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Tangent spaces of the Teichmüller space of
the torus with Thurston’s weak metric

Hideki Miyachi, Ken’ichi Ohshika and Athanase Papadopoulos

Abstract. In this paper, we show that the analogue of Thurston’s asymmetric metric on the

Teichmüller space of flat structures on the torus is weak Finsler and we give a geometric description

of its unit circle at each point in the tangent space to Teichmüller space. We then introduce a

family of weak Finsler metrics which interpolate between Thurston’s asymmetric metric and the

Teichmüller metric of the torus (which coincides with the hyperbolic metric). We describe the unit

tangent circles of the metrics in this family.

Thurstonin heikolla metriikalla varustetun

rengaspinnan Teichmüllerin avaruuden tangenttiavaruudet

Tiivistelmä. Tässä työssä osoitamme, että Thurstonin epäsymmetrisen metriikan vastine

rengaspinnan laakeiden rakenteiden Teichmüllerin avaruudessa on heikko Finslerin metriikka, ja

kuvailemme geometrisesti tämän metriikan yksikköympyrän Teichmüllerin avaruuden tangentti-

avaruuden jokaisessa pisteessä. Sitten esittelemme heikkojen Finslerin metriikoiden perheen, joka

interpoloi Thurstonin epäsymmetrisen metriikan ja (hyperbolisen metriikan kanssa yhtyvän) rengas-

pinnan Teichmüllerin metriikan välillä. Kuvailemme tämän perheen metriikoiden tangenttiavaruuden

yksikköympyrät.

1. Preliminaries

We shall use the following identification between the Teichmüller space of the
torus and the upper half-plane model of the hyperbolic plane H: Let T 2 be a two-
dimensional torus and fix a pair of generators a, b of π1(T

2) represented by two
simple closed curves on this surface intersecting at one point. The Teichmüller space
of T 2, denoted by T (T 2), is the set of equivalence classes of pairs (Σ, f), where Σ is
a Riemann surface and f : T 2 → Σ an orientation-preserving homeomorphism, and
where two pairs (Σ1, f1), (Σ2, f2) are defined to be equivalent when f1◦f−1

2 is isotopic
to a biholomorphism. From the uniformisation theorem, for every point x in T (T 2),
there is a unique complex number ζ with Im(ζ) > 0 such that x is represented by the
pair (C/(Z + ζZ), f), where f is a homeomorphism taking the homotopy classes of
a, b to 1, ζ ∈ Z+ ζZ = π1(C/(Z+ ζZ)) respectively. In this way, T (T 2) is identified
with H = {z ∈ C | Im(z) > 0}. This identification induces an isometry when the
Teichmüller space T (T 2) is equipped with the Teichmüller metric and H is equipped
with the metric of constant curvature −4. In the sequel, we shall refer to this metric
on H as the hyperbolic metric dhyp. The isometry between the space T (T 2) equipped
with the so-called Teichmüller metric and the space H equipped with the hyperbolic
metric is a result of Teichmüller, see [4, Section 9] and [5, Section 9] for an English
translation of Teichmüller’s paper.
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We also need the following notion: A weak metric δ on a set X is a map δ : X ×
X → R satisfying the following:

(1) δ(x, x) = 0 for every x in X;
(2) δ(x, y) ≥ 0 for every x and y in X;
(3) δ(x, y) + δ(y, z) ≥ δ(x, z) for every x, y and z in X.

In the paper [1], the following weak metric was introduced on H: First, for ζ1, ζ2 ∈ H,
we let

(1.1) M(ζ1, ζ2) = sup
x∈R

∣

∣

∣

∣

ζ2 − x

ζ1 − x

∣

∣

∣

∣

.

The weak metric δ is then defined by setting δ(ζ1, ζ2) = logM(ζ1, ζ2).
In the same paper, the following explicit expression of δ was obtained:

(1.2) δ(ζ1, ζ2) = log

( |ζ2 − ζ̄1|+ |ζ2 − ζ1|
|ζ1 − ζ̄1|

)

.

