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Sobolev boundedness and continuity for commutators
of the local Hardy—Littlewood maximal function

FENG L1u, QINGYING XUE* and K6z0O YABUTA

Abstract. Let Q be a subdomain in R™ and Mg be the local Hardy—Littlewood maximal
function. In this paper, we show that both the commutator and the maximal commutator of Mg
are bounded and continuous from the first order Sobolev spaces W1 (Q) to WP(Q) provided that
be Whr2(Q), 1 < p1,p2,p < oo and 1/p = 1/p1 + 1/pa. These are done by establishing several
new pointwise estimates for the weak derivatives of the above commutators. As applications, the
bounds of these operators on the Sobolev space with zero boundary values are obtained.

Paikallisen Hardyn—Littlewoodin maksimaalifunktion kommutaattoreiden
rajoittuneisuus ja jatkuvuus Sobolevin avaruuksissa

Tiivistelm&d. Olkoon {2 avaruuden R" alue ja Mq paikallinen Hardyn-Littlewoodin maksi-
maalifunktio. Téassé tyossa osoitamme, ettd sekd operaattorin Mg kommutaattori ettd sen maksi-
maalinen kommutaattori ovat rajoitettuja ja jatkuvia ensimmaisen kertaluvun Sobolevin avaruud-
esta W1P1(Q) avaruuteen W1P(Q), mikili b € WiP2(Q), 1 < p1,p2,p < 0o ja 1/p = 1/p1 + 1/pa.
Namé tulokset seuraavat em. kommutaattorien heikkoja derivaattoja koskevista uusista pisteit-
tdisistd arvioista, joita todistamme useita. Sovelluksina saamme namé operaattorit rajoitetuiksi

nollareuna-arvoisissa Sobolevin avaruuksissa.

1. Introduction

1.1. Background. Let €2 be a subdomain in R™ and Q¢ = R" \ Q. Let f
be a measurable function defined from the subdomain €2 to R. The local Hardy—
Littlewood maximal operator M, is defined by

Mof(@)=  swp / Ll

0<r<dist(x,0°) B(l‘, T‘)|

where B(z, ) is a ball in R™ centered at x with radius . When Q2 = R", the operator
Mg coincides with the classical centered Hardy—Littlewood maximal operator M. It
was well known that M is LP(R"™) bounded for 1 < p < oo, and is bounded from
LY(R™) to LY*°(R™). A simple observation may yield that Mq f(z) < M(fxq)(x) for
all x € Q. Therefore, M, is also bounded on LP(Q) for 1 < p < oo and is bounded
from L'(Q) to LY>=(9).

The regularity theory of maximal operators has been the subject of many recent
articles in Harmonic analysis. The first work was due to Kinnunen [16] who proved
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that M is bounded on the first order Sobolev space W'P(R") for 1 < p < co. Later
on, Kinnunen’s result was extended to various cases. For example, see [17] for the
local case, [19] for the fractional case, [8, 21| for the multisublinear case. It is well
known that M is continuous on LP(R"™) for all 1 < p < oo, which follows directly
from the well-known LP bounds and the sublinearity. However, the continuity of
M: WHP(R") — WHP(R™) for 1 < p < oo is certainly a nontrivial issue, since the
maximal operator is not necessarily sublinear at the derivative level. This continuity
property was investigated by Luiro [25] and later extensions were given in [26, §].
More interesting works related to this topic may be found in [2, 6, 7, 9, 20, 22, 23],
see also the nice recent survey paper given by Carneiro in [5].

In the global case, Sobolev regularity results can even be extended to the situation
of sublinear operators that commute with translations [12]. It should be pointed out
that the methods of dealing the Sobolev regularity for maximal operators in global
case {2 = R"™ and the local case 2 C R" are quite different. An important reason is
that the local maximal operator Mg lacks the commutativity with translations, which
plays a key role in the study of the W'P-bounds for M. The first result addressing
the local 2 C R” theory was given by Kinnunen and Lindqvist [17] who proved that
the map Mg: WHP(Q) — WHP(Q) is bounded for all 1 < p < oo, where W1P(Q) is
the first order Sobolev space as follows:

W (Q) = {f: @ = R: [flipe = Ifllpa + IVFlpa < oo},

where || fllp0 = | fllzr@) and Vf = (D1 f, ..., Dy f) is the weak gradient of f.
Actually, Kinnunen and Lindqvist obtained the W?(€) bounds of Mg by proving
the following key estimate:

(1.1) VMo f(z)| < 2Ma(V f)(x)

for almost every z € Q and f € WHP(Q) for some 1 < p < oo (also see [12]). Later
on, the above result was extended to the fractional case in[14] and to the multilinear
case in [13].

The main purpose of this paper is to investigate the Sobolev boundedness and
continuity properties for two classes of commutators of the local Hardy—Littlewood
maximal function. We start with the definitions of the commutators.

Definition 1.1. Let b be a locally integrable function defined on 2. The commu-
tator of the centered Hardy—Littlewood maximal function [b, Mq]| and the maximal
commutator of M, q are defined respectively by

b, Mo(f)(x) = b(@) Mo f(z) — Ma(bf)(x), =€

and

1
Mb,ﬂf(x> O<T<i2£)($7ﬂc) |B(IL‘,T)| Blor) |b<.§L’) b<y)Hf<y>| dy7 r e Q.

When ©Q = R, the operator [b, Mg] (resp., M,q) coincides with the classical
commutator [b, M| (resp., My). Milman and Schonbek [27] first proved the LP (1 <
p < o0) bounds of [b, M]. The above result was improved by Bastero et al. [3|
for b € BMO(R"™). Recently, Agcayazi et al. [1] established the end-point estimates
for [b, M]. An important application is that the operator [b, M] can be used in
studying the product of a function in H*(R") and a function in BMO(R™) (see [4]
for instance). The boundedness of M, has also been studied intensively by many
authors (see [1, 10, 15, 28]). Recently, the authors [24] investigated the regularity of
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commutators of the Hardy—Littlewood maximal function. More precisely, they gave
the following result.

Theorem A. [24] Let 1 < p1,pa,p < ocand 1/p=1/p1+1/py. Ifb € WHP2(R"),
then the map [b, M]: W'PL(R") — WP(R") is bounded and continuous. Moreover,
the map M, : W'PL(R") — WP(R") is bounded. Especially, if f € W'P1(R"), it
holds pointwisely

Vb, M](f)(@)| < [Vb(x)|[M f(x) + [b(z) M|V f[(z) + M(IV(b])])(z)
for almost every x € R".
Based on the above analysis, a natural question arises

Question 1.2. What kinds of regularity properties do the commutators [b, Mg)]
and M, o enjoy?

Question 1.2 is the main motivation of the current work. However, as it was men-
tioned before, these operators lack the commutativity with translations. Therefore,
this question belongs to less fine questions. More obstacles must be overcome and
some new pointwise estimates should be established.

Before addressing this problem, let us point out some useful facts.

e The operator [b, Mq| is neither positive nor sublinear. The map [b, Mg]:
LPr(Q) — LP(Q) is bounded and continuous if b € LP2(Q), 1 < py,p2,p < 00
and 1/p = 1/p; + 1/ps. Moreover, it holds that

(1.2) 116, MI(F)llpe < Cor ol 1]z, 00

e The operator M, q is positive and sublinear. The map M q: L (Q2) — LP(12)
is bounded and continuous if b € LP2(Q), 1 < p1,p2,p < oo and 1/p =
1/p1 + 1/p2. Moreover,

(1-3) ||Mb7ﬂf||p7ﬂ < Cp17p27n||f||p1,ﬂ||b||p2,ﬂ-
This can be seen easily from the boundedness of Mg and the fact that
(1.4) My f(x) < |b(x)[Mof(z) + Mo(bf)(x), = €.

The main results in this paper are as follows:

Theorem 1.1. Let 1 < py,pa,p < oo and 1/p = 1/p; + 1/ps. If b € WhHP2(Q),
then the map [b, Mq]: W'P1(Q2) — WP(Q) is bounded and continuous. Moreover,
if f € WhP1(Q), then

Vb, Ma](f)(x)| < [Vb(x)[|Maf(x)| + 2[b(x)[ Ma|V f|(z)
+2Mq(|Vb[f)(x) + 2Ma(b]V f])(2),
for almost every x € (). Consequently, it holds that

(1.6) 116, Ma](H)llpe < Copponllbllipecl fllip 0

Theorem 1.2. Assume |Q| < co. Let 1 < py,p2,p < ocand1/p=1/p1+1/py. If
b e WhP2(Q), then the map My g : WHP(Q) — WP(Q) is bounded and continuous.
Moreover, if f € WP1(Q), then

(1.7) IVMyof(x)| < 2(Mya|Vf[(x) + Ma(IVb]f)(2)) + [V (2) Mo f (),
for almost every x € Q). Consequently, it holds that
(1.8) 1My fllipo < Cpyponllbllpocll fl1p:.0-

(1.5)
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This paper will be organized as follows. Section 2 will be devoted to proving
Theorem 1.1. In Section 3 we shall prove Theorem 1.2. Finally, we shall prove
that the commutator of local Hardy—Littlewood maximal function preserves the zero
boundary values in Sobolev’s sense in Section 4. We would like to remark that our
main proofs are motivated by the ideas in [14, 17, 26|, but our methods and techniques
are more complex than those of [14, 17, 26].

Throughout this paper, the letter C' will stand for positive constants not nec-
essarily the same one at each occurrence but independent of the essential variables.
Especially, the letter C, 3 denote the positive constants that depend on the parame-
ters «, 3.

2. Proof of Theorem 1.1

In this section we shall present the proof of Theorem 1.1. We start with presenting
the following proposition, which plays a key role in the proof of Theorem 1.2.

Proposition 2.1. [14, 17| Let 1 < p < oo. If fi, — f, gx — g weakly in LP(2)
and fr, < gr (k=1,2,...) almost everywhere in (), then f < g almost everywhere in
Q.

The following lemma is the main ingredient of proving Theorem 1.1.

