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Weak quasicircles have Lipschitz dimension 1

David M. Freeman

Abstract. We prove that the Lipschitz dimension of any bounded turning Jordan circle or arc
is equal to 1. Equivalently, the Lipschitz dimension of any weak quasicircle or arc is equal to 1.

Heikkojen kvasiympyröiden Lipschitzin ulottuvuus on 1

Tiivistelmä. Todistamme, että jokaisen rajoitetusti kiertävän Jordanin ympyrän tai kaaren
Lipschitzin ulottuvuus on 1. Yhtäpitävästi jokaisen heikon kvasiympyrän tai -kaaren Lipschitzin
ulottuvuus on 1.

1. Background

In [CK13], Cheeger and Kleiner introduced the concept of Lipschitz dimension
and proved deep results about metric spaces of Lipschitz dimension at most 1. In
[Dav21], David further developed various dimension-theoretic properties of Lipschitz
dimension and posed several questions to prompt additional study. In this paper we
answer one of these questions. To this end, we now provide a few core definitions
and briefly survey the theoretical context of our main result.

We write N to denote the set {0, 1, 2, . . . } consisting of non-negative integers, and
R to denote the Euclidean line. Given metric spaces X and Y and a constant C ≥ 1,
a map f : X → Y is said to be C-Lipschitz provided that, for all points a, b ∈ X, we
have dY (f(a), f(b)) ≤ C dX(a, b). Furthermore, an embedding is C-bi-Lipschitz if it
is also true that dX(a, b) ≤ C dY (f(a), f(b)).

In order to specialize from Lipschitz maps to Lipschitz light maps (as defined
below), we must analyze the diameters of pre-image components. However, these
components are not necessarily connected. Instead, they are defined in terms of the
following metric condition. Given a metric space (X, d) and δ > 0, a δ-sequence in
X is a finite sequence of points {xi}ni=0 such that, for each 0 ≤ i ≤ n − 1, we have
d(xi, xi+1) ≤ δ. A subset U ⊂ X is said to be δ-connected if every pair of points in
U is contained in a δ-sequence in U . A δ-component of X is a maximal δ-connected
subset of X.

We say that a map F : X → Y is Lipschitz light provided there exists C ≥ 1
such that F is C-Lipschitz, and, for every r > 0 and every subset E ⊂ Y with
Diam(E) ≤ r, the r-components of F−1(E) have diameter bounded above by C r.
Here we employ the definition of Lipschitz light used in [Dav21, Definition 1.2].
As shown by David in [Dav21, Section 1.4], this definitions is equivalent to [CK13,
Definition 1.14] for maps into Rn (for n ≥ 1).

A metric space X has Lipschitz dimension dimL(X) = n ∈ N if n is minimal such
that there exists a Lipschitz light map F : X → Rn. In [CK13], Cheeger and Kleiner
prove that any metric space admitting a Lipschitz light mapping into the real line
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can be mapped into L1 via a bi-Lipschitz embedding [CK13, Theorem 1.7]. That
is, if dimL(X) ≤ 1, then there exists a measure space (Z, µ) such that X admits a
bi-Lipschitz embedding into L1(Z, µ).

Furthermore, in [CK13], Cheeger and Kleiner study metric spaces appearing as
the inverse limits of certain admissible inverse systems of graphs. On one hand,
they prove that the inverse limit of such a system has Lipschitz dimension at most 1
[CK13, Theorem 1.10]. On the other hand, they prove that any metric space of
Lipschitz dimension at most 1 can be realized (up to a bi-Lipschitz homeomorphism)
as the inverse limit of an admissible inverse system of graphs [CK13, Theorem 1.11].
We refer the reader to [CK13] for definitions and more precise statements.

In [Dav21], David studies Lipschitz dimension in a somewhat broader context.
For example, he explores various dimension-theoretic properties of Lipschitz dimen-
sion, clarifies its relationship to other notions of dimension, and reveals the behavior
of Lipschitz dimension under the action of various classes of mappings. In par-
ticular, David proves that, in general, Lipschitz dimension is not invariant under
quasisymmetric mappings [Dav21, Corollary 8.4]. However, the examples David uses
to demonstrate such non-invariance all have Hausdorff dimension at least 4. In light
of this, David comments on the possibility that Lipschitz dimension is in fact in-
variant under quasisymmetric deformations of lower-dimensional Euclidean spaces.
More specifically, he poses the following question.

Question 1.1. [Dav21, Question 8.7] Does every quasisymmetric image of the
unit interval [0, 1] ⊂ R have Lipschitz dimension 1?

In what follows we provide a positive answer to Question 1.1.

2. Main result

We begin the presentation of our main result by introducing additional termi-
nology. An embedding f : X → Y is quasisymmetric provided there exists a homeo-
morphism η : [0,∞)→ [0,∞) such that, for all points x, y, z ∈ X and t ∈ [0,∞),

d(x, y) ≤ t d(x, z) implies d(f(x), f(y)) ≤ η(t)d(f(x), f(z)).

An embedding f : X → Y is weakly quasisymmetric provided there exists a constant
H ≥ 1 such that, for all x, y, z ∈ X,

d(x, y) ≤ d(x, z) implies d(f(x), f(y)) ≤ Hd(f(x), f(z)).

While all quasisymmetries are weak quasisymmetries (with H := η(1)), in general,
a weak quasisymmetry need not be a quasisymmetry. We refer to the (weak) qua-
sisymmetric image of the unit circle as a (weak) quasicircle, and such an image of
the closed unit interval as a (weak) quasiarc. Thus every quasicircle/arc is a weak
quasicircle/arc. Conversely, by [TV80, Theorem 4.9], every weak quasicircle/arc that
is doubling is a quasicircle/arc. Here we say that a space X is doubling if there exists
D ≥ 1 such that any open ball of radius 2r > 0 can be covered by D open metric balls
of radius r. For additional information about weak quasicircles and weak quasiarcs,
we refer the reader to [Mey11] and references therein.

A Jordan circle Γ is a homeomorphic image of the unit circle. Given two points
x, y ∈ Γ, we write Γ(x, y) to denote a component of Γ\{x, y} of minimal diameter. We
write Γ[x, y] to denote the topological closure of Γ(x, y); thus Γ[x, y] = Γ(x, y)∪{x, y}.
Analogously, a Jordan arc Γ is a homeomorphic image of the closed unit interval.
In this setting, given two points x, y ∈ Γ, we write Γ(x, y) to denote the connected
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component of Γ \ {x, y} whose closure contains {x, y}. Again, Γ[x, y] = Γ(x, y) ∪
{x, y}.

A Jordan circle or arc is said to be bounded turning provided that there exists a
constant C ≥ 1 such that, for all pairs of points x, y ∈ Γ, we have Diam(Γ[x, y]) ≤
C d(x, y). In this case we say that Γ is C-bounded turning. This property is at times
referred to in the literature as linear connectivity.

While it is straightforward to verify that weak quasicircles and arcs are bounded
turning, in [Mey11] Meyer proves that bounded turning quasicircles/arcs are weakly
quasisymmetric images of the unit circle/interval. We record this result as follows.

Theorem 2.1. [Mey11, Theorem 1.1] A Jordan circle/arc Γ is a weak quasicir-
cle/arc if and only if Γ is bounded turning.

In light of Meyer’s characterization and the fact that every quasicircle is a weak
quasicircle, Question 1.1 is (more than) answered by the following result.

Theorem 2.2. Bounded turning Jordan circles/arcs have Lipschitz dimension 1.

We point out that the Lipschitz light maps we will construct in order to prove
Theorem 2.2 are not injective (in general). Indeed, if Γ is not locally rectifiable, an
injective Lipschitz light map F : Γ → R does not exist. This is because an injective
Lipschitz light map F : Γ→ R must be bi-Lipschitz. To see this, let a, b denote any
pair of points in F (Γ) ⊂ R. Then F−1({a, b}) = {F−1(a), F−1(b)} and so

d(F−1(a), F−1(b)) = Diam(F−1({a, b})) ≤ C Diam({a, b}) = C|a− b|.
Therefore, the maps we construct in order to prove Theorem 2.2 are quite different
from the homeomorphisms constructed in [Mey11].

Via [CK13, Theorem 1.7 and Theorem 1.11] (as mentioned in Section 1), we also
have the following two corollaries.

Corollary 2.3. If Γ is a bounded turning Jordan circle or arc, then there exists
a measure space (Z, µ) such that Γ admits a bi-Lipschitz embedding into L1(Z, µ).

Corollary 2.4. If Γ is a bounded turning Jordan circle or arc, then Γ is bi-
Lipschitz homeomorphic to an inverse limit of an admissible inverse system of graphs.