We note that this implies that

(1.3) δ(ζ2, ζ1) = δ(ζ1, ζ2) + log
Im(ζ1)

Im(ζ2)
.

It was also shown that this weak metric has the following two properties:

(1) The arithmetic symmetrisation of the weak metric δ, that is, the weak metric
Sδ defined by

Sδ(ζ1, ζ2) =
1

2
(δ(ζ1, ζ2) + δ(ζ2, ζ1))

is a genuine metric and coincides with the hyperbolic metric of the upper
half-plane.

(2) The weak metric δ is an analogue for the torus of Thurston’s asymmetric
metric on Teichmüller space.

The last statement needs some explanation, and we give it now.
For any two points z1, z2 in the Teichmüller space T (T 2), we take representatives

(Σ1 = C/(Z+ ζ1Z), f1), (Σ2 = C/(Z+ ζ2Z), f2), and we regard them as tori equipped
with the quotient flat metrics induced by the flat metric of the Euclidean plane. We
set δ(z1, z2) = δ(ζ1, ζ2). In [1], a weak metric on T (T 2) was defined as follows. Let
S(T 2) denote the set of homotopy classes of essential simple closed curves on the
torus. We set,

(1.4) κ(z1, z2) = log sup
s∈S(T 2)

lengthΣ2
(f2(s))

lengthΣ1
(f1(s))

,

where length denotes the length of a closed geodesic in the corresponding homotopy
class. The formula for κ(z1, z2) is the analogue, in this Euclidean setting, of the
formula for Thurston’s metric in the hyperbolic setting given in [6, p. 8]. Theorem 3
of [1] says the following:

(1.5) κ(z1, z2) = δ(ζ1, ζ2)

for any z1, z2 ∈ T (T 2) and zi = (Σi = C/(Z+ ζiZ), fi) for i = 1, 2.
The metric δ has another characterisation which is given in [1]. For two metrics

g1, g2 on T0 = C/Z⊕ iZ and a homeomorphism ϕ : T0 → T0, we define

L(ϕ) = sup
x 6=y

(

dg2(ϕ(x), ϕ(y))/ lengthg2(s)

dg1(x, y)/ lengthg1(s)

)

,
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where s is an essential simple closed curve, and set

λ(g1, g2) = inf
ϕ
(logL(ϕ)),

where ϕ ranges over all homeomorphisms homotopic to the identity. The function
λ is invariant under the action of homeomorphisms on T0 homotopic to the identity.
Hence, λ defines a weak metric on T (T 2). The metric is called the normalised weak

Lipschitz distance. In [1], it was shown that κ(z1, z2) = λ(g1, g2) for any flat metrics
g1 and g2 representing z1 and z2 in T (T 2).

In the rest of this paper, we investigate further properties of the weak metric
κ = δ. We first show that the geodesics of the hyperbolic metric of H are geodesics
with respect to this weak metric. We then show that this metric is weak Finsler
(in a sense we shall make precise) and we give a geometric description of its unit
circle at each point in the tangent space to Teichmüller space. We then introduce
a family of weak Finsler metrics which interpolates between the weak metric δ and
the hyperbolic metric (which coincides with the Teichmüller metric) which arises
naturally from the construction given in this paper. We describe the unit tangent
circle at each point for each weak metric in this family.

2. Geodesics for the weak metric δ

In this section, we give an explicit expression for the point where the supremum
of (1.1) is attained for given ζ1, ζ2 ∈ H and show its geometric meaning. First we
note the following, which can be shown easily from the definition of δ:

Lemma 2.1. For λ > 0 and τ ∈ R, we have

δ(λζ1 + τ, λζ2 + τ) = δ(ζ1, ζ2),(2.1)

δ(−ζ1,−ζ2) = δ(ζ1, ζ2).(2.2)

For ζ1 = a+ ib and ζ2 = α + iβ in H with ζ1 6= ζ2, we define

(2.3) x± =
α2 + β2 − a2 − b2

2(α− a)
∓

√

(α− a)2 + (β − b)2
√

(α− a)2 + (β + b)2

2(α− a)

if a 6= α. When a = α, we define

x+ =

{

0 (β > b)

∞ (β < b),

x− =

{

∞ (β > b)

0 (β < b).

