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Completely monotone sequences
and harmonic mappings

Bo-Yong Long, Toshiyuki Sugawa and Qi-Han Wang

Abstract. In the present paper, we will study geometric properties of harmonic mappings

whose analytic and co-analytic parts are (shifted) generated functions of completely monotone

sequences.

Täysin monotoniset jonot ja harmoniset kuvaukset

Tiivistelmä. Tässä työssä tutkimme sellaisten harmonisten kuvausten geometrisia ominaisuuk-

sia, joiden analyyttiset ja konjugaattianalyyttiset osat ovat täysin monotonisten jonojen (siirrettyjä)

emäfunktioita.

1. Introduction and preliminaries

A sequence {an}∞n=0 of real numbers is called completely monotone (or totally

monotone) if ∆kan ≥ 0 for all integers n, k ≥ 0. Here, ∆kan is defined recursively by
∆0an = an, n ≥ 0, and

∆kan := ∆k−1an −∆k−1an+1, n ≥ 0, k ≥ 1.

Note that a completely monotone sequence is non-negative, non-increasing and con-
vex. Hausdorff [11] showed that {an} is a completely monotone sequence precisely
when there is a positive Borel measure µ on [0, 1] such that

an =

ˆ

1

0

tn dµ(t), n ≥ 0.(1.1)

Therefore, the word “completely monotone sequence” is a synonym of “Hausdorff
moment sequence”. When a0 = 1 the sequence is said to be normalized. Note that
the condition a0 = 1 means that µ is a probability measure. In particular, the
generating function of the normalized Hausdorff sequence {an} is represented in the
form

F (z) = 1 +

∞∑

n=1

anz
n =

ˆ 1

0

dµ(t)

1− tz
(1.2)

for a Borel probability measure µ on [0, 1]. We denote by T the set of those functions
F generated by normalized Hausdorff moment sequences. For instance, letting µ be
the Dirac measure with unit mass at t = 0 or t = 1, we see that the functions
F0(z) = 1 and F1(z) = 1/(1− z) belong to T . By the form (1.2), we observe that a
function F ∈ T is analytically continued to the slit domain Λ := C \ [1,+∞). We
note that F (x) is non-decreasing in −∞ < x < 1 and, in particular, that F (x) has
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a limit (possibly +∞) as x → 1−. The value of the limit will be denoted by F (1−).
By the form of F , we observe that

(1.3) |F (z)| ≤
∞∑

n=0

an|z|n = F (|z|) ≤ F (1−) =
∞∑

n=0

an, |z| < 1.

Note also that F (1−) ≥ a0 = 1. We denote by T̃ the set of shifted generated functions
zF (z) for F ∈ T . For instance, the functions f0(z) = z and f1(z) = z/(1 − z) both

are members of T̃ .
Completely monotone sequences are closely related with moment problems and

the theory of continued fractions and thus important not only in analysis but also in
probability and applied mathematics, see [15, 25, 29] for instance. In recent years,
the theory of universally prestarlike functions (containing universally convex and
universally starlike functions) was developed and an intimate connection with T was
found (see [23] and [24]). As is well recognized, many kinds of special functions may
be described in terms of functions in T (see [3], [24] as well as Section 4 below).

Let Hol(Λ) denote the set of analytic functions on the domain Λ = C \ [1,+∞).
The following lemma is more or less known to experts. This sort of result was
formulated in [24, Lemma 2.1] and then simplified by Liu and Pego [15] (see Remark 2
therein).

Lemma 1.1. Let F ∈ Hol(Λ). Then F ∈ T , i.e. F can be represented in the

form

F (z) =

ˆ 1

0

dµ(t)

1− tz

for a Borel probability measure µ on [0, 1], if and only if the following three conditions

are fulfilled:

(i) F (0) = 1;
(ii) F (x) is a non-negative real number for each x ∈ (−∞, 1);
(iii) ImF (z) ≥ 0 whenever Im z > 0.

Moreover, the measures µ and the functions F are in one-to-one correspondence.

Let Har(D) denote the class of complex-valued harmonic functions on the unit
disk D. Then, each function f in Har(D) is uniquely expanded in the form

(1.4) f(z) =
∞∑

n=−∞

anr
|n|einθ, z = reiθ ∈ D.

For another F (z) =
∑

nAnr
|n|einθ in Har(D), we define the (harmonic) convolution

(or the Hadamard product) of f and F by

(f ∗ F )(z) =
∞∑

n=−∞

anAnr
|n|einθ.

