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Two examples related to conical energies

DAMIAN DABROWSKI

Abstract. In a recent article (2021) we introduced and studied conical energies. We used
them to prove three results: a characterization of rectifiable measures, a characterization of sets
with big pieces of Lipschitz graphs, and a sufficient condition for boundedness of nice singular
integral operators. In this note we give two examples related to sharpness of these results. One of
them is due to Joyce and Morters (2000), the other is new and could be of independent interest as
an example of a relatively ugly set containing big pieces of Lipschitz graphs.

Kaksi kartioenergioita koskevaa esimerkkii

Tiivistelmd. Viimeaikaisessa tyossd (2021) esittelimme ja tutkimme uusia kartioenergioita,
ja kiytimme niitd kolmen tuloksen todistamiseen: antamaan riittévit ja valttdméttomét ehdot
toisaalta suoristuville mitoille ja toisaalta Lipschitzin kuvaajien suuria osia sisaltaville joukoille
sekd antamaan riittdvan ehdon siistien singulaaristen integraalioperaattoreiden rajoittuneisuudelle.
Téssa tutkimuksessa esitdmme kaksi ndiden tulosten tarkkuuteen liittyvaa esimerkkia. Yksi naista
on periisin Joycelta ja Mortersiltd (2000), mutta toinen on uusi ja kenties sellaisenaan mielen-
kiintoinen esimerkkin suhteellisen rumasta joukosta, joka kuitenkin sisdltéda Lipschitzin kuvaajien
suuria osia.

1. Introduction

In [Dab21| we introduced conical energies. Let us recall their definition. Given
v € RY a € (0,7/2) and an m-dimensional plane V € G(d, m), set

K(z,V,a) = {y € R?: dist(y, V + z) < sin(a)|y — z|}.
In other words, K (x,V, «) denotes the open cone centered at z with direction V and
aperture a.* The truncated cone K (z,V,a)NB(x,r) will be denoted by K (z,V, «a,r).

Definition 1.1. Suppose p is a Radon measure on R? and = € supp u. Let
VeG(d,d—n), a € (0,7/2), 1 <p<ooand R > 0. We define the (V| «, p)-conical
energy of i at x up to scale R as

Eupw, Va0, R) = /OR (N(K(iﬁ, V,Oé,r)))p dr

rm T
For E C R? we set also g ,(z,V,a, R) = Eynl (@, V,a, R).

Note that the definition above depends on the dimension parameter n, so to be
more precise one could say that £, ,(z, V, o, R) is the n-dimensional (V, a, p)-conical
energy. For the sake of simplicity, for the rest of the introduction we will consider n
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to be fixed, and we will not point out this dependence. The same applies to other
definitions. Throughout the paper we will actually work with n = 1.

For p = 1 the conical energies were first considered in [CT20| where the authors
used them to prove an inequality involving analytic capacity and projections. For
p > 1 they were defined in [Dab21|. A related quantity was also independently
introduced in [BN21]—Badger and Naples used their conical defect to characterize
measures concentrated on a countable union of Lipschitz graphs.

In [Dab21] we used the conical energies to prove three results: a characterization
of rectifiable measures, a characterization of sets with big pieces of Lipschitz graphs,
and a sufficient condition for boundedness of nice singular integral operators. Below
we briefly describe the last two theorems. The aim of this note is to give two examples
related to sharpness of these results. For more information on conical energies, as
well as a full presentation of results obtained in [Dab21|, we refer the reader to the
original paper.

1.1. Big pieces of Lipschitz graphs. We begin by recalling some definitions.

Definition 1.2. We say that a Radon measure p is n-Ahlfors—-David reqular
(abbreviated as n-ADR) if there exists a constant C' > 0 such that for all x € E and
0 <r < diam(F)

C™hr™ < u(B(z,r)) < Cr™

The constant C' will be referred to as the ADR constant of p. Furthermore, we say
that an H"-measurable set £ is n-ADR if H"| is n-ADR.

Definition 1.3. We say that an n-ADR set £ C R? has big pieces of Lipschitz
graphs (BPLG) if there exist constants x, L > 0, such that the following holds.

For all balls B centered at F, 0 < r(B) < diam(FE), there exists an n-dimensional
Lipschitz graph I with Lip(I') < L, such that

H' (ENBNT) > kr(B)".

Sets with BPLG were studied in [DS91, DS93a| as a potential quantitative coun-
terpart of rectifiability. Few characterizations of such sets are available. In [DS93b|
they were characterised in terms of the big projections property and the weak geomet-
ric lemma, in [MO18]—using L? norms of projections, and very recently in [Orp21]
using the plenty of big projections property. In [Dab21| we characterize the sets with
BPLG using the conical energy. More precisely, we show that containing BPLG is
equivalent to the following property.

Definition 1.4. Let 1 < p < co. We say that a measure p has big pieces of
bounded energy for p, abbreviated as BPBE(p), if there exist constants «, k, My > 0
such that the following holds.

For all balls B centered at supp u, 0 < r(B) < diam(supp p), there exist a set
Gp C B with u(Gp) > ku(B), and a direction Vi € G(d,d — n), such that for all
r e Gp

(1.1) &, (2, Vi, 1(B)) = /OT(B) (“(K(a”VB’O"”))p T,

rn T

Theorem 1.5. [Dab21, Theorem 1.11] Let 1 < p < oo. Suppose E C R? is
n-ADR. Then E has BPLG if and only if H"|, has BPBE(p).

It seemed to us rather natural to consider also the following property.
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Definition 1.6. Let 1 < p < oo. We say that a measure p has bounded mean
energy for p (BME(p)) if there exist constants o, My > 0, and for every = € supp p
there exists a direction V,, € G(d,d — n), such that the following holds.

For all balls B centered at supp u, 0 < r(B) < diam(supp p), we have

| Eusli Vi () // ( A 7«)))”%@@)

< Mo pu(B

In other words we require u(K(z,V,, a, r))pr_”p% du(x) to be a Carleson mea-
sure. This condition looks quite natural due to many similar characterizations of
so-called uniformly rectifiable sets, e.g. the geometric lemma of [DS91, DS93a| or
the results from [Tol09, Tol12|. In this paper we won’t need the definition of uniform
rectifiability, but let us note that all sets with BPLG are uniformly rectifiable, and
that the BPLG condition is strictly stronger than uniform rectifiability.

It is easy to show, using the compactness of G(d,d—n) and Chebyshev’s inequal-
ity, that BME(p) implies BPBE(p). However, the reverse implication does not hold.
In Section 2 we construct the appropriate example.

Theorem 1.7. There exists a 1-ADR set E C R? that contains big pieces of
1-Lipschitz graphs, but it does not satisfy the BME(p) condition for any p > 1.

