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On logarithmic Hölder continuity
of mappings on the boundary

Evgeny Sevost’yanov

Abstract. We study mappings satisfying the so-called inverse Poletsky inequality. Under

integrability of the corresponding majorant, it is proved that these mappings are logarithmic Hölder

continuous in the neighborhood of the boundary points. In particular, the indicated properties hold

for homeomorphisms whose inverse satisfy the weighted Poletsky inequality.

Kuvausten logaritminen Hölderin jatkuvuus reunalla

Tiivistelmä. Tutkimme kuvauksia, jotka toteuttavat ns. käänteisen Poletskyn epäyhtälön.

Tilanteessa, jossa tähän liittyvä yläraja on integroituva, todistamme, että nämä kuvaukset ovat

logaritmisesti Hölderin-jatkuvia reunapisteiden ympäristössä. Em. ominaisuudet pätevät erityisesti

homeomorfismeille, joiden käänteiskuvaus toteuttaa painotetun Poletskyn epäyhtälön.

1. Introduction

As is known, quasiconformal mappings and mappings with bounded distortion
are Hölder continuous with some exponent (see, e.g., [Ahl, Theorem III.C], [LV, The-
orem 3.2.II], and [Va, Theorem 18.2, Remark 18.4]). In this regard, there are also
classical results concerning mappings with bounded distortion, or quasiregular map-
pings, which are rightly called quasiconformal mappings with branch points (see, for
example, [MRV1, Theorem 3.2] and [Re, Theorem 1.1.2]). There are many general-
izations of these results to more general classes of mappings with finite distortion,
see e.g. [GGR, Theorem 1.1] and [GU, Theorem 5]. In this case, quite often, the
usual estimates of the Hölder type do not hold for mappings, however, more gen-
eral logarithmic estimates hold (see, for example, [Cr, Theorems 4 and 5], [MRSY1,
Theorem 7.4], [MRSY2, Theorem 3.1], [RS, Theorem 5.11] and [Suv, Theorems 1.1.V
and 2.1.V]).

Distance distortion theorems and Hölder-type estimates have been discussed and
studied in our last two articles, [RSS] and [SSD]. In particular, in [SSD], we obtained
estimates for the distortion of mappings with the inverse Poletsky inequality at the
inner points of a given domain. The main purpose of this manuscript is to obtain
similar estimates not only at the inner, but also at the boundary points of a given
domain, which, for the sake of simplicity, will be assumed to be the unit ball.

In what follows, for the sets A,B ⊂ Rn we set, as usual,

diamA = sup
x,y∈A

|x− y|, dist (A,B) = inf
x∈A,y∈B

|x− y|.

Let x0 ∈ D, x0 6= ∞,

B(x0, r) = {x ∈ R
n : |x− x0| < r}, B

n = B(0, 1).
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Sometimes, instead of dist (A,B), we also write d(A,B), if a misunderstanding is
impossible. A Borel function ρ : Rn → [0,∞] is called an admissible for a family Γ
of paths γ in Rn, if the relation

(1.1)

ˆ

γ

ρ(x) |dx| > 1

holds for any locally rectifiable path γ ∈ Γ. A modulus of Γ is defined as follows:

(1.2) M(Γ) = inf
ρ∈ admΓ

ˆ

Rn

ρn(x) dm(x).

Let Q : Rn → [0,∞] be a Lebesgue measurable function. We say that f satisfies the

inverse Poletsky inequality, if the relation

(1.3) M(Γ) 6

ˆ

f(D)

Q(y) · ρn∗ (y) dm(y)

holds for any family of paths Γ in D and any ρ∗ ∈ adm f(Γ). Note that estimates (1.3)
hold in many classes of mappings (see, e.g., [MRV1, Theorem 3.2], [Ri, Theorem 6.7.II]
and [MRSY1, Theorem 8.5]). A mapping f : D → Rn is called a discrete if {f−1 (y)}
consists of isolated points for any y ∈ Rn, and an open, if the image of any open set
U ⊂ D is an open set in Rn. A mapping f between domains D and D ′ is said to be
a closed if f(E) is closed in D ′ for any closed set E ⊂ D (see, e.g., [Vu1, Section 3]).