Note that f ∗ F ∈ Har(D) whenever f, F ∈ Har(D). It is often more convenient to
express f in (1.4) in the form

f(z) =

∞∑

n=1

a−nz̄
n +

∞∑

n=0

anz
n = g(z) + h(z),
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where

h(z) =
∞∑

n=0

anz
n and g(z) =

∞∑

n=1

bnz
n (bn = a−n, n ≥ 1).

The analytic functions h and g are called the analytic part and the co-analytic part of
f , respectively. The convolution of harmonic functions f1 = h1+ ḡ1 and f2 = h2+ ḡ2
is described also by

f1 ∗ f2 = h1 ∗ h2 + g1 ∗ g2,
where h1 ∗ h2 and g1 ∗ g2 are the ordinary Hadamard products. See [22] for basics of
convolutions of anaytic functions.

A smooth map f : D → C is locally univalent at z0 if the Jacobian Jf = |fz|2−|fz̄|2
does not vanish at z0 by the Inverse Mapping Theorem. Lewy’s theorem (see [9,
p. 20]) asserts that the converse is true for harmonic mappings. Therefore, a harmonic
mapping f = h + ḡ is locally univalent and sense-preserving at z if and only if
Jf(z) = |fz(z)|2 − |fz̄(z)|2 = |h′(z)|2 − |g′(z)|2 > 0. In particular, then we have
h′(z) 6= 0 and the function

ωf(z) =
g′(z)

h′(z)

is holomorphic at z and satisfies the inequality |ωf(z)| < 1.
We denote by SH the set of sense-preserving harmonic univalent functions f

in Har(D) normalized by f(0) = fz(0) − 1 = 0. In what follows, we will mean
sense-preserving and injective (one-to-one) by the term “univalent”. Set also S0

H =
{f ∈ SH : fz̄(0) = 0}. These classes were introduced and studied by Clunie and
Sheil-Small [7]. Nowadays, many researchers are studying them and their subclasses
intensively. See the monograph [9] for fundamental theory and recent progress of
harmonic univalent mappings. Note that ωf = f̄z/fz = g′/h′ satisfies the inequality

|ωf | < 1 on D for f = h + ḡ ∈ SH. The quantity ωf = f̄z/fz = fz̄/fz is called the
second complex dilatation of f . If f is univalent and if |ωf | ≤ k for a constant k < 1,
the mapping f is called k-quasiconformal (or K-quasiconformal in the most of the
literature, where K = (1 + k)/(1− k)). For the theory of quasiconformal mappings,
the reader should consult the standard monograph [1] by Ahlfors. Much attention
has been paid to the class of harmonic quasiconformal mappings on the unit disk.
See [5, 12, 18, 28] and references therein.

For a constant c with |c| < 1, we define the class HT (c) to be the set of functions
f ∈ Har(Λ) of the form

f(z) = h(z) + c g(z)

for some h, g ∈ T̃ . In other words, each member f of HT (c) is represented as

f(z) =

ˆ 1

0

z

1− tz
dµ(t) + c

ˆ 1

0

z

1− tz̄
dν(t)

for Borel probability measures µ, ν on [0, 1]. The purpose of this article is to study
geometric properties of functions in HT (c) such as univalence, convexity in one
direction, and quasiconformality.

In the next section, main results of this paper will be presented. Their proofs are
given in Section 3. In Section 4, we will give a couple of examples and apply some
of the main results to polylogarithms and shifted hypergeometric functions.
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2. Main results

Theorem 2.1. Let c be a real constant with 0 ≤ c < 1. For f ∈ HT (c) and a

constant a ≥ 0, the following inequality holds:

|a+ f(z)| ≥ a+ f(−|z|) ≥ a+ f(−1), z ∈ D.

We remark that the above inequality is meaningful only when a + f(−|z|) > 0.
In particular, if a + f(−1) ≥ 0, then we conclude that a + f(z) is non-vanishing on
|z| < 1. If c = 0, this theorem reduces to the main result of [19].

Let H = {z : Re z < 1}. Then we get the following result.

Theorem 2.2. Let f = h + cḡ ∈ HT (c) for a real constant c with 0 ≤ c <

1. Suppose h(z) =
´ 1

0
z(1 − tz)−1 dµ(t) and g(z) =

´ 1

0
z(1 − tz)−1 dν(t) for Borel

probability measures µ and ν on [0, 1]. Then for z = x + iy ∈ H with y 6= 0, unless

f is a constant function, the following hold:

(i) y
∂

∂y
Re f(z) < 0;

(ii) y
∂

∂x
Im f(z) > 0 provided that µ = cν + (1 − c)λ for a Borel probability

measure λ on [0, 1].

Wirths [30] proved the following useful result.

Lemma 2.3. Each function h ∈ T̃ is univalent on H and the image domain

D = h(H) is convex in the direction of the imaginary axis.