The following is an explicit expression for the supremum in (1.1):

Proposition 2.1. For ζ1, ζ2 ∈ H with ζ1 6= ζ2, the supremum in (1.1) is attained

at x+.

Proof. Let ζ1 = a+ ib and ζ2 = α+ iβ. The case where a = α can be easily dealt
with. The case where α < a, from (2.2), by considering −ζ1 and −ζ2 instead of ζ1
and ζ2 respectively, is reduced to the case where a < α. Hence we only consider the
case where a < α.

We first assume that a = 0. By assumption, we have α > 0. Set

f(x) =

∣

∣

∣

∣

ζ2 − x

ζ1 − x

∣

∣

∣

∣

2

=
(x− α)2 + β2

x2 + b2
= 1 +

A+Bx

x2 + b2
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for x ∈ R, where A = α2 + β2 − b2 and B = −2α. Then,

f ′(x) = −Bx2 + 2Ax−Bb2

(x2 + b2)2
,

and the critical points of f ′(x) are

x± = −A

B
±

√
A2 + b2B2

B
.

Since Re(ζ2) = α > 0 and B = −2α < 0, we have x+ < −A/B < x−. Therefore,
f(x) attains its maximum at

x+ = −A

B
+

√
A2 + b2B2

B

=
α2 + β2 − b2

2α
−

√

α2 + (b− β)2
√

α2 + (b+ β)2

2α
.

Suppose next that a 6= 0 and α > a. From the invariance (2.1) and the above
calculation, by considering ζ1 − a = ib and ζ2 − a = (α − a) + iβ instead of ζ1 and
ζ2, we see that the maximum is attained at

a+
(α− a)2 + β2 − b2

2(α− a)
−

√

(α− a)2 + (b− β)2
√

(α− a)2 + (b+ β)2

2(α− a)

which is equal to x+ in (2.3). �

Proposition 2.2. The points x+ and x− in Proposition 2.1 are the endpoints

at infinity of the hyperbolic geodesic line in H passing through ζ2 and ζ1. The point

x+ lies on the side of ζ1, and x− lies on the side of ζ2.

Proof. Set ζ1 = a + ib and ζ2 = α + iβ again. The case where a = α can be
easily dealt with. Hence, as before, we may assume that a = 0 and α > 0, and set
A = α2 + β2 − b2 and B = −2α as in the proof of Proposition 2.1. Then

∣

∣

∣

∣

ζ1 −
(

−A

B

)
∣

∣

∣

∣

2

=

∣

∣

∣

∣

ib−
(

−A

B

)
∣

∣

∣

∣

2

=
A2

B2
+ b2 =

A2 + b2B2

B2
,

∣

∣

∣

∣

ζ2 −
(

−A

B

)
∣

∣

∣

∣

2

=

∣

∣

∣

∣

(α + iβ)−
(

−A

B

)
∣

∣

∣

∣

2

=

(

A

B
+ α

)2

+ β2 =

(

α2 + β2 − b2

−2α
+ α

)2

+ β2

=
(α2 − β2 + b2)2 + 4α2β2

4α2

=
(α2 + (β − b)2)(α2 + (β + b)2)

4α2
=

A2 + b2B2

B2
.

