)}.
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Proof. We may assume without loss of generality that all fj ≥ 0 and f ≥ 0. Let
us fix l ∈ {1, 2, . . . , n}. Since Mb,Ωfj −Mb,Ωf ∈ W 1,p(Ω) for p > 1, there exists a
sequence {hk}∞k=1, hk → 0+ such that

lim
k→∞

Mb,Ωfj(x+ hkel)−Mb,Ωfj(x)− (Mb,Ωf(x+ hkel)−Mb,Ωf(x))

hk
= Dl(Mb,Ωfj −Mb,Ωf)(x)

(3.78)

for all j ≥ 1 and almost every x ∈ K. By Lemma 3.7, there exists a subsequence
{sk}∞k=1 of {hk}∞k=1, sk → 0 as k → ∞ such that for almost every x ∈ Kj, we have that
x+skel ∈ Kj for all j when k is large enough. It is clear that Mb,Ωfj(x) = ux,b,fj(δ(x))
and Mb,Ωf(x) = ux,b,f(δ(x)). It follows that

(3.79) Mb,Ωfj(x)−Mb,Ωf(x) = ux,b,fj−f(δ(x)).

Similarly it holds that

(3.80) Mb,Ωfj(x+ skel)−Mb,Ωf(x+ skel) = ux+skel,b,fj−f(δ(x+ skel)).

Combining (3.80) with (3.78) and (3.79) implies that

|DlMb,Ωfj(x)−DlMb,Ωf(x)|

≤

∣

∣

∣

∣

lim
k→∞

ux+skel,b,fj−f(δ(x+ skel))− ux,b,fj−f(δ(x))

sk

∣

∣

∣

∣

(3.81)

for almost every x ∈ Kj. The continuity of ux,b,fj−f(r) yield that for almost every
x ∈ Ω, there exists a sequence of numbers {rℓ}∞ℓ=1, rℓ > 0, rℓ → 1 as ℓ → ∞ such
that

(3.82) ux,b,fj−f(δ(x)) = lim
ℓ→∞

ux,b,fj−f(rℓδ(x)) = lim
ℓ→∞

Arℓ,b,fj−f(x).

Similarly we can get

(3.83) ux+skel,b,fj−f(δ(x+ skel)) = lim
ℓ→∞

Arℓ,b,fj−f(x+ skel)

for almost every x ∈ Ω and all k ≥ 1. Invoking Lemma 3.1 we have Arℓ,b,fj−f ∈
W 1,p(Ω). Therefore, there exists a subsequence {ιk}∞k=1 of {sk}∞k=1, ιk → 0+ such
that

(3.84)
Arℓ,b,fj−f(x+ ιkel)− Arℓ,b,fj−f(x)

ιk
→ DlArℓ,b,fj−f(x) as k → ∞

for all j, ℓ ≥ 1 and almost every x ∈ K. By (3.82)-(3.84) and Lemma 3.1, one has

|DlMb,Ωfj(x)−DlMb,Ωf(x)|

≤

∣

∣

∣

∣

lim
k→∞

lim
ℓ→∞

Arℓ,b,fj−f(x+ ιkel)− Arℓ,b,fj−f (x)

ιk

∣

∣

∣

∣

≤ lim
ℓ→∞

∣

∣

∣

∣

lim
k→∞

Arℓ,b,fj−f(x+ ιkel)− Arℓ,b,fj−f (x)

ιk

∣

∣

∣

∣

≤ lim
ℓ→∞

|DlArℓ,b,fj−f(x)|

≤ 2(Mb,Ω|∇(fj − f)|(x) +MΩ(|∇b|(fj − f))(x)) + |∇b|(x)MΩ|fj − f |(x)

(3.85)

for almost every x ∈ Kj . Combining (3.85) with (1.4), the Lp bounds for MΩ and
Hölder’s inequality yields (3.77). �



228 Feng Liu, Qingying Xue and Kôzô Yabuta

Lemma 3.9. [26, Corollary 2.7] Let 1 < p < ∞ and A be a measurable subset

of Ω. Let fj be a sequence in W 1,1
loc (Ω) so that fj converges to zero in the sense of

distributions:
ˆ

Ω

fj(x)ϕ(x) dx→ 0 as j → ∞ for every ϕ ∈ C∞
0 (Ω).