Given δ > 0, a non-degenerate continuum A ⊂ Bn and a Lebesgue measurable
function Q : Bn → [0,∞] denote Sδ,A,Q a family of all open, discrete and closed
mappings f of the open unit ball onto itself such that the relation (1.3) holds and,
in addition, dist (f −1(A), ∂Bn) > δ. The following statement holds.

Theorem 1.4. Let Q ∈ L1(Bn). Then any f ∈ Sδ,A,Q has a continuous extension

f : Bn → Bn, and, in addition, for any x0 ∈ ∂Bn there is Cn > 0 and r0 = r0(x0) > 0
such that

(1.5) |f(x)− f(x0)| 6
Cn · (‖Q‖1)1/n

log1/n
(
1 + r0

|x−x0|

)

for x ∈ B(x0, r0) ∩ Bn, where ‖Q‖1 denotes the L1-norm of the function Q in B
n.

2. Auxiliary lemma and proof of Theorem 1.4

Before by proving the basic statement we prove the following important lemma.

Lemma 2.1. Let E be a continuum in B
n. Now, there is δ1 > 0 such that

Sδ,A,Q ⊂ Sδ1,E,Q. In other words, if f is an open discrete and closed mapping of
the unit ball onto itself with condition (1.3), such that dist (f −1(A), ∂Bn) > δ, then
there is δ1 > 0, independent on f such that dist (f −1(E), ∂Bn) > δ1.

Proof. Let us prove this statement by contradiction. Suppose that the conclusion
of the lemma is not correct. Then there are sequences ym ∈ E, fm ⊂ Sδ,A,Q and
xm ∈ B

n such that fm(xm) = ym and dist (xm, ∂B
n) → 0 as m → ∞. Without loss

of generality, we may assume that xm → x0 as m → ∞. By [SSD, Theorem 3.1] fm
has a continuous extension to x0, moreover, {fm}∞m=1 is equicontinuous at x0 (see,
e.g., [SSD, Theorem 1.2]). Now, for any ε > 0 there is m0 ∈ N such that |fm(xm)−
fm(x0)| < ε for m > m0. On the other hand, fm(x0) ∈ Sn−1 because fm is closed and
hence the mapping f preserves the boundary (see, for example, [Vu1, Theorem 3.3]).
Thus, by the triangle inequality, |fm(xm) − fm(x0)| > 1 − |fm(xm)| > 1 − δ0, where
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δ0 = supx∈E |x|. Finally, we have a contradiction, because |fm(xm)−fm(x0)| > 1−δ0
and, simultaneously |fm(xm)− fm(x0)| < ε as m > m0. The resulting contradiction
refutes the assumption made above. Lemma is proved. �

Proof of Theorem 1.4. Let A = A(y0, r1, r2) = {y ∈ Rn : r1 < |y − y0| < r2}
and let Γf(y0, r1, r2) denotes the family of all paths γ : [a, b] → D such that f(γ) ∈
Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)), i.e., f(γ(a)) ∈ S(y0, r1), f(γ(b)) ∈ S(y0, r2), and
γ(t) ∈ A(y0, r1, r2) for a < t < b. Note that the mapping f satisfies the condition

(2.2) M(Γf (y0, r1, r2)) 6

ˆ

A

Q(y) · ηn(|y − y0|) dm(y)

for any y0 ∈ Bn and any Lebesgue measurable function η : (r1, r2) → [0,∞] such that
ˆ r2

r1

η(r) dr > 1.