This means that −A/B is the centre of the Euclidean semicircle perpendicular to
the real axis passing through the points ζ1 and ζ2, and that x+, x− are the endpoints
of this semicircle. Since x+ < −A/B < x−, the four points x+, ζ1, ζ2 and x− lie on
the semicircle in this order. Since such a semicircle is a hyperbolic geodesic, we have
completed the proof. �

Theorem 2.1. Hyperbolic geodesics in H are geodesic with respect to the weak

metric δ. Conversely, every geodesic with respect to δ is a hyperbolic geodesic.
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Proof. Suppose that ζ1, ζ2 and ζ3 lie on a hyperbolic geodesic γ in this order.
By Proposition 2.2, the endpoint at infinity x of γ which lies on the side of ζ1 not
containing ζ2, ζ3 attains the supremum of (1.1) for M(ζ1, ζ2),M(ζ2, ζ3) and M(ζ1, ζ3),
provided that x 6= ∞. Then by Eq. (1.1), we have

M(ζ1, ζ2) =
|ζ2 − x|
|ζ1 − x| ,M(ζ2, ζ3) =

|ζ3 − x|
|ζ2 − x| ,

and

M(ζ1, ζ3) =
|ζ3 − x|
|ζ1 − x| .

This implies that M(ζ1, ζ3) = M(ζ1, ζ2)M(ζ2, ζ3), hence δ(ζ1, ζ3) = δ(ζ1, ζ2)+δ(ζ2, ζ3).
This means that γ is a geodesic with respect to δ.

If x = ∞, then in the same setting, we have M(ζ1, ζ2) = M(ζ2, ζ3) = M(ζ1, ζ3) =
1, and again γ is a geodesic with respect to δ.

Conversely, suppose that γ is a geodesic with respect to δ, and let ζ1, ζ2, ζ3 be arbi-
trary three points lying on γ in this order. Then we have δ(ζ1, ζ3) = δ(ζ1, ζ2)+δ(ζ2, ζ3).
By Eq. (1.3), this implies that δ(ζ3, ζ1) = δ(ζ3, ζ2) + δ(ζ2, ζ1), hence Sδ(ζ1, ζ3) =
Sδ(ζ1, ζ2) + Sδ(ζ2, ζ3) for the arithmetic symmetrisation Sδ. Since Sδ coincides with
the hyperbolic metric, we see that γ is also a hyperbolic geodesic. �

Before discussing the connection with Teichmüller theory, we shall give a brief
comment on this theory. The ideal boundary ∂H = ∂T (T 2) is canonically identified
with the Thurston compactification of T (T 2). Recall that the Thurston compactifi-
cation of T (T 2) consists of the projective classes of measured foliations on the base
surface (torus) T0 = C/(Z+ iZ). A measured foliation on T0 is an equivalence class of
a pair consisting of a foliation on T0 together with a transverse measure. (Note that
in the general Thurston theory, the foliations may have singular points, whereas in
the case of the torus that we are discussing, the foliations are without singularities).
Two such pairs are equivalent if they are isotopic. (In the general case, one has to
include Whitehead moves in the equivalence relation, but in the case of the torus,
there are no such moves.) For α ∈ R̂, we define a measured foliation associated
with α to be the pair consisting of the foliation obtained as integral curves of unit
vectors satisfying (1 + |α|)−1(dx+αdy) = 0 on T0 and where the transverse measure
is defined by (1 + |α|)−1|dx+ αdy|. α is called the slope of the foliation. Notice that
when α = ∞, the associated measured foliation consists of the integral curves of the
unit lines satisfying dy = 0 equipped with the transverse measure |dy|.

The point x+ ∈ ∂H = ∂T (T 2) discussed at the beginning of this section cor-
responds to the slope of the horizontal foliation of the Teichmüller map from ζ2
to ζ1. Geometrically, the leaves of the horizontal foliation are stretched under the
deformation along the Teichmüller geodesic segment from ζ1 to ζ2 (see Figure 1).

Figure 1. The Teichmüller ray (the hyperbolic geodesic ray) from ζ1 = i to ζ2 = λi with λ > 1

is the vertical ray emanating from from ζ1. In this case, x+ = 0, and the leaves of the horizontal

foliation are defined by dx = 0, which is stretched along the deformation from ζ1 to ζ2.
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Combining Proposition 2.1 with Eq. (1.5), we have the following.