Suppose that |∇fj(x)| ≤ F (x) + Fj(x) for almost every x ∈ Ω and ‖F‖p,Ω <∞ and

‖Fj‖p,Ω → 0 as j → ∞. Suppose also that for all ǫ > 0 and 1 ≤ l ≤ n, it holds that

|{x ∈ A : Dlfj(x) > ǫ}| → 0 as j → ∞ or |{x ∈ A : Dlfj(x) < −ǫ}| → 0 as j → ∞.
Then

lim
j→∞

‖Dlfj‖p,A = 0.

3.2. Proof of Theorem 1.2. We will divide the proof of Theorem 1.2 into two
steps:

Step 1: Proofs of (1.7) and (1.8). Let {tk}k≥1 be an enumeration of the rationals
between 0 and 1. For k ≥ 1, we define the function gk : Ω → [−∞,∞] by gk(x) =
max1≤j≤k Atj ,b,f(x). One can easily check that gk → Mb,Ωf pointwise as k → ∞.
Moreover, {gk}∞k=1 is an increasing sequence of functions in W 1,p(Ω) and

(3.86)
|∇gk(x)| =

∣

∣

∣
∇ max

1≤j≤k
Atj ,b,f(x)

∣

∣

∣
≤ max

1≤j≤k
|∇Atj ,b,f(x)|

≤ 2(Mb,Ω|∇f |(x) +MΩ(|∇b|f)(x)) + |∇b|(x)MΩf(x),

for almost every x ∈ Ω. Moreover, gk(x) ≤Mb,Ωf(x) for every x ∈ Ω. This together
with (3.86), (1.4), the Lp bounds for MΩ and Hölder’s inequality implies that

‖gk‖1,p,Ω = ‖gk‖p,Ω + ‖∇gk‖p,Ω ≤ Cp1,p2‖b‖1,p2,Ω‖f‖1,p1,Ω,

which implies that {gk}∞k=1 is a bounded sequence in W 1,p(Ω) such that gk →Mb,Ωf
almost everywhere in Ω as k → ∞. A weak compactness argument shows that
Mb,Ωf ∈ W 1,p(Ω) and

gk → Mb,Ωf and ∇gk → ∇Mb,Ωf weakly in Lp(Ω) as k → ∞.

Applying Proposition 2.1 to (3.86) with ak = |∇gk| and

bk = 2(Mb,Ω|∇f |+MΩ(|∇b|f)) + |∇b|(x)MΩf,

we can get (1.7). By (1.7), (1.4), the bounds for MΩ and Hölder’s inequality, we now
obtain that

‖Mb,Ωf‖1,p,Ω

= ‖Mb,Ωf‖p,Ω + ‖∇Mb,Ωf‖p,Ω

≤ Cp1,p2‖b‖p2,Ω‖f‖p1,Ω + 2‖Mb,Ω|∇f |‖p,Ω + 2‖MΩ(|∇b|f)‖p,Ω + ‖|∇b|MΩf‖p,Ω

≤ Cp1,p2‖b‖1,p2,Ω‖f‖1,p1,Ω,

which gives (1.8).
Step 2: Proof of the continuity part. Let |Ω| <∞ and 1 < p1, p2, p1p2/(p1+p2) <

∞. Let f ∈ W 1,p1(Ω), b ∈ W 1,p2(Ω) and {fj}∞j=1 be a sequence of functions in

W 1,p1(Ω) such that fj → f in W 1,p1(Ω) as j → ∞. Without loss of generality we
may assume that all fj ≥ 0 and f ≥ 0. We want to show that

(3.87) ‖Mb,Ωfj −Mb,Ωf‖1,p,Ω → 0 as j → ∞.
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By (1.4) we known that Mb,Ωfj → Mb,Ωf in Lp(Rn) as j → ∞. Thus, to conclude
(3.87), it suffices to show that

(3.88) ‖DlMb,Ωfj −DlMb,Ωf‖p,Ω → 0 when j → ∞

for any l = 1, 2, . . . , n.
We only work with (3.88) for l = n and the other cases are analogous. For

convenience, we set

G(x) := 4(Mb,Ω|∇f |(x) +MΩ(|∇b|f)(x)) + 2|∇b|(x)MΩf(x),

Fj(x) := 2(Mb,Ω|∇(fj − f)|(x) +MΩ(|∇b|(fj − f))(x)) + |∇b|(x)MΩ|fj − f |(x).