Lemma 2.2. Let 1 < pi,ps,p < oo and 1/p=1/p; +1/py. If f € WP1(Q) and
g € WhP2(Q), then fg € W'P(Q). Moreover,

(2.1) V(fg)=9gVf+[Vy,
almost everywhere in §2. In particular, it holds that
(2.2) 1 9lipe < [Ifl1pellglipe:

Proof. Since f € WHP1(Q) and g € W'P*(Q), there exist a sequence {p;}52, of
functions in W'P1(€) N C>(Q) and a sequence {1;}52, of functions in W'2(Q) N
C>(Q) such that ¢; — f in WH1(Q) and ¢; — g in WHP2(Q) as j — oco. Fix j € N.
Forall t =1,2,...,n and every x € (), by Leibniz rule
(2.3) Di(piv;) = (Dig;); + (Dit; ).

By Holder’s inequality and Minkonwski’s inequality, one has
[(Di); — (Dif)gllpe < [(Dip; — Dif )b + Dif (¥ — 9)llp
< [[Diej = Difllpyall¥illpe.o + 1 Difllpellv; — gl
< lles = fllipeelvs = gllpae + l9llpae) + 1Dif el — gllp.0-

which implies that (D;p;)¢; — (D;f)g in LP(Q) as j — oo. Similarly we get
(Divj)p; — (Dig)f in LP(Q2) as j — oo. These facts together with (2.3) imply
that D;(¢;14;) = g(D;f) + f(D;g) in LP(Q) as j — oco. On the other hand, it is not
difficult to check that ¢;1; — fg in LP(Q) as j — oco. Therefore, by the above facts
we have that for every ¢ € C5°(Q),

/f ng ) T = hm/@] % ) Zgb(:[)dl‘
= — lim D(W])( ) (x)

]HOO

=~ m | o@){a(@)Dif (@) + f(@) Dig(a)

]HOO
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which yields that D;(fg) = gD;f + fD;g almost everywhere in €. This gives (2.1).
By (2.1) and Hélder’s inequality, we have
1f9llipe < [f9llpo+ IV(f9)lpa
< N llprellgllpee + gl V fllpre + 11 o2l Vollp.0)
< [flhprellglhp.e
which proves (2.2). O
We now prove Theorem 1.1.
Proof of Theorem 1.1. 1t follows from (1.1) that
(2.4) [VMqf(z)| < 2Mo|V f|(),
for almost every x € €. Invoking Lemma 2.2 and (2.4), one has
Vb, Mo](f)(x)| = [V(bMaf)(z) — VMqa(bf)(z)|
< |Vb(@)|[Maf(2)| + [b(z)|[V Mo f(z)| + 2Ma[V(bf)|(2)
< |Vb(x)|[ Mo f(2)| + 2[b(x)| Ma|V f|(x) + 2Ma|Vbf|(x) + 2Ma|bV f|(x),

for almost every x € , which proves (1.5). By (1.5), (1.2), Holder’s inequality and
the LP bounds for M, one can get

116, Ma]()ll1p.0 = b, Mal(f)llp.a + V[0, Mol (F)llp.o < Cprpomllbllips ol fllip o

which proves (1.6).
We now prove the continuity part. Let f; — f in W'1(Q). We want to show
that

(2.5) I[b, Ma](f;) = [b, Ma](f)||1p.0 — 0 as j — oo.
Invoking Lemma 2.2, we can get

(2.6) ||bMof;—bMaf|1pa = 6(Mafi—Maf)||1pa < [|0l|lip.0l Maf;—Maf|ip.0

(2.7) 16f; = 0f llhpe = 1005 = Pllipe < 16llp 0llf5 = Fllipro-

It was shown in [26, Theorem 2.12] that

(2.8) | Maof; — Maofl|lipo—0 asj— oo.

Combining (2.8) with (2.6) and (2.7) implies that

(2.9) |bMa f; — bMafll1p0 — 0 as j — oo,

(2.10) [Ma(bf;) — Ma(bf)|l1pe — 0 as j — oo.

Then (2.5) follows directly from (2.9) and (2.10). This completes the proof of Theo-
rem 1.1. U

3. Proof of Theorem 1.2

3.1. Preliminaries, notations and lemmas. Let us give some notations and
lemmas. Set d(z) = dist(z, 2°). According to Rademacher’s theorem, as a Lipschitz
function 4 is differentiable almost everywhere in 2. Moreover, |V§(x)| = 1 for almost
every x € (). Let b, f be two suitable functions defined on 2. For 0 < t < 1, we
define the function A ¢: Q@ — [—00, 00| by

(3.1) R pup—

m B(z,t5(x)) b(z) = byl (y) dy-
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We now establish the following result, which plays a pivotal role in the proof of
Theorem 1.2.

Lemma 3.1. Let f € Witpi (Q) andb € Wipz (Q) with 1 < pl,pg,plpg/(pl—l—pg) <
00. Assume that |Q| < co. Then A,y € WHP(Q) with p = p1pe/(p1 + p2) and
(3-2) VA ()] < 2(Mo |V fI(2) + Mo(IVO[ f)(x)) + [Vb|(2) Mal f] (),

for almost every x € Q.

Proof. We divide the proof into two steps.
Step 1. The case b € WhP2(Q) N C®(Q) and f € WHP(Q) N C®(Q). Let w, =
|B(0,1)|. Fixi=1,2,...,n. By Leibniz rule, one gets

1
DiAips(x) = D; (m) /B(mé(m) |b(x) — b(y)|f(y) dy
1
T i@y L ( /B st [b(z) = b(y)|f (y) dy)

for almost every x € ). For convenience, we denote by D, . [ the i-th weak partial
derivative of F'in x. By the chain rule and the fact that

0
< dy = dH(y),

(3.3)

one obtains

([ o ) =B )

(34) = / Dialblz) — by)|f(y) dy + / Dy ([b(x) — b(y) £ () dy
B(xz,té(x)) B(z,té(x))
wt b~ )l () dH ) - Didla),
OB(z,té(x))

for almost every x € Q, where dH" ! is the normalized (n —1)-dimensional Hausdorff
measure. Equalities (3.3) and (3.4) yield that

—nVé(x) 1
o(z) B2, t6(x))] JBa o)
1

T B@ @) ( /B . Velb(x) —b(y)|f(y) dy

Vv, (|b(x) — b d
n / o Tl L) y)

st ) - b ) ) - V)
8B(z,t8(x))

_ nVi(x ) 1 o .
- 0l) (‘anw( DI Job(w o ))|b( ) = b(y)f (y) dH"(y)

B s )~ OIS0 )

VA“,J (l‘) =

[b(z) — b(y)|f(y) dy

(3.5)
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1
T B@ @) ( /B . Velb(x) = b(y)|f(y) dy

v, (b(z) — b dy ),
T / o Tl L) y)

for almost every x € Q. Here V, = (D14, ..., Dyy) and Vy = (D1, ..., Dy y).
Fix x € Q. Let R > 0 be such that B(z,R) C Q and F(z,y) be a function
defined on €2 x 2. By Green’s first identity, one has

0 _
| Fewgwde )
OB(z,R) v

(3.6)
- /B( R)(F(a:,y)A,u(y)—l-VyF(xay)'v/i@))dya

where v(y) = Y%* is the unit outer normal of B(z, R) and p is a suitable function.

Take p(y) = |y_2$|2. Then Vu(y) =y —z, Ap(y) = n and %(y) = R. These facts
together with (3.6) imply that
1

1
|8B(x, R)| OB(z,R) |B(l‘, R)| B(z,R)
1

il
== V,F(z,y)  (y—x)dy.
W 1B BN Sy YY)

Applying (3.7) with R = t6(x) and F(x,y) = |b(x) — b(y)|f(y), we get from (3.5)
that

F(z,y) dH" ' (y) — F(z,y)dy

(3.7)

Vst < S st Lo 19 <)) - = ]y
+iaeson (] o 1T~ L)
(33) -/ - 9,(0) = b )y
< BT o o) = MOS0

1
ST [Valb(z) = b(y)[f(y)] dy.
|B(x,t6(x))] B(z,t5(x))
Since || < oo, we have that b(z) — b(-) € WP2(Q) and |b(x) — b(-)| € WhP2(Q).
Invoking Lemma 2.2, we have that |b(z) — b(:)|f(-) € W'(Q) and V,(|b(z) —

()| f(y)) = f(y)Vy(|b(x) =b(y)|)+[b(x) =b(y)|Vy f (y) for almost every y € 2. More-
over, |V, |b(x)—b(y)|| = |Vb(y)| for almost every y € Q and |V,|b(z)—b(y)|| = |[Vb(z)|
for almost every z € ). These facts together with (3.8) lead to

V Ao )‘—W/mm (15(z) = b IV £ () + V()£ (0)]) dy

n 'Vb@)'—w(x,t S /B o Ly
< 90y 0|V f|(2) + 2Ma(|VBIf) () + [Vb|(2) Mo f (2),
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for almost every z € €. This proves (3.2) for the case b € WHP2(Q) N C>®() and
feWhr(Q)nc=(Q).