Corollary 2.1. Suppose that z, z′ ∈ T (T 2) correspond to ζ1, ζ2 ∈ H respec-

tively. Then the distance κ(z, z′) = δ(ζ1, ζ2) is attained by the slope of the horizontal

foliation for the Teichmüller map from z to z′.

3. The weak Finsler structure of the weak metric δ

We recall now the notion of weak norm and weak Finsler metric on a manifold,
adapted to the case we are dealing with. We start with a weak norm on a finite-
dimensional vector space V . This is a map V → [0,∞), v 7→ ‖v‖, satisfying

(1) ‖0‖ = 0;
(2) ‖v‖ ≥ 0 for all v in V ;
(3) ‖v + v′‖ ≤ ‖v‖+ ‖v′‖ for all v and v′ in V .

A metric on a smooth manifold M is said to be weak Finsler if M is equipped
with a continuous field of weak norms defined on the tangent space at each point of
M such that the distance between two points in M is equal to the infimum of the
lengths of piecewise C1-paths joining them, the length of such a path being computed
as the integral over this path of the weak norms of the tangent vectors.

In this section, we show that the weak metric δ on T (T 2) is weak Finsler and
we give a description of its induced weak norm on the tangent space of each point in
this space. We start with the following proposition.

Proposition 3.1. Let ζ be a point in H, and v a tangent vector at ζ . The weak

metric δ induces on v a weak norm ‖v‖δ expressed by

‖v‖δ =
|v|+ Im(v)

2Im(ζ)
.

The meaning of the expression “induced weak norm” will be clear from the com-
putation done in the proof, and it acquires its complete significance in Corollary 3.1
which follows.

Proof. Set ζ ′ = ζ + tv (t > 0). Then,

|ζ ′ − ζ | = |ζ + tv − ζ | = t|v|;

|ζ ′ − ζ| = |ζ − ζ + tv| = |ζ − ζ|
∣

∣

∣

∣

1 + t
v

ζ − ζ

∣

∣

∣

∣

= |ζ − ζ|
(

1 + tRe

(

v

ζ − ζ

)

+ o(t)

)

= |ζ − ζ|
(

1 + tRe

(

v

2i Im(ζ)

)

+ o(t)

)

= 2 Im(ζ)

(

1 + t
Im(v)

2 Im(ζ)
+ o(t)

)

.

Hence, we have

δ(ζ, ζ + tv) = log
1

2 Im(ζ)

(

t|v|+ 2 Im(ζ)

(

1 + t
Im(v)

2 Im(ζ)
+ o(t)

))

= log

(

1 + t
|v|+ Im(v)

2 Im(ζ)
+ o(t)

)

= t
|v|+ Im(v)

2 Im(ζ)
+ o(t).
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Thus, we obtain

lim
tց+0

δ(ζ, ζ + tv)

t
=

|v|+ Im(v)

2 Im(ζ)
. �

Notice that as an invariant expression, the weak metric in Proposition 3.1 is
presented as

(3.1) ‖ · ‖δ =
√

dx2 + dy2 + dy

2y
= dshyp +

1

2
d log y

on TζH and ζ = x + iy ∈ H, where dshyp is the length element of the hyperbolic
metric on H of constant curvature −4.

Consider now the hyperbolic space H equipped with the hyperbolic distance (of
constant curvature −4) and let γ be an isometrically parametrised geodesic emanating
from a point ζ0 in H and converging to a point x0 ∈ ∂H. We recall that the Busemann

function associated with the geodesic ray γ is defined by

H ∋ ζ 7→ lim
t→∞

(dhyp(ζ, γ(t))− t)

(cf. [3, Chapter 12]). Combining this with Theorem 2.1, we have the following corol-
lary.

Corollary 3.1. The weak metric space (T (T 2), δ) is a weak Finsler metric space

with the corresponding weak norm ‖ · ‖δ given in Proposition 3.1.