By (1.7) and the sublinearity of Mb,Ω and MΩ we have

|∇(Mb,Ωfj −Mb,Ωf)(x)|

≤ 4(Mb,Ω|∇f |(x) +MΩ(|∇b|f)(x)) + 2|∇b|(x)MΩf(x)

+ 2(Mb,Ω|∇(fj − f)|(x) +MΩ(|∇b|(fj − f))(x)) + |∇b|(x)MΩ|fj − f |(x)

≤ G(x) + Fj(x)

(3.89)

for almost every x ∈ Ω. One can easily check that G(·) ∈ Lp(Ω) and

‖Fj‖p,Ω ≤ 2‖Mb,Ω|∇(fj − f)|‖p,Ω + 2‖MΩ(|∇b|(fj − f))‖p,Ω + ‖|∇b|MΩ|fj − f |‖p,Ω

≤ Cp1,p2,n‖b‖1,p2,Ω‖fj − f‖1,p1,Ω.

Hence, for a fixed ǫ > 0, there exists N0 ∈ N \ {0} such that ‖Fj‖p,Ω < ǫ for all
j ≥ N0. Moreover, there exists K ⊂⊂ Ω such that ‖G‖p,Ω\K < ǫ. By the absolute
continuity, there exists η > 0 such that ‖G‖p,A < ǫ whenever A is a measurable set
with A ⊂ K and |A| < η. Therefore, we get from (3.89) that

‖Dn(Mb,Ωfj −Mb,Ωf)‖p,Ω\K ≤ ‖G‖p,Ω\K + ‖Fj‖p,Ω ≤ 2ǫ

for any j ≥ N0. It follows that

(3.90) ‖Dn(Mb,Ωfj −Mb,Ωf)‖p,Ω\K → 0 as j → ∞.

Hence, to prove (3.88) for l = n, it is enough to show that

(3.91) ‖Dn(Mb,Ωfj −Mb,Ωf)‖p,K → 0 as j → ∞.

Set

H = {x ∈ K : δ(x) 6∈ R(f)(x)}.

Then proving (3.91) reduces to proving that

(3.92) ‖Dn(Mb,Ωfj −Mb,Ωf)‖p,H → 0 as j → ∞,

and

(3.93) ‖Dn(Mb,Ωfj −Mb,Ωf)‖p,K\H → 0 as j → ∞.

We now prove (3.92). By the compactness of R(f)(x), there exists a constant
γ > 0 such that

(3.94) |{x ∈ H : R(f)(x) * [0, δ(x)− γ]}| =: |Aγ| <
η

4
.

For convenience, we define the functions Ax,b,f(r) : [0, δ(x)] → R by

Ax,b,f(0) = 0,
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Ax,b,f(r) =
1

|B(x, r)|

ˆ

B(x,r)

(Dn,y(|b(x)− b(y)|) +Dn,x(|b(x)− b(y)|))f(y) dy

+
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)|Dnf(y) dy.

It was observed that Ax,b,f are continuous on (0, δ(x)] for all x ∈ Ω and at r = 0 for
almost every x ∈ Ω. Hence, for almost every x ∈ Ω, the function Ax,b,f is uniformly
continuous on [0, δ(x)]. Further we can find a constant γ(x) ∈ (0, γ) such that

|Ax,b,f(r1)−Ax,b,f(r2)| < ǫ whenever |r1 − r2| < γ(x).

Write

K =

(

∞
⋃

k=1

{

x ∈ K; k−1 < γ(x) < γ
}

)

⋃

N ,

where |N | = 0. Therefore, there exists a constant β ∈ (0, γ) such that

|{x ∈ K : |Ax,b,f(r1)−Ax,b,f(r2)| ≥ ǫ for some r1, r2 with |r1 − r2| < β}|

=: |Aβ| <
η

4
.