To establish this fact, it suffices to put ρ∗(y) := η(|y−y0|) for y ∈ A∩Bn and ρ∗(y) = 0
otherwise. By virtue of Luzin’s theorem, we may assume that the function ρ∗ is Borel
measurable (see, e.g., [Fe, Section 2.3.6]). Now, by [Va, Theorem 5.7]

´

γ∗
ρ∗(y) |dy| >

´ r2
r1

η(r) dr > 1 for any (rectifiable) path γ∗ ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)).

Now, by (1.3), we obtain that

M(Γf (y0, r1, r2)) 6

ˆ

Bn∩A
Q(y) · ρn∗ (y) dm(y) =

ˆ

Bn∩A
Q(y) · ηn(|y − y0|) dm(y),

which was required to prove. Now, the possibility of a continuous extension of f to
the boundary of Bn is established in [SSD, Theorem 3.1]. In particular, the weakly
flatness of ∂Bn = Sn−1 follows by [Va, Theorems 17.10 and 17.12].

Let us prove the logarithmic Hölder continuity (1.5). It suffices to prove rela-
tion (1.5) for the case when x ∈ Bn∩B(x0, r0), since the general case x ∈ Bn∩B(x0, r0)
is attained by passing to the limit as x → x∗, where x∗ ∈ ∂Bn ∩ B(x0, r0). Let x0 ∈
∂Bn, let 0 < δ < 1 and let E = B(0, δ/2) ⊂ Bn. By Lemma 2.1, there is δ1 > 0
such that dist (f −1(E), ∂Bn) > δ1 for any f ∈ Sδ,A,Q. By [SSD, Theorem 1.2], the

family Sδ,A,Q is equicontinuous in Bn. Thus, for a number 0 < δ0 < 1/4 there is a
neighborhood U ⊂ B(x0, δ1/2) of x0 such that |f(x)−f(y)| < δ0 for any x, y ∈ U∩Bn

and f ∈ Sδ,A,Q. Let f(x) 6= f(y) and

ε0 := |f(x)− f(y)| < δ0.

Let us join the points f(x) and 0 by segment I. The points f(x), 0 and f(y) form
the plane P . Consider a circle

S = {z ∈ P : |z − f(x)| = ε0}.
The position of the point z = f(y) on the circle S is completely determined by the
angle ϕ, ϕ ∈ [−π, π), between the vector −f(x) and the radius-vector of the point
z. The points on the circle are denoted further in the polar coordinates by the pairs
z = (ε0, ϕ). Our further goal is to investigate the main three cases regarding the
intervals of change of this angle.

Case 1. “Large angles”: ϕ ∈ [π/4, 3π/4], or ϕ ∈ [−π/4,−3π/4]. Let ϕ ∈
[π/4, 3π/4]. Consider the ray

r = r(t) = f(y) + te, e = −f(x)/|f(x)|, t > 0.

By construction, the ray r is parallel to the segment I. For t = |f(x)|, we have
r(|f(x)|) = f(y)− f(x) and |r(|f(x)|)| = ε0 < δ0, i.e., the point r(|f(x)|) belongs to
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E. Let J be a segment of the ray r, contained between the points f(y) and r(|f(x)|).
The distance between I and J is calculated as follows:

(2.3) dist (I, J) = ε0 sinϕ >

√
2

2
ε0,

see Figure 1 for illustration.
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Figure 1. To the proof of Theorem 1.4, the case 1.

Similarly, the situation ϕ ∈ [−π/4,−3π/4] is considered. We may show that in
this case the formula (2.3) also holds.

Let α1 and β1 be (total) f -liftings of paths I and J starting at points x and y,
correspondingly. These liftings are well defined and exist by [Vu1, Lemma 3.7]. Now,
by the definition, α1 ∩ f −1(E) 6= ∅ 6= β1 ∩ f −1(E). Since dist (f −1(E), ∂Bn) > δ1
and x, y ∈ B(x0, δ1/2),

(2.4) diam (α1) > δ1/2, diam (β1) > δ1/2.

Let

Γ := Γ(α1, β1,B
n).