Here and hereafter, a domain D in C is said to be convex in the direction of the

imaginary axis if the intersection of D with each line parallel to the imaginary axis
is connected (or empty). We can extend this result to the harmonic case.

Theorem 2.4. Let c be a real constant with 0 ≤ c < 1 and f ∈ HT (c). If f is

locally univalent on H , then f is univalent on H and the image f(H) is convex in

the direction of the imaginary axis.

Unfortunately, we cannot drop the local univalence of f in the assumption. See
Example 4.2 in Section 4.

A linear combination is an important method to construct a new function, cf.
[16, 28]. However, it is well known that the convex combination of two univalent
analytic functions is not necessarily univalent, let alone convex combination of two
univalent harmonic mappings. The harmonic convolution f1 ∗ f2 of two harmonic
functions f1 and f2 in Har(D) does not necessarily enjoy properties of f1 or f2, such
as convexity or even (local) univalence (see [8] for instance). However, the following
proposition shows that the harmonic convolution and convex combinations keep the
family HT (c) invariant in some sense.

Proposition 2.5. Let c1, c2 be complex constants with |cj| < 1. Then, for

fj ∈ HT (cj), j = 1, 2, the following hold:

(i) sf1 + (1− s)f2 ∈ HT (c) for 0 ≤ s ≤ 1 if c = c1 = c2;
(ii) f1 ∗ f2 ∈ HT (c1c2).

The next result gives us a sufficient condition for a function in HT (c) with a
constant |c| < 1 to be quasiconformal on D.
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Theorem 2.6. Let h ∈ T̃ and let c be a real constant with 0 ≤ c < 1. Suppose

that ∣∣∣∣
h′(tz)

h′(z)

∣∣∣∣ ≤M, z ∈ D, 0 ≤ t ≤ 1.(2.1)

Then for each g ∈ T̃ , the harmonic mapping

f(z) := h(z) + c (h ∗ g)(z), z ∈ D(2.2)

belongs to HT (c) and is k-quasiconformal if cM ≤ k < 1.

Note that h′(z) has no zeros on D since h ∈ T̃ is univalent on H by Lemma 2.3.
Letting t = 0, we observe that the condition |h′(z)| ≥ 1/M, z ∈ D, is necessary for
(2.1). However, it is not easy to check (2.1) in general. The following result may be
helpful to find a value of M .

Proposition 2.7. Let h be an analytic function on D with h′(0) = 1 and let m
be a positive constant. Suppose that the following inequality holds:

(2.3) Re
zh′′(z)

h′(z)
> −m, z ∈ D.

Then ∣∣∣∣
h′(tz)

h′(z)

∣∣∣∣ ≤ e2m, z ∈ D, 0 ≤ t ≤ 1.

It is well known that a normalized analytic function h(z) = z+a2z
2+ . . . maps D

univalently onto a convex domain if and only if Re [zh′′(z)/h′(z)] ≥ −1. Therefore,
we can take 1 as the constant m in the above proposition for this h.

Let h, g ∈ T̃ . It is important to look at the quotient of the derivatives of two

functions in T̃ when considering the local univalence or the quasiconformality of the
function of HT (c) for a consant c. Under what conditions does g′/h′ belong to T ?
This question is interesting in itself. In this context the following result proves to be
useful.

Theorem 2.8. Let h, g ∈ T̃ be represented by

h(z) =

ˆ 1

0

zφ(t)

1− tz
dt, g(z) =

ˆ 1

0

zψ(t)

1− tz
dt(2.4)

for nonnegative Borel functions φ and ψ on (0, 1) with
´ 1

0
φ(t) dt =

´ 1

0
ψ(t) dt = 1. If

the inequality

φ(s)ψ(t) ≥ φ(t)ψ(s)(2.5)

holds for 0 < s ≤ t < 1, then g/h and g′/h′ both belong to T .

Note that the claim g/h ∈ T was first proved in [24, Theorem 1.10]. When φ
is non-vanishing, the condition in (2.5) means that the function ψ(t)/φ(t) is non-
decreasing in 0 < t < 1.

Using Theorem 2.8, we obtain another sufficient condition for a function in HT (c)
to be quasiconformal.

Theorem 2.9. Under the hypotheses of Theorem 2.8, further assume that the

function F (z) = g′(z)/h′(z) has a finite limit F (1−). Then the function f = h + cḡ
is k-quasiconformal on D if 0 ≤ cF (1−) ≤ k < 1.
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If limx→1− g
′(x) = g′(1−) < +∞, then we have F (1−) = g′(1−)/h′(1−). If

g′(1−) = +∞, then h′(1−) = +∞ by the assumption F (1−) < +∞. In this case, we
may use l’Hôpital’s rule if the right-most limit below exists:

F (1−) = lim
x→1−

g′(x)

h′(x)
= lim

x→1−

g′′(x)

h′′(x)
.