Step 2. The general case. The proof in the general case follows from an approx-
imation argument. To this end, we first assume that b € W12(Q) and f € W1r1(Q)
for some py,py with 1 < py,pe,p < oo and 1/p = 1/p; + 1/ps. There exist two se-
quences of functions {¢;}52, in W' (Q) NC>®(Q2) and {¢;}32, in WHP2(Q) NC>(Q)
such that ¢; — f in WP (Q) and ¢; — b in WP2(Q) as j — oo. Then there exists
a subsequence {v;, }32, C {t;}32, such that ¢ () — b(z) as k — oo for almost
every x € Q. Fix t € (0,1). Let

1

) = B i () = V5. ()i (y) dy.
W) = (BT oy [0~ 0l 0)
Note that
95,(2) — b(a)| + [b(z)
k(o) = A () < T [ lea) — Sy

| d
memv@ny
+__J;——/“ e (0) — b3 () — F)] dy
1B, t0(@)] Jp@esen " o

1
+T7;§—7/$WwW%@%W@mﬂwWy

B oo [HO0) = 1]

< \B(l’ ()77 (15 (2) = b(@)] + [b(2) )5, = Fllpw
+ 05, (2) = b(@)|[[ fllp1.02)
+ B, 18(x))[ 7P (45, = bllpalles, = fllpo
+ 105, = bllpoll fllpe + [bllplls, = Fllpa)-
Therefore, for almost every x € 2, it holds that
Jim vy (x) = App s ()
It is clear that [vy(z)| < My, o) () and

(3.9) [Vupi(z)| < 2(My;, alVe,l() + Ma([V,[e) (@) + Vi, [(2) Malg;, [ (2),

for almost every x € Q. By (3.9), (1.3), Holder’s inequality and the boundedness for
Mg, we have

[orillipe = [[vrellpo + [Vorellpo
< [My,, 0@illpa + 21My, olVe;llpa + 2 MoV, @) e
+ [V, | Mal e, llpo
< G ponl Vi o205 lpr .2+ Cprpom 195 p2. 2l Vs 1.0
+ ConllI VU5 1@l + 1V lp ol Mal @, lIp: 0
< Cpy ol i 12,0105k 11,1.0-

Hence, {vj}32, is a bounded sequence in WP(Q2) and has a weakly converging
subsequence {v,}p2, of {vk.}72,. Since vy (x) = Aipp(z) as k — oo for almost
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every = € (2, we can conclude that the weak gradient VA, ; exists almost everywhere
in Q and that Vuy,, — VA, f weakly in LP(€2) as k — oo.
On the other hand, one can easily check that

| My, olVejl(x) = Myo|V f|(z)|

< Lo W) 0l w)
= [b(z) = bW)[IV f(y)|| dy
< |y (@) = b(2) [ M|V f(z) + Ma((¢;, — )|V f])()
+ My, o|V(g; — f)l(z).
By (3.10), the sublinearity of M, q, the LP* bounds for Mg, Hélder’s inequality and
(1.4), we can get

1My, ol Vs | = Mool VIllpo
< 1@ = 0)[Mal|V flllp.0 + [ Mal(s, = D)V ]lpe
+ [ My, ol V(s = Plllpo
(3.11) < s = bllps 2l Mal V flllpr.0 + Conll (5, = 0V Flllp0
+ G ponl [V llpa 2 V(25 = Pl
< Cor o[V = Ollpo @IV Fllpr.2 + Cor o105 = Ollpo 2|V .02
+ Cprponl [V lp2. 2 V(25 = Dl

The sublinearity and the bounds of Mg together with Holder’s inequality yield that

[Ma([Vbs|ps,) = Ma(IVO|F)llp0
< [[Mo(IVis|@. = VO lp.e

(3.10)

(3.12)

< Cpull VY5, 05, — VO 0

< Cprpo V(W5 = D)llpall@sillpa + IVO|lps.alles, — fllpo
and
(3.13) 11V, [Maw;, — VO Mafll,0

< CPIy”(HVijk”pQ,QHSOjk - f”pl,ﬂ + HV(%k - b)”mﬂ”f”pl,ﬂ)'

Let gp = 2(ijkl ol Vo, |+ MoV, |95,) + Vi, [ Mag;,, . 1t follows from (3.11)-
(3.13) that

(3.14) Gge = 2(Myp |V f| + Mo(|Vb|f)) + |Vb|Mqf in LP(Q) as { — oo.

Applying (3.9) and Proposition 2.1 to (3.14) with f, = |Vuy,.|, we can get (3.2).
This completes the proof of Lemma 3.1. U

In order to prove the continuity result of Theorem 1.2, we need to introduce some
notations and establish some lemmas.

For A ¢ R" and v € R", let d(x,A) := infoeq|r —a| and Apy = {z €
R™; d(z, A) < A} for A > 0. The notation K CC 2 means that K is open, bounded
and K C Q. Let b € LP*(Q) and f € LP(Q) for some 1 < py,po,p < 0o with 1/p =
1/p1 + 1/ps. For every = € Q, we define the function wu,p ¢(r): [0, d(z)] = [—o0, 0]
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uxbf(()) O
sl = (g o ) ML)y, € 0,002

Define the set R(f)(x) by

R(f)(x) =A{r €[0,6(x)]; Moof (x) = uaps(r)}-

For any = € Q, we have that |[b(x) — b(-)| € LP*(Q2) since || < oo. Thus |b(z) —

b(-)|f(-) € LP(Q) by Holder’s inequality. By the Lebesgue differentiation theorem,
we see that lim, o+ uyp p(r) = 0 for almost everywhere z € €. It follows that the
functions u, ¢ are continuous on (0, §(x)] for all z € Q and at r = 0 for almost every
x € S

Lemma 3.2. Let 1 < py,p2,p < 0o and 1/p = 1/p; + 1/py. Let b € LP*(Q).
Suppose that f; — f in LP*(2) when j — oo. Let Qp = QN B(0, R). Then for all
R >0 and A > 0, it holds that

(3.15) lim |{z € Qs RUf)(@) £ R @)} = 0.

Proof. Let R > 0, A > 0 and fix € € (0,1). Without loss of generality we may
assume that all f;, f > 0 since R(f)(x) = R(|f|)(z) and |f;| — |f| in LP*(2) as
J — o0. By the arguments similar to those used in the proof of |25, Lemma 2.2], we
see that the set {x € Qg; R x) € R(f)(x)n} is measurable for any j € Z when
all f; and f are locally 1ntegrable functlons Moreover, for almost every x € (g,
there exists y(x) € N\ {0} such that

(3.16) Usp,f(r) < Myaf(z) — (y(2))™", when d(r,R(f)(z)) > \.

Otherwise, for almost every = € (g, there exists a bounded sequence of radii {r}¢2,
such that

Hm w,p f(1x) = My f(x) and d(rg, R(f)(z)) > A

k—o0

There exists a subsequence {sy}22, of {r;}2, such that s — r as k — oo. It follows
that r € R(f)(x) and d(r, R(f)(z)) > A, which is a contradiction. Thus, (3.16)
holds.

It follows from (3.16) that there exist v = y(\, R,¢) € N\ {0} and a measurable
set F with |E| < € such that
QR C {SL’ € QRI um7b7f('r’) < Mb,gf(x) — ’)/71, if d(’f’, R(f)(ﬂ?)) > )\} Uk

= BUE.
Fix x € Qg and r such that d(r, R(f)(z)) > A. It is clear that

Myof(x) = tgpf(r) < [Myafi(x) — Myaf(z)| + [Myafi(@) — tap,s, (1)
A [t b, (1) = Uap (7)1

(3.17)

which leads to
(318) B C AL]‘ U AQJ‘ U A37j,
where

Avj = A{x € Qr: [ Myafi(x) — Myaf ()] = (47) 7'},
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Agji={x € Qr: |ugp,p, (1) — tgps(r)| = (29)~" for some r
such that d(r, R(f)(x)) > A},
Asji={z € Qr: Uy, (r) < Myofi(z) — (4y)7", if d(r, R(f)(z)) > A}.
Observe that
As; C{z € Qr: R(f;)(z) C R(f)(2)
which together with (3.18) yields that

(3.19) {z € Qr; R(f;)(2) L R(f) (@)} C EUAL; U Ay

By the sublinearity of M, o, we can get

(3.20) Arj CH{x € Qr: Myo(f; — f)(z) > (49)71

Similarly we can obtain

(3:21) Az C{x € Qr: Myo(f; — f)(z) > (29)71}

Since f; — f in LP'(Q) as j — oo, there exists Ny = Ny(e,7) € N such that
(3.22) 1fi = fllowe <776 M fillpuo < I fllpo +1

for any j > Ny. Hence, we get from (3.20)-(3.22) that

{z € Qr; R(fj)(x) £ R(f)(@) )}
< 2{z € Qr: Myo(f; — )(x) = (49) 7"} + | E|
< 2(49)P[[Mya(f; — llpa +€
< Cpr oV 01, 0lLf5 = FlI5s 06 < Cpripane
for all j > Ny. This yields (3.15) and finishes the proof of Lemma 3.2. O

For 1 <l <mn,let ¢ =(0,...,0,1,0,...,0) be the canonical [-th base vector in
R™ For h #0,1 <p<oo, fe LP(Q)andl € {1,2,...,n}, we define the functions
Jng and fray, by setting fr(x) = M and  fray(x) = f(x+ he). It is well
known that frp); — f in LP(K) for all K CC Q when h — 0, and if f € WP(Q)
with p > 1 we have that f,; — D;f in L?(K) when h — 0 (see [11, 7.11]).

Let A, B be two subsets of R”. The Hausdorff distance of A and B is defined by

(A, B) :=inf{d > 0: A C Bs and B C A}

The following lemma tells us how close the sets R(f)(z) and R(f)(z + he;) are
when h is small enough.

Lemma 3.3. Let 1 < py,ps,p < oo and 1/p=1/p; + 1/py. Let f € LP*(Q) and
be L (). Then for K CCQ, A>0andl=1,2,...,n, it holds that

(3.23) H{x € K;m(R(f)(z), R(f)(xz + he;)) > A} — 0 when A — 0.
Proof. Fix 1 <1 <n. To prove (3.23), it is enough to prove that

(3.24) lim|{x € K: R(f)(x + her) & R(F) )} = 0.

(3.25) lim [{z € K: R(f)(z) £ R(f)( + he) oy} = 0.