The problem with BME is the following. Contrary to the aforementioned charac-
terizations of uniform rectifiability, in BME the “approximating” plane V. is fixed for
every x € supp i once and for all, and we do not allow it to change between different
scales. As shown by our example, this is too rigid.

Question 1.8. Suppose one modifies the definition of BME, allowing the planes
Vz to depend on r, perhaps with some additional control on the oscillation of V, ,.
Can the modified BME be used to characterize BPLG, or uniform rectifiability?

1.2. Boundedness of SIOs. We consider singular integral operators of con-
volution type, with odd C? kernels k: R?\ {0} — R satisfying for some constant
Ck >0

(1.2) Vik(z)| < 2k

- |£L‘|"+

forz #0 and j€{0,1,2}.

We will denote the class of all such kernels by K"(R?). Note that these kernels are
particularly nice examples of Calderén—Zygmund kernels.

Definition 1.9. Given a kernel k € K"(R?), a constant ¢ > 0, a Radon measure
p and a function f € Li. (1) we define

1t = [ M=) S dntr), @ R

We say that 7T}, is bounded in L?(y) if all T, . are bounded in L*(p), uniformly in
e>0.

In their seminal work [DS91] David and Semmes showed that, for an n-ADR set,
the L? boundedness of all singular integral operators with smooth and odd kernels
is equivalent to uniform rectifiability. Later on Tolsa [Tol09] improved on this by

showing that uniform rectifiability is equivalent to the L? boundedness of all SIOs
with kernels in K"(R).
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The situation in the non-ADR setting is less clear. A necessary condition for the
boundedness of SIOs in L?(y), where p is Radon and non-atomic, is the polynomial
growth condition:

(1.3) w(B(x,r)) < Cir",

see [Dav9l, Proposition 1.4 in Part III|. Some sufficient conditions for boundedness
of nice SIOs have been shown in [AT15] and [GS19]. In [Dab21| we showed that
BPBE(2) is another sufficient condition.

Theorem 1.10. |[Dab21, Theorem 1.17] Let u be a Radon measure on R sat-
isfying the polynomial growth condition (1.3). Suppose that p has BPBE(2). Then,
all singular integral operators T, with kernels k € K"(R?) are bounded in L*(p),
with norm depending only on «, Cy, My, k, and the constant C}, from (1.2).

The result was inspired by [CT20, Theorem 10.2] where Chang and Tolsa showed
an analogous result with BPBE(2) replaced by BPBE(1). It is easy to see that for
measures satisfying the polynomial growth condition (1.3) we have

gu,?(xv ‘/7 «, R) S C(1 5p,1($7 V7 «, R)a

so that BPBE(1) implies BPBE(2). In Section 3 we show that the measure con-
structed in [JMOO| does not satisfy the stronger condition of [CT20, Theorem 10.2],
but it trivially satisfies the assumptions of Theorem 1.10.

Theorem 1.11. The measure constructed in [JMO00] satisfies BPBE(2), but does
not satisfy BPBE(1).

Hence, Theorem 1.10 really improves on [CT20, Theorem 10.2]. This also illus-
trates the following curious phenomenon: in the case of ADR measures, BPBE(p) is
equivalent to BPBE(q) for any p, ¢ > 1, but once we drop the AD regularity assump-
tion, the conditions are no longer equivalent. In the polynomial growth case (1.3) we
only have

BPBE(p) = BPBE(g)
ifp<gq

Finally, let us mention that Theorem 1.10 is sharp in the sense that one cannot
replace BPBE(2) with BPBE(p) for any p > 2, see [Dab21, Remark 1.20]. At the
same time, as noted just below [Dab21, Remark 1.20], BPBE(2) is not a necessary
condition for boundedness of nice SIOs.
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Notation. We will write f < g to denote f < Cg for some absolute constant
C > 0. If C depends on parameter ¢, we will write f <, g. Moreover, f ~ g denotes
fS9s T

Throughout the article we will be only working with cones in R?, and so it will
be convenient to use the following notation: given 6 € [0,7) let Vp € G(2,1) be the
line forming angle # with the z-axis, i.e.

Vo = {(z,tan(f)x): x € R}
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for 0 # m/2, and V; /5 the vertical axis. We will write
K(z,0,a) = K(x, Vp, ),

and similarly K (x,0,a,r) := K(x, Vg, a, 7).
Given two lines Vi, Vs, we denote by £(Vi,V5) € [0,7/2] the angle between V;
and V5.

2. Set with BPLG but no BME

We will show the following.

Proposition 2.1. Fix an aperture parameter o € (0,7/2). There exists a se-
quence of 1-ADR sets Exy = Ex(a) C B(0,1) C R?, N > 100(1 + logy(a™)), with
the following properties:

(1) they all contain BPLG in a uniform way, that is, they are 1-ADR with some

absolute constant C', and they all satisfy the BPLG condition with L. = 1 and
some absolute constant k > 0.

(2) regardless of the choice of directions 0, € [0,), for all p > 1 they have big

conical energies:

/EEN,p(x,Qz,a,l)dHl@)
En

1 1 p
- [ (Rt DB s 2,
EN 0

r

(2.1)

For the sake of clarity, we will only prove (2.1) for p = 1—the proof for other
p is virtually the same. More precisely, to show (2.1) we find a large subset of Ey
(with length depending on «) such that for any x in the subset and any direction
0 we have H' (K (z,0,c,7) N Ey)/r 2 1 at ~ N distinct dyadic scales 0 < r < 1.
Thus, (HY(K(z,0,a,7) N Ex)/r)? 2 1 at the same dyadic scales, which gives (2.1)
for arbitrary p > 1. See the proofs of Lemma 2.7 and Lemma 2.11.

Let ap — 0. Now, a disjoint union of appropriately rescaled sets Ex(ay), with
k, N — oo, would contain BPLG and would not satisfy the BME(p) condition (Def-
inition 1.6) for any M, and o > 0. We omit the details.

Without loss of generality we will assume that o > 0 is smaller than some
absolute constant, which is smaller than /100, say (note that taking smaller «
makes (2.1) more difficult to prove). Let M = 100[a '], so that M ~ o~'. In the
lemma below we construct a Lipschitz graph I' = I'(N, M) that can be seen as the
first approximation of the set Ex. For all directions ¢ in [0, 7/4] the conical energy
Era(z,V,a,1) is bigger than N for all z belonging to a neighbourhood of a large
portion of I'. Rescaled and rotated copies of I' will be then used as building blocks
in the construction of Ey.