Indeed, given a metric space X and a Lipschitz light map F : X → R, Cheeger
and Kleiner explicitly construct an admissible inverse system of graphs whose inverse
limit is bi-Lipschitz homeomorphic to X [CK13, Section 4]. In Appendix A, we
provide an alternate means of viewing a given bounded turning Jordan circle as an
inverse limit.

Theorem 2.2 is also relevant to the following result of David from [Dav21].

Theorem 2.5. [Dav21, Theorem 5.9] Let G denote a non-abelian Carnot group,
and let K ⊂ G denote a compact subset of positive measure. Then the Lipschitz
dimension of K is equal to ∞.

Since the Lipschitz dimension of a compact space is bounded from below by its
topological dimension [Dav21, Observation 1.4], given an integer n ≥ 1, we note
that the Lipschitz dimension of the product of n bounded turning Jordan arcs is at
least n. Furthermore, the Lipschitz dimension of the product of n bounded turning
Jordan arcs is bounded from above by n (here we use Theorem 2.2 and [Dav21,
Proposition 3.1]). Therefore, the Lipschitz dimension of the product of n bounded
turning Jordan arcs is equal to n. Since Lipschitz dimension is invariant under bi-
Lipschitz homeomorphisms, we arrive at the following corollary.
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Corollary 2.6. Let G denote a non-abelian Carnot group. If K ⊂ G is a
compact subset of positive measure, then K does not admit a bi-Lipschitz embedding
into a product of finitely many bounded turning Jordan arcs.

Before proceeding, we briefly sketch the proof of Theorem 2.2. The starting point
is provided by the following result of Herron and Meyer.

Theorem 2.7. [HM12] If Γ is a bounded turning Jordan circle, then Γ is bi-
Lipschitz homeomorphic to some Jordan circle in S1.

Here S1 is the collection of all Jordan circles given by dyadic diameter functions
as constructed in Section 3 below. This result allows us to distort any given bounded
turning Jordan circle into the limit of piecewise linear Jordan circles. This structure
is amenable to the construction of a Lipschitz light map into R.

The organization of this paper is as follows. In Section 3, we define and analyze
the catalogue S1. In Section 4, we construct a 1-Lipschitz mapping from any Jordan
circle Γ ∈ S1 onto the unit circle S. Finally, in Section 5 we prove that this mapping
is Lipschitz light via a series of technical lemmas. An appendix is also provided, in
which we explain how our Lipschitz light map from Γ onto S can be understood as
an inverse limit.

3. Dyadic intervals and dyadic diameter functions

Following [HM12], we view the unit circle S as [0, 1]/{0, 1}, the closed unit interval
whose endpoints are identified. We equip S with the arc-length metric λ. That is,
for two points s, t ∈ S such that 0 ≤ s ≤ t ≤ 1, we have

λ(s, t) := min{t− s, 1− (t− s)}.
The space S is endowed with a positive orientation via the usual left-to-right orien-
tation on [0, 1]. For a, b ∈ S, the interval [a, b] ⊂ S consists of {a, b} and points c ∈ S
such that the orientation given by progressing from a to c to b along [a, b] agrees with
the positive orientation on S.

Given n ∈ N, we write In to denote the collection of 2n closed dyadic intervals in
S, each of length 2−n. For example, I1 = {[0, 1/2], [1/2, 1]}. We write În to denote
the collection

⋃n
m=0 Im. Furthermore, we write Î to denote the collection

⋃∞
n=0 In.

Given an interval I ∈ Î, we write l(I) to denote the unique index n ∈ N such that
I ∈ In. For convenience, we use the language of a dyadic tree to describe intervals
in Î. In particular, given any I ∈ Î, there are exactly two dyadic children contained
in I, and I is contained in its unique dyadic parent interval. Two children with the
same parent are called siblings, and if a dyadic interval I is strictly contained in a
dyadic interval J , we say that I is a descendent of J .

Similarly, we write Dn to denote the collection of 2n dyadic endpoints of intervals
in In. For example, D0 = {0} = {1}, D1 = {0, 1/2} = {1, 1/2}, etc. Note that, for
each n ∈ N, we have Dn ⊂ Dn+1. We write D to denote

⋃∞
n=0Dn.

We call a function ∆: Î → (0, 1] a dyadic diameter function provided that ∆(S) =

1 and, for any I ∈ Î, either

∆(I ′) = ∆(I ′′) =
1

2
∆(I) or ∆(I ′) = ∆(I ′′) = ∆(I).

Here I ′ and I ′′ denote the two dyadic children of I. We also require that

(3.1) lim
n→+∞

max{∆(I) | I ∈ In} = 0.
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Note that, contrary to [HM12], we omit the parameter σ from the definition of ∆.
This is because σ = 1 for all dyadic diameter functions utilized in what follows. For
use below, we denote the collection of all such dyadic diameter functions as D.

For completeness, we also provide the definition of the catalogue S1. Indeed, for
every ∆ ∈ D, the function d∆ on S× S is defined as

d∆(x, y) := inf
N∑
k=1

∆(Jk),

where the infimum is taken over all chains J1, . . . , JN of intervals from Î joining
x to y. That is, {x, y} is contained in the connected set J1 ∪ · · · ∪ JN . By [HM12,
Lemma 3.1], the function d∆ is a distance, and the metric space (S, d∆) is a 1-bounded
turning Jordan curve. We write S1 to denote the collection of all such curves, each
given by some dyadic diameter function ∆. That is,

S1 := {(S, d∆) | ∆ ∈ D}

Given a fixed ∆ ∈ D, for each n ∈ N we define a distance dn on S using the
truncated dyadic diameter function ∆n. For m ≤ n and I ∈ Im, we define ∆n(I) :=
∆(I). For every m > n and I ∈ Im, we inductively define ∆n(I) = 1

2
∆n(Ĩ), where

Ĩ ∈ Im−1 denotes the dyadic parent of I. We then define

dn(x, y) := d∆n(x, y).

We write Γn to denote the metric space (S, dn), and Γ to denote (S, d∆). For n ∈ N,
we write Diamn(E) to denote the dn-diameter of a set E ⊂ S. Furthermore, we write
Diam∆(E) to denote the d∆-diameter of E. For notational consistency, we will write
d0 for λ. Thus, given any Γ ∈ S1, the space Γ0 denotes (S, λ).

We say that a chain of dyadic intervals {Ii}Ni=1 isminimal provided that it consists
of intervals with pairwise disjoint interiors and that no union of at least two distinct
intervals from the chain forms an interval in Î. In particular, if the union of intervals
∪Mk=1Iik from a minimal chain {Ii}Ni=1 is equal to some interval J ∈ Î, then M = 1
and J = Ii1 ∈ {Ii}Ni=1. In graph-theoretic language, a chain of dyadic intervals is
minimal if no two siblings are contained in the chain and no interval is a descendent
of another in the chain.

Lemma 3.1. Given ∆ ∈ D, the definition of d∆ is unchanged by the assumption
that the chains of dyadic intervals utilized in this definition are minimal.

Proof. Suppose that {Ii}Ni=1 is a chain of dyadic intervals joining x and y in S.
Suppose Ij and Ik have non-disjoint interiors. Since both Ij and Ik are dyadic, one
must be a subset of the other. Without loss of generality, Ij ⊂ Ik. Therefore, the sum∑N

i=1 ∆(Ii) can be decreased by eliminating the interval Ij from {Ii}Ni=1. It follows
that d∆ can be defined using only chains consisting of intervals with pairwise disjoint
interiors.

Next, suppose there exists M ≥ 2 and a subcollection {Iik}Mk=1 ⊂ {Ii}Ni=1 such
that J := ∪Mk=1Iik ∈ Î. Since ∆(J) ≤

∑M
k=1 ∆(Iik), the sum

∑N
i=1 ∆(Ii) will not

increase when replacing the intervals {Iik}Mk=1 in {Ii}Ni=1 with the single interval J .
Since N < +∞, such a replacement can happen at most finitely many times. It
follows that d∆ can be defined using only minimal chains. �

For use below, we record the following technical lemma.
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Lemma 3.2. Assume {Ii}Ni=1 is a minimal chain of dyadic intervals in S indexed
such that, for 1 ≤ i ≤ N−1, the right endpoint of Ii is the left endpoint of Ii+1. Under
this assumption, there exists either a unique interval or a unique pair of adjacent
intervals from {Ii}Ni=1 of maximal λ-diameter. Write i∗ to denote the index of such
a maximal interval. If i∗ > 1, then l(Ii) is strictly decreasing for i = 1, . . . , i∗ − 1. If
i∗ < N , then l(Ii) is strictly increasing for i = i∗ + 1, . . . , N .