We only prove (3.24) and (3.25) is analogous. The proof is motivated by the idea in
the proof of [26, Lemma 2.3|. Fix e € (0,1) and A > 0. Applying the same argument
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as in getting (3.17), there exist a positive integer 7 = v(\, €) and a measurable set £
with |E| < € such that

(3.26) K C{x € K: upps(r) < Mpof(x)—y~", if d(r,R(f)(z)) > \JUE =: GUE.
Fix h € R, and let
By i={x € K: |Myof(x+he) — Myof(x)| > (49)7'},
By i={z € K: |brny(x) — b(x)[ Mo frn)i(z) + Ma((brnys — b) frm)(2)
+ Myo(frma — () > (27)73,
Bsp :={x € Q:3re[o(x)—2|h|,6(x + he)] such that
(e, (1) = ey, £ (0(x + her) — [R])] > (87) 71
Firstly we prove that
(327) {37 e K: R(f)(l’-'-h@l) SZ R(f)(ﬂ?)(g)\)} C Bl,hUBZhU(BB,h —hel) UFE =: By,

when £ is small enough. Choose hy € (0,) such that K, C Q. It suffices to
show that for z € G\ By, with |h| < 1 min{h, §(z)}, there exists r € R(f)(z + he))
such that d(r, R(f)(z)) < 2. Otherwise, assume that d(r, R(f)(z)) > 2X. We will
consider the following two cases:

Case (i): 7 < d(x) — |h|. It follows from (3.26) that
(3.28) My f(x + hep) = Uptne b f (1) < Ugpney b f (1) = Uap £ (1) + Usp f(7)
. < |Uz+hel,b,f('f’) - Um,b,f(’f’)\ + Mo f(x) — ’Yfl-

Note that

Uy hey b, () — Uap, 7 ()]

1
= [B(z,t)] /B(x-l-hel,t) [z + her) = b(y)| f(y) dy

- /B(x,t) [b(z) = b(y)If (y) dy’

1
S TR sy | r0(0) = brooaW)frna(w) = o) = b(w)1 /W) dy

|brna(x) — b(2)]

‘B(.I‘ t B(z,t)

b —b d
B(x,t |/“ [br (). W frm(y)| dy

|Ba; { |/m) bW frna(y) = fF(y)l dy

< brwya(w) = b(x)[Ma fra(2) + Ma((brnys — b)frn)(x)
+ Myo(frnys — f)()
for any t € (0, min{d(x),d(x + he;)}). Combining (3.28) with (3.29) yields that
Myof(z + her) < |brnyi(z) = ()| Mo frn)i(x) + Ma((brnys — b) frn)(2)
+ Myo(frmy — (@) + Myof(x) =77
< (29)7" + Myaf(z) =77 < Myof(a) — (29) 7"

(329) < | frma(y)] dy
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This yields that |[Myqf(z) — Myof(x + he)| > (2) ™!, which yields € By, and a
contradiction.

Case (ii): 7 € [0(z) — |h|,0(x + hey)]. Tt is clear that d(d(z) — |h|, R(f)(x)) > A,
d(z + he)) — |h| < 0(x) and d(z + he;) — r € [0,2|h]]. Hence,

|7 = (0(z + hey) = [h])| = [Ih] = (6(z + hey) =) < |l

and
d(d(z + hey) = [h], R(f)(2)) = d(r, R(f)(2)) = |r = (6(x + her) = [h])] > 2A = [h] > A.
Inequality (3.29) together with (3.26) implies that

My f(x+ hep) = Ugihe,p,(7)
< gt () — ey (3 + her) — )
+ [Uasheb,f (0(x + her) = [h]) = tap,(0(z + her) — [A])] + tap,f (0(z + her) — [h])
< (87)7H+ (29) T+ Myaf(r) =77 < Myof(x) — (49)7"
This yields that |Myqf(z) — Myof(z + he)| > (4y)~! and further x € By, which

is a contradiction and (3.27) is proved.
Secondly we show that

(3.30) 1111_% |B| = 0.

It is clear that |Bsj — he;| — 0 when h — 0. Note that M, qf € LP(S2). It follows
that (Myaf)-(nyy = Mpaf in LP(K) when h — 0. Hence, one has

(3.31) [Binl < (47)P[[(Mo,of)rmyp — Moo fllpo — 0 as h—0.

By (1.4), the L” bounds for Mg and Hélder’s inequality, it holds that

| Bau| < (49)P||bzny0 — bl Ma frnyy + Ma((brnys — 0) frnya) + Mya(fraya — b a
< Cpr(Nbrnys — bIMa fryally o + | Ma((brnya — ) frmy )b
+ [Myo(frmya — Hllpa)
< Cprponiy([[br g = Oy, all frmillpy 0 + 101, ol frie — fllp o),

which together with (3.31) leads to | By, UBs| — 0 when A — 0. Then (3.30) holds.
Combining (3.27) with (3.30) yields (3.24). This finishes the proof of Lemma 3.3. O

The following key lemma will play a pivotal role in the proof of the continuity of
Theorem 1.2.

Lemma 3.4. Let f € Wh1(Q) andb € W2(Q) with 1 < py, pe, p1p2/(p1t+p2) <
oo. Assume that || < oo, then
(i) For any l € {1,2,...,n}, almost every x € Q and r € R(f)(x) with 0 < r <
d(z), it holds that
1

|B<.§L’7 T)‘ B(x,r)
1
(3.32) + [b(x) = b(y)| D1 f|(y) dy.
|B<.§L’7 T)‘ B(x,r)
(ii) For any l € {1,2,...,n}, almost every x € Q and 0 € R(f)(z), it holds that

DiMyof(x) = (Dry([b(z) = b(y)]) + Do (|b(x) — b(y) DI f(y)| dy
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Proof. Without loss of generality we may assume that f > 0. Fixl € {1,2,...,n}.
For convenience, we define the function F: Q x Q — R by Fy(z,y) = |b(x) — b(y)|.
Note that Fy(x,-) € Whr2(Q) for all z € Q and Fy(-,y) € W2(Q) for all y € Q since
|| < oo. Since Fy(-,y) € W2(Q) for all y € €, then for any fixed y € €, we have
that |V, Fy(z,y)| = |Vb(x)| for almost every x € Q. Therefore, |V, Fy(x,-)| € LP*(Q)
because of || < oo. It follows that |D;,Fy(z, )| € LP*(2). Let K CC Q. By
Lemma 3.3, we can choose a sequence {s;}32,, sy > 0 and s — 0 such that

Jim 7(R(f)(2), R(f)(x + sper)) = 0

for almost every z € K.
For convenience, we define the functions

(Fop)sia(y) = Sik(Fb(l‘,y+Sk61)_Fb(fE,y))a (Fyp)spi(r) = S—lk(Fb(HSkez,y)—Fb(x,y)).
Then we have
max{|| frso)i — fllpi.go |0r(si)t — Ollpe,x} — 0 as k — oo,
max{ || fs,1 — Difllpi.xs |bs,0 — Dibl[po.x} — 0 as k — oo,
| (Fap)spi — DiyFo(x,)||ps,x — 0 as k — oo,
|(Fyp)sii — DiaFv(-,Y)|lpox — 0 as k — oo,
HMQ(fT(sk — Plpox — 0 as k — oo,
Mo ((fr(s)i — f)(bsy.0 — Dib)
|Ma(f(bs,1 — Dib))
Mo ((Fep)sit — DiyEy(w, ) (frsog — f)llpx — 0 as k — oo,
| Mo (((Fup)sit — DiyFo(x,) f)llpx = 0 as k — oo,
)
)

MNpx =0 as k — oo,
lpx = 0 as k — oo,

HMQ(Dl,yFb(x7 )(fT(Sk f) HZLK —0 ask — 0,
||Mle,Q(f7—(5k —f ||p7K — 0 as k — oo,
|\ Myo(fs,i — Dif)llpx — 0 as k — oo.

By the boundedness result in Theorem 1.2, we have that M,qf € WhP(Q).
Furthermore, we get

|(Myaf)s,ts — DiMyafl|lpxc — 0 as k — oo.

From the above facts, we can conclude that there exists a subsequence {hy}52, of
{sr}3%2; and a measurable set B; C K such that |K \ By| = 0 and for any x € By, it
holds that

Jim Mo ((frua = f) (b — Dib))(x) = 0,
khj)lo Mﬂ(f(bhkl — Dpb))(x) =0,

hm bhkl(x) Dib(z),
hm MQ(fT(hk 1= f)(x) =0,

leHQO Myo(frs — Dif)(z) =
I}LHC}O Mo (((Fep)ht — DiyFy(x, ) (frna — f))(x) =0,
lim Mo (((Fzp)ht — DigFo(z,-))f)(x) =0,

k—o0
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,}Lﬂgﬁwa)hkvl(m) = Dy Fy(z,y) forall y € Q,
;}Ego Mpp.o(frinya — f)(x) =0,
lch—>rgo Mo(Dyy Fy(, ) (frna — f)) (@) =0,
Jim (Myo(f)na(2) = DiMyo f(2),
Jim 7(R(f) (@), R(f)(x + hyer)) = 0.
We set
By = {a € K: Myaf(x) = 100(0) i 0 € R(F)(x)}.

Bg = m{l‘ e K: MbJ}f(fL' + hkel) = ua:-l—hkel,b,f(o) if 0 R(f)(:t + hkel)}a

k=1

One can easily check that |K \ Bi\ =0 for any ¢ = 2,3,4,5. Let z € ﬂle B; and
r € R(f)(z) with » < §(z). Since limy_,oo T(R(f)(x), R(f)(x + heye;)), there exists
radii 7, € R(f)(z + hge;) such that limg_,, rp = r. Without loss of generality we
assume that all r, < 6(z). We consider two cases:

Case A. r > 0. In this case we may assume that all r, € (0,6(x)). We can write

. 1
Dle,Qf<.T) = kh_)m h_<Mb’Qf<x + hkel) — Mb,Qf<x>)
oo N,
. 1
< lim h—k(uﬁhkel,b,f(?“ k) = Wb £ (Tk))
h h ~ — Fy(x,
(334) = lim / (v + hweny + he) frowna(y) = Bu@ ) @)
k=00 ‘B .T Tk ‘ $7’]€ hk
=1
(@ + hier, y + hie)) — Fyp(z,y)
I i dy.
+k1—>rgo |B(x,ry) ‘/xrk Ry f (hk),l<y) Y

By the fact that [©2] < oo and Holder’s inequality it holds easily that [b(z) —
b()|Dif(-) € L'(Q), which together with the fact that limy_,, 7% = r implies that

B T3 27 MNP O = ey [ W) b0

It follows that

lim — 1b(x) — b(y)| fa1(y) dy

k—o0 |B(ZL‘ Tk)| B(z,ry)

1
B gy 1)~ MNP )

(3.35)
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< 0 BTl fo 1) b)) = DiF )
hm MbQ(fhkl — le ( ) O

On the other hand, it is easy to see that

I Fy(z + hie, y + hiey) — Fy(x,y)
k—o0 |B(ZL‘ Tk)| B(z,r) hk

1
336) = Jim o / o (B )
T

Jrn)(y) dy

1

+ lim 7/ F,p . o) f "
k—oo |B(x, )| B(:r,m)( ytherd) it (T) fr(n) 1 (y) dy

One can easily check that

1
|B(z,7)| B(z,r)
since Dy, Fy(x, ) f(-) € L*(Q). Therefore, one has

1
lim ——— Dy Fy(x,y) f(y) dy =

Dy Fy(x,y) f(y) dy
k—o0 |B(ZL‘ Tk)| B(z,ry) Y

1
lim —— F, : d
k—oo | B(x, 1) Bla, Tk)( Dt (Y)f (hk),z(y) Y

1
- D, . F(x d
B e wFole,9)f W) y‘

< lim Bz, o) |/ Foo)h i) frnn i (y) — DiyEy(z,y) f(y)] dy

<l ; — DBy, )l ) d
(3.37) kl%n;o\Bx ) |/w> et (y) = Dy Fo(@, ) frna(y) = F(y)| dy

kl_)l’glo |B(:c -] B(wk)|( D)het(Y) 1Ly b(z, ) f(y)| dy

kh—glo |B<SL’17 Tk)‘ B(z,rg) |Dl7yFb(:L"y)||f7(hk)7l(y) - f(y)| dy
< lim (Mo(((Fo )t — DigFo(w, ) (Frnos = £))(@)
+ MQ(((Fm,b)hk,l - Dl,yFb(% N(@) + Ma(DyyFy(z, ) (friya — f))(x))
=0.