Let A be the usual dyadic grid of open intervals on (—1,1), and let Ay denote
the dyadic intervals of length 27

Lemma 2.2. Let N > 100(1+log,(a™!)) be an integer. There exists a piecewise
linear 1-Lipschitz function g: [-1,1] — [-M ', M~'], and a collection of disjoint
dyadic intervals T C A with the following properties:

(P1) g(=1) = ¢(1) = 0.
(P2) For every I € T we have I C [—1/2,1/2], the function g|, is increasing, and
for t € I we have ¢'(t) = 1.
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(P3) #Z =2"M2NMH) and T C Anary1). Hence,

I =2"=a1
IeT
(P4) Let T" = graph(g), G: [—=1,1] — T be the graph map G(t) = (t,g(t)) For any
I € T, any x € R? with dist(x, G(I)) < 27NN+ and all § € [0,7/4], we
have

2.2 — 2 N.
22) "2

/1 HYK(z,0,a,7)NT) dr
0 r
For an idea of what I" looks like, see the graph at the bottom of Figure 2.2. Before

we prove Lemma 2.2, let us show how it can be used to prove Proposition 2.1.

2.1. Construction of Ey. Let I' = I'(M, N) be the 1-Lipschitz graph from
Lemma 2.2. The set Ey will consist of one “big” Lipschitz graph I'y = I', and three
layers of much smaller Lipschitz graphs stacked on top of the big one. The small
graphs will be rescaled and rotated versions of I'. Roughly speaking, the big graph
ensures big conical energy in directions [0, 7 /4], the first layer of small graphs ensures
big conical energy in direction |7 /4,7 /2], and so on.

Another way to see Ey is as a union of four bilipschitz curves I'y,...,I's, and
this is how we are going to define it. If I'; is already defined, I';; will be constructed
by replacing some of the segments comprising I'; with rescaled and rotated copies of
.

First, let p: R?> — R? be the counterclockwise rotation by w/4. Set L, =
{(x,0): 2 € R} and for k > 1 set Ly = p*(Lo) € G(2,1) (here p* denotes k composi-
tions of p, and the same notation is used for § defined below).

Define also 7, = 27*NM+D=k/2 and let §: R? — R? be the dilation by factor 71,
i.e. §(x) = rz. Note that r, = (r)*, so that §* is the dilation by factor 7. The
constant 7 was chosen in such a way that for an interval / € Z C Ay(p41) we have
H'(G(I)) = 2ry by (P2) (where G is the graph map of g).

We will abuse the notation and identify the segment S; := [—1,1] x {0} with
[—1,1] C R.

Set 'y = I', and let 79 = 09: Sy — [y be defined as the natural graph map
Y0(t) = o0(t) = G(t) = (t, 9(1)).

Lemma 2.3. Let k € {1,2,3}. Denote by Z* the k-fold Cartesian product of Z,
where T is the family of intervals from Lemma 2.2. There exist v;: Sog — R?, T} :=
Y(So), and for each I = (Iy,...,I;) € I* there exist sets Sy, Tk, and a map
Grr: R? — R?, such that:

a) Gy =170 p" 0" for some translation 7r, and Sy 1 := Gy 1(Sy) are segments
(in particular, H'(Sk.r) = 27y and Sy are parallel to Ly),

b) I'y.r are rescaled and rotated copies of I, with Iy ; := Gy, 1(I'g) (in particular,
since the endpoints of I'y and Sy coincide, the same is true for I'y ; and Sy 1),

¢) Ty := %(So) are of the form

Iy = (Fk_l\ U SM) U Ter,

IcTF IcTk

d) for k=1, J € I, we have Sy ; = oo(J) C Iy, and for k > 1, if [ = (I',J) €
I"1 X I, then Sy = Gy-1,0(S1,7) C Tror,p C Thoa,
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e) if I = (I',J), a1, ay are the endpoints of Sy 1, and by, by are the endpoints of
kal,l/; then
|ai — b 2 T
fori,j € {1,2} (i.e. Sy is “deep inside” I'y_y 1),
f) the maps 7 are of the form y, = oy 0---00g, where oy: I'y_1 — 'y, is defined
as

op(x) =

X, for x € Fk—l \ UIEI’“ SkJ,
Grr(r)oogo G;}(m), for x € Sy, I € I*.

In particular, oy,(Skr) = Ik 1.
8) llow — idl poe(r,_,) < 2M~'ry,

Proof of Lemma 2.3. We will define o, inductively. First, for any I € Z set
S1.1:=o00(I) CTy. Observe that by (P2) S; is a segment parallel to L;. Moreover,
since H'(I) = 2'/2 7y, we have H'(S1 ;) = 27;. It follows that Sy ; = 770 p0d(S) for
some translation 77. Define Gy r: R? - R? as Gy =170pod, and [';; = Gy 1(T).

We define o;: 'y — R? as in f). In other words, o1]g  can be seen as a graph
map parametrizing the Lipschitz graph I'y ;. It is very easy to see that Sir, T,
and oy defined in this way satisfy all the conditions except for e) and g), which we
will prove later on.

Now, suppose that o,_1, 7x_1, etc. have already been defined, and that they
satisfy a)-d), f).

For any I = (]/,J) € TF1 x T set Sk’] = Gk_1’1/<517‘]) C Fk—l,[’- Since SLJ
is parallel to Ly and Gy_1p = 71 0 PPt o gkt Sk, 1s a segment parallel to L.
Moreover, since H'(S; ) = 2ry, we have H'(Sy;) = 271 rp_1 = 2ry. Tt follows that
Sk.r = 11 0 p¥ 0 §%(Sy) for some translation 7.

We define op: Ty — R? as in f), so that Uk’skl can be seen as a graph map
parametrizing the Lipschitz graph I';, ;. It is easy to see that oy, Tk, ete. defined this
way satisfy a)—d), f).

Proof of €). Let k = 1. Recall that for all I € Z we have I C [—1/2,1/2] by
(P2). Hence, Si 1 =0¢(I) C 0o(|—1/2,1/2]) C Ty. If x € 00([—1/2,1/2]) is arbitrary
and if y € Ty is one of the endpoints of 'y, we have |z —y| = 1 = ry. So e) holds for
k = 1. For k € {2,3} the claim follows from the fact that if I = (I’,J) € "1 x T,
then Sy r = Gr_1,(S1,7) and Iy_y r = Gi—1, (o).

Proof of g). We have o}, = id on I'y_y \ U ezr Sk,1, and for x € S
lok(x) — x| = ‘GkJ 00g o G,:}(:L“) —Gpro G’,:}(:E)|
= rk}ao o G,;}(x) — G,;}(x)| < rllgllse < 2M 1y,
where we used the fact that oo(t) = (¢, g(t)), and that ||g||.c < 2M ! by Lemma 2.2.
O
Lemma 2.4. The maps 7, and o, from Lemma 2.3 are bilipschitz, with bilips-
chitz constants independent of N and «.