(3.95)

By Lemma 3.2, there exists N1 ∈ N \ {0} such that

(3.96) |{x ∈ K;R(fj)(x) * R(f)(x)(β)}| =: |Kj | <
η

4
when j ≥ N1.

Invoking Lemma 3.4, for almost every x ∈ Ω, any r1 ∈ R(fj)(x) and r2 ∈ R(f)(x)
with r1, r2 < δ(x), we have

|Dn(Mb,Ωfj −Mb,Ωf)(x)| = |Ax,b,fj(r1)−Ax,b,f(r2)|

≤ |Ax,b,fj(r1)−Ax,b,f(r1)|+ |Ax,b,f(r1)−Ax,b,f(r2)|.
(3.97)

When r1 = 0, it is easy to see that |Ax,b,fj(r1)−Ax,b,f(r1)| = 0. When r1 > 0, it
was noted that

|Ax,b,f(r1)| ≤
1

|B(x, r)|

ˆ

B(x,r)

|Dn,y(|b(x)− b(y)|)|f(y) dy

+
1

|B(x, r)|

ˆ

B(x,r)

|Dn,x(|b(x)− b(y)|)|f(y) dy(3.98)

+
1

|B(x, r)|

ˆ

B(x,r)

|b(x)− b(y)||Dnf(y)| dy

≤MΩ(|Dnb|f)(x) + |Dnb(x)|MΩf(x) +Mb,Ω|Dnf |(x) =: ~(f)(x).

Combining (3.97) with (3.98) yields that for almost every x ∈ Ω, it holds that

(3.99) |Dn(Mb,Ωfj −Mb,Ωf)(x)| ≤ ~(fj − f)(x) + |Ax,b,f(r1)−Ax,b,f(r2)|

for any r1 ∈ R(fj)(x) and r2 ∈ R(f)(x) with r1, r2 < δ(x).
On the other hand, it holds that

‖~(fj − f)‖p,Ω

≤ ‖MΩ(|Dnb|(fj − f))‖p,Ω + ‖DnbMΩ(fj − f)‖p,Ω + ‖Mb,Ω(Dn(fj − f))‖p,Ω

≤ Cp1,p2,n(‖Dnb‖p2,Ω‖fj − f‖p1,Ω + ‖Dnb‖p2,Ω‖fj

− f‖p1,Ω + ‖b‖p2,Ω‖Dnfj −Dnf‖p1,Ω)

≤ Cp1,p2,n‖b‖1,p2,Ω‖f‖1,p1,Ω.
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Consequently, there exists N2 ∈ N \ {0} such that

(3.100) ‖~(fj − f)‖p,Ω < ǫ, for all j ≥ N2.

Observe that for any r1 ∈ R(fj)(x) and r2 ∈ R(f)(x) with r1, r2 < δ(x), we get from
(3.98) that

(3.101) |Ax,b,f(r1)−Ax,b,f(r2)| ≤ 2~(f)(x) ≤ G(x).

If x ∈ H \ (Aγ ∪ Aβ ∪Kj) we can choose r1 ∈ R(fj)(x) and r2 ∈ R(f)(x) such
that r1, r2 < δ(x), |r1 − r2| < β and

(3.102) |Ax,b,f(r1)−Ax,b,f(r2)| < ǫ.

Observe from (3.94)–(3.96) that |Aγ ∪ Aβ ∪Kj| < η for all j ≥ N1. It follows from
(3.99)–(3.102) that

‖Dn(Mb,Ωfj −Mb,Ωf)‖p,H ≤ ‖~(fj − f)‖p,Ω + ‖ǫ‖p,H\(Aγ∪Aβ∪Kj) + ‖G‖p,Aγ∪Aβ∪Kj

≤ (2 + |K|)ǫ,

for all j ≥ max{N1, N2}, which proves (3.92).
It remains to prove (3.93). Let {hk}∞k=1 be a sequence of numbers such that

hk → 0+ as k → ∞. Following the notations in [26], we set

Ej := {x ∈ K \H : δ(x) ∈ R(fj)(x)},

E+ := {x ∈ K \H : δ(x+ hken) ≥ δ(x) for infinitely many k},

E− := {x ∈ K \H : δ(x+ hken) ≤ δ(x) for infinitely many k}.