Proof. We may assume that σ :=
⋃N

i=1 Ii 6= S, else N = 1 and I1 = S. Suppose
there are two distinct intervals Ij and Ik in {Ii}Ni=1 of maximal λ-diameter, where
j < k and n := l(Ij) = l(Ik). If these intervals are not adjacent, then the chain
{Ii}k−1

i=j+1 consisting of intervals from {Ii}Ni=1 joins the right endpoint of Ij to the left
endpoint of Ik. Since Ij and Ik are not adjacent, the union

⋃k
i=j Ii ⊂ σ contains at

least three consecutive intervals from In. Such a union must contain some interval
J from In−1. It follows from the minimality of {Ii}Ni=1 that the interval J must be
an element of {Ii}Ni=1. However, this violates the assumption that Ij and Ik are of
maximal λ-diameter. Therefore, Ij and Ik must be adjacent.

To verify the second part of the lemma, suppose i∗ > 1. If i∗ = 2 then the desired
conclusion is trivial, so we may assume that i∗ ≥ 3. Let 1 ≤ k ≤ i∗ − 2, and write
m := l(Ik). Since k ≤ i∗ − 2 and l(Ii∗) < m, the interval J of Im immediately to the
right of Ik is contained in σ. By minimality, no union of at least two intervals from
{Ii}Ni=1 is equal to J . Therefore, either J = Ik+1 or J is strictly contained in Ik+1.
If J = Ik+1, then minimality implies that the intervals Ik and Ik+1 are not siblings.
In particular, Ik+1 is the left child of its parent interval J̃ ∈ Im−1. Since J̃ ∈ Im−1

strictly contains Ik+1 and J̃ ⊂ σ, we contradict minimality. In conclusion, J 6= Ik+1,
and so J is strictly contained in Ik+1. This implies that l(Ik+1) < l(Ik), as desired.

An analogous argument verifies the final assertion of the lemma. �

We emphasize that the conclusion of Lemma 3.2 applies to any minimal chain of
dyadic intervals in S, up to a possible rearrangement of indices.

Since, for any I ∈ Î, we have ∆n(I) ≤ ∆(I), it follows that, for any x, y ∈ S,

(3.2) dn(x, y) ≤ d∆(x, y).

Therefore, for any set E ⊂ S, we have Diamn(E) ≤ Diam∆(E). Furthermore, given
n ∈ N such that n ≥ 1 and [a, b] = I ∈ În, via [HM12, Lemma 3.1], we have

(3.3) dn(a, b) = Diamn(I) = ∆n(I) = ∆(I) = Diam∆(I) = d∆(a, b).

Lemma 3.3. If x, y ∈ S and n ∈ N, then

d∆(x, y) ≤ dn(x, y) + 2 max{∆(I) | I ∈ In}.
In particular, dn(x, y)→ d∆(x, y) as n→ +∞.

Proof. Let M(n) := max{∆(I) | I ∈ In}. Fix x, y ∈ S, n ∈ N, and let 0 < ε <
M(n) be given. Let {Ii}Ni=1 be a minimal chain of dyadic intervals joining x and y,
indexed as in the assumptions of Lemma 3.2, such that

∑N
i=1 ∆n(Ii) < dn(x, y) + ε.

If {Ii}Ni=1 ⊂ În, then we are done, because ∆ = ∆n on În. If not, then let Ii∗ denote
an interval from {Ii}Ni=1 such that m := l(Ii∗) is minimal. If x and y are contained
in adjacent intervals J,K ∈ In, then

d∆(x, y) ≤ ∆(J) + ∆(K) ≤ 2M(n) ≤ dn(x, y) + 2M(n).

Therefore, we can assume that x and y are contained in non-adjacent intervals from
In. It follows from the minimality of {Ii}Ni=1 that m ≤ n. Therefore, either l(I1) ≤ n,
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or, by Lemma 3.2, there exists a maximal index i1 such that 1 ≤ i1 < i∗ and, if
1 ≤ i ≤ i1, then l(Ii) > n. Similarly, either l(IN) ≤ n, or there exists a minimal
index i2 such that i∗ < i2 ≤ N and, if i2 ≤ i ≤ N , then l(Ii) > n. Assume the
existence of such i1 and i2 (else the following argument simplifies). Via Lemma 3.2,
one can verify that the interval σ1 :=

⋃i1
i=1 Ii is contained in some interval J1 ∈ In

adjacent (on the left) to Ii1+1. Similarly, σ2 :=
⋃N

i=i2
Ii is contained in some interval

J2 ∈ In adjacent (on the right) to Ii2−1. Thus we have

d∆(x, y) ≤ ∆(J1) +

i2−1∑
i=i1+1

∆(Ii) + ∆(J2) = ∆(J1) +

i2−1∑
i=i1+1

∆n(Ii) + ∆(J2)

≤
N∑
i=1

∆n(Ii) + 2M(n) < dn(x, y) + ε+ 2M(n).

Since ε > 0 was arbitrary, we are done. �

4. Constructing a 1-Lipschitz map F0 : Γ → S

Let Γ denote a bounded turning Jordan circle or arc. Our first step towards the
construction of a Lipschitz light map F : Γ → R is to realize that it is sufficient to
find a Lipschitz light map F : Γ → S. This is because S is easily seen to admit a
Lipschitz light map into R, and one can verify that the composition of a Lipschitz
light map from Γ to S with a Lipschitz light map from S into R is Lipschitz light (as
noted in [Dav21, Section 5]). See also our comments at the outset of Section 5.

Next, we again recall the following result of Herron and Meyer.

Theorem 4.1. [HM12] If Γ is a bounded turning Jordan circle (or arc), then Γ
is bi-Lipschitz homeomorphic to some Jordan circle in S1 (or S ′1).

Here S1 is defined as in Section 3. The collection S ′1 can be analogously defined
using dyadic diameter functions on the unit interval [0, 1]. We remark that the
validity of this extension of the main result of [HM12] to Jordan arcs is pointed out
by Herron and Meyer on page 605 of [HM12].

Since Lipschitz dimension is invariant under bi-Lipschitz homeomorphisms, we
may work exclusively with Jordan circles in S1 (or arcs in S ′1). We will only present
the details for weak quasicircles; the details for weak quasiarcs are analogous. Thus,
given a curve Γ = (S, d∆) ∈ S1, we construct a Lipschitz light map F : Γ→ S.

We will need the following map f in order to achieve this goal, which we will refer
to as a folding map. First, we divide [0, 1] into two dyadic subintervals, and denote
these two subintervals by I0 and I1, respectively. We also divide [0, 1] into four
consecutive dyadic subintervals of equal length with disjoint interiors, and denote
these four subintervals by I00, I01, I10, and I11, respectively. Thus I0 = I00∪ I01 and
I1 = I10 ∪ I11. Assume these intervals are indexed (in binary) such that adjacent
intervals proceed consecutively from left to right along [0, 1]. Finally, divide each
of I01 and I10 into two dyadic subintervals of equal length with disjoint interiors,
and denote these subintervals by I010, I011, I100, and I101, respectively. Thus I01 =
I010 ∪ I011 and I10 = I100 ∪ I101. Again we index these intervals such that their order
reflects the positive orientation of [0, 1]. The map f : [0, 1] → [0, 1] is defined by its
action on these subintervals (see Figure 1). It maps

• I00 linearly onto I0 in an orientation preserving manner,
• I010 linearly onto I10 in an orientation preserving manner,
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• I011 linearly onto I10 in an orientation reversing manner,
• I100 linearly onto I01 in an orientation reversing manner,
• I101 linearly onto I01 in an orientation preserving manner, and
• I11 linearly onto I1 in an orientation preserving manner.

We note that this definition can be scaled linearly and applied to any interval
I ⊂ S. Moreover, by identifying the endpoints of [0, 1], the map f can be applied
to S. Thus, for any n ∈ N, let I ∈ In. If the two dyadic children I ′ and I ′′ of I
satisfy ∆(I ′) = ∆(I ′′) = 1

2
∆(I), then we define the map fn : I → I to be the identity

map. Thus fn is an isometry from (I, dn+1)→ (I, dn). Indeed, in the case that fn is
defined as the identity map, the distances dn+1 and dn agree when restricted to I. If
∆(I ′) = ∆(I ′′) = ∆(I), then we define the map fn : I → I to be a folding map. The
map fn : Γn+1 → Γn is defined in this manner on each interval I ∈ In.

Figure 1. The action of the folding map f . Here x′i denotes f(xi), and, for 1 ≤ i ≤ 6, the map
f is linear on [xi−1, xi].