Proof. Tt suffices to show that oy, is bilipschitz with Lip(o) and Lip(o;, ') inde-
pendent of N, «, and then the same will be true for 7, by Lemma 2.3 f).

Suppose that o; are already known to be bilipschitz for 0 < j < k — 1, with
Lip(c;) and Lip(o; ') independent of N, (clearly, the condition holds for oy). Let
z,y € I'y_1. Our aim is to show that |oy(z) — ox(y)| = |z — y|.
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Case 1. |z —y| > 6M 'ry. It follows from Lemma 2.3 g) that
low(x) — on(y)| < o =yl + low(z) — =] +low(y) —yl < |v —y[ +4M 'y < 2Jz — g,

and
B 1
ow(x) — on(y)| = |z —y| — |ow(z) — x| — |ow(y) —y| > |z —y| —4M 'ry > sle—yl.

‘ C&‘LSG 2. 2,y € i1 \ Ujegr Sk,r- This case is trivial, because |oy(7) — ox(y)| =
x — vyl

Case 3. |v —y| < 6M'ry, and z,y € Sy, ; for some I € Z%. Using the fact that
09 is bilipschitz we get

lo(x) — ox(y)| = |Gk,1 00g 0 G,;}(x) — G000 G,;}(y)‘
= 13|00 0 Gij(x) — 00 0 G 1 (v)| = | Gy (@) — Gii(w)| = = — yl.

Case 4. |z —y| < 6M'ry, 2 € Sy for some I € TF, and y € Ty \ Spr. We

claim that

(2.3) ye 1,

where I = (I')J) € I ' x T and T'}_; p is the Lipschitz graph containing S ;.
Indeed, by the induction assumption, the map 7,;11: [y — Sy is bilipschitz with
Lip(vk-1), Lip(v;',) independent of N,«a. Since H'(Syr) = 27y and H} (Tx_11) ~
rp_1, we get that

H' (724 (Ser)) = and H' (3,0 (Trerrr)) =~ reet.

Moreover, we have
(2.4) Y1 (k) € vty (Trear) € So,

where all three sets are segments. If a1, as and by, by are the endpoints of 'yk_fl(Sk, 7)
and 7; ', (Tx_1.1v), respectively, then it follows from Lemma 2.3 ) and from the bilip-
schitz property of 75_; that for i,j € {1,2} we have

(25) \ai — b]’ z Tk—1-
Recall that 2 € Sy and |z — y| < M ~'ry, so that dist(y, Sk.r) < M~'r,. Hence,
dist (23 (1), %1 (Skr)) S M

Putting this together with (2.4) and (2.5), and assuming that M > M, for some
absolute constant My > 10, we get that v, (y) € v, (Tx_1.1), which is equivalent
toy € Fk—l,[“

Now, let z € m be an endpoint of S; ; minimizing the distance to z. Observe
that © — z € Ly, and oy(z) — x € Li, so

(2.6) low(z) — 2|? = |on(x) — z|* + |z — 2>

Moreover, since z is an endpoint of Sy, 7, the point G;}(z) is an endpoint of Sy, and
so by (P1) g(G,;}(z)) = (0. Together with the fact that g is 1-Lipschitz this gives

log(x) — x| = |Gk71 00y0 G;}(m) — G0 G;}(z)‘
(2.7) = oo 0 Gy j(x) = Gip(@)| = el g(Gy 1 (2)))|
= i 9(Gy1(2)) = 9(G1(2))] < | Gi(w) = Gii(2)] = |2 — =],
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Furthermore, observe that since y € I'y_1 i/ \m, z € m is an endpoint of Sy g,
HY(Sk1) =274, and |z —y| < M~'ry, we get that the point ;" (2) € Sy lies between
the points v, ', (z) and 7; ', (y). We already know that v;_; is bilipschitz, and so

o — 2+ [z =yl = [ (@) = () + i (2) = v W)
= |yt (@) = v ()] = |z =yl
Now, we need to further differentiate between two subcases.

Subcase 4a. |v —y| < 6M lry, ¥ € Spr, and y € Spy for some Y € IF, [ £ Y.
We claim that the point z is a common endpoint of Siy and Sy ;. Indeed, since
y € Ty_1p by (2.3), we have Y = (I',Z) € IF!' x T and Spy C Ty_1p. By
Lemma 2.3 d) Sky = Gk_lyp(slz) = Gk—lJ’ o) Uo(Z), and Sk,] = Gk_lyp o} UU(J).
Recall that |z — y| < 6M'rg, which implies dist(Skr, Sky) < 6M 1y, and so
dist(Z,J) < M~Yr;t vy = M~'ry. By (P3) J and Z are dyadic intervals of length
V271, which implies that dist(Z, J) = 0. Hence, the point z is a common endpoint
of Sk,; and Sy y, and the estimates (2.6), (2.7) are also valid with x replaced by y.

The Lipschitz property of o} follows easily:

(2.8)

(2.6),(2.7) (2.8)
ok(@) —ow()| <low(x) — 2|+ |z —aw(y)l < |lz—z+|z—yl = [z -yl

~Y

The converse inequality is a consequence of the fact that Sy ; and Sy y are co-linear,
r—y € Ly, op(z) —x € L, and o4(y) —y € Li:
ok (x) = ow(y)]* = lon(z) =z + 2 —y +y — on(y)’

=z =yl +ow(@) —z+y — ()]’ = |z —y/*.
Subcase 4b. |r —y| < 6M~'r,, x € Sy ; for some I € ZF, and y € T} \
Uyezr Sk,y- In this case we have o4 (y) = y. The upper bound follows from previous

estimates:

(2.6),(2.7) (2.8)
low(@) =yl <low(@) —2[+ ]z =yl < |o—z+|z—yl = |z—y|

Concerning the lower bound, it follows by elementary geometry and properties
of our construction that 7/4 < L(oy(x),z,y) < 7, see Figure 2.1. Thus, using the
law of cosines
ok (@) = yl* = low(@) = 2* + [z — yI* = 2lon(w) — 2||z — y| cos(L (0w (), 2,9))
> |ow(w) = 2 + |2 = y* = V2ou(2) — 2[|z — ]

\/§ (2.6)
> (1—7 (low(@) =2+ 12 =y") 2 lo =P + |z =y 2o — ol

Since this was the last case we had to check, we get that oy, is bilipschitz, as claimed.
O

Finally, we set
En=TyUl'Tul'y UTIs.
Note that due to Lemma 2.3 ¢)
(29) EN == FO U U FLI U U FQ}] U U Fg,[.
IeT Iez? Iez3

That is, Ey is a union of a single big Lipschitz graph, and three layers of smaller
Lipschitz graphs.
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Te_1.1v
k—1,1 Ly g

Figure 2.1. Points z,y, z lie on I'y_1 ;» (continuous curve above), which is a 1-Lipschitz graph
over the line Ly_;1. x belongs to the segment Sk ; C I'y_1 v (thick segment above), and z is an
endpoint of Sy ;. oi(z) lies on I'y ; (dashed curve above), a 1-Lipschitz graph over Sy ; with the
same endpoints as S ;. The 1-Lipschitz property implies that I'y ; C S , where Sisa square having
Sk,r as diagonal. On the other hand, the 1-Lipschitz property of I'y_1 ;» implies that I'y_1 » C
Ky :=K(z,Ly_1,7/4), i.e. it lies in the two-sided version of cone K above. In particular, y € K.
However, in Subcase 4b we assume that |z — y| < 6M ~1r; and y € Sk s, and so y must lie in I?,
and not in the other one-sided cone comprising Ky. Since Ly_; and Sy ; form an angle w/4, the
observations above imply 7/4 < L(ox(x),z,y) < 7 (see the dotted angle).