3. Proofs of the main results

In this section, we prove all the results in the previous section.

Proof of Theorem 2.1. By assumption, f = h + cg for some g, h ∈ T̃ . We first
note the inequalities for z = x+ iy with r = |z| < 1 and 0 ≤ t ≤ 1:

Re
z

1− tz
=

x− tr2

1− 2tx+ t2r2
≥ −r − tr2

1 + 2tr + t2r2
=

−r
1 + tr

≥ −1

1 + t

because the function x 7→ (x − tr2)/(1 − 2tx + t2r2) is increasing in −r ≤ x ≤ r.
Letting µ and ν be the representing measures of h and g, respectively, we therefore
have the estimates for z with |z| = r < 1:

|a+ f(z)| ≥ a+ Re f(z) = a + Reh(z) + cRe g(z) = a+ Reh(z) + cRe g(z)

= a+

ˆ 1

0

Re

(
z

1− tz

)
dµ(t) + c

ˆ 1

0

Re

(
z

1− tz

)
dν(t)

≥ a+

ˆ 1

0

−r
1 + tr

dµ(t) + c

ˆ 1

0

−r
1 + tr

dν(t)

= a+ h(−r) + cg(−r) = a+ h(−r) + cg(−r) = a+ f(−r)
≥ a+ lim

r→1−
f(−r) = a+ f(−1). �

Proof of Theorem 2.2. For z = x + yi, by a straightforward computation, we
have the expression

Re f(z) =

ˆ 1

0

x− t(x2 + y2)

1− 2xt + t2(x2 + y2)
(dµ(t) + c dν(t)) and

Im f(z) =

ˆ 1

0

y

1− 2xt + t2(x2 + y2)
(dµ(t)− c dν(t)).

Therefore, we have

∂

∂y
Re f(z) =

ˆ

1

0

−2yt(1− xt)

(1− 2xt + t2(x2 + y2))2
(dµ(t) + c dν(t)), and

∂

∂x
Im f(z) =

ˆ 1

0

2yt(1− xt)

(1− 2xt + t2(x2 + y2))2
(dµ(t)− c dν(t)).

Since µ + cν and µ − cν = (1 − c)λ are positive measures, we have the required
inequalities for x < 1 and y 6= 0. �

For the proof of Theorem 2.4, we need to recall the shear construction developed
by Clunie and Sheil-Small [7]. The following form is a vertical version of a theorem
of Clunie and Sheil-Small [7, Theorem 5.3] (see also [9, p. 37]) .

Lemma 3.1. (Clunie and Sheil-Small) Let f = h + ḡ be a locally univalent

harmonic mapping on D. Then f maps D univalently onto a convex domain in the

direction of the imaginary axis if and only if the analytic function F = h + g maps

D univalently onto a convex domain in the direction of the imaginary axis.
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We denote by f∗ the π/2-rotation if of f about the origin. Then f = h + ḡ is
convex in the direction of the imaginary axis if and only if f∗ = if = ih+ iḡ = h∗−g∗
is convex in the direction of the real axis. Therefore, the above version follows from
the original version [7, Theorem 5.3].

Proof of Theorem 2.4. We will combine the technique employed by Wirths [30]
with the shear construction. First note that the Möbius transformation

ϕ(ζ) =
2ζ

1 + ζ

maps D onto H . Suppose that f = h + cḡ ∈ HT (c) for some 0 ≤ c < 1 and let

F = h + cg. Then F/(1 + c) ∈ T̃ and the proof of Wirth’s theorem (Lemma 2.3) in
[30] now implies that F1 = F ◦ϕ = h ◦ϕ+ cg ◦ϕ is univalent on D and convex in the
direction of the imaginary axis. Since f1 := f ◦ϕ = h ◦ϕ+ cg ◦ ϕ is locally univalent
by assumption, now Lemma 3.1 implies that f1 is univalent on D and convex in the
direction of the imaginary axis. Since f = f1 ◦ ϕ−1, the assertion now follows. �

To prove the second part of Proposition 2.5, we need the following lemma.

Lemma 3.2. Let f, g ∈ T̃ . Then f ∗ g ∈ T̃ .

This fact is known to experts (see Roth, Ruscheweyh and Salinas [21, p. 3172]).
Let us, however, give a proof because the authors could not find a proof in the
literature.