We now prove that

1
lim —— Frne : d
kingolo |B(ZL' Tk;)| B(x Tk)( y+hy l,b)hk,l<x)f (hk)J(y) y

(3.38)
_ W /  DuFil ) 4) dy

Note that

|[b(z + hper) — by + heey)| — [b(x) — b(y + hyer)|
hy,

|(Fythyerb)ng ()] < < b1 ()]
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It follows that

lm L |erk| /  Ertnehnat@ Urugav) = ) dy

k—o0

§]}1_>T1010(|bhk,l( T) — ( )|+ [Dib(x)[) Mo frha — f)(z) = 0.

(3.39)

Hence, to prove (3.38), it suffices to show that

1
lim ———— Fyinge d
e B(wk)( yhier st () f(y) dy

1
= TR Dy Fy(z,y) f(y) dy.
|B<.§L’7 T)‘ B(z,r)
Note that Dy, Fy(x,-) f(-) € L' (). This together with the fact that limy_,eo X p(z,r) =
X B(z,r) Yields that

(3.40)

1
Dy Fy(z,y) f(y) dy = lim

- = a— Dl,:va('ru y)f(y) dy
|B<.§L’7 T)‘ B(x,r) k=00 |B<.§L’, Tk)‘ B(x,ry)

It follows that

k—o0

li e d
im |Bx BTl o ot hna 0)56) dy

- m /B(m,r) Dl,bu(x, y)f(y) d?/'

|B
1
. < lim ——— -
(3 41) klg{)lo |B<5L’ Tk>| Bla) ‘(Fy+hk€l7b>hk7l(x) Dl,mFb<x7 y)|f<y) dy
1
< lim o |(Fythyerb)nei(2) — DiaFy(, y + hier) | f(y) dy

k—)oo |B<.§L’ Tk>| B(x,ry)

+ lim ——— D, . F h D, . F
B Ja, P+ ) = DisFie )] ) dy

k—)oo

Note that ry € (0,6(x)) for £ > 1. Take r < r' < d(zx) satisfying hy + rp < 7’
for large k. Hence B(x,r;) C B(z,r") CC Q and B(x + hyey,r,) C Q. By Holder’s
inequality and the change of variables, one has

1
|B(ZL‘, Tk)| B(z,rg)

1/p2
< |B(x, )| 7P (/B( ) |(Fythperb)hed (€) — DigFy(x,y + hyep)|P? dy)
T, Tk

1/p1
9 ( [ e dy)
B(x,ry)
(3.42) < |B(z,r)|7V? (/
B(x,ry)

x ( [ dy)l/m

|(Fythpep)hpi() — Dy Fy(z,y + hie)| f(y) dy

1/p2
(Fyemens)ia(@) — DiaFy(,y + b)) dy)
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1/172
< Bz, )| || fllpr.0 (/B( _— |(Fyp)hyi(T) — Dy Fy(z,y) P dy)
x+hger,ri

< B(@, )| PN ool (F p)hi(x) = Do Fy(@, ) llpa,Bar)-
Similarly we can get

1
(343) |B(ZL‘, Tk)| B(z,rg)
< 1B, 7)1 f o2l (Pro F ) ua () = DiaFo(, ) lpa, oy

Since B(z,r") CC €, in the proof of Lemma 3.4 we noted that

Jim (| () 1(2) = Dig Fo(2, ) lps By = 0,

|Dl,bu(:L‘7y + hkel) - Dl@Fb(fE,y”‘f(y) dy

which together with (3.42) leads to

1
3.44 lim ——— Foine — Dy Fy(x, h dy = 0.
( ) kgl;olo |B(ZL‘ Tk)| Bory) |( y+hy l7b>hk7l(x) l b(.ﬁlf Y+ k€l>|f<y) Y

Since | D, Fy(x,-)| € LP?*(), then
(Do Fy)7(ny) (2, +) — DioFo(2, ) |lpo,Basry — 0 as k — oo.

This together with (3.43) implies that

(3.45) lim W/ |Dialy(@,y + her) — Dy Fy(x, y)| f(y) dy = 0.
k: (z,rk)

k—o0

Combining (3.45) with (3.44) and (3.41) yields (3.40). It follows from (3.34)-(3.38)
that

DMy f(2) < gy [ (D)~ b)) + D) b)) )

1
R —
|B<.§L’7 T)‘ B(z,r)

On the other hand, we obtain that

(3.46) [b(z) = b(y)|Duf (y) dy

DiMyo(f)(z) = lim hi(Mbe(l‘+hkel) Myof(z))

k—o0 k

) 1
> lim —(U:Hhkel,b,f(?“ ) = Uz pp(7))

k—)ooh,
— lim x+hk6l7y+hkel)f7 (hi),l ( )_ Fb(xvy)f(y) d
(347) T 0% \B z,7)| J B D, Y
:kh—glo\er|/“ b(Y)| frea(y) dy
Fy(z + hpey, y + hier) — Fy(z,y)
lim ——— - dy.
+ lim \B(:c ol /(”) W Jrina(y) dy
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Similar arguments to those in getting (3.35), (3.37) and (3.38) give that

1
(3.48) ggﬁi;;[m“gm> b)) dy
- xr|/mr W) DS ()
(3.49) lim ———— (Fop) it (W) i () dy

k—o0 |B<.§L’ T)‘ B(z,r)

- d
|B(ZL‘, ,r,)| /B(m,r) Dl,yFb(xa y)f(y) Y,

1

(3.50) klggo Bla.r)| o T)(Ferhkel,b)hk,l(x)fr(hk),l(y) dy

= W/B(m) Dy Fy(z,y)f(y) dy.

Observe that

1 Fy(x + hyey, y + hkez) — Fy(7,y)
lim ——— 3 d
Prarel | B(x, 7’)\ B Jrawa(y) dy
(3.51) —]}ggo B 1) |/” Fo o) b (V) frn) i (y) dy

k—o0

+¢mwar|/ (Fyempenn)ind () frimy 1 (y) dy

It follows from (3. 47)—(3 51) that
Dle Qf( |

)2 B0 o (Dislb) — B+ Dislte) — o)) )
1

(3.52) + Bl s |b(z) — b(y)|Dif (y) dy

Combining (3.46) with (3.52) implies that (3.32) holds for almost every = € K.
Case B. 7 = 0. Since 0 € R(f)(x), it holds that My o f(z) = 1, £(0) = 0. Then
we have |[b(z) — b(y)|f(y) = 0 for almost every y € B(z,(z)). Hence, we can write

.1 o1
(3.53) DiMyof(r) = lim h—ka,Qf(fE +hyey) = lim h—kuwhkehb,f(?”k)-

If we have rp = 0 for infinitely many k, then we have D;M, o f(x) = 0. Otherwise,
there exists kg € N such that r, > 0 when k& > kq. Note that |b(z) — b(y)|f(y) =
for almost every y € B(z,d(z)). Then we have

! bz + huer) — b()| F () dy

Uzthy b, f\Th) = T 7
x+hy, f< ) |B<5L’,7’k>| B(z+hger,ry)

1

=T |b(x + hier) — b(y + hyer) | f(y + hier) dy
‘B('T7Tk>| B(z,ry)
|

= |B(a;1, e / e |b(z + hrer) — by + hier) — (b(x) = b(Y))|f(y + hwer) dy
1

BT Sy 1) = OIS+ e = 70y
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It follows that

1 1

h—kux+hk7b7f<rk> m B(l‘ Tk

BT o )~ B0 i)l

|bhk ( ) bhk,l<y>|f<y + hkel) dy
(3.54)

We can write
o @) b)) dy
B(z, 7y, | Blary)

e —Y [0ny,1 () = bny,a(y) = (Dib(x) — Dib(y))|f (y + hwer) dy
|B(ZL‘ Tk | B(z,ry)

Db b h d
|erk|/“k| ! Dib(y)| f(y + hier) dy
|bn, () —
< + hiey) dy
|B(l‘ ’rk B(z,rg) f( ‘ l)
/’ brea(4) — Dib(u)| £y + huer) dy
377%\ (%)

n Tk\/ |Dib(x) — Db(y)| f(y + heer) — f(y)] dy

xmk/ Dib(z) — Dib(y) | (3)dy
< |bhk () — (Mﬂ(fr(hk 1= )+ Maf(x))
xm‘/’ () — Dib(y) | F(y + huer) = F()] dy

*ﬁ%;ﬁﬂﬁ%mJ%w@%—QMWV@ﬁ@

1
+ Mpw.a(frimye — (@) + Bl o |Dib(x) — Dib(y)| f(y) dy

< |bni(x) — Dib(x)|[(Ma(frnya — f) + Maf())
+ Ma((bnyt — Dib)(frnyr — f))(@) + Ma((bn, 1 — Dib) f)(z)

+ Mool oy — F)(@) + o Dib() — Dibly)|f(y) dy
|B(ZL‘, Tk)| B(x,ry)

Consequently, one can get

1
. lim ———— _ —0.
(3 55) kgrolo |B<SL’ Tk)| Blory) ‘bhk7l<x> bhk7l(y>|f<y + hkel) dy 0

On the other hand, we can get

1

Bl Sy "~ @il dy
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xm‘/ b)) — Duf| dy
—_— b(x D d
*wmmanﬁ() )10 () dy
< Malfus = D)) + (s [ o) = bIDS )l dy
This yields
(3.56) ggﬂme‘/ b)) dy = 0.