Lemma 4.2. For each n ∈ N, the map fn : Γn+1 → Γn is 1-Lipschitz.

Before beginning the proof of Lemma 4.2, we remark that this lemma is clearly
false when the folding map as seen in Figure 1 is understood with respect to Euclidean
distance on the intervals I ∈ In. Indeed, with respect to the Euclidean distance the
folding map f has Lipschitz constant 2. We obtain a 1-Lipschitz map fn : Γn+1 → Γn

only by virtue of the fact that Γn+1 is equipped with the distance dn+1 and Γn is
equipped with the distance dn.

Proof of Lemma 4.2. We examine the image of an interval I ∈ Î under the map
fn. If I ∈ În, then fn(I) = I ∈ Î and Diamn(fn(I)) = Diamn(I) = Diamn+1(I).

If I ∈ Î \ În+1, then fn(I) ∈ Î and Diamn(fn(I)) ≤ Diamn+1(I). Indeed, let
J ∈ In denote the unique dyadic interval such that I ⊂ J . If fn is defined as a
folding map on J , then

Diamn(fn(I)) =
1

2
Diamn+1(fn(I)) ≤ Diamn+1(I).

If fn is defined as the identity map on J , then

Diamn(fn(I)) = Diamn(I) = Diamn+1(I).

If I ∈ In+1 (the only remaining possibility), then fn fixes the endpoints of I,
and I ⊂ fn(I). In particular, if fn is the identity on Ĩ (the dyadic parent of I),
then fn(I) = I and Diamn(fn(I)) = Diamn(I) = Diamn+1(I). If fn is a folding map
on Ĩ, then fn(I) is the union of I with an interval J ∈ In+2 that is adjacent to I.
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Moreover, it is straightforward to verify that

Diamn(fn(I)) = Diamn(I ∪ J) = Diamn(I) + Diamn(J)

=
3

4
Diamn(Ĩ) =

3

4
Diamn+1(I) < Diamn+1(I).

Therefore, given a chain {Ii}Ni=1 of dyadic intervals, {fn(Ii)}Ni=1 can be written as
a chain of dyadic intervals {I ′j}N

′
j=1 such that

⋃N
i=1 fn(Ii) =

⋃N ′

j=1 I
′
j, and

N∑
i=1

Diamn(fn(Ii)) =
N ′∑
j=1

Diamn(I ′j) =
N ′∑
j=1

∆n(I ′j).

Thus, if {Ii}Ni=1 joins x and y, then {I ′j}N
′

j=1 joins fn(x) and fn(y), and

dn(fn(x), fn(y)) ≤
N ′∑
j=1

∆n(I ′j) =
N∑
i=1

Diamn(fn(Ii)) ≤
N∑
i=1

∆n+1(Ii).

It follows from the definition of dn+1(x, y) that dn(fn(x), fn(y)) ≤ dn+1(x, y). �

Given anym ≤ n ∈ N, we define Fm,n := fm◦fm+1◦· · ·◦fn : Γn+1 → Γm. Ifm = n,
then we understand Fm,m = Fn,n to denote fn. As a composition of 1-Lipschitz maps
(Lemma 4.2), each map Fm,n : Γn+1 → Γm is 1-Lipschitz. Furthermore, this sequence
of maps induces a 1-Lipschitz map Fm : (D, d∆)→ (Γm, dm). To see this, let x ∈ D,
and let k ∈ N be the smallest integer such that x ∈ Dk. For any n ≥ k, the map
fn fixes the set Dk. Therefore, if n ≥ k, then fn(x) = x. If n ≥ k > m, we then
observe that limn→+∞ Fm,n(x) = Fm,k(x). In this case, define Fm(x) := Fm,k(x). If
n > m ≥ k, then define Fm(x) := x.

To see that Fm thus defined is 1-Lipschitz on D, let x, y denote any two points
in D. Choose k ∈ N such that x, y ∈ Dk and k > m. Via (3.2) and the fact that, for
all n ≥ m the map Fm,n is 1-Lipschitz, we have

dm(Fm(x), Fm(y)) = dm(Fm,k(x), Fm,k(y)) ≤ dk+1(x, y) ≤ d∆(x, y).

Since Γm is complete, D is dense in Γ (cf. (3.1)), and Fm is Lipschitz on D, it is then
straightforward to extend Fm such that Fm : Γ→ Γm is 1-Lipschitz.

We note that we may also view the maps Fm,n as acting on Γ. Moreover, it
follows from (3.2) that Fm,n : Γ → Γm is 1-Lipschitz. With this in mind, we prove
the following lemma.

Lemma 4.3. For each m ∈ N, the maps Fm,n : Γ → Γm uniformly converge to
Fm : Γ→ Γm as n→ +∞.

Proof. Fix m ∈ N and ε > 0. Choose M ∈ N such that

n ≥M implies max{∆(I) | I ∈ In} < ε/2.

For any x ∈ Γ, there exists a nested sequence of dyadic intervals In ∈ In such that,
for every n ∈ N, we have In ⊂ In−1 and x ∈ In. Furthermore, there exists xn ∈ Dn

such that xn ∈ In, and so d∆(xn, x)→ 0. For n ≥ m and j ∈ N, we have Fm(xn+j) =
Fm,n+j(xn+j). If j = 0, write wn,0 := xn. If j ≥ 1, write wn,j := fn+1◦· · ·◦fn+j(xn+j).
In either case, we note that Fm(xn+j) = Fm,n+j(xn+j) = Fm,n(wn,j). Since, for all
k ∈ N, we have fn+k(In) = In, it follows that wn,j ∈ In. Therefore,

Fm(x) = lim
j→+∞

Fm(xn+j) = lim
j→+∞

Fm,n(wn,j) ∈ Fm,n(In).



292 David M. Freeman

Combining these observations, we find that, for n ≥ max{m,M}, we have

dm(Fm,n(x), Fm(x)) ≤ dm(Fm,n(x), Fm,n(xn)) + dm(Fm,n(xn), Fm(x))

≤ d∆(x, xn) + Diamm(Fm,n(In))

≤ 2 Diam∆(In) ≤ 2 max{∆(I) | I ∈ In} < ε.

It follows that Fm,n : Γ→ Γm is uniformly convergent to Fm : Γ→ Γm. �

At this point the informed reader may notice that {Fm,n : Γn+1 → Γm} and
{Fm : Γ → Γm} bear some resemblance to an inverse system and an inverse limit,
respectively. Indeed, in Appendix A, we re-frame our construction in the language
of inverse systems and inverse limits.

5. Proving that F0 : Γ → S is Lipschitz light

Our goal in this section is to verify the existence of a constant C ≥ 1 such that, for
any subset E ⊂ S, the Diam0(E)-components of F−1

0 (E) have d∆-diameter bounded
above by C Diam0(E). Here we remind the reader that Diam0 denotes λ-diameter
in S. Via the following lemma, this will be sufficient to prove that F0 : Γ → S is
Lipschitz light, and thus (via the comments at the outset of Section 4) that Γ has
Lipschitz dimension equal to 1.

Lemma 5.1. Suppose there exists a constant C ≥ 1 such that F : Γ → S is
C-Lipschitz, and, for any subset E ⊂ S such that Diam0(E) > 0, the Diam0(E)-
components of F−1(E) have d∆-diameter bounded by C Diam0(E). This implies
that, for any r > 0 and any subset E ⊂ S satisfying Diam0(E) ≤ r, the r-components
of F−1(E) have d∆-diameter bounded by C ′r, for C ′ := max{C, 8}.

Proof. Let r > 0, and let E ⊂ S be such that Diam0(E) ≤ r. We may assume that
E is compact. If Diam0(E) = r, then (by assumption) the r-components of F−1(E)
have d∆-diameter bounded by Cr. Therefore, we may assume that Diam0(E) < r.
If r ≥ 1/8, then we note that Diam0(F−1(E)) ≤ Diam∆(Γ) ≤ 1 ≤ 8r. Thus, we may
assume that r < 1/8.

We claim that E is contained in a subset E ′ ⊂ S such that Diam0(E ′) = r. To
see this, we modify the argument employed in [Dav21, Remark 1.9]. Given x ∈ S,
the subset Ix := {y ∈ S |λ(x, y) ≤ 1/8} is isometric to an interval in R of length 1/4.
If x ∈ E, then E ⊂ Ix. Let a and b denote the first and last points in E along the
interval Ix. Thus λ(a, b) = Diam0(E) < r. Let c ∈ Ix be such that λ(a, c) = r < 1/8
and S[a, b] ⊂ S[a, c] =: E ′. Then E ⊂ E ′ and Diam0(E ′) = r. By assumption, the
r-components of F−1(E ′) have d∆-diameter bounded by Cr. Since the r-components
of F−1(E) are contained in the r-components of F−1(E ′), we arrive at the desired
conclusion. �

With the above lemma in hand, we begin our proof that F0 : Γ→ S is Lipschitz
light. Fix E ⊂ S such that Diam0(E) > 0, and let M∗ ∈ N be such that

(5.1) 2−M
∗−1 ≤ Diam0(E) < 2−M

∗
.