Proof. Let f(z) =
∑
anz

n+1 and g(z) =
∑
bnz

n+1 for normalized completely
monotone sequences {an} and {bn}. We have to show that {anbn} is completely
monotone, too. We first note the formula

∆k(anbn) =
k∑

j=0

(
k

j

)
∆k−jan+j ·∆jbn

for n, k ≥ 0. This can be shown by induction on k with the simple identities
∆(AnBn) = (∆An)Bn + An+1∆Bn and

(
k

j

)
+
(

k

j−1

)
=
(
k+1

j

)
for 1 ≤ j ≤ k. Since

∆k−jan+j ≥ 0 and ∆jbn ≥ 0, we obtain ∆k(anbn) ≥ 0. �

This result is also claimed by Reza and Zhang [20, Lemma 1.9]. According to
them, this follows from the fact that {anbn} corresponds to the convolution measure
µ ⋄ ν when {an} and {bn} correspond to measures µ and ν, respectively.

We are now ready to prove Proposition 2.5.

Proof of Proposition 2.5. Let fj = hj + cj ḡj for j = 1, 2 and

hj(z) =

ˆ

1

0

1

1− tz
dµj(t) and gj(z) =

ˆ

1

0

1

1− tz
dνj(t)

for some Borel probability measures µj, νj for j = 1, 2. The first assertion immedi-
ately follows from the fact that (1−s)µ1+sµ2 and (1−s)ν1+sν2 are Borel probability
measures for 0 ≤ s ≤ 1. For the second assertion, we express f1 ∗ f2 in the form

(f1 ∗ f2)(z) = (h1 ∗ h2)(z) + c1c2 (g1 ∗ g2)(z).

By Lemma 3.2, we have h1 ∗ h2, g1 ∗ g2 ∈ T̃ . Thus the assertion follows. �

Proof of Theorem 2.6. Since h, g ∈ T̃ , by Lemma 3.2, h ∗ g ∈ T̃ . Thus, it is
easy to see that the function f given in (2.2) belongs to HT (c).
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Next we prove the quasiconformality of f . Since h, g ∈ T̃ , h and g can be
expressed as

h(z) = z

∞∑

n=0

anz
n, g(z) = z

∞∑

n=0

bnz
n,(3.1)

for some Hausdorff moment sequences {an} and {bn}. Furthermore, there exists a
Borel probability measure ν on [0, 1] such that

bn =

ˆ 1

0

tn dν(t), n = 0, 1, 2, . . . .(3.2)

A simple computation leads to

(h ∗ g)(z) =
∞∑

n=0

anbnz
n+1 =

∞∑

n=0

(
anz

n+1

ˆ

1

0

tn dν(t)

)

=

ˆ 1

0

(
∞∑

n=0

anz
n+1tn

)
dν(t) =

ˆ 1

0

h(tz)

t
dν(t).

We remark that this property indeed characterizes the generating functions of Haus-
dorff moment sequences (see Grinshpan [10, Theorem 1]). Thus

(h ∗ g)′(z) =
ˆ

1

0

h′(tz) dν(t).

and therefore

ωf =
f̄z
fz

= c
(h ∗ g)′
h′

= c

ˆ

1

0

h′(tz)

h′(z)
dν(t).

By the assumption (2.1), we have

|ωf(z)| = c

∣∣∣∣
ˆ 1

0

h′(tz)

h′(z)
dν(t)

∣∣∣∣ ≤ c

ˆ 1

0

∣∣∣∣
h′(tz)

h′(z)

∣∣∣∣ dν(t) ≤ cM

ˆ 1

0

dν(t) = cM ≤ k < 1.

In particular, f is locally univalent and thus, by Theorem 2.4, f is univalent on D.
Since f is smooth on D, the inequality |ωf | ≤ k < 1 implies that f is k-quasiconformal
on D. �

Proof of Proposition 2.7. First we note that h′(z) vanishes nowhere on D.
Indeed, if h′(z) had a zero at z = z0, then its logarithmic derivative h′′(z)/h′(z)
would have a pole at z0. Since a non-constant meromorphic function is an open

mapping into Ĉ, h′′(z)/h′(z) would cover a neighbourhood of the point at infinity,
which would violate condition (2.3). Let

u(z) = Re
zh′′(z)

h′(z)

for z ∈ D. Then u is harmonic and u > −m on D and u(0) = 0. If we put
U = (u+m)/m, then U > 0 and U(0) = 1. Thus the Harnack inequality implies the
inequality U(z) ≥ (1− r)/(1 + r) for |z| = r < 1. Hence,

(3.3) u(z) = mU(z) −m ≥ −2mr

1 + r
, r = |z| < 1.