2.2. En has BPLG. In this section we show that £y has big pieces of Lipschitz
graphs, with constants independent of N. Observe that Ey is AD-regular because
it is a union of four bilipschitz curves. The ADR constants do not depend on N due
to Lemma 2.4.

Lemma 2.5. Foranyz € Ey and any 0 < r < diam(Fy) we can find a Lipschitz
graph ¥ (depending on x and r) such that

(2.10) HY(Exy N B(z,r)NY) > 7,
with the implicit constant independent of N, c.

First, we prove an auxiliary estimate. Given integers i,[ € {0,1,2,3} define
Vi Ty — Dy as ys =07,

Lemma 2.6. Let i,l € {0,1,2,3} and k = min(i,1). Then
(2.11) 171 — id|| oo (ryy < 6M 1.

Proof. If i = [ the result is clear because 7;; = id. Assume [ > i. Applying
(I —i)-many times Lemma 2.3 g) we get that

= y3(2)] < ) Igaa(@) = @) = Y i (@) — oi(ng-a (@)

j=i+1 j=i+1
!
S Z 2M717"j S 2(] - k)Mil’l”Z#l S 6M71TZ‘+1.
j=i+1
On the other hand, if [ < ¢, then applying the estimate above to y = v,;(z) we get
| — (@) = Pialy) =yl < 6M . O
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Proof of Lemma 2.5. Let x € Ex and 0 < r < diam(Ey). By (2.9) there exist
j €{0,1,2,3} and I € 77 such that x € T'; ;. Suppose r < r;. Since I'; ; is a Lipschitz
graph satisfying H'(T'; ;) > r; > r, we have

H'(Ex N B(z,r)NT;1) = H(B(x,r)NTyp) 27

That is, we may choose ¥ =T'; ;.

Now assume r; < r < ry = 1. Let k € {0,1,2} be such that 7,41 <7 < rj (of
course, k + 1 < j). Let y = v;x(z). Observe that, by Lemma 2.3 c), since y € Iy,
there exists some k' € {0, ..., k} such that y € 'y, i for some I' € Z¥. Since k' < k,
we have H'(T'y 1) = 1y > 1 > 1. Moreover, assuming M > 12, (2.11) gives

r

diSt(I’,Fk/’p) S |.T — y| = |Qj — ’Y]’k(l’” S T 27

and so
HYExyNB(z,r) N Ty ) =H (B(z,r) N Typp) 2

Hence, we may choose X = L'y .
Finally, for 1 < r < diam(Ey) =~ 1, the condition (2.10) is satisfied with ¥ =
I. O

2.3. EN has big conical energy. In this section we show that Fy satisfies
(2.1). We introduce additional notation. Analogously to the definition of Sy ; for
ke€{0,1,2,3}, for I = (I',J) € I? x T we define Sy ; = G31(S1.7).

If I € ¢ is of the form [ = (I',I") € IF x T7, we will write

Skt =Sk, Twr=Trr, Grr:=Gyr.

Lemma 2.7. Let [ = (I}, Iy, 13,1;) € Z*, and let x € Sy; C I's; C Ex. Then,
for any 6 € [0, 7) we have

/’H x@ar)ﬂEN)@>N
,

(2.12)

Proof. Let I € I*, x € Sy; and 0 € [0,7) be as above. Recall that Ly =
{(x,0): # € R}, pis the counterclockwise rotation by 7/4, and L;, = p*(Lo) € G(2,1).
Observe that there exists some k € {0,1,2,3} such that 6 — kx/4 € [0,7/4). Fix
such k. We are going to use (P4) with respect to I'y ; to arrive at (2.12).

Recall that Siy11 = Gi1(S11,.,,), where Gir = 70 p* o 6% for some translation
7. Recall also that Gy ;(I') = 'y ;. Let 2/ = G,:}(:v), and ¢ =0 — kn/4 € [0,7/4).
Note that Vy = p~%(Vp) = G’,;}(Vg). Using the fact that Gy is a similarity with
stretching factor ry, we get 7

YHYK (2,0,a,7) N Ey) d_ /7—[1 (.6, a,r) N Dyy) dr
0 r r
17“ HY K (2,0, a,r, ' r)NT) dr / CHYK(2, 0,0 ,8)N L) ds
3 bl
,

0 r

(2.13) g

s s

Recall that k was chosen in such a way that 6’ € [0,7/4). In order to use (P4), it
only remains to show that dist(z’, G(I')) < 27NM+1 for some I’ € T.
Observe that 3 ;(Ss,7) C Sk+1,7. We know from (2.11) that if M > 6, then

(2.14) dist(z, Sgy1.r) < dist(z, v3£(541)) < |2 — Y30(2)| < Thgr-



272 Damian Dabrowski

Thus,
dist (2", Sy, 1,.,) = dist(G 1(2), G, 1 (Ses1,r)) = vy dist(z, Spe1)
< gy = = 2 N2 < 9o NOTD),

Si.1.,, was defined as oo(fp41) = G(lk41), and so it follows from (P4) that the
last term in (2.13) is greater than C'N for some absolute constant C. Thus, (2.12)
holds. O

Now we can finish the proof of Proposition 2.1. Observe that
Hl( U S4J> = > HY(G3r(S1y))
Ie1? I'eT3, JeT

= (#I)’rs Y H'(S1) = (#L)rs Y _H'(J

JeT JET
(B3) 9—3M 93N(M+1) 9=3N(M+1)=3/2 9g—M+1 _ 9-4M~1/2 ~ 1,

where we also used that M is a constant depending only on «. Together with
Lemma 2.7, this shows that the set Ey has the desired property (2.1), i.e

/ /7—[ xGx,ar)ﬁEN)drdH<)

/ /H x@x,ar)ﬂEN)drdH()NaN‘
Sa,1

Thus, the proof of Proposition 2.1 is complete. All that remains to prove is Lemma 2.2.
We do that in the following two subsections.