Note that K \ H ⊂ Ej ∪ E+ ∪ E−. Hence, proving (3.93) reduces to proving the
following

‖Dn(Mb,Ωfj −Mb,Ωf)‖p,Ej → 0 as j → ∞,(3.103)

‖Dn(Mb,Ωfj −Mb,Ωf)‖p,E+ → 0 as j → ∞,(3.104)

‖Dn(Mb,Ωfj −Mb,Ωf)‖p,E− → 0 as j → ∞.(3.105)

An application of Lemma 3.7 leads to (3.103). We now prove (3.104) and (3.105).
We first prove (3.104). By the definition of E+, it holds that δ(x) ≤ δ(x+ hken) for
infinitely many k if x ∈ E+. In order to apply Lemma 3.5, without loss of generality
we may assume that δ(x) ≤ δ(x+hken) for all k ≥ K0 by extracting a subsequence if
x ∈ E+, where K0 is a large positive number. Moreover, for almost every x ∈ E+, we
have that x + hken ∈ E+ for k ≥ K0. Hence, for almost every x ∈ E+ and k ≥ K0,
we have

Mb,Ωf(x+ hken) ≥ ux+hken,b,f(δ(x))

and

Mb,Ωf(x) = ux,b,f(δ(x)).

These above inequalities together with Lemma 3.5 will lead to

DnMb,Ωf(x) = lim
k→∞

1

hk
(Mb,Ωf(x+ hken)−Mb,Ωf(x))

≥ lim sup
k→∞

1

hk
(ux+hken,b,f(δ(x))− ux,b,f(δ(x))) = Ax,b,f(δ(x))

for almost every x ∈ E+. This combined with Lemma 3.4 implies that

(3.106) DnMb,Ωf(x) ≥ Ax,b,f(r)
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for all r ∈ R(f)(x) (equality if r < δ(x)). By the definitions of β and Kj we
see that R(fj)(x) ⊂ R(f)(x)(β) when j ≥ N1 and x ∈ Ω \ Kj . Hence, for every
x ∈ E+ \ (Kj ∪ Ej) with j ≥ N1, there exists rj ∈ R(fj)(x), rj < δ(x) such that
|rj − r| ≤ β for some r ∈ R(f)(x) (Here r may be δ(x)). Note that rj < δ(x) since
x ∈ E+ \ (Kj ∪ Ej). By Lemma 3.4 and (3.106), we have that for almost every
x ∈ E+ \ (Kj ∪ Ej) with j ≥ N1, it holds that

DnMb,Ωf(x)−DnMb,Ωfj(x) ≥ Ax,b,f(r)−Ax,b,fj(rj)

≥ Ax,b,f(r)−Ax,b,f(rj) +Ax,b,f(rj)−Ax,b,fj(rj)(3.107)

= Ax,b,f(r)−Ax,b,f(rj) +Ax,b,f−fj(rj).

By the continuity of the functions Ax,b,f on [0, δ(x)] we note that

(3.108) |{x ∈ Ω: |Ax,b,f(r)−Ax,b,f(rj)| ≥ ǫ/2}| → 0 as j → ∞.

By (3.98) we see that

|Ax,b,f−fj(rj)| ≤ ~(fj − f)(x),

where ~ is given as in (3.98). Note that ‖~(fj − f)‖p,Ω → 0 as j → ∞. This yields
that

(3.109) |{x ∈ Ω: |Ax,b,f−fj(rj)| ≥ ǫ/2}| → 0 as j → ∞.

It follows from (3.107)–(3.109) that

|{x ∈ E+ \ (Kj ∪ Ej) : DnMb,Ωf(x)−DnMb,Ωfj(x) ≤ −ǫ}|

≤ |{x ∈ E+ \ (Kj ∪ Ej) : Ax,b,f(r)−Ax,b,f(rj) +Ax,b,f−fj(rj) ≤ −ǫ}| → 0
(3.110)

as j → ∞. By (3.89), (3.110) and Lemma 3.9 we have

(3.111) ‖DnMb,Ωfj −DnMb,Ωf‖p,E+\(Kj∪Ej) → 0 as j → ∞.