Next we set

ψ(s) = log |h′(sz)| = Re log h′(sz), 0 ≤ s ≤ 1,
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for a fixed z ∈ D. Then, by (3.3),

ψ′(s) = Re
zh′′(sz)

h′(sz)
=
u(sz)

s
≥ −2ms|z|
s(1 + s|z|) ≥ −2m.

An integration of the above inequality in t ≤ s ≤ 1 gives us

log
|h′(z)|
|h′(tz)| = ψ(1)− ψ(t) =

ˆ 1

t

ψ′(s)ds ≥ −2m(1− t) ≥ −2m,

which yields the required inequality. �

Proof of Theorem 2.8. Since the assertion g/h ∈ T and its proof are contained
in [24], we only show the assertion F := g′/h′ ∈ T . Indeed, we will employ the same
method as in [24].

It suffices to check the three conditions in Lemma 1.1 for F . By the expressions
in (2.4), we have

h′(z) =

ˆ 1

0

φ(t)

(1− tz)2
dt and g′(z) =

ˆ 1

0

ψ(t)

(1− tz)2
dt.

In particular, for a real number x < 1, we have h′(x) ≥ 0 and g′(x) ≥ 0 and
thus condition (ii) in Lemma 1.1 is verified. Condition (i) is clearly satisfied. The
remaining task is to check condition (iii) in the lemma. Since

ImF (z) =
h′(z)g′(z)− h′(z)g′(z)

2i|h′(z)|2 ,

we have only to show that (h′g′ − h′g′)/i is non-negative on the upper half-plane
Im z > 0. We now compute

h′(z)g′(z) =

ˆ 1

0

φ(s)

(1− sz)2
dt

ˆ 1

0

ψ(t)

(1− tz)2
dt

=

ˆ 1

0

ˆ 1

0

φ(s)ψ(t)

(1− sz)2(1− tz)2
ds dt =

¨

{0≤s≤t≤1}

+

¨

{0≤t≤s≤1}

=

¨

{s≤t}

(
φ(s)ψ(t)

(1− sz)2(1− tz)2
+

φ(t)ψ(s)

(1− tz)2(1− sz)2

)
ds dt

=

¨

{s≤t}

φ(s)ψ(t)(1− tz)2(1− sz)2 + φ(t)ψ(s)(1− sz)2(1− tz)2

|1− sz|4|1− tz|4 ds dt.

Taking the complex conjugate, we have similarly

h′(z)g′(z) =

¨

{s≤t}

φ(s)ψ(t)(1− sz)2(1− tz)2 + φ(t)ψ(s)(1− tz)2(1− sz)2

|1− sz|4|1− tz|4 ds dt.

We obtain

h′(z)g′(z)− h′(z)g′(z)

= 4i

¨

{s≤t}

y(t− s){1− (s+ t)x+ str2}{φ(s)ψ(t)− φ(t)ψ(s)}
|1− sz|4|1− tz|4 ds dt,

where z = x+ iy, r = |z|. Since

1− (s+ t)x+ str2 ≥ 1− (s+ t)x+ stx2 = (1− sx)(1− tx) ≥ (1− s)(1− t) ≥ 0

for x ∈ (−∞, 1), condition (iii) is now easily confirmed as required. �
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Proof of Theorem 2.9. By hypothesis, ωf = f̄z/fz = cg′/h′ = cF . Note
that h′ is non-vanishing on D by Lemma 2.3. The inequality (1.3) now leads to
|ωf | ≤ cF (1−) ≤ k < 1. In particular, f is locally univalent and thus Theorem 2.4
implies that f is univalent on D. We now conclude that f is k-quasiconformal on
D. �

4. Examples and applications

Let us first see an explicit estimate of the constant M in Theorem 2.6.

Example 4.1. Let h(z) = z/(1−z). Then h ∈ T̃ as we remarked in Introduction.
Since h′(z) = 1/(1− z)2, we have for z = x+ iy with fixed r = |z| < 1,

∣∣∣∣
h′(tz)

h′(z)

∣∣∣∣ =
∣∣∣∣
(1− z)2

(1− tz)2

∣∣∣∣ =
1− 2x+ r2

1− 2tx+ t2r2
≤ (1 + r)2

(1 + tr)2
<

4

(1 + t)2
.

Hence,

sup
z∈D,0≤t≤1

∣∣∣∣
h′(tz)

h′(z)

∣∣∣∣ = 4.

Taking M = 4 in Theorem 2.6, we know that f given in (2.2) is 4c-quasiconformal
on D for 0 ≤ c < 1/4.

We next give a simple example to examine the conditions in Theorems 2.4 and
2.6.

Example 4.2. Let h(z) = z/(1− z) as above and g(z) = z. Note that h, g ∈ T̃ .