1€74

2.4. Construction of g. In this subsection we construct a function g and a fam-
ily of dyadic intervals Z that satisfy (P1), (P2), and (P3). First, we define a family of
auxiliary functions. For j = 1,..., M we define f;: [—1,1] — [-M 127N M ~127N]
as

h(27N)

where h(t): R — [—1,1] is the 1-Lipschitz triangle wave:
h(t) = |t mod 4 — 2| — 1.

In the above ¢ mod 4 denotes the unique number s € [0,4) such that ¢t = 4k + s for
some k € Z.

Note that for all j we have Lip(f;) = M~'. For j = 1,..., M we define also
g;t [=1,1] = [-M 127N M2 N g

= Zfz‘(t)

and we set I'; = graph(g;) C B(0,1) C R? g = gy, I' = T'y. See Figure 2.2.
Observe that g is 1-Lipschitz.

Proof of (P1). We want to show that g(1) = g(—1) = 0. Since h is an even
function, the functions f; and g; are also even. Hence, ¢g(1) = g(—1). Note also that
if we have some function g satisfying properties (P2) and (P4), then for any constant
C' € R the function g + C will also satisfy (P2) and (P4). In other words, these
properties are invariant under adding constants. It follows that we can work with
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the function ¢ as defined above, prove (P2) and (P4), and at the end replace g by

g — g(1). So the property (P1) is not an issue. O

0.1 ]
. W
0.1 F 1
-1 -0.5 0 0.5 1

0.1
0 W
-0.1 - q
1 0‘5 _l‘) 0‘5 1

0.1
0 W
-0.1 b
-1 —0‘.5 _l‘) 015 1

Figure 2.2. Top to bottom: graphs of g1, g2, and g3 = g when N = 2 and M = 3. The thick
segments denote intervals in Gi, Go, and Gs, respectively.

We proceed to define the family Z C A(p/41)n. Recall that A denotes the open
dyadic intervals of length 27%. Observe that for any j the functions f; and g; are
linear on each interval from Ajy, and we have f; = M ~1 on every second interval,
and fj = —M~" on the rest.

Set G; C A;n to be the family of dyadic intervals I contained in [—1/2,1/2] such
that for all 1 <14 < j we have f{ = M~ on I. It is easy to see that each G; consists of
2/N=J disjoint intervals of length 277V see Figure 2.2. We define also Z C AN
as the family of dyadic intervals of length 2~ (M*DN contained in | J regy 1

Proof of (P3). By the definition above we have
(2.15) HT = 2N . 4G, = 2MFON-M
so the property (P3) holds. d

Proof of (P2).  We have defined G; in such a way that if t € I € G, then
g;(t) = jM~'. Tt follows that if t € I € Z, then t € J for some J € Gy, and so
¢ = 1. Thus, (P2) holds. O

2.5. T' has big conical energy. This subsection is dedicated to proving (P4).
We recall the statement for reader’s convenience:
(P4) Let I = graph(g), G: [—1,1] — I' be the graph map G(t) = (¢, g(¢)). For any
I € 7, any x € R? with dist(z, G(I)) < 27-VM+D and all § € [0,7/4], w
have
YHY K (z,0,0,7)NT) dr
r r

(2.16) > N.

Fix z, I, and # as above. We will show (2.16). Since dist(z, G(I)) < 2-NM+1)
there exists to € I such that |z — G(tp)] < 2~ VM+1 . Fix such t.
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For every j = 1,..., M define G;(t) = (t,9;(t)). For every t € Ujen,, ! set
L;(t) € R? to be the line tangent to I'; at G,(t). We define also I;(t) as the unique
interval from A;x containing ¢. Note that, since g, is linear on intervals from Ay,
we have L;(t) = L;(t') whenever t' € I,;(t). Denote by Ly the z-axis.

Observe that if Iy(t) € Gu, then for each 1 < j < M we have g}(t) = GM~L
Thus,

(2.17) A(L;(t), Lo) = arctan(jM "), and £(L;(t), Vrya) < 7/8.

Set L; = L;(t) — (¢,g;(t)). Note that (0,0) € L;, and that the definition of L; does
not depend on t, as long as Ip(t) € Gy. Since 6 € [0,7/4], it follows from (2.17)
that there exists some 1 < 7 < M such that

(2.18) L(Ve, Lj) < 122}]& (arctan(zM ) —arctan((i — 1) M ))
=arctan(M 1) < M.

Fix such j. Recall that M = 100[a~'], and so

(8
(2.19) A(Vp, Lj) < M1 < o

Hence, for any r > 0
(2.20) K(z,0,0,7) D K(x,L;j, /2, 7).
Lemma 2.8. Fort € [—1,1] we have
G(t) — Gy(t)] = lglt) — g5(B)] < 2171 2-¥G+),

Proof. The estimate follows immediately from the definition of g and g;:

M M 00
1 o
g(t) —g;(Ol = | D LD < D 1H@I< Y 172 N <oplo-NGHD O
i=j+1 i=j+1 i=j+1

Recall that ¢, € I € Z was such that |z — G(to)] < 27 V™MD Set 2/ = G,(to).
Then, by the lemma above, we have

(2:21) |2 —'| < |2 = Glto) | +|Gto) — Gy(to)] < 27V 427 NGH) < 9= NG+,

Let I’ € G; be the unique dyadic interval in A,y containing /. That is, I’ = I,(t).

Let K(z,V,a,r, R) denote the twice truncated cone K(z,V,a, R) \ B(z,r). In
the lemma below we show that for all the scales between 2~NU+1) and 2N G(I)
has large intersection with the the twice truncated cone centered at ' with direction
L; corresponding to that scale.

Lemma 2.9. For t € I' such that |G(t) — 2/| > 27VU*) we have G(t) €
K(2',L;j, a/8). Moreover, for integers k satisfying Nj < k < N(j+ 1) — 1 we have
(2.22) HYG(I') N K (2!, Lj, /8,278 27FF2)) > o7k

Proof. Let t € I' satisfy |G(t) — 2’| > 27VU+D. Recall that, since I’ € G;, the
set G,(I') is a segment parallel to L;. We also know that 2’ = G;(ty) € G,(I'), and
so by Lemma 2.8

dist(G(t), L; + ') < |G(t) — G;(t)] < 2M 127N+ < sin(a/8)|G(t) — 2|,

where we also used that M = 100[a~!| and we assume « to be so small that a/8 <
2sin(a/8). Thus, G(t) € K(«',L;j, a/8).
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Now, let k be an integer such that Nj < k < N(j +1) — 1. Let t € I’ be such
that 27% < |t — o], so that

|G(t) — 2’| > |G(t) = Gy(to)| — |G(t) = G;(t)| > [t — to| — 2~ 27N+
> 9=k _opf—to—NG+D) > 9—NG+1)

Hence, by our previous result, G(t) € K(z', Lj, a/8). At the same time, the calcula-
tion above shows that |G(t) — 2’| > 27%1. Similarly,

G(t) — o] < 1G,(t) - Gy(to)] + |G(1) — Gy(H)] < VIt — to] + 201 27N,
Hence, for ¢t € I' such that 27% < [t — t5] < 27%! we have
27 R <|G(t) — 2| < 2772
That is, for t € I’ with 27% < |t — to| < 27%"! we have
G(t) € K(2/, Lj, /8,277 27F+2),
Since G is bilipschitz, (2.22) follows. O

Later on we will need the following simple lemma about the inclusions of twice
truncated cones.