On the other hand, by (3.95) and (3.100) one can get

(3.112) ‖DnMb,Ωfj −DnMb,Ωf‖p,E+∩Kj ≤ ‖~(fj − f)‖p,Ω + ‖G‖p,Kj ≤ 3ǫ

for any j ≥ max{N1, N2}, which leads to

(3.113) ‖DnMb,Ωfj −DnMb,Ωf‖p,E+∩Kj → 0 as j → ∞.

Then (3.104) follows from (3.103), (3.111) and (3.113).
Now we prove (3.105). This proof is similar to that of (3.104). We may assume

that x + hken ∈ E− for almost every x ∈ E− when k ≥ K1 for a large K1 > 0. It
follows that

Mb,Ωf(x+ hken) = ux+hken,b,f(δ(x+ hken))

and

Mb,Ωf(x) = ux,b,f(δ(x)) ≥ ux,b,f(δ(x+ hken))

for almost every x ∈ E− and k large enough. Similar arguments to those in deriving
(3.106) together with Lemma 3.6 give that

(3.114) DnMb,Ωf(x) ≤ Ax,b,f(r)

for all r ∈ R(f)(x) (equality if r < δ(x)). The definitions of β and Ej imply that
R(fj)(x) ⊂ R(f)(x)(β) when j ≥ N1 and x ∈ Ω \ Kj. It follows that for every
x ∈ E− \Kj with j ≥ N1, there exists rj ∈ R(fj)(x), rj < δ(x) such that |rj−r| ≤ β
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for some r ∈ R(f)(x) (Here r may be δ(x)). By the arguments similar to those used
in getting (3.107), one has

DnMb,Ωf(x)−DnMb,Ωfj(x) ≤ Ax,b,f(r)−Ax,b,fj(rj)

≤ Ax,b,f(r)−Ax,b,f(rj) +Ax,b,f−fj(rj)
(3.115)

for almost every x ∈ E− \ (Kj ∪ Ej) with j ≥ N1. It follows from (3.115), (3.108)
and (3.109) that

|{x ∈ E− \ (Kj ∪ Ej) : DnMb,Ωf(x)−DnMb,Ωfj(x) ≥ ǫ}|

≤ |{x ∈ B− \ (Kj ∪ Ej) : Jj(x) +Ax,b,f−fj(rj) ≥ ǫ}| → 0 as j → ∞.
(3.116)

The inequality (3.116) together with the arguments similar to those in getting (3.111)
yields that

(3.117) ‖DnMb,Ωf −DnMb,Ωfj‖p,E−\(Kj∪Ej) → 0 as j → ∞.

Similar arguments to those in getting (3.113) lead to

(3.118) ‖DnMb,Ωfj −DnMb,Ωf‖p,E−∩Kj → 0 as j → ∞.

Combining (3.103) with (3.117) and (3.118) implies (3.105). This finishes the proof
of the continuity part in Theorem 1.2. �

4. Boundary values of the commutators of local

Hardy–Littlewood maximal function

We have shown the boundedness for the commutators of local Hardy–Littlewood
maximal function on the Sobolev spaces, the aim of this section is to prove that the
commutators of local Hardy–Littlewood maximal function preserve the zero boundary
values in Sobolev’s sense. Recall that W 1,p

0 (Ω) denotes the Sobolev space defined as
the completion of C∞

0 (Ω) with respect to the Sobolev norm. In 1998, Kinnunen and
Lindqvist [17] first established that the map MΩ : W

1,p
0 (Ω) →W 1,p

0 (Ω) is bounded for
all 1 < p <∞. In this section we shall establish the following results:

Theorem 4.1. Let 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. If b ∈ W 1,p2(Ω),
then the map [b,MΩ] : W

1,p1
0 (Ω) →W 1,p

0 (Ω) is bounded.

Theorem 4.2. Let 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. If |Ω| < ∞ and

b ∈ W 1,p2(Ω), then the map Mb,Ω : W
1,p1
0 (Ω) →W 1,p

0 (Ω) is bounded.

The following is a Hardy-type condition for functions in W 1,p
0 (Ω), which plays a

key role in the proofs of Theorems 4.1 and 4.2.