It follows from (3.53)—(3.56) that (3. 33) holds for almost every = € K. Since K CC
is arbitrary, this gives the claim in €. O

Lemma 3.5. Let f € W'P(Q) and b € W'P2(Q) with 1 < py,pa, p1p2/(p1 +
p2) < 00. Let hy be positive real numbers so that h;, — 0 and define the function
Fy(z,y): Q@ x Q@ — R by Fy(z,y) = |b(x) — b(y)|. Assume that |2| < oo and there
exists | € {1,2,...,n} such that 6(x) < é(x + hye;) for almost every x € Q and all
k > 1. Then, for almost every x € 2, it holds that

Fy(x + hier, y + hger) frnya(y) — Fo(w,9) f(y)

lim dy
k—o0 h
(357) - B(m,é(m)) k
:/’ (QJWWHDmW%Wﬂw@+/ Fy(e, y)Duf (y) dy
(x,6(x)) B(xz,6(x))

Proof. Observe that
Fy(x + hyer, y + hier) frng 1 (y) — Fo(z,y) f(y)

lim dy
k=00 J B(a,5(x)) hi
(3.58) = lim Fy(2,y) fra(y) dy + lim (Fa)nd (W) fring i (y) dy
> J B(z,5(x)) —° J B(x,8(z))
+ lim (Fythperb) ot (T) frneya (v) dy,

k=00 J B(z,8(x))

where

c&mmw:iwmw+mw—ﬂ@wx

(Fyaale) = 5 (Filo -+ ucg) = Fla,).

Note that f, ; — D, f in LI (Q) and Fy(x,-) € LP*(Q) for any x € €. It follows that

Fy(x, ) frno1 — Fo(z,-)Dyf in L (Q) by Holder’s inequality, which imply that

(350)  lim nmwnmwwzf Fy(,y)Duf () dy,

k=00 [ B(x,5(x)—t) B(z,6(x)—t)

for all z € Q and a fixed t € (0,d(z)]. On the other hand, since §(z) < §(x + hpe),
we have that B(z,d(x)) U B(z + he;, 0(x)) C Q. Moreover, for almost every y € Q,
we see that y + hpe; is a Lebesgue point of f for all £ > 1. By [26, Lemma 2.8] we
can get

(3.60) [t @) < CM(V Flxe)(y) + M(IV fIxe)(y + hrer)) =: CT1(y)
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for almost every y € B(z,d(z)). By the LP* bounds for M and Minkowski’s in-
equality, one can easily check that ||['y||,, < C||V f]|p,,o- This together with the fact
that Fy(x,-) € LP2(Q2), Holder’s inequality, (3.60) and the absolute continuity of the
integral implies that for every e > 0, there exists ty > 0 such that

/ e ) alo)
B(z,0(z))\B(z,0(x)—t)

< C|B(z, 8(x))| " ( /
B(z,6(z))\B(z,0(x)—t)

(3.61) ) 1/
x / T (4) | dy
B(z,0(z))\B(z,6(x)—t)

< Il al Bl 30 ([
B
< (e,

1/p2
| Fy(, y)|P? dy)

1/p2
| Fy(, y)|P? dy)
(@,0(2)\B(w,0(z)—t)

whenever t < t;. Here the above constant C' > 0 is independent of €. Combining
(3.61) with (3.59) yields that

(362)  lm Fo(, ) fra () dy = / Fy(a,y)Dif (y) dy

k=00 J B(z,5(x)) B(z,8(z))

for almost every = € Q.
Next, for every € > 0, there exists t; > 0 such that the same estimates as

(3.61) hold for (Fip)ni(y) frn)i(¥)s DiyFo(,y) f(Y)s (Fysnperd) (%) frng)i(y) and
D, Fy(x,y)f(y), whenever 0 < ¢t < t;. So, we have only to show that for any fixed

0 <t <min{d(z),t;} with hy <t for large k € N,

(363) lm Feahna)rmgaw) dy = | DRl (w)d,
=0 J B(z,6(x)—t) B(z,6(x)—t)

(3.64) Jim (Fy—l-hkel,b)hk,l(x)fr(hk),l(y)dy:/ Dy Fy(z,y) f(y) dy,
= J B(z,6(z)—t) B(z,6(x)—t)

for almost every x € Q.
Fix x € Q. By the above analysis as in getting (3.60), we have that

' (y + hie) — by )'
hy

C(M([Vblxa)(y) + M(IVblxa)(y + hier)) =: CTa(y)

for almost every y € B(x,0(x)). The fact that |Vb| € LP?*(Q) together with the LP?
bounds for M gives that ||I's]|,, < C||Vb||,,.q. This together with (3.60), (3.65) and
Holder’s inequality implies that

(3.65) [(Fenialy

/ ) i) = 1)

< Ol / L D) dy

< Clhil| B, 8@ PIT1llp, T2l < Clowl| Bz, 8@) PV fllp 2 Vol pas,
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for almost every z € 2, which leads to

(366) khm |(Fa:,b)hk,l(y)(fT(hk),l(y) - f(y))| dy = 0.
= J B(z,6(z)—t)

By the arguments similar to those used in deriving (3.62) we can prove that

(367 lm Fehnaf @y = [ DiyFife) ) dy
© J B(z,6(x)—t) B(z,6(x)—t)

for all x € Q. Equality (3.67) together with (3.66) leads to (3.63).

It remains to show (3.64). Since b € WP2(Q), it follows that for almost every
x € Q, limy_, by, i(z) exists, and hence for such z, there exists C, > 0 such that
|br, 1(z)| < Cyp. Therefore, we can get

66+ huer) = bly + )| = o) = by + e
(3.68) |(Fythyer) ot (7)| < g

< by, (2)| < Cop

for every y € B(z,d(x)). Combining (3.68) with (3.60) and Hélder’s inequality yields
that

[ W Bmashna @) a(w) - Tl dy
B(z,8(z))

< Clhu| [i(y) dy
B(,6())
< Clhal[B(x, () [P Tl < Ol Bz, 6(2)) P IV f 1.0,

which gives that
(3.69) Jim | (Eytnser o) 1(2) (Fr i 1 (y) = f(y))| dy = 0.
70 J B(z,8(x))
Hence, equality (3.64) reduces to the following
(370) khm (Ferhkez,b)hk,l («T)f(y> dy = / Dl,:va('ru y)f(y) dy
=0 J B(w,5(x)—t) B(x,0(z)-1)
We can write

lim /( 5(z) )(Ferhkez,b)hk,l('r)f(y) dy - / Dl,mFb<x7y)f<y) dy
B(z,6(x)—t

k—o0 B(x,6(x)—t)

< klim |(Fyshyerb)np () — DioFy(z,y)| f(y) dy
=0 J B(z,6(x)—t)
(3.71)
< lim |(Fythpesp)hpi() — Dy o Fy(z,y + hier)| f(y) dy
k=0 [ Bz 5(x)—t)
+ lim |DioFy (2, y + hyer) — DygFy(,9)| f(y) dy.

k=oo JB(2,5(x)—t)
By the argument similar to that used in deriving (3.42) we have that
[ 1 Bmasnale) = D,y + huen) £w) dy
(3.72) B(x,5(x)—t)
< |B(a,8(x) = )1 P22 Ly @l (B ) nt(2) = Do Fo () o, Ba,se)):
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because B(z,d(x) —t) + hye; C Bz, d(x) —t + hy) C B(x,6(x)). Similarly, it holds
that

/ |DiaFy(x,y + hyer) — DyoFy(z, )| £(y) dy
B(z,6(x)—t)

< [B(,8(z) = )2 flnall(DraFs) i (@, ) = DiaFo(@, ) lpa,Bee.s0)-
Since B(x,d(x)) CC 2, we can see in the proof of Lemma 3.4 that
Jim ([ (Fp)n i (2) = DioFo(2, ) llpa sy = 0,

(3.73)

which together with (3.72) yields that

(3.74) Jim . |(Fythyerp) g i(2) — DioFy(z,y + hier) | f(y) dy = 0
0 J B(z,6(x)—t

for almost every x € Q2. In the proof of Lemma 3.4 we also see that
(375) ”(Dl,!L'Fb>T(hk),l('r7 ) — Dl,mFb<x7 ')Hpg,B(a},é(a})) —0 as k— >
for all x € 2. Combining (3.75) with (3.73) leads to

(3.76) lim |DioFy(z,y + her) — DigFy(z, y)| f(y) dy =0
k=00 | B(z,5(x)—t)
for all x € Q. It follows from (3.71), (3.74) and (3.76) that (3.70) holds for almost
every z € ). Consequently, inequality (3.57) follows from (3.58) and (3.62)—(3.64).
U

By the arguments similar to those used to derive Lemma 3.5, we can get the
following result. The details are omitted.

Lemma 3.6. Let [ € Wl’m(Q) and b € Wl’pQ(Q) with 1 < pl,pg,plpg/(pl +
p2) < 00. Let hy be positive real numbers so that hy, — 0 and define the function
Fy(z,y): Q@ x Q — R by Fy(z,y) = |b(x) — b(y)|. Assume that |2| < oo and there
exists | € {1,2,...,n} such that 6(x) > 6(x + hye;) for almost every x € Q and all
k > 1. Then, for almost every x € ), we have

Fy(x + hier, y + hier) frna(y) — Fo(w,9) f(y)

lim dy

k=00 | B b(a-+hier) h

- / (DuyFil.y) + DoaFol, ) f () dy + / Fy(, y)Dof (y) dy.
B(z,6(x)) B(xz,6(x))

Lemma 3.7. |26, Lemma 2.11| Let A; C R" be measurable sets and let hj, € R"
such that |hy| — 0 when k — oco. Then we can find a subsequence of {hy,} such that
for every j and for almost every x € A; we have x + hy,, € A; when 1 is large enough.