We may assume that M∗ ≥ 3, else Diam∆(F−1
0 (E)) ≤ Diam∆(Γ) ≤ 8 Diam0(E). By

definition of M∗, there exist two adjacent dyadic subintervals I, J ∈ IM∗ such that
E ⊂ I ∪ J . In fact, E may be contained in a single element of IM∗ , but it will do no
harm to assume E is contained in the union of two such intervals.

We claim that it is sufficient to examine pre-images of H := I ∪ J . Indeed, given
any δ > 0, the δ-components of F−1

0 (E) are contained in δ-components of F−1
0 (H).



Weak quasicircles have Lipschitz dimension 1 293

For the remainder of this section, we set δ := Diam0(E).

Lemma 5.2. Given n ∈ N and U ⊂ S, we have Fn+1(F−1
0 (U)) = F−1

0,n(U).

Proof. Suppose x ∈ Fn+1(F−1
0 (U)), so x = Fn+1(w) for some w ∈ F−1

0 (U). Then

F0,n(x) = F0,n(Fn+1(w)) = lim
m→∞

F0,n(Fn+1,m(w)) = lim
m→∞

F0,m(w) = F0(w).

Since F0(w) ∈ U , it follows that Fn+1(F−1
0 (U)) ⊂ F−1

0,n(U).
Next, let x ∈ F−1

0,n(U). Write zn+1 := x, and choose a point zn+2 ∈ f−1
n+1(zn+1) so

that fn+1(zn+2) = zn+1. Inductively, for each k ≥ 2, define zn+k such that

fn+k−1(zn+k) = zn+k−1.

We claim that the sequence {zn+k}∞k=1 is Cauchy with respect to d∆, and thus con-
vergent to some point z ∈ Γ. Indeed, for any 1 ≤ i < j, we note that

zn+i = fn+i ◦ · · · ◦ fn+j−1(zn+j).

Let I ∈ In+i denote an interval containing zn+j. For all k ∈ N, we have fn+i+k(I) = I.
Therefore, zn+i ∈ I, and so

d∆(zn+i, zn+j) ≤ Diam∆(I) ≤ max{∆(J) | J ∈ In+i}.
Since max{∆(J) | J ∈ In+i} → 0 as i→∞, our claim follows.

Next, we claim that z = limk→+∞ zn+k ∈ F−1
0 (U). Via Lemma 4.3, we have

F0(z) = lim
m→+∞

F0,n+m−1(zn+m) = lim
m→+∞

F0,n(Fn+1,n+m−1(zn+m))

= lim
m→+∞

F0,n(zn+1) = F0,n(x) ∈ U.

Finally, we claim Fn+1(z) = x. Again via Lemma 4.3, we note that

Fn+1(z) = lim
m→∞

Fn+1,m(zm+1) = lim
m→∞

fn+1 ◦ · · · ◦ fm(zm+1) = zn+1 = x.

Therefore, x ∈ Fn+1(F−1
0 (U)), and so F−1

0,n(U) ⊂ Fn+1(F−1
0 (U)). �

Figure 2. Interaction between the maps F0, F0.n, and Fn+1, as described in Lemma 5.2.

Lemma 5.3. Given m ≤ n ∈ N and x ∈ Γ, we have Fm,n(Fn+1(x)) = Fm(x).

Proof. Fm,n(Fn+1(w)) = limk→∞ Fm,n(Fn+1,k(w)) = limk→∞ Fm,k(w). �

Let W denote any fixed δ-component of F−1
0 (H). By Lemma 5.2, we have

Fn+1(W ) ⊂ F−1
0,n(H). Given any n ∈ N, via Lemma 4.3, the set Fn+1(W ) is δ-

connected in Γn+1. In particular, it is contained in a single δ-component of F−1
0,n(H)
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in Γn+1. We denote this δ-component by Vn+1. Thus, for every n ≥ 1, write Vn to
denote the δ-component of F−1

0,n−1(H) containing Fn(W ). We also write V0 := H.

Lemma 5.4. For n ∈ N, we have fn(Vn+1) ⊂ Vn. Furthermore, the set Vn+1 is a
δ-component of f−1

n (Vn).

Proof. If n = 0, then V1 ⊂ F−1
0 (H) = f−1

0 (H), and so f0(V1) ⊂ H = V0. We
assume n ≥ 1. Via Lemma 5.3, we have Fn(W ) = fn(Fn+1(W )) ⊂ fn(Vn+1) ⊂
F−1

0,n−1(H). By definition, Fn(W ) ⊂ Vn ⊂ F−1
0,n−1(H). Therefore, the sets Vn and

fn(Vn+1) are both subsets of F−1
0,n−1(H) and have non-trivial intersection. Since

fn : Γn+1 → Γn is 1-Lipschitz, the set fn(Vn+1) is δ-connected. Since Vn is a maximal
δ-connected subset of F−1

0,n−1(H), we must have fn(Vn+1) ⊂ Vn.
Since Vn+1 ⊂ f−1

n (Vn) and Vn+1 is δ-connected, Vn+1 is contained in a single δ-
component of f−1

n (Vn) ⊂ F−1
0,n(H). Since Vn+1 is a maximal δ-connected subset of

F−1
0,n(H), the set Vn+1 is equal to a single δ-component of f−1

n (Vn). �

Lemma 5.5. There exists N∗ ∈ N such that, if n ≥ N∗, then

Diam∆(W ) ≤ Diamn(Vn) + δ.

Proof. Choose N∗ ∈ N such that, for n ≥ N∗, we have max{∆(I) | I ∈ In} <
δ/4. Let x, y ∈ W . Since, for n ∈ N, the map Fn fixes elements of In, we note that

d∆(x, y) ≤ d∆(Fn(x), Fn(y)) + 2 max{∆(I) | I ∈ In} < d∆(Fn(x), Fn(y)) + δ/2.

Furthermore, via Lemma 3.3, we also have (for n ≥ N∗)

d∆(Fn(x), Fn(y)) ≤ Diam∆(Fn(W )) ≤ Diamn(Fn(W )) + δ/2.

Since Fn(W ) ⊂ Vn, we conclude that, for any n ≥ N∗ and any x, y ∈ W , we have

d∆(x, y) ≤ Diamn(Vn) + δ.

It follows that Diam∆(W ) ≤ Diamn(Vn) + δ. �

Lemma 5.6. If, for some n,m ∈ N, the set Vn is contained in an interval In ∈ In
and Diamn(Vn) ≥ 2−m Diamn(In), then, for any k ∈ N, we have Diamn+k(Vn+k) ≤
2m Diamn(Vn).

Proof. We first note that Vn+1 ⊂ In, since, by Lemma 5.4, fn(Vn+1) ⊂ Vn ⊂ In,
and fn(In) = In. Via induction, for all k ∈ N, we have Vn+k ⊂ In. Therefore, via
(3.3), we have Diamn+k(Vn+k) ≤ Diamn+k(In) = Diamn(In) ≤ 2m Diamn(Vn). �

Lemma 5.7. Suppose that, for some n ∈ N, we have
(1) Diamn(Vn) = Diam0(V0),
(2) Vn is the union of two adjacent intervals from Im, for some m ≥M∗,
(3) Vn is not symmetric about a point in Dn,
(4) Vn is contained in a single interval In ∈ In, and
(5) Diamn(Vn) ≤ 1

4
Diamn(In).

Under these assumptions, Diamn+1(Vn+1) ≤ 2 Diamn(Vn). If Diamn+1(Vn+1) >
Diamn(Vn), then Diamn+1(Vn+1) = 2 Diamn(Vn) and Vn+1 is symmetric about a
point in Dn+3 \ Dn+1. If, on the other hand, Diamn+1(Vn+1) < Diamn(Vn), then
Diamn+1(Vn+1) = 0 and Vn+1 is a point in Dn+3 \ Dn+2.