Lemma 4.3. [18] Let Ω ⊂ Rn, Ω 6= Rn, be an open set. If f ∈ W 1,p(Ω) and

ˆ

Ω

(

|f(x)|

dist(x,Ωc)

)p

dx <∞.

Then f ∈ W 1,p
0 (Ω).

Proof of Theorem 4.1. Let f ∈ W 1,p1
0 (Ω) for some p1 ∈ (1,∞) and {ϕj}

∞
j=1

be a sequence of functions in C∞
0 (Ω) such that ϕj → f in W 1,p1(Ω). By Theo-

rem 1.1 we have that [b,MΩ](ϕj) ∈ W 1,p(Ω). One can easily check that MΩϕj(x) = 0
and MΩ(bϕj)(x) = 0 whenever dist(x,Ωc) < 1

2
dist(suppϕj,Ω

c). It follows that
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[b,MΩ](ϕj)(x) = 0 whenever dist(x,Ωc) < 1
2
dist(suppϕj,Ω

c). These together with
(1.2) and Hölder’s inequality imply that

ˆ

Ω

(

[b,MΩ](ϕj)(x)

dist(x,Ωc)

)p

dx ≤

(

1

2
dist(suppϕj,Ω

c)

)−p

‖[b,MΩ](ϕj)‖
p
p,Ω

≤ Cp1,p2,n(‖b‖p2,Ω‖ϕj‖p1,Ω)
p <∞,

which together with [b,MΩ](ϕj) ∈ W 1,p(Ω) leads to [b,MΩ](ϕj) ∈ W 1,p
0 (Ω). On the

other hand, by (1.4), we have that [b,MΩ](ϕj) → [b,MΩ](f) in Lp(Ω) as j → ∞. By
Theorem 1.1, we have

‖[b,MΩ](ϕj)‖p,Ω ≤ Cp1,p2,n‖b‖1,p2,Ω‖ϕj‖1,p1,Ω,

which yields that {[b,MΩ](ϕj)}∞j=1 is a bounded sequence in W 1,p
0 (Ω). A weak com-

pactness argument implies [b,MΩ](f) ∈ W 1,p
0 (Ω). �

Proof of Theorem 4.2. By Theorem 1.2 and the arguments similar to those used
in deriving Theorem 4.1, we can get the conclusion of Theorem 4.2. The details are
omitted. �

Acknowledgement. The authors want to express their sincerely thanks to the
referees for their valuable remarks and suggestions, which made this paper more
readable.

References

[1] Agcayazi, M., A. Gogatishvili, K. Koca, and R. Mustafayev: A note on maximal
commutators and commutators of maximal functions. - J. Math. Soc. Japan 67:2, 2015, 581–
593.

[2] Aldaz, J.M., and J. Pérez Lázaro: Functions of bounded variation, the derivative of the
one dimensional maximal function, and applications to inequalities. - Trans. Amer. Math. Soc.
359:5, 2007, 2443–2461.

[3] Bastero, J., M. Milman, and F. J. Ruiz: Commutators of for the maximal and sharp
functions. - Proc. Amer. Math. Soc. 128:11, 2000, 3329–3334.

[4] Bonami, A., T. Iwaniec, P. Jones, and M. Zinsmeister: On the product of functions in
BMO and H1. - Ann. Inst. Fourier (Grenoble) 57:5, 2007, 1405–1439.

[5] Carneiro, E.: Regularity of maximal operators: recent progress and some open problems, -
https://arxiv.org/abs/191
2.04625.

[6] Carneiro, E., and J. Madrid: Derivative bounds for fractional maximal functions. - Trans.
Amer. Math. Soc. 369:6, 2017, 4063–4092.

[7] Carneiro, E., J. Madrid, and L.B. Pierce: Endpoint Sobolev and BV continuity for
maximal operators. - J. Funct. Anal. 273:10, 2017, 3262–3294.

[8] Carneiro, E., and D. Moreira: On the regularity of maximal operators. - Proc. Amer.
Math. Soc. 136:12, 2008, 4395–4404.

[9] Carneiro, E., and B.F. Svaiter: On the variation of maximal operators of convolution
type. - J. Funct. Anal. 265, 2013, 837–865.