Then on the one hand, by [Vu2, Lemma 4.3]

(2.5) M(Γ) > (1/2) ·M(Γ(α1, β1,R
n)),

and on the other hand, by [Vu3, Lemma 7.38]

(2.6) M(Γ(α1, β1,R
n)) > cn · log

(
1 +

1

m

)
,

where cn > 0 is come constant depending only on n,

m =
dist(α1, β1)

min{diam (α1), diam (β1)}
.

Combining (2.4) and (2.6), and taking into account that dist (α1, β1) 6 |x − y|, we
obtain that

(2.7) M(Γ) > c̃n · log
(
1 +

δ1
2dist(α1, β1)

)
> c̃n · log

(
1 +

δ1
2|x− y|

)
,

where c̃n > 0 is some constant depending only on n.
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We now obtain an upper bound for M(Γ). Set

ρ(x) =

{√
2

ε0
, x ∈ Bn,

0, x 6∈ Bn.

By (2.3) ρ satisfies the relation (1.1) for the family f(Γ). Then by the definition of
the family Sδ,A,Q we obtain that

(2.8) M(Γ) 6
2n/2

εn0

ˆ

Bn

Q(y) dm(y) = 2n/2 · ‖Q‖1
|f(x)− f(y)|n ,

where ‖Q‖1 denotes the L1-norm of the function Q in Bn. By (2.7) and (2.8) we
obtain that

c̃n · log
(
1 +

δ1
2|x− y|

)
6 2n/2 · ‖Q‖1

|f(x)− f(y)|n .

The desired inequality (1.5) follows from the last relation by passing to the limit as

y → x0, where Cn := 2n/2 · c̃n−1/n and r0 = d(x0, ∂U).
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Figure 2. To the proof of Theorem 1.4, the case 2.

Case 2. “Small angles”: ϕ ∈ [−π/4, π/4), see Figure 2 for the illustration. In this
case, we denote by K the segment joining the point f(x) with the unit sphere in the
direction of the vector f(x)/|f(x)|. Then

(2.9) dist (K, J) = ε0.

Let α2 be a maximal f -lifting of K ′ starting at x, where K ′ is obtained from K by
discarding its endpoint lying on the unit sphere. Such a lift exists and tends with its
end to ∂Bn = Sn−1 (see, e.g., [MRV2, Lemma 3.12]). Let also β2 be a total f -lifting
of J starting at the point y (such a lifting exists by [Vu1, Lemma 3.7]). Arguing
similarly to a case 1, we obtain that

(2.10) diam (β2) > δ1/2.

Let
Γ := Γ(α2 ∪ S

n−1, β2,Bn).

According to the above, α2 \ α2 ⊂ Sn−1. Thus α2 ∪ Sn−1 = α2 ∪ Sn−1 = α2 ∪ Sn−1,
consequently, α2 ∪ Sn−1 is a closed set. Observe that α2 is connected (see, e.g., [Ku,
Corollary 3(ii).II.46.5]). Moreover, the set α2 ∪ Sn−1 = α2 ∪ Sn−1 is connected as the
union of two connected sets α2 and Sn−1, that have at least one common point (see,
e.g., [Ku, Corollary 3(i).II.46.5]).
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In this case, on the one hand, by [Vu2, Lemma 4.2]

(2.11) M(Γ) > (1/2) ·M(Γ(α2 ∪ S
n−1, β2,R

n)),

and on the other hand, by [Vu3, Lemma 7.38]

(2.12) M(Γ(α2 ∪ S
n−1, β2,R

n)) > cn · log
(
1 +

1

m

)
,

where cn > 0 is some constant depending only on n,

m =
dist(α2 ∪ Sn−1, β2)

min{diam (α2 ∪ Sn−1), diam (β2)}
.