Proof. Note that Assumption (3) follows from Assumption (4) when n ≥ 1; we
list Assumption (3) to address the case that n = 0.
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We use binary superscripts to index the four second-generation dyadic sub-
intervals I00

n , I01
n , I10

n , and I11
n in In such that they proceed consecutively along the

positive orientation in In.
If fn is the identity on In, then the lemma is trivial. Therefore, we assume that

fn is a folding map on In, and we consider the cases below. We preface this case
analysis with the reminder that

δ <
1

2M∗
=

1

2
Diam0(V0) =

1

2
Diamn(Vn) ≤ 1

8
Diamn(In).

Case 1: Vn ⊂ I00
n . In this case, f−1

n (Vn) consists of either one δ-component or (if
Vn contains the right endpoint of I00

n ) it consists of two (see Figure 3). If one, then, via
Lemma 5.4, we have Vn+1 = f−1

n (Vn) ⊂ I00
n and Diamn+1(Vn+1) = Diamn(Vn). If two,

then one δ-component is contained in I00
n and satisfies Diamn+1(Vn+1) = Diamn(Vn)

while the other is a single point located at the midpoint of I10
n .

Figure 3. An example of Case 1 (from the proof of Lemma 5.7) in which f−1n (Vn) consists of
two δ-components.

Case 2: Vn ⊂ I01
n . In this case, there are at most three δ-components of f−1

n (Vn):
one in I00

n and either one or two in I10
n (see Figure 4). The component in I00

n has
dn+1-diameter equal to Diamn(Vn). If there are two components in I10

n , then they
each have dn+1-diameter equal to Diamn(Vn). If there is one component in I10

n , then
it has dn+1-diameter equal to 2 Diamn(Vn), and it is symmetric about the midpoint of
I10
n . That is, if Diamn+1(Vn+1) > Diamn(Vn), then Vn+1 is symmetric about a point
in Dn+3 \ Dn+1 and Diamn+1(Vn+1) = 2 Diamn(Vn).

Figure 4. An example of Case 2 (from the proof of Lemma 5.7) in which f−1n (Vn) consists of
three δ-components.

Case 3: Vn ⊂ I10
n . By symmetry, we can apply an argument parallel to that

used in Case 2 to conclude that Diamn+1(Vn+1) ≤ 2 Diamn(Vn). Furthermore, if
Diamn+1(Vn+1) > Diamn(Vn), then Vn+1 is symmetric about a point in Dn+3 \ Dn+1

and Diamn+1(Vn+1) = 2 Diamn(Vn).
Case 4. Vn ⊂ I11

n . By symmetry, we can apply an argument parallel to that used
in Case 1 to conclude that, either Vn+1 ⊂ I11

n has diameter equal to Diamn(Vn), or
Vn+1 is a single point at the midpoint of I01

n .
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Case 5: Vn is symmetric about a point in Dn+2 \ Dn+1. In this case, f−1
n (Vn)

consists of two δ-components. One is contained in I00
n (or I11

n ), and the other is
contained in I10

n (or I01
n ) (see Figure 5). Each component has dn+1-diameter equal to

Diamn(Vn). Via Lemma 5.4, Diamn+1(Vn+1) = Diamn(Vn).

Figure 5. An example of Case 5 (from the proof of Lemma 5.7) in which f−1n (Vn) consists of
two δ-components.

Case 6: Vn is symmetric about a point in Dn+1 \ Dn. In this case, there are
three δ-components of f−1

n (Vn), and each has dn+1-diameter equal to Diamn(Vn) (see
Figure 6). We note that one of these δ-components is symmetric about a point in
Dn+1 \ Dn. In particular, this is the only case in which Vn+1 might not be contained
in a single interval from In+1. Via Lemma 5.4, Diamn+1(Vn+1) = Diamn(Vn).

Figure 6. Case 6 (from the proof of Lemma 5.7) in which f−1n (Vn) consists of three δ-
components.

Having exhausted the possible cases, we conclude the proof of the lemma. �

Lemma 5.8. If there exists K ∈ N such that, for all k ≤ K, the set Vk is not
symmetric about a point in Dk+2, then, either there exists n ≥ N∗ (for N∗ as in
Lemma 5.5) such that Diamn(Vn) ≤ 16δ, or, for all k ≤ K,

(k.1) Diamk(Vk) = Diam0(V0),
(k.2) Vk is the union of two adjacent intervals from Im for some m ≥M∗,
(k.3) Vk is contained in a single interval Ik ∈ Ik, and
(k.4) Diamk(Vk) ≤ 1

4
Diamk(Ik).

Proof. Suppose K ∈ N is such that, for all k ≤ K, no set Vk is symmetric about
a point in Dk+2. In preparation for an inductive argument, we affirm the base case
k = 0 ≤ K. Indeed, for V0 = H, we have
(0.1) Diam0(V0) = Diam0(V0),
(0.2) V0 is the union of two adjacent intervals from IM∗ , and
(0.3) V0 is contained in a single interval I0 ∈ I0.
(0.4) Diam0(V0) ≤ 1

4
Diam0(I0).

Here (0.4) follows from the fact that M∗ ≥ 3. We next assume that, either there
exists n ≥ N∗ such that Diamn(Vn) ≤ 16δ, or, for all n ≤ k − 1 ≤ K − 1, we have

(n.1) Diamn(Vn) = Diam0(V0),
(n.2) Vn is the union of two adjacent intervals from Im, for some m ≥M∗,
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(n.3) Vn is contained in a single interval In ∈ In, and
(n.4) Diamn(Vn) ≤ 1

4
Diamn(In).

Therefore, either there exists n ≥ N∗ such that Diamn(Vn) ≤ 16δ, or we satisfy
the assumptions of Lemma 5.7 for Vk−1. Since Vk is not symmetric about Dk+2, the
conclusion of Lemma 5.7 tells us that

(k.1) Diamk(Vk) = Diamk−1(Vk−1).
We note that, if fk−1 is the identity on Ik−1, then Vk = Vk−1. If fk−1 is a folding map
on Ik−1, then Vk is the union of two adjacent intervals in Im+1 (here we are using
(k.1)). In either case,

(k.2) Vk is the union of two adjacent intervals in Im, for some m ≥M∗.
Furthermore, since Vk−1 is not symmetric about a point in Dk, Case 6 (in the proof
of Lemma 5.7) cannot occur. It follows that

(k.3) Vk is contained in a single interval Ik ∈ Ik.
Furthermore, if Diamk(Vk) > 1

4
Diamk(Ik), then, (since Vk is the union of two adjacent

dyadic intervals) we must have either Diamk(Vk) = 1
2

Diamk(Ik) or Diamk(Vk) =
Diamk(Ik). Since, by assumption, Vk is not symmetric about a point in Dk+2, neither
case can occur. Therefore,

(k.4) Diamk(Vk) ≤ 1
4

Diamk(Ik).
Thus we conclude our inductive argument, and the proof of the lemma. �

Lemma 5.9. Suppose there exist n,K ∈ N such that n ≤ K, and, for all
n ≤ k ≤ K, the set Vk is not symmetric about a point in Dk+1 \ Dk. Furthermore,
suppose n is such that

(n.1) Either Diamn(Vn) = 0 or Diam0(V0) ≤ Diamn(Vn) ≤ 2 Diam0(V0),
(n.2) Vn is symmetric about a point in Dn+2 \ Dn+1,
(n.3) Vn is contained in a single interval In ∈ In, and
(n.4) Diamn(Vn) ≤ 1

4
Diamn(In).

Under these assumptions on n and K, for all n ≤ k ≤ K, it is true that
(k.1) Diamk(Vk) = Diamn(Vn),
(k.2) Vk is symmetric about a point in Dk+2 \ Dk+1,
(k.3) Vk is contained in a single interval Ik ∈ Ik, and
(k.4) Diamk(Vk) ≤ 1

4
Diamn(Ik).

Proof. By way of induction, we first note that the base case k = n is included in
our assumptions. Thus, we assume that K > n and, for all n ≤ j ≤ k − 1 ≤ K − 1,

(j.1) Diamj(Vj) = Diamn(Vn),
(j.2) Vj is symmetric about a point in Dj+2 \ Dj+1,
(j.3) Vj is contained in a single interval Ij ∈ Ij, and
(j.4) Diamj(Vj) ≤ 1

4
Diamj(Ij).

We prove that the analogous conclusions hold for Vk. Indeed, if fk−1 is the identity on
Ik−1, then Vk = Vk−1 is symmetric about a point in Dk+1 \Dk. Since, by assumption,
this cannot occur, we only need to consider the case that fk−1 is a folding map on
Ik−1. Thus, we find ourselves in a situation analogous to Case 5 in the proof of
Lemma 5.7 (see Figure 5). It follows that