[10] García-Cuerva, J., E. Harboure, C. Segovia, and J. L. Torrea: Weighted norm in-
equalities for commutators of strongly singular integrals. - Indiana Univ. Math. J. 40, 1991,
1397–1420.

[11] Gilbarg, D., and N.S. Trudinger: Elliptic partial differential equations of second order.
2nd edition. - Springer-Verlag, Berlin, 1983.



Sobolev boundedness and continuity for commutators of the local Hardy–Littlewood maximal function 235

[12] Hajłasz, P., and J. Onninen: On boundedness of maximal functions in Sobolev spaces. -
Ann. Acad. Sci. Fenn. Math. 29:1, 2004, 167–176.

[13] Hart, J., F. Liu, and Q. Xue: Regularity and continuity of local multilinear maximal type
operators. - J. Geom. Anal. 31:4, 2021, 3405–3454.

[14] Heikkinen, T., J. Kinnunen, J. Korvenpää, and H. Tuominen: Regularity of the local
fractional maximal function. - Ark. Mat. 53:1, 2015, 127–154.

[15] Hu, G., and D. Yang: Maximal commutators of BMO functions and singular integral opera-
tors with nonsmooth kernels on spaces of homogeneous type, - J. Math. Anal. Appl. 354, 2009,
249–262.

[16] Kinnunen, J.: The Hardy–Littlewood maximal function of a Sobolev function. - Israel J.
Math. 100, 1997, 117–124.

[17] Kinnunen, J., and P. Lindqvist: The derivative of the maximal function. - J. Reine Angew.
Math. 503, 1998, 161–167.

[18] Kinnunen, J., and O. Martio: Hardy’s inequalities for Sobolev functions. - Math. Res. Lett.
4:4, 1997, 489–500.

[19] Kinnunen, J., and E. Saksman: Regularity of the fractional maximal function. - Bull. London
Math. Soc. 35:4, 2003, 529–535.

[20] Korry, S.: Boundedness of Hardy–Littlewood maximal operator in the framework of Lizorkin-
Triebel spaces. - Rev. Mat. Complut. 15:2, 2002, 401–416.

[21] Liu, F., and H. Wu: On the regularity of the multisublinear maximal functions. - Canad.
Math. Bull. 58:4, 2015, 808–817.

[22] Liu, F., and H. Wu: On the regularity of maximal operators supported by submanifolds. - J.
Math. Anal. Appl. 453, 2017, 144–158.

[23] Liu, F., Q. Xue, and K. Yabuta: Regularity and continuity of the multilinear strong maximal
operators. - J. Math. Pure Appl. 138, 2020, 204–241.

[24] Liu, F., Q. Xue, and P. Zhang: Regularity and continuity of commutators of the Hardy–
Littlewood maximal function. - Math. Nachr. 293:3, 2020, 491–509.

[25] Luiro, H.: Continuity of the maximal operator in Sobolev spaces. - Proc. Amer. Math. Soc.
135:1, 2007, 243–251.

[26] Luiro, H.: On the regularity of the Hardy–Littlewood maximal operator on subdomains of
Rn. - Proc. Edinburgh Math. Soc. 53:1, 2010, 211–237.

[27] Milman, M., and T. Schonbek: Second order estimates in interpolation theory and applica-
tions. - Proc. Amer. Math. Soc. 110:4, 1990, 961–969.

[28] Zhang, P.: Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood
maximal function. - C. R. Acad. Sci. Paris Ser. I 355:3, 2017, 336–344.

Received 2 August 2020 • Accepted 16 April 2021 • Published online 31 December 2021

Feng Liu

Shandong University of Science and Technology

College of Mathematics and System Science

Qingdao, Shandong 266590, P. R. China

FLiu@sdust.edu.cn

Qingying Xue

Beijing Normal University

School of Mathematical Sciences

Beijing 100875, P. R. China

qyxue@bnu.edu.cn

Kôzô Yabuta

Kwansei Gakuin University

Research Center for Mathematics and Data Science

Gakuen 2-1, Sanda 669-1337, Japan

kyabuta3@kwansei.ac.jp


	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	4. Boundary values of the commutators of local Hardy–Littlewood maximal function
	References