Proof. We first show that

(3.2)

ˆ θ2

θ1

‖γ̇(θ)‖δ dθ ≥ δ(ζ1, ζ2)

for ζ1, ζ2 ∈ H and any piecewise C1-path γ : [θ1, θ2] → H connecting ζ1 to ζ2. Indeed,
from the invariant expression (3.1), the integration in the left-hand side of (3.2) is
at least equal to the hyperbolic distance between ζ1 and ζ2 minus the difference of
the Busemann functions at ζ1, ζ2 (see (4.2)), which is the right-hand side of (3.2) (cf.
§4). This observation also implies that the integration in the left-hand side of (3.2)
is minimised only when it is done along the hyperbolic geodesic from ζ1 to ζ2.

We now show that the distance between any two points ζ1 and ζ2 ∈ H is given
by integrating the weak norm ‖ · ‖δ along a parametrised geodesic joining these two
points.

To this end, we first assume that Re(ζ1) 6= Re(ζ2). As in the proof of Propo-
sition 2.1, we may assume that ζ1 = ib and ζ2 = α + iβ with α > 0. Let A =
α2 + β2 − b2, B = −2α and R =

√
A2 + b2B2/|B|. Define θ1, θ2 ∈ (0, 2π) by

eiθ1 = (ζ1 − (−A/B))/R and eiθ2 = (ζ2 − (−A/B))/R. Note that θ2 < θ1. The
geodesic from ζ1 to ζ2 is parametrised as γ(θ) = (−A/B)+Rei(θ1+θ2−θ) (θ2 ≤ θ ≤ θ1).
Hence by setting φ to be θ1 + θ2 − θ, we have
ˆ θ1

θ2

‖γ̇(θ)‖δ dθ =

ˆ θ1

θ2

|γ̇(θ)|+ Im(γ̇(θ))

2 Im(γ(θ))
dθ =

ˆ θ1

θ2

R −R cos(θ1 + θ2 − θ)

2R sin(θ1 + θ2 − θ)
dθ

=

ˆ θ1

θ2

1− cos(φ)

2 sin(φ)
dφ =

1

2
log(1 + cos θ2)−

1

2
log(1 + cos θ1)

=
1

2

(

log

(

1− 2α2 − A√
A2 + b2B2

)

− log

(

1 +
A√

A2 + b2B2

))

.
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An easy calculation shows that this expression is equal to

log

√

α2 + (β − b)2 +
√

α2 + (β + b)2

2b
,

that is, to δ(ζ1, ζ2). This gives what we wanted.
We now suppose that Re(ζ1) = Re(ζ2). Then δ(ζ1, ζ2) is equal to zero when

Im(ζ2) < Im(ζ1) and to δ(ζ1, ζ2) = dhyp(ζ1, ζ2) otherwise. From (3.1), ‖v‖δ is equal to

zero when Im(v) < 0 and to ‖v‖hyp :=
√

ds2hyp(v, v) otherwise. Hence, the integral

of the δ-norm along the hyperbolic geodesic connecting ζ1 to ζ2 coincides with the
δ-distance from ζ1 to ζ2. �

Next we describe the unit circle in the tangent space with respect to the weak
norm ‖ · ‖δ.

Proposition 3.2. The unit circle of the tangent space at ζ ∈ H with respect to

‖ · ‖δ is expressed as a parabola with focus at the origin and vertex at i Im(ζ).

Proof. Let ζ = α+ iβ. When v = v1 + iv2 ∈ C ∼= TζH (as real vector spaces) lies
on the unit circle of the tangent space at ζ , we have

1 =
|v|+ Im(v)

2 Im(ζ)
=

√

v21 + v22 + v2
2β

,

which is equivalent to

v21 + v22 = (2β − v2)
2 = 4β2 − 4βv2 + v22.