(k.1) Diamk(Vk) = Diamk−1(Vk−1),
(k.2) Vk is symmetric about a point in Dk+2 \ Dk+1,
(k.3) Vk is contained in a single interval Ik ∈ Ik, and
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(k.4) Diamk(Vk) ≤ 1
4

Diamk(Ik).
This completes the inductive argument, and the proof of the lemma. �

Lemma 5.10. Suppose there exist n,K ∈ N such that n ≤ K, and, for all
n ≤ k ≤ K, the set Vk is not symmetric about a point in Dk. Furthermore, suppose
n is such that

(n.1) Either Diamn(Vn) = 0 or Diam0(V0) ≤ Diamn(Vn) ≤ 2 Diam0(V0),
(n.2) Vn is symmetric about a point in Dn+1 \ Dn,
(n.3) Vn is contained in a single interval In ∈ In, and
(n.4) Diamn(Vn) ≤ 1

4
Diamn(In).

Under these assumptions, for all n ≤ k ≤ K,
(k.1) Diamk(Vk) = Diamn(Vn),
(k.2) Vk is symmetric about a point in Dk+1,
(k.3) Vk is contained in a single interval Ik ∈ Ik, and
(k.4) Diamk(Vk) ≤ 1

4
Diamn(Ik).

Proof. The proof consists of a straightforward inductive argument similar to that
used to prove Lemma 5.9. Indeed, we consider a situation analogous to Case 6 in the
proof of Lemma 5.7 (see Figure 6). We omit the details. �

We are now ready to prove the following, which, via Lemmas 5.5 and 5.1, will be
sufficient to prove that F0 : Γ→ S is Lipschitz light.

Lemma 5.11. There exists n ∈ N such that n ≥ N∗ (for N∗ as in Lemma 5.5)
and Diamn(Vn) ≤ 128δ.

Proof. If there is no index n1 for which Vn1 is symmetric about a point in Dn1+2,
then, by Lemma 5.8, we conclude that DiamN∗(VN∗) ≤ 16δ. Therefore, we may
assume n1 is the minimal such index. We first consider the case that n1 ≥ 1. By the
definition of n1 and Lemma 5.8, we may assume that

• Diamn1−1(Vn1−1) = Diam0(V0),
• Vn1−1 is the union of two adjacent intervals from Im, for some m ≥M∗,
• Vn1−1 is contained in a single interval In1−1 ∈ In1−1, and
• Diamn1−1(Vn1−1) ≤ 1

4
Diamn1−1(In1−1).

Via Lemma 5.4, it follows from the definition of fn1−1 and the minimality of n1 that
Vn1 is symmetric about a point in Dn1+2 \ Dn1+1, and, either Diamn1(Vn1) = 0, or

Diam0(V0) ≤ Diamn1(Vn1) ≤ 2 Diamn1−1(Vn1−1) = 2 Diam0(V0).

Furthermore, Vn1 is contained in a single interval In1 ∈ In1 . If Diamn1(Vn1) >
1
4

Diamn1(In1), then, via Lemma 5.6 and (5.1), there exists n ≥ N∗ such that

Diamn(Vn) ≤ 4 Diamn1(Vn1) ≤ 8 Diam0(V0) ≤ 32δ.

Therefore, we assume that Diamn1(Vn1) ≤ 1
4

Diamn1(In1).
If there is no index n > n1 such that Vn is symmetric about a point in Dn+1 \Dn,

then, by Lemma 5.9, we conclude that there exists n ≥ N∗ such that
Diamn(Vn) = Diamn1(Vn1) ≤ 2 Diam0(V0) ≤ 8δ.

Therefore, we may assume that there exists n2 > n1 minimal such that Vn2 is sym-
metric about a point in Dn2+1 \ Dn2 . By Lemma 5.9,

• Diamn2−1(Vn2−1) = Diamn1(Vn1),
• Vn2−1 is symmetric about a point in Dn2+1 \ Dn2 ,
• Vn2−1 is contained in a single interval In2−1 ∈ In2−1, and
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• Diamn2−1(Vn2−1) ≤ 1
4

Diamn1(In2−1).
In particular, Diamn2−1(Vn2−1) ≤ 2 Diam0(V0).

Since Vn2−1 is symmetric about a point in Dn2+1 \ Dn2 , it follows that fn2−1 is
the identity on In2−1. Therefore, Vn2 = Vn2−1 and Vn2 is contained in an interval
In2 ∈ In2 . If Diamn2(Vn2) >

1
4

Diamn2(In2), then, via Lemma 5.6 and (5.1), there
exists n ≥ N∗ such that

Diamn(Vn) ≤ 4 Diamn2(Vn2) = 4 Diamn2−1(Vn2−1) ≤ 8 Diam0(V0) ≤ 32δ.

Therefore, we may assume that Diamn2(Vn2) ≤ 1
4

Diamn2(In2),
If there is no index n > n2 such that Vn is symmetric about a point in Dn, then,

via Lemma 5.10, we conclude that there exists n ≥ N∗ such that

Diamn(Vn) = Diamn2(Vn2) ≤ 8δ.

Thus we may assume that there exists n3 > n2 minimal such that Vn3 is symmetric
about a point in Dn3 .

If Diamn3(Vn3) = 0, then, for all n ≥ n3, we have f−1
n (Vn3) = Vn3 (since fn fixes

points in Dn3). Therefore, there exists n ≥ N∗ such that Diamn(Vn) = 0 < δ. Thus
we may assume that Diamn3(Vn3) > 0. In this case, we note that n3 is minimal such
that Vn3 is not contained in a single interval from In3 . Indeed, Vn3 is contained in the
interior of the union of two adjacent intervals from In3 whose union forms In3−1 ∈
In3−1. It is also easy to verify (via Lemma 5.10) that Diamn3(Vn3) = Diamn2(Vn2).

Write I ′n3
to denote the left dyadic child of In3−1, and write V ′n3

:= Vn3 ∩ I ′n3
. In-

ductively, for each k ≥ 1, write I ′n3+k to denote the right dyadic child of I ′n3+k−1. Since
Diamn3(V

′
n3

) ≤ 1
4

Diamn3(I
′
n3

), we have V ′n3
⊂ I ′n3+2. If Diamn3(V

′
n3

) = 1
4

Diamn3(I
′
n3

),
then

Diamn3−1(Vn3−1) ≥ Diamn3(V
′
n3

) =
1

4
Diamn3(I

′
n3

) ≥ 1

8
Diamn3−1(In3−1).

Therefore, by Lemma 5.6 and (5.1), there exists n ≥ N∗ such that

Diamn(Vn) ≤ 8 Diamn3−1(Vn3−1) ≤ 16 Diam0(V0) ≤ 64δ.

Therefore, we may assume that Diamn3(V
′
n3

) < 1
4

Diamn3(I
′
n3

).

Figure 7. An example of how V ′n3
and V ′n3+1 can situated within I ′n3

. Note that in this example
fn3 is the identity map on I ′′n3

and a folding map on I ′n3
.

For each n ≥ n3, we define V ′n := Vn ∩ I ′n3
, and we define the ratio

R(n) :=
Diamn(V ′n)

Diamn(I ′n)
.
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Since R(n3) < 1
4
, we have Diamn3+1(V ′n3+1) = Diamn3(V

′
n3

). If fn3 is a folding map
on I ′n3

, then V ′n3+1 ⊂ I ′n3+3 and R(n3 + 1) = R(n3) < 1
4
. If fn3 is the identity on

In3 , then R(n3 + 1) = 2R(n3). If R(n3 + 1) ≥ 1
4
, then define n4 := n3 + 1. If not,

then we proceed inductively, and assume that, for all n3 + 1 ≤ j ≤ k − 1, we have
V ′n3+j ⊂ I ′n3+j+2, Diamn3+j(V

′
n3+j) = Diamn3(V

′
n3

), and R(n3 + j) < 1
4
.

Under this inductive hypothesis, we examine V ′n3+k. Either fn3+k−1 is a folding
map on I ′n3+k−1, and R(n3 + k) = R(n3 + k − 1) < 1

4
, or fn3+k−1 is the identity on

I ′n3+k−1, and R(n3 + k) = 2R(n3 + k− 1). If R(n3 + k) ≥ 1
4
, then write n4 := n3 + k.

Via induction, we are faced with two possibilities: either there exists n4 > n3

minimal such that V ′n4
⊂ I ′n4

and R(n4) ≥ 1
4
, or, for all n > n3, we have V ′n ⊂ I ′n+2

and R(n) < 1
4
. We claim this latter case cannot occur. Indeed, we note that, for all

n > n3, we have R(n + 1) ≥ R(n). Moreover, R(n + 1) > R(n) if and only if fn is
the identity on I ′n and R(n+ 1) = 2R(n). Since Diamn(I ′n)→ 0, the map fn must be
the identity on I ′n infinitely often, and thus R(n + 1) = 2R(n) infinitely often. This
would imply that R(n)→ +∞, and this contradiction proves our claim.