Then combining (2.10) and (2.12), and taking into account that dist (α2∪Sn−1, β2) 6
|x− y|, we obtain that

(2.13) M(Γ) > c̃n · log
(
1 +

δ1
2dist(α2 ∪ Sn−1, β2)

)
> c̃n · log

(
1 +

δ1
2|x− y|

)
,

where c̃n > 0 is some constant depending only on n.
Let us now establish an upper bound for M(Γ). First of all, note that

Γ(α2 ∪ S
n−1, β2,Bn) ⊃ Γ(α2 ∪ S

n−1, β2,B
n)

and
Γ(α2 ∪ S

n−1, β2,Bn) > Γ(α2 ∪ S
n−1, β2,B

n).

Therefore, by the principle of minority and in view of the monotonicity of the module
we obtain that

(2.14) M(Γ(α2 ∪ S
n−1, β2,Bn)) = M(Γ(α2 ∪ S

n−1, β2,B
n)) = M(Γ).

Set

ρ(x) =

{
1
ε0
, x ∈ B

n,

0, x 6∈ Bn.

Observe that, by (2.9), ρ satisfies the relation (1.1) for f(Γ(α2 ∪ S
n−1, β2,B

n)). In
this case, by (2.14) and the definition of the family Sδ,A,Q we obtain that

(2.15) M(Γ) = M(Γ(α2 ∪ S
n−1, β2,B

n)) 6
1

εn0

ˆ

Bn

Q(y) dm(y) =
‖Q‖1

|f(x)− f(y)|n .

By (2.13) and (2.15) we obtain that

c̃n · log
(
1 +

δ1
2|x− y|

)
6

‖Q‖1
|f(x)− f(y)|n .

The desired inequality (1.5) follows from the last relation, which is achieved by pass-

ing to the limit as y → x0, where Cn := c̃n
−1/n and r0 = d(x0, ∂U).

Case 3. “Very large angles”: either ϕ ∈ (3π/4, π], or ϕ ∈ (−π,−3π/4), see
Figure 3 for the illustration. Let, for example, ϕ ∈ (3π/4, π].

Consider on P an auxiliary coordinate system centered at the point z0 = 0,
the abscissa axis of which we will position along the vector f(x) with the direc-
tion opposite to this vector. The ordinate axis, respectively, we will position in
the perpedicular direction so that the direction of this axis corresponds to the an-
gle ϕ = π/2 in the notation given above. Under these assumptions, each point
z = x + iy ∈ S, i2 = −1, corresponds to its record in polar coordinates of the
following form: z = −|f(x)|+ ε0e

iϕ, ϕ ∈ [−π, π). In this case,

(2.16) |z|2 = (−|f(x)|+ ε0 cosϕ)
2 + ε20 sin

2 ϕ = |f(x)|2 − 2ε0|f(x)| cosϕ+ ε20.
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Figure 3. To the proof of Theorem 1.4, the case 3.

It follows from (2.16) that points z = (ε0, ϕ), having the largest absolute values of
the number ϕ, ϕ ∈ (3π/4, π], also have the largest Euclidean modulus of the number
z. Thus, if z = (ε0, ϕ) ∈ Bn, then the whole arc of the circle

z = z(ϕ) = {(ε0, θ) : θ ∈ [π/2, ϕ]}
also belongs to Bn. Let us denote by L1 the line segment

l = l(t) = (ε0, π/2) + te, e = −f(x)/|f(x)|,
corresponding to the values of the parameter t ∈ [0, |f(x)|]. Now, we obtain that
l(|f(x)|) = (ε0, π/2) − f(x), while |l(|f(x)|)| = ε0 by the construction. Then L1

intersects the ball E. Set L = z(ϕ) ∪ L1. We obtain that

(2.17) dist (L, I) = ε0.

It can be shown that relation (2.17) is also satisfied for ϕ ∈ (−π,−3π/4). Let α3 and
β3 be f -liftings of I and L starting x and y, correspondingly. As before, the existence
of such liftings is due to [Vu1, Lemma 3.7]. Set Γ = Γ(α3, β3,B

n). Further reasoning
is similar to what was carried out in case 1, namely, the existence of continua I and
L with distance ε0 implies that

M(Γ) > c̃n · log
(
1 +

δ1
2dist(α3, β3)

)
> c̃n · log

(
1 +

δ1
2|x− y|

)

and

M(Γ) 6
1

εn0

ˆ

Bn

Q(y) dm(y) =
‖Q‖1

|f(x)− f(y)|n .