For a positive constant c < 1 we consider the function f(z) = h(z) + cg(z) =
z/(1− z)+ cz̄ in HT (c). Note that h∗ g = g in this case. The previous example tells
us that f is 4c-quasiconformal on D for c < 1/4. This bound is sharp. Indeed, the
second complex dilatation of f is ωf(z) = cg′(z)/h′(z) = c(1− z)2 and thus satisfies
‖ωf‖∞ = 4c. Moreover, f is not locally univalent on D for each c > 1/4. We will
show it. Let γ be the intersection of the circle |z − 1| = 1/

√
c and D. Note that

γ is non-empty because 1/
√
c < 2. Points in this arc γ may be parametrized as

z = 1 + eiθ/
√
c. Then

f
(
1 + eiθ/

√
c
)
=

1 + eiθ/
√
c

−eiθ/√c + c(1 + e−iθ/
√
c) = c− 1,

which shows that the open arc γ shrinks to the one point c− 1. Therefore, f is not
locally univalent at each point of γ.

Let us now take a look at polylogarithms. The polylogarithmic function of order
α is defined by

Liα(z) =

∞∑

n=1

zn

nα
, z ∈ D, α ≥ 0.

By the well-known representation

Liα(z) =
z

Γ(α)

ˆ 1

0

(− log t)α−1

1− tz
dt

for α > 0, and Li0(z) = z/(1 − z), we see that Liα ∈ T̃ for α ≥ 0. Also the relation

Liα
Liβ

∈ T , 0 ≤ α ≤ β,(4.1)
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follows from Theorem 2.8 and was already contained in [24, Lemma 5.1]. Lewis [14,
Theorem 1] proved that Liα maps D univalently onto a convex domain for each α ≥ 0.
Furthermore, in [24], the polylogarithmic function Liα is shown to be universally
starlike for α = 0 and 1 ≤ α and universally convex for α = 0, 1 and 2 ≤ α and
was conjectured to be universally starlike also for 0 < α < 1 and universally convex
for 1 < α < 2. This conjecture was completely proved by Bakan, Ruscheweyh and
Salinas [2].

We need the following estimate below. Though this is essentially contained in
[24], we include a direct proof of it for convenience of the reader.

Lemma 4.3. Let F ∈ T and µ be its representing measure on [0, 1]. Then the

following inequalities hold:

ReF (z) ≥
ˆ 1

0

dµ(t)

1 + t
≥ 1

2
, z ∈ D.

Proof. By assumption, F is expressed by

F (z) =

ˆ 1

0

1

1− tz
dµ(t), z ∈ Λ.

Letting z = x+ iy and r = |z| < 1, we compute

ReF (z) =

ˆ 1

0

1− tx

1− 2tx+ t2r2
dµ(t).

Since the function x 7→ (1− tx)/(1− 2tx+ t2r2) is increasing in −r ≤ x ≤ r for fixed
r and t, we have the estimates

ReF (z) ≥ F (−r) =
ˆ 1

0

1 + tr

1 + 2tr + t2r2
dµ(t)

=

ˆ 1

0

1

1 + tr
dµ(t) ≥

ˆ 1

0

1

1 + t
dµ(t). �

We apply the above observations to polylogarithms to have the following.

Theorem 4.4. Let α, β ≥ 1 and c be a non-negative real constant and set

f = Liα + cLiβ .

(i) f is k-quasiconformal on D when α ≤ β and 2c ≤ k < 1;
(ii) f is k-quasiconformal on D when 2 < β ≤ α and c ζ(β−1)/ζ(α−1) ≤ k < 1.

Here, ζ(s) denotes the Riemann zeta function s 7→∑∞
n=1

n−s. Recall that ζ(s) <
+∞ for s ∈ (1,+∞).

Proof. Put h = Liα and g = Liβ for brevity. Note that, as we mentioned
above, they are univalent on D by Lewis’ theorem [14]. Since zh′(z) = Liα−1(z),
zg′(z) = Liβ−1(z) we have

F :=
g′

h′
=
zg′

zh′
=

Liβ−1

Liα−1

.