Thus we have V ′n4
= Vn4 ∩ I ′n3

⊂ I ′n4
such that Diamn4(V

′
n4

) ≥ 1
4

Diamn4(I
′
n4

).
Recall that, for any n ≥ n4, the map fn fixes elements of In4 and In3 . Therefore, for
any n ≥ n4, we have V ′n ⊂ I ′n4

, and so

Diamn(V ′n) ≤ Diamn(I ′n4
) = Diamn4(I

′
n4

)

≤ 4 Diamn4(V
′
n4

) = 4 Diamn3(V
′
n3

)

≤ 8 Diamn3(Vn3) = 8 Diamn2(Vn2) ≤ 64δ

An analogous argument applies to the set V ′′n3
:= Vn3 ∩ I ′′n3

, where I ′′n3
denotes the

right dyadic child of In3−1 (see Figure 7). In particular, there exists n5 > n3 such
that, if n ≥ n5, then Diamn(V ′′n ) ≤ 64δ. Therefore, there exists n ≥ N∗ such that

Diamn(Vn) ≤ Diamn(Vn ∩ I ′n3
) + Diamn(Vn ∩ I ′′n3

)

= Diamn(V ′n) + Diamn(V ′′n ) ≤ 128δ.

We finish by briefly considering the case that n1 = 0. If V0 is symmetric about a
point in D2 \ D1, then we argue as in the case that n1 ≥ 1. If V0 is symmetric about
a point in D1 \D0, then we apply the argument utilized in our above analysis of Vn2 .
If V0 is symmetric about the point in D0, then we apply (a simple modification of)
the argument used in our above analysis of Vn3 . �

Appendix A. Lipschitz light maps as inverse limits

Here we re-frame our construction of the Lipschitz light map F0 : Γ → S using
the language of inverse systems and inverse limits. We generally follow the notation
of [RZ10, Section 1.1]. In particular, an inverse system (in our case indexed by N)
consists of a collection of topological spaces {Xi} along with a collection of continuous
mappings ϕij : Xi → Xj (defined for i ≥ j) such that, for i ≥ j ≥ k, we have
ϕik = ϕjk ◦ ϕij. Here we assume that ϕii is the identity map. We denote such an
inverse system by {Xi, ϕij}.

Given any topological space Y and continuous mappings {ψi : Y → Xi}, we say
that the mappings {ψi} are compatible with the inverse system {Xi, ϕij} provided
that, for any i ≥ j, we have ϕij ◦ ψi = ψj.
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A topological space X along with compatible mappings {ϕi : X → Xi} constitute
an inverse limit of {Xi, ϕij} provided that, for any topological space Y and compat-
ible continuous mappings {ψi : Y → Xi}, there exists a unique continuous mapping
ψ : Y → X such that, for all i ∈ N, we have ϕi ◦ ψ = ψi.

Given any bounded turning Jordan circle Γ, we assume (up to a bi-Lipschitz
homeomorphism) that Γ is an element of S1 (as described in Theorem 4.1). Thus
Γ = (S, d∆). We then obtain the corresponding sequence Γn = (S, dn) such that
dn → d∆ as n→ +∞ (see Lemma 3.3).

We re-index the maps Fm,n : Γn+1 → Γm as defined in Section 4 in order to define
ϕij : Γi → Γj as

ϕij :=

{
fj ◦ · · · ◦ fi−1 if i > j,

id if i = j.

It is then clear that (for i ≥ j ≥ k) the following diagram commutes:

Γi Γk

Γj

ϕij

ϕik

ϕjk

In particular, {Γi, ϕij} is an inverse system.
It is important to note that Γ = (S, d∆) and the spaces {Γi} = {(S, di)} are

pairwise homeomorphic and share the underlying set S in common. Therefore, we
may view the maps ϕij as self-maps of S. Of course, the metric behavior of ϕij will
depend on the metrics with which its domain and range are equipped. With this in
mind, for a fixed j ∈ N, Lemma 4.3 implies that the maps ϕij : Γ → Γj uniformly
converge to ϕj : Γ→ Γj as i→∞. Therefore, given any x ∈ S and i ≥ j, we have

ϕij ◦ ϕi(x) = lim
k→∞

ϕij ◦ ϕki(x) = lim
k→∞

ϕkj(x) = ϕj(x).

In particular, {ϕi} is compatible with {Γi, ϕij}.
In what follows, we say that a sequence {xi} ∈ SN is compatible with the maps

{ϕij} provided that, for each i ≥ j, we have ϕij(xi) = xj.

Lemma A.1. Given ε > 0, there exists Nε ∈ N such that, for any sequence
{xi} ∈ SN that is compatible with {ϕij}, if i, j ≥ Nε, then d∆(xi, xj) < ε.

Proof. Fix ε > 0, and choose Nε ∈ N such that max{∆(I) | I ∈ INε} < ε. Given
any i ≥ j ≥ Nε, let J ∈ Ij denote an interval containing xi. For all k ≥ j, we have
ϕkj(J) = J . In particular, xj = ϕij(xi) ∈ J , and so

d∆(xi, xj) ≤ Diam∆(J) ≤ max{∆(I) | I ∈ INε} < ε. �

By (the proof of) [RZ10, Proposition 1.1.1], the inverse limit to {Γi, ϕij} is given
by the subset S ⊂ SN consisting of sequences compatible with {ϕij}. Here S is
equipped with the topology inherited as a subspace of SN equipped with the product
topology.

Lemma A.2. The space S is homeomorphic to S.
Proof. Let ϕ : S→ S be defined component-wise as ϕ(x) = {ϕi(x)}. To see that

ϕ is surjective, fix any {xi} ∈ S. By Lemma A.1, we obtain the point x := limi→∞ xi.
Here the limit is taken in Γ = (S, d∆). For any i ≥ j, we have xj = ϕij(xi). Therefore,
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taking a limit as i→∞ (and with reference to Lemma 4.3), we obtain

(A.1) ϕj(x) = lim
i→∞

ϕij(xi) = xj.

To see that ϕ is injective, we note that, for any x ∈ S, we have

(A.2) x = lim
i→∞

ϕi(x).

Here the limit is taken in Γ = (S, d∆). Indeed, this easily follows from the facts that
ϕi fixes intervals in Ii and max{∆(I) | I ∈ Ii} → 0. Therefore, if ϕ(x) = ϕ(y) for
points x, y ∈ S, we have

x = lim
i→∞

ϕi(x) = lim
i→∞

ϕi(y) = y.

Since ϕ is continuous in each component, it is continuous (by virtue of the product
topology). Since S is compact and S is Hausdorff (by [IM12, Theorem 172], where
we note that [HM12] defines the inverse limit of {Γi, ϕij} to be the space S), the
continuous bijection ϕ : S→ S is a homeomorphism. �

Theorem A.3. {Γ, ϕi} is the inverse limit of {Γi, ϕij}.
Proof. Let Y denote any topological space and {ψi} a collection of compatible

continuous mappings ψi : Y → Γi. Given y ∈ Y , define ψ̂(y) = {ψi(y)} ∈ S. Since ψ̂
is continuous in each component, it is continuous (by virtue of the product topology).
Via (the proof of) Lemma A.2, we obtain a continuous map ψ : Y → Γ given by
ψ(y) := ϕ−1 ◦ ψ̂(y) = limi→∞ ψi(y). Moreover, given y ∈ Y and j ∈ N, as in (A.1),
we have

ϕj(ψ(y)) = lim
i→∞

ϕij(ψi(y)) = ψj(y).

Suppose τ : Y → Γ is some other continuous map such that, for all i ∈ N, we have
ϕi ◦ τ = ψi. Then, for any y ∈ Y , we observe (as in (A.2)) that

ψ(y) = lim
i→∞

ϕi(ψ(y)) = lim
i→∞

ψi(y) = lim
i→∞

ϕi(τ(y)) = τ(y).

Therefore, ψ as defined above is the unique map such that, for i ∈ N, we have
ϕi ◦ ψ = ψi. Moreover, we confirm that {Γ, ϕi} is the inverse limit of {Γi, ϕij}. �

We conclude by remarking that our inverse limit construction is somewhat dif-
ferent from that of [CK13, Theorem 1.11]. Nevertheless, we note that the distance
d∆ on our inverse limit space is similar in spirit to the distance d̂∞ on the inverse
limit of [CK13] (as defined in [CK13, Lemma 2.4]).
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