Hence we obtain the inequality

c̃n · log
(
1 +

δ1
2|x− y|

)
6

‖Q‖1
|f(x)− f(y)|n .

From the last inequality we obtain the statement of the theorem due to the passage
to the limit as y → x0. �

The analog of Theorem 1.4 is also valid for mappings with a fixed point of the unit
ball. In order to formulate and prove the corresponding statement, we introduce the
following definition. For elements a, b ∈ Bn and the Lebesgue measurable function
Q : Bn → [0,∞] denote by Fa,b,Q the family of all open discrete and closed mappings
f of the unit ball onto itself, such that f(a) = b. The following statement is true.
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Theorem 2.18. Let Q ∈ L1(Bn). Then any mapping f ∈ Sδ,A,Q has a contin-
uous extension f : Bn → Bn, in addition, for any x0 ∈ ∂Bn there exist Cn > 0 and
r0 = r0(x0) > 0 such that the relation (1.5) holds.

Proof. The possibility of a continuous extension of the mapping f to Sn−1 follows
from Theorem 3.1 in [SSD]. We prove the logarithmic Hölder continuity of the family

of extended mappings. Let E = B(0, 1/2). The following two cases are possible:
1) there exists δ > 0 such that dist (f −1(E), ∂Bn) > δ for any f ∈ Sδ,A,Q. In this

case, the desired statement follows from Theorem 1.4;
2) there exist fm ∈ Sδ,A,Q and xm, ym ∈ Bn, m = 1, 2, . . ., such that fm(xm) = ym,

ym ∈ E and dist (xm, S
n−1) → 0 as m → ∞. Then, arguing exactly as in the proof

of Lemma 2.1, we come to the conclusion that the family of mappings Sδ,A,Q is not
equicontinuous at least at one point x0 ∈ Sn−1, which contradicts the assertion of
Theorem 7.1 in [SSD].

Thus, a case 2) is impossible, and a case 1) gives the desired statement of the
theorem. �

In addition to our article, we will illustrate our results with some simple examples.

Example 2.19. Consider a family of plane mappings fn(z) = zn, n = 1, 2, . . .,
z ∈ B2 = {z ∈ C : |z| < 1}. The mappings fn have a bounded distortion as smooth
mappings whose dilatation is equal to one. So fn satisfy inequality (1.3) for Q(z) =
N(fn,B

2), where, as usual, N is a multiplicity function determined by the ratios

N(y, f,B2) = card
{
z ∈ B

2 : f(z) = y
}
, N(f,B2) = sup

y∈C
N(y, f,B2)

(see, e.g., [MRV1, Theorem 3.2] or [Ri, Theorem 6.7.II]). All mappings fn are discrete
and open, in addition, preserve the boundary of the unit disk and, therefore, are
closed (see, e.g., [Vu1, Theorem 3.3]). The mappings fn also fix the point 0, so they
satisfy all the conditions of Theorem 2.18 except one: the existence of the integrable
function Q in (1.3) independent on n. As a result, the family fn is not equicontinuous
at the boundary of the unit disk.

Example 2.20. A simple example of conformal automorphisms fn(z) =
z−n−1

n

1−z n−1

n

of the unit disk on itself, for which Q(z) ≡ 1 (see, e.g., [MRV1, Theorem 3.2] or [Ri,
Theorem 6.7.II]), shows that the violation of the condition dist (f −1(A), ∂Bn) > δ
in Theorem 1.4 is also an obstacle to performing the desired inequality (1.5) on the
boundary of the unit disk. We observe that the family fn is not even equicontinuous,
and thus more, logarithmically Hölder continuous at the boundary points of the unit
disk.
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