Lemma 3.8. Let 1 < py,pa,p < o0, 1/p = 1/p1 + 1/py, f € WLPL(Q) and
b e Whr2(Q). Let {f;}52, € WHPH(Q) such that f; — f in W' (Q) as j — oo.
Assume that |Q < oo and K CC Q. Then for alll € {1,2,...,n}, we have

(3.77) jli_{go | DiMyof; — DiMyof|lpx; =0,

where

K; = {o € K: 6(x) € R(f;)(x) NR(f)()}.
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Proof. We may assume without loss of generality that all f; > 0 and f > 0. Let
us fix | € {1,2,...,n}. Since Myqf; — Myof € WHP(Q) for p > 1, there exists a
sequence {hy}32,, hy — 07 such that

lim My fi(z+ hyer) — Mya fi(x) — (Myof(x + hier) — My f(2))
(378) k—o0 hk
= Di(Myof; — Myof)(z)

for all j > 1 and almost every z € K. By Lemma 3.7, there exists a subsequence
{si}p2, of {hi}72,, sk = 0as k — oo such that for almost every z € K, we have that
r+spe; € Kj for all j when k is large enough. It is clear that M o f;(z) = uep,f, (0())
and My o f(x) = ugyp,r(6(x)). It follows that

(3.79) My fj(z) — Myof(x) = uzp,p—r(6(2)).
Similarly it holds that
(380) Mbﬂ‘fj(l‘ + skel) — Mbﬂf(l‘ + skel) == u$+5kel7b7fj_f(5(:p + skel)).

Combining (3.80) with (3.78) and (3.79) implies that
|DiMyo fi(x) — DiMyo f(2)]

(3.81) | iy Yorsrents=r (0@ + sker)) — tap -7 (0(2))

k—o00 Sk

for almost every x € Kj;. The continuity of u, y,—f(r) yield that for almost every
z € §, there exists a sequence of numbers {r,}2°,, ro > 0, r, — 1 as £ — oo such
that

Similarly we can get
(3.83) Uapsenb.f;—f (0(T + sper)) = lim Ay g g (€ 4 sper)

for almost every x € Q and all k¥ > 1. Invoking Lemma 3.1 we have A, r €
WHP(Q). Therefore, there exists a subsequence {tx}3%, of {sx}32,, tx — 0T such
that

Are,b,fj—f(x + Lkel) - vabvfj—f(x)
Lk

for all j, £ > 1 and almost every x € K. By (3.82)-(3.84) and Lemma 3.1, one has
|DiMyq fi(x) — DiMyo f(2)]

(384) — DlAT’[7b,fj—f(x) as k — oo

< | lim Bim vabvfj—f(l‘ + Lkel) - A?"e,b,fj—f(x)
T |k—oof—o0 Lk

(385) < llm llm ATZ7b7fj7f(x + Lkel) _ Arf7b7fjif<x)
T {—o00 |k—oo Lk

< Zh%n;olo |DlArg,b,fj*f<x>|

< 2(Myo|V(f5 = Nl(x) + Ma([VO|(f; = 1)) + VOl () Mol f; — [(x)

for almost every € K;. Combining (3.85) with (1.4), the L? bounds for M, and
Holder’s inequality yields (3.77). OJ
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Lemma 3.9. [26, Corollary 2.7] Let 1 < p < oo and A be a measurable subset
of Q). Let f; be a sequence in I/Vhl)cl(Q) so that f; converges to zero in the sense of
distributions:

/ fi(x)p(x)dx — 0 as j — oo for every ¢ € Ci° ().
Q

Suppose that |V f;(z)| < F(z) + F;(z) for almost every x € Q and || F|, o < oo and
| Fillpo — 0 as j — oo. Suppose also that for all e > 0 and 1 <[ < n, it holds that
{x € A: Dif;(z) > €}| = 0asj—ooor|{z e A: Dfj(x) < —€}| = 0asj— oo.
Then

lim [ D1fjllp.a = 0-

3.2. Proof of Theorem 1.2. We will divide the proof of Theorem 1.2 into two
steps:

Step 1: Proofs of (1.7) and (1.8). Let {tx}r>1 be an enumeration of the rationals
between 0 and 1. For k > 1, we define the function gj: Q — [—00, 0] by gk(x) =
maxi<j<i A¢; 5,5(2). One can easily check that gp — M,qf pointwise as & — oo.
Moreover, {gx}72, is an increasing sequence of functions in W'?(Q) and

[Vor(z)l = |V max Ay pp(z)| < max [VAy ()

(3.86) <i<
< 2(My 0| VfI(x) + Ma(|VD]f)(2)) + | Vbl(z) Mo f(2),

for almost every x € Q2. Moreover, gi(x) < M, of(z) for every = € 2. This together
with (3.86), (1.4), the L” bounds for M and Hélder’s inequality implies that
gkllip.0 = llgellp.o + IVallpo < Cpypallbll1ps0ll fll1.0,

which implies that {gi}72, is a bounded sequence in W'?(Q) such that gx — Mo f
almost everywhere in €2 as k — oo. A weak compactness argument shows that

Myof € W(Q) and
g = Myof and Vg — VM, qof weakly in LF(Q) as k — oo.
Applying Proposition 2.1 to (3.86) with ax = |Vgx| and
br = 2(My 0|V f| + Mo(|V0[f)) + [Vb](x) Ma f,

we can get (1.7). By (1.7), (1.4), the bounds for Mg and Hélder’s inequality, we now
obtain that

My fll1p0

= [[Myofllpo+ IV Msaflpo

< Cprpe 16l fllpr + 2| Moo V flp0 + 2 Ma([VO[ f)llp. + VO Maflp0

< Cpl,pQ”le,I72,QHf”LP1,Qv
which gives (1.8).

Step 2: Proof of the continuity part. Let [2] < co and 1 < py, pa, p1po/(p1+Dp2) <
co. Let f e WhP(Q), b € W'2(Q) and {f;}32, be a sequence of functions in

Whri(Q) such that f; — f in W' (Q) as j — oo. Without loss of generality we
may assume that all f; > 0 and f > 0. We want to show that

(3.87) | Myafi — Myafllipo —0 as j — oo.
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By (1.4) we known that M, qf; = M,qof in LP(R") as j — oo. Thus, to conclude
(3.87), it suffices to show that

(388) HDle,ij — Dle7Qpr7Q — 0 when j — 0

forany [ =1,2,...,n.
We only work with (3.88) for [ = n and the other cases are analogous. For
convenience, we set

G(x) == 4(Mpo|V f|(2) + Mo(IVO]f)(x)) + 2[Vb|(x) Ma f(2),

Fy(x) = 2(Mp | V(f; = P)l(2) + Mo(IVO[(f; — 1)) (@) + [Vbl(2) Mal f; — fl(2).
By (1.7) and the sublinearity of M, q and Mg we have
IV(Myafj — My f)(x)]
< A(Mp | Vf[(2) + Mo([VO[ f)(2)) + 2|Vb|(x) Mo f (2)

+2(Mol V(f; — PI(z) + Ma(IVO[(f; — F))(x) + [Vb|(x) Mol f; — [I(x)
< G(z) + Fj(z)
for almost every z € ). One can easily check that G(-) € LP(Q2) and

1Fllp0 < 2[[Moa|V(f; — Dlllpe + 21 Ma([VO[(f; — )llpe + VO Mal f; — flllpe
< Cphpz,n”le,pz,QHfj - f”l,phﬁ-

Hence, for a fixed € > 0, there exists Ny € N\ {0} such that [[Fj|[,o < € for all
J > Np. Moreover, there exists K CC Q such that ||G]|, o\x < €. By the absolute
continuity, there exists n > 0 such that ||G||, 4 < € whenever A is a measurable set
with A C K and |A| < n. Therefore, we get from (3.89) that

[1Dn(Mbafj = My f)llpore < 1Gllpok + [[Ellpa < 2
for any j > Ny. It follows that

(3.89)

(3.90) | Dn(Myafj — Myof)llporvk — 0 as j — oo.
Hence, to prove (3.88) for [ = n, it is enough to show that
(3.91) |1 Dn(My o fj = Myof)llpx =0 as j — oc.
Set

H=A{zeK:ix)¢R(f)(x)}
Then proving (3.91) reduces to proving that

(392) ||Dn(Mb7ij — Mb,Qf)Hp,H — 0 as j — 00,
and
(393) ||Dn(Mb7ij — Mb,Qf)Hp,K\H — 0 as j — OQ.

We now prove (3.92). By the compactness of R(f)(x), there exists a constant
~v > 0 such that

(3.94) {z e H: R(f)(x) £ [0,0(x) =]} =: [A,] <

For convenience, we define the functions A, ¢(r): [0,d(x)] — R by
Az p,r(0) =0,

>3
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1
Aeps(r) = Bla.)| /B(M)(Dn,yﬂb(@ = b(y)|) + Dne(|b(x) — b)) f(y) dy
1
+ Ble.)| . |b(x) — b(y)| Dnf(y) dy

It was observed that A, s are continuous on (0, §(x)] for all x € 2 and at r = 0 for
almost every x € (2. Hence, for almost every x € €2, the function A, ; is uniformly
continuous on [0, 6(x)]. Further we can find a constant y(z) € (0,~) such that

| Aspp (r1) — Aup £(r2)| < € whenever |ry —ro| < y(x).
Write

K= (G{xeKk <y(z <7})UN

k=1
where |N| = 0. Therefore, there exists a constant 3 € (0,7) such that

Hr € K: |Aypr(r1) — App p(re)| > € for some ry, ry with |r; — ro| < 8}

(3.95) n
=: A =,
[Asl <3
By Lemma 3.2, there exists N; € N\ {O} such that
(3.96) {z € K;R(f;)(z) € R(f)(x) @} = | K| < — when j > Nj.