Lemma 2.10. Let z1,7o € R*, L € G(2,1), » > 0 and ay € (0,7/50). Suppose

that |x; — zo| < sin(ag) r. Then
K(z1, L, g, sin(ap) oy — 22|,7) C K (22, L, 8, 2r).

Proof. Let y € K(x1, L, ap,sin(ag) |21 — 22|,7), so that sin(ag) tay — 29| <
ly — z1] < r and dist(y, L + x1) < sin(ap)|y — z1]. It is clear that for any p € L + 24
we have dist(p, L + x3) = |x1 — x5, and so

dist(y, L + z2) < dist(y, L + x1) + |71 — 5| < sin(ap)|y — 21| + sin(ao)|y — 24|
< 2sin(ag)|y — z2| + 2sin(ag) |z — 2.

It is easy to check that for ag € (0,7/50) we have 4sin(ag) < sin(8ayp), and so
sin(8ay)

dist(y, L + x9) < 5

(ly = @2| + |21 — 22]).
At the same time, we have

ly — x| > |y — @1| — |21 — 3] > (sin(og) ™" — D)]xy — a2| > |21 — 22].
Putting the two estimates together gives y € K (xo, L, 8cy). To see that y € B(xs, 2r),
note that |y — xo| < |y — x| + |21 — 22| < 27, O

Recall that in (2.22) we showed a lower bound on the length of intersection of
G(I’) with a cone centered at 2’. However, to prove (2.16) we need information about
the intersections with cones centered at x. We use (2.22) and Lemma 2.10 to get the
following.

Lemma 2.11. Let k be an integer such that o' 2= NU+D+9 < 9=k < 9=Nj=3,
Then, we have
(2.23) H (G(I')N K (z,Lj,a/2,27F)) = 27F,

Proof. First, recall that 2/ = G;(ty) and |z — 2/| < 27VUFD+L by (2.21). Using
our assumptions on k, and that we assume « to be so small that sin(a/8) > «a/16,
we get

(2.24) sin(a/8) o — 2| < o 127 NUHDFS < o7kmd o omkTl
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Hence, we may apply Lemma 2.10 with 2y = 2/, 2o =2, L = L;, ap = /8, r =
27k=1 to get

K(2', L;,a/8,sin(a/8) Mo — 2|, 27" ) € K(w,Lj,a/2,27F).
Since sin(a/8) 7tz — 2’| < 274 by (2.24), it follows from the above that
(2.25) K2, Lj, /8,277 27F 1) € K(x, L;,a/2,27").

Note that we have Nj < k —3 < N(j+ 1) — 1 due to our assumptions on k. Thus,
we may use (2.22) to get

HY(G(I') N K(x,Lj, /8,275 27+ 1)) > o7k
Together with (2.25), this concludes the proof. O

We are ready to finish the proof of Lemma 2.2.
Proof of (P4). We want to show that

11
(2.26) / H (K (2,0,a,r)NT) dr >N
0 r

~

r

We use (2.20) to write
"HK(x,0,0,7)NT) dr . /1 H'(K(z,Lj,a/2,7)NT) dr
r o Jo

T r

(2.27) "° " s
2 HI(K(IE,L]-,&/Q,T)HF) ﬁ

Z /
a—12-N@G+1)+10 T

Note that o1 2~ NUF)+10 < 9=Ni=3 que to the assumption N > 100(1 + log,(a™1)).
Now let a1 2-NGH+D+10 < 4« 2-Ni=3  and let k be the unique integer such that
27k <y < 27%*+1 Then, k satisfies the assumptions of Lemma 2.11, and we get

H (K (v, Lj,o/2,7)NT) > HY(K (2, Lj,0/2,27")NT) 2 27F =~ 7.

It follows from (2.27) and the above that

/1 HY (K (x,V,o,r)NT) @>/
0 «

=log(2) (N(j + 1) — 10 — logy(a™") — Nj — 3)

9—Nj—3

&

—19—N(j+1)+10 T

N
= log(2)(N —1 13y >
0g(2)( ogy(a™) —13) > 00"

where we used the assumption N > 100(1 + log,(a™!)) in the last inequality. Thus,
the proof of (2.26) is finished. O

3. Example of Joyce and Morters

In this section we will show that the measure p constructed in [JMOO| satisfies
BPBE(2), but does not satisfy BPBE(1). Hence, Theorem 1.10 is a true improvement
on its £, analogue [CT20, Theorem 10.2].

3.1. Construction of u. For reader’s convenience, we sketch out the construc-
tion of Joyce and Morters below.
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Let M > 3 be a large constant, and 1/2 < B < 1 be a sequence of numbers
converging to 1. For k > 1 we define my = Mk, m(k) = my...my = M k!, and

<k+1>5’“
o=\ -

We set also aj = 27" for all 2" < j < 2"+t n > 0.

We proceed to define a compact set £ C R? on which the measure p will be
supported. First, let Ey be a closed ball of diameter 1. We place m; closed balls of
diameter 2r; := o1/m; inside Ey. We do it in such a way, that

e their centers lie on the diameter of E, forming angle o; with the z axis,

e the boundaries of the first and the last ball touch the boundary of Ej,

e they overlap as little as possible, i.e. the distance between the centers of two
neighbouring balls is (1 — o1/my)/(my — 1).

We call these balls the balls of generation 1, we denote their family by By, and we
set By = Upep, B-

Now suppose that Ej has already been defined as a union of balls g, 5, B, and
that #Br = m(k). Inside every ball B € By, we place my, 1 closed balls of diameter
2rg1 = 01...0511/m(k +1). We do it in such a way, that

e their centers lie on the diameter of B forming angle f;l a; with the z axis,

e the boundaries of the first and the last ball touch touch the boundary of B,
e they overlap as little as possible, i.e. the distance between the centers of two
neighbouring balls is

01...05 1 —0pi1/mgi1

dk+1 = m(/{:)

Meg+1 — 1

The balls defined above are called the balls of generation (k+1), and their family
is denoted by Bjyq. Clearly, #Bri1 = myy1 - m(k) = m(k + 1). We set Eyq =
Usges,,, B: and E = (50 Ek.