First assume that α ≤ β. Then G := 1/F ∈ T by (4.1). Hence, Lemma 4.3 implies
|G(z)| ≥ ReG(z) ≥ 1/2 for z ∈ D. In view of the form of f , we now estimate

|ωf | =
∣∣∣∣
f̄z
fz

∣∣∣∣ =
∣∣∣∣
cg′

h′

∣∣∣∣ =
c

|G| ≤ 2c ≤ k < 1

on D. In particular, f is locally univalent and thus, by Theorem 2.4, f is univalent
on D. It is now clear that f is k-quasiconformal on D.
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Next assume that α ≥ β. Then F ∈ T by (4.1). If β > 2, we have F (1−) =
Liβ−1(1

−)/Liα−1(1
−) = ζ(β − 1)/ζ(α − 1) < +∞. Now the assertion follows from

Theorem 2.9. �

We remark that we have F (1−) = +∞ when 0 ≤ β ≤ 2 and β < α.
Finally, we apply our results to hypergeometric functions. We recall the definition

of the hypergeometric function 2F1(a, b; c; z):

2F1(a, b; c; z) = 1 +

∞∑

n=1

(a)n(b)n
(c)nn!

zn, |z| < 1,

where (a)n is the Pochhammer symbol; namely, (a)n = a(a + 1) · · · (a + n − 1)
for n ≥ 1 and (a)0 = 1. Here, a, b and c are (possibly complex) parameters
with c 6= 0,−1,−2, . . . . Geometric properties such as starlikeness and convexity
of 2F1(a, b; c; z) and the shifted one z2F1(a, b; c; z) were studied by many authors (see
[13], [26], [27] and references therein). In particular, in connection with the class T ,
some observations on the hypergeometric functions were made in [24]. The formula

(4.2) 2F1(a, b; c; 1
−) =

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, Re (c− a− b) > 0,

is due to Gauss. It should also be note that the derivatve formula d
dz 2
F1(a, b; c; z) =

ab
c 2F1(a + 1, b+ 1; c+ 1; z) holds. The well-known Euler representation formula

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

ˆ 1

0

(1− tz)−bta−1(1− t)c−a−1 dt

for Re c > Re a > 0 implies that the function

La,c(z) = z2F1(a, 1; c; z)

belongs to the class T̃ for real parameters c > a > 0 with the representing measure
µ given by

dµ(t) =
Γ(c)

Γ(a)Γ(c− a)
ta−1(1− t)c−a−1 dt.

We note that La,c(z) is univalent on the half-plane Re z < 1 by Lemma 2.3 and
therefore L′

a,c is non-vanishing there. The convolution f ∗La,c with analytic functions
f is often called the Carlson–Shaffer operator [4] and studied by many authors (see
[6] or [17] for example).

As a simple application of Theorem 2.8, we have the following result.

Lemma 4.5. Let a, c, a′, c′ be real constants with c > a > 0 and c′ > a′ > 0. If

a′ ≥ a and if c− a ≥ c′ − a′, then the functions La′,c′/La,c and L′
a′,c′/L

′
a,c both belong

to the class T .

In a similar way to Theorem 4.4, we finally obtain the following.

Theorem 4.6. Let a, c, a′, c′ be real constants with c > a > 0 and c′ > a′ > 0.
For a non-negative real constant b, set f = La,c + b La′,c′.

(i) f is k-quasiconformal on D when a ≥ a′, c− a ≤ c′ − a′ and 2b ≤ k < 1;
(ii) f is k-quasiconformal on D when a′ ≥ a, 2 < c′−a′ ≤ c−a and bM ≤ k < 1,

where

M =
(c′ − 1)(c′ − 2)(c− a− 1)(c− a− 2)

(c− 1)(c− 2)(c′ − a′ − 1)(c′ − a′ − 2)
.
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Proof. Put h = La,c and g = La′,c′ for brevity. First assume that a ≥ a′, c− a ≤
c′ − a′. Then by the previous lemma, G = h′/g′ ∈ T . Therefore, Lemma 4.3 implies
|G| ≥ ReG ≥ 1/2 on D. We estimate as before

|ωf | =
∣∣∣∣
bg′

h′

∣∣∣∣ =
b

|G| ≤ 2b ≤ k < 1

on D and thus conclude that f is k-quasiconformal on D.
Next assume that a′ ≥ a and 2 < c′ − a′ ≤ c− a. Then, by Lemma 4.5, we have

F = g′/h′ ∈ T . Note that h′(z) = 2F1(a, 1; c; z) + (a/c)z2F1(a + 1, 2; c + 1; z). By
(4.2) and the basic identity Γ(x+ 1) = xΓ(x),

h′(1−) =
Γ(c)Γ(c− a− 1)

Γ(c− a)Γ(c− 1)
+
a

c
· Γ(c+ 1)Γ(c− a− 2)

Γ(c− a)Γ(c− 1)

=
c− 1

c− a− 1
+
a

c
· c(c− 1)

(c− a− 1)(c− a− 2)
=

(c− 1)(c− 2)

(c− a− 1)(c− a− 2)
.

Similarly, we have

g′(1−) =
(c′ − 1)(c′ − 2)

(c′ − a′ − 1)(c′ − a′ − 2)
.

Hence, F (1−) =M < +∞. Now the assertion follows from Theorem 2.9. �
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