Invoking Lemma 3.4, for almost every x € Q, any r; € R(f])( ) and 7 € R(f)(x)
with 1, 79 < 0(x), we have

|Dn(Mya fj — Myof) ()] = [Asp,s; (r1) — Awpr(r2)]
<Az g (1) = Awp s (r1)] + [Acp g (11) — A £(r2)]-

When 7 = 0, it is easy to see that |Ay sz, (r1) — Azp,p(r1)] = 0. When r; > 0, it
was noted that

(3.97)

1
Aes s < [y [ 1Daal(b) = b1 )
(3.99) +%T| [ 1Dalbe) oIS )
S Texs |/” ()10, )] d

< Mo(|Dnb|f)(@) + |Dib(2)|Ma f(x) + Myg| Dy f|(x) =: B(f)(2).
Combining (3.97) with (3.98) yields that for almost every = € €2, it holds that
(399)  IDu(Myaf, ~ Myaf)@)] < A, — F)(&) + [ Auss(r) — Auns(r)
for any 1 € R(f;)(z) and ro € R(f)(z) with ry, ro < 6(z).
On the other hand, it holds that
1R(f; = F)llpe
< |Ma(| Dbl (f; = ) e + [[DubMa(f; = fllpe + [[Moo(Da(f; = f))lpe
< Cprpon ([ Dnbllps,0ll f5 = Fllpr.o + [ Dnbllps 2l £
= fllpr2 + [1bllpe 2l Dnfj — D fllp1.0)
< Cp17p27nHb”LPZQ”fHLPhQ'
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Consequently, there exists Ny € N'\ {0} such that
(3.100) |\R(fj — f)llpo <€ forall j > N,

Observe that for any r, € R(f;)(z) and ro € R(f)(x) with ry, 7o < §(x), we get from
(3.98) that

(3.101) [ Az b p(r1) = Awp p(r2)] < 20(f)(2) < G().

Ifz € H\ (A, UAzUK’) we can choose r1 € R(f;)(z) and r2 € R(f)(x) such
that ry, 7o < d(x), |r1 — 2| < 8 and

(3.102) |A$7b7f(’f‘1) — A$7b7f(7“2)| < €.
Observe from (3.94)—(3.96) that |A, U Ag U K| < n for all j > Nj. It follows from
(3.99)(3.102) that
| Dn(Myofj — Myof)|lpr < 1A(f; = F)llp.a + ll€llpma,0a50x5) + 1 Gllpa,0a,0k
< (24 (K],

for all j > max{Ny, N2}, which proves (3.92).
It remains to prove (3.93). Let {ht}32; be a sequence of numbers such that
hi, — 07 as k — oo. Following the notations in [26], we set

B = (v € K\ H: §(z) € R(S)(@)},
ET :={x e K\ H: §(x + hye,) > §(x) for infinitely many k},
E-={r e K\ H: §(x+ hge,) < d(z) for infinitely many k}.

Note that K \ H C E/ U ET U E~. Hence, proving (3.93) reduces to proving the
following

(3.103) | Dn(Myof; — Myof)|lppi =0 as j — oo,
(3104) ||Dn(Mb7ij — Mb,ﬂf)||p,E+ — 0 as j — 00,
(3105) ||Dn(Mb7ij — Mb,ﬂf)”p,E— — 0 as j — OQ.

An application of Lemma 3.7 leads to (3.103). We now prove (3.104) and (3.105).
We first prove (3.104). By the definition of E*, it holds that §(x) < 0(z + hye,) for
infinitely many % if z € E*. In order to apply Lemma 3.5, without loss of generality
we may assume that §(z) < §(z+ hye,,) for all & > Ky by extracting a subsequence if
x € ET, where K| is a large positive number. Moreover, for almost every x € ET, we
have that = + hie, € E* for k > K,. Hence, for almost every z € E* and k > K,
we have
My f(x + hren) = Uainge,b,r(0(2))
and
Myof(2) = tep,s(0(2)).
These above inequalities together with Lemma 3.5 will lead to
. 1
DMy f(z) = lim h—(Mb,Qf(SU + hien) — My f())

k—o0 N

> lim sup hi(uwhken,b,f@(w)) — Uap,s(6(2))) = A s (6(x))

k—o00 k

for almost every x € E*. This combined with Lemma 3.4 implies that

(3.106) Dan7Qf(fL') Z Ax,b,f(r)
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for all r € R(f)(z) (equality if » < d(z)). By the definitions of 8 and K7 we
see that R(f;)(z) C R(f)(z)@) when j > Ny and € Q\ K’. Hence, for every
x € ET\ (K7 U E7) with j > Ny, there exists r; € R(f;)(z), r; < d(x) such that
|r; —r| < B for some r € R(f)(z) (Here r may be §(x)). Note that r; < §(x) since
r € ET\ (KU E’). By Lemma 3.4 and (3.106), we have that for almost every
x € ET\ (K7 U E’) with j > Ny, it holds that

Dy Myo f(x) = DnMyo fi(x) 2 Asps(r) — Asp,s, (75)
(3.107) > Aap g (r) = Aup s (15) + Acps (1) = A g, (7))

= Ao g (1) = Awp s (r5) + Awp p1;(r5)-

By the continuity of the functions A, ; s on [0, d(x)] we note that
(3.108) Hz € Q: |Aupr(1) — Aup ()| > €/2} = 0 as j — oo.

By (3.98) we see that
[ Az p—1,(ri)] < B(f5 = f)(@),

where £ is given as in (3.98). Note that ||h(f; — f)|lp0 — 0 as j — oco. This yields
that

(3.109) Hz € Q: [Agpyy (1) > €/2} = 0 as j — oo.

It follows from (3.107)—(3.109) that

{z e B\ (KU EY): D\Myof(z) — DuMyof(z) < —}

<z € B\ (KU E): Aupp(r) = Awpg (1) + Aspgp, (rj) < =€} = 0
as j — oo. By (3.89), (3.110) and Lemma 3.9 we have

(3.111) | DnMya fi — DuMyo fllp e\ (kives) —+ 0 as j — oo.

On the other hand, by (3.95) and (3.100) one can get

(3.112) DMy fj = DnMyafllpernms < (5 = Fllpe + 1Gllpxi < 3¢

for any j > max{ Ny, No}, which leads to

(3.113) | Do My fi — DaMyofllpp+nxi — 0 as j — oo.

Then (3.104) follows from (3.103), (3.111) and (3.113).

Now we prove (3.105). This proof is similar to that of (3.104). We may assume
that = + hpe, € E~ for almost every x € E~ when k > K; for a large K; > 0. It
follows that

(3.110)

Myof(z+ hien) = Uptngen b, r(0(x + hien))
and
Myof(x) = uap,s(0(2)) = e, (6(x + hien))
for almost every x € E~ and k large enough. Similar arguments to those in deriving
(3.106) together with Lemma 3.6 give that
(3.114) Do Myaf(x) < Ayp f(r)

for all r € R(f)(x) (equality if r < d(z)). The definitions of 3 and E’ imply that
R(f;)(x) C R(f)(x)@ when j > Ny and z € Q\ K7. It follows that for every
x € E~\ K7 with j > Ny, there exists r; € R(f;)(x), r; < d(x) such that |r; —r| < 3
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for some r € R(f)(x) (Here r may be §(z)). By the arguments similar to those used
in getting (3.107), one has

DMy f(x) = DpyMyofi(x) < Awpp(1) — Asp g, (15)
< Appp(r) = Awp (1) + Awpp— g, (r5)

for almost every x € E~ \ (K7 U E’) with j > N;. It follows from (3.115), (3.108)
and (3.109) that

{z e E=\ (K’ UE’): D,Myqf(x) — D,Myqf;(z) > €}
<Hze B\ (K/UE): Jj(z) + Aypsyp,(r;) > €] = 0 as j — oo.

(3.115)

(3.116)

The inequality (3.116) together with the arguments similar to those in getting (3.111)
yields that

(3.117) HDan,Qf — Dan,ij|’p7E—\(Kjqu) — 0 as j — OQ.
Similar arguments to those in getting (3.113) lead to
(3118) ”Dan,ij — Dan,Qf”p,E—ﬂKj — 0 as j — OQ.

Combining (3.103) with (3.117) and (3.118) implies (3.105). This finishes the proof
of the continuity part in Theorem 1.2. O

4. Boundary values of the commutators of local
Hardy—-Littlewood maximal function

We have shown the boundedness for the commutators of local Hardy—Littlewood
maximal function on the Sobolev spaces, the aim of this section is to prove that the
commutators of local Hardy—Littlewood maximal function preserve the zero boundary
values in Sobolev’s sense. Recall that W, () denotes the Sobolev space defined as
the completion of C§°(€2) with respect to the Sobolev norm. In 1998, Kinnunen and
Lindqvist [17] first established that the map Mq: Wy () — Wy *(Q) is bounded for
all 1 < p < oo. In this section we shall establish the following results:

Theorem 4.1. Let 1 < py,ps,p < oo and 1/p = 1/p; + 1/ps. If b € WhHP2(Q),
then the map [b, M]: Wy (Q) — Wy P(Q) is bounded.

Theorem 4.2. Let 1 < py,po,p < 00 and 1/p = 1/py + 1/py. If |Q| < oo and
b € WhP2(Q), then the map M,q: Wy (Q) — W, P(Q) is bounded.

The following is a Hardy-type condition for functions in VVO1 P(€Q), which plays a
key role in the proofs of Theorems 4.1 and 4.2.

Lemma 4.3. [18] Let Q C R", Q # R™, be an open set. If f € W'?(Q) and
f@) Y
——— | d .
/Q (dist(az, Q) T
Then f € W,?(Q).

Proof of Theorem 4.1.  Let f € Wy?(Q) for some p; € (1,00) and {wit3
be a sequence of functions in C5°(Q2) such that p; — f in W'P1(Q). By Theo-
rem 1.1 we have that [b, Mq|(¢;) € W'P(Q2). One can easily check that Mqep,(z) =0
and Mg (bp;)(z) = 0 whenever dist(z, Q) < 3 dist(supp p;, Q). It follows that
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b, Mo)(pj)(x) = 0 whenever dist(z, Q%) < 3 dist(supp ¢;,2°). These together with
(1.2) and Holder’s inequality imply that

b Mol @ (1 -

W 7RI <[z e M. P

[ (BN g0 < (Lastouppen ) b Mol
< Cpmablhalloslhma)” < .

which together with [b, Mq](¢;) € WP(Q) leads to [b, M(p;) € W,P(€). On the
other hand, by (1.4), we have that [b, Mq|(p;) — [b, Ma](f) in LP(§2) as j — oo. By
Theorem 1.1, we have

116, Mal()llp.0 < Cprpanllbll1ps 2l @5ll1p1.0

which yields that {[b, Mqo](¢;)}32, is a bounded sequence in WyP(Q). A weak com-
pactness argument implies [b, Mo](f) € Wy (). O

Proof of Theorem 4.2. By Theorem 1.2 and the arguments similar to those used
in deriving Theorem 4.1, we can get the conclusion of Theorem 4.2. The details are
omitted. U
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