It is shown in [JMO0O, §2.1] that if M is chosen appropriately, then two balls
of generation (k + 1) may intersect only if they are contained in the same ball of
generation k. It follows that there exists a natural probability measure p supported

on E defined by
(3.1) w(B) =m(k)™" for B€ By, k>1.

If the sequence S} is chosen properly, the set E has the following curious property:
it is of non-o-finite length, but all the projections of E onto lines are of zero length.
Moreover, the Menger curvature of E is finite. However, we will not use those
properties.

3.2. BPBE(2) holds. In [JM00, §2.1| Joyce and Mérters construct a function
©: [0,d;) — R satisfying ¢(r) < r and

dy 2
/ #(r) dr < oo.
0

r3

They also show that for 0 < r < d; the measure p satisfies p(B(z,7)) < 84 ¢(r). It
follows easily that u(B(x,r)) < Cir for C; = max(84,1/d;) and all r > 0, and so u
satisfies (1.3). Furthermore, by the observations above and the fact that u(R?) =1,
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for all x € F = supp . we have
>~ (u(B d W o(r)? ~ 1
(3.2) ‘/<ﬂiﬂg>l§/)ﬁ%mw/)gwsm
0 r r 0 r 4 T

for some Mj depending only on d; and ¢.
Obviously, for any 6 € [0,7/2), a € (0,1), R > 0, we have

€ b0 ) / (u(K(x,e,a,r»)Q dr _ /0°° (M) dr

r T r r

and so the BPBE(2) condition is trivially satisfied.

Let us note that the boundedness of nice singular integral operators on L?(u)
for this particular measure p is not a new result. It is well known that measures
satisfying (3.2) behave well with respect to SIOs. For example, one can use (3.2) and
[Mat96, Theorem 2.2] to prove local curvature condition for y, and then boundedness
of Cauchy transform follows from [Tol99, Theorem 1.1].

3.3. &, is not bounded. Let x € E, 0 € [0,7/2), and a € (0,7/100) be
given. We will show that

1
(3.3) (2.6, 0,1) :/ plB (. 0,0,) dr
0

r T

Definition 3.1. We will say that an integer k is a good index if
a
(3.4) Zaj—Nw -0 < —

where N is the integer satisfying 2 < k < 2¥*! | By the definition of a;, this is
equivalent to
2N 7 T 16

Our strategy is the following: first, we show that there are many good indices.
Then, we prove that if k is a good index, then u(K(x,0,a,2ry))r; " is large. Put
together, the two facts will imply (3.3).

We define Ny = Ny(«) to be a large integer, to be fixed in Lemmas 3.2 and 3.3.

(3.5) ‘(k—2N+1)7T —9‘< a

Lemma 3.2. If Ny = Ny(«) is large enough, then for all N > N, we have a large
portion of good indices satisfying 2V < k < 2N*1 that is,
#{2V <k < 2V k is a good index} > 2N a.
Proof. Let Ny be so big that 277 < /100, and let N > Ny. Let 2V < ko <
2N+1 be the index minimizing |(ko — 2% + 1)727" — §|. It is clear that
(ko —2Y¥ +1)27 V7 — 0] <27V,

and so it follows from (3.5) that all integers k such that 2% < k < 28! and |(k —
ko)2=N7| < a/50 are good indices. It is easy to see that there are at least C2N«
such integers, where C' is some absolute constant. 0

Recall that rp was the radius of balls of k-th generation, and x € E is arbitrary.
For k > 1 let By, € By, be a ball of generation k containing x (there may be two such
balls, in which case we just choose one).
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Lemma 3.3. If Ny = Ny(«a) is large enough, then for all good indices k > 2N
we have

HJ(K<‘%7 0,2 rk)) Z M(Bk)
Proof. Let y be the center of By 1, so that |x — y| < riyq. By construction,

(36) Tk+1 :7"]60']6+1(Mk)71 S?"kkil.
Since k > 2o for N, big enough we get
(3.7) lz — y| < repr < W'

Then, it follows from Lemma 2.10 that

K(y,0,a/8,sin(a/8) o —yl,ry) C K(x,0,a,2r}).
Since sin(a/8) Yz — y| < /2 by (3.7), we get
(3.8) K(y,0,a/8,r/2,11) C K(z,0,,27ry).
On the other hand, using the definition of good index (3.4) we arrive at
(3.9) K(y, Zle a; — Nm,a/50,r,/2,1) C K(y,0,a/8,r,/2,7%).

For brevity, set K to be the cone from the left hand side above, and let L be the axis
of K. Recall that the diameter of By (let us call it D) forms angle Zle a;j — N
with the x axis; that is, D is parallel to L. Since y is the center of By, it follows
from the construction of £ that y € D. Hence, D C L.

We claim that the balls of generation (k+1) contained in ByNB(y, )\ B(y, rx/2),
are in fact contained in K. Indeed, suppose z belongs to such ball, so that

(3.7 sin(a/50)ry

dist(z, L) = dist(z, D) < rgp1 < 5 rr < sin(a/50)|z — y.

Thus, z € K.

Since y € D and By, is a ball of radius ry, it follows that a large portion of balls
of generation (k4 1) contained in By, is also contained in B(y, %) \ B(y,7x/2). That
is, they are of the type considered above. Hence,

1(K) Z 1(Br).

By (3.9) and (3.8) we have K C K(z,0,a,2ry), and so the proof is finished. O
Lemma 3.4. For k > 2
27”k ~ k)

Proof. By the definition of u (3.1), ry, and o) we have

B1 Br
27“k 01...0f O1...0f 2 k—f—l

1 k 1
> = ——
—2 kE+1 Ek+1
where in the last inequality we used the fact that 1/2 < g < 1. 0

We are ready to finish the proof of the estimate (3.3).
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Proof of (3.3). Observe that if £ > Ny is a good index, then by Lemma 3.3 and
Lemma 3.4 for r € (27,4 7)

and so

(3.10)

Recall that r,; < k~!r;, by (3.6). Hence,

/1 /L(K(I,Q,O&,T‘))ﬂ> Z /4rk N(K(Z’,Q,Oéﬂ“)) dr

[AT15]
IBN21]
[CT20)
[Dab21]
[Dav9l]|
IDS91]
[DS93al
[DS93b)

[GS19]

[JMO0]

[MO18]

r r r
k>2No © <7k

Z Z /24”“ xGar))%

N=Ny 2N <p<oN+1
kis good

(3.10) = 1
D DD D
N=Ny 2N <k<oN+1

kis good

o0
~ E E 27V > E 27 VN =00, O
N=Nop 2N<k<oN+1 N=Np
kis good
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