This means that the unit tangent circle at ζ = α + iβ ∈ H is the parabola

v2 = − v21
4β

+ β,

which implies the desired result. �

Note that the fact that the unit tangent circle of the weak Finsler norm has an
infinite direction expresses the fact that the distance function is degenerate in this
direction (that is, we have, in this direction, δ(x, y) = 0 for x 6= y).

4. Deforming δ to the Teichmüller metric

In this section, we consider a family of weak Finsler metrics which interpolate
between δ and the hyperbolic distance (which, as is well known, coincides with the
Teichmüller distance). We then describe the unit tangent circle of each of these
metrics.

Consider the family of weak metrics δp (0 ≤ p ≤ 1) defined by

δp(ζ1, ζ2) = log sup
x∈R

(Im(ζ1))
p/2

(Im(ζ2))p/2

∣

∣

∣

∣

ζ2 − x

ζ1 − x

∣

∣

∣

∣

=
p

2
log

Im(ζ1)

Im(ζ2)
+ log sup

x∈R

∣

∣

∣

∣

ζ2 − x

ζ1 − x

∣

∣

∣

∣

.(4.1)

Note that the function

(4.2) H ∋ ζ 7→ 1

2
log

Im(ζ0)

Im(ζ)
= −1

2

ˆ ζ

ζ0

d log y

is the Busemann function associated with the geodesic ray emanating from some
fixed point ζ0 ∈ H converging to x = ∞ ∈ ∂H of the hyperbolic metric of curvature
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−4, which is the Teichmüller distance. Hence, the function

1

2
log

Im(ζ1)

Im(ζ2)
=

1

2
log

Im(ζ0)

Im(ζ2)
− 1

2
log

Im(ζ0)

Im(ζ1)

that appears in (4.1) is the difference of the Busemann functions. Using the same
proof as in Theorem 2.1, the hyperbolic geodesic from ζ1 to ζ2 is the geodesic of the
metric δp. The arithmetic symmetrisation of δp is the hyperbolic metric of curvature
−4, like for δ = δ0 (cf. (1) in §1).

As we did in Proposition 3.1, we can calculate the infinitesimal form of the metric
δp: Let ζ ∈ H. For v ∈ TζH

∼= C,

log
Im(ζ)

Im(ζ + tv)
= − log

(

1 + t
Im(v)

Im(ζ)

)

= −t
Im(v)

Im(ζ)
+ o(t)

as t ց +0. We obtain

‖v‖δp := lim
tց+0

δp(ζ, ζ + tv)

t
= −p

2

Im(v)

Im(ζ)
+

|v|+ Im(v)

2 Im(ζ)

=
|v|+ (1− p) Im(v)

2 Im(ζ)
= ‖v‖δ − p

Im(v)

2 Im(ζ)
.

Notice that ‖v‖δp > 0 when v 6= 0 and p > 0. The unit tangent circle with respect
to the weak norm ‖ · ‖δp in the tangent space TζH is the ellipse with foci 0 and
−4 Im(ζ)(1− p)/(p(2− p)) (see Figure 2).

As an invariant expression, the weak metric ‖ · ‖δp is presented as

(4.3) ‖ · ‖δp =
√

dx2 + dy2 + (1− p) dy

2y
= dshyp +

1− p

2
d log y.

A discussion similar to that of the proof of Corollary 3.1 and (4.3) shows that the
weak metric space (T (T 2), δp) is a weak Finsler metric with associated weak norm
‖ · ‖δp and that the hyperbolic geodesic from ζ1 to ζ2 ∈ H is a unique geodesic for
δp. Notice that ‖ · ‖δ1 is the norm induced from the hyperbolic metric. From (4.3),
‖v‖δ1 ≤ ‖v‖2δp ≤ (2 − p)‖v‖δ1 for 0 < p ≤ 1. Hence δp and δq are bi-Lipschitz-
equivalent for 0 < p, q ≤ 1. In particular, for 0 < p ≤ 1, δp is complete and separates
points in H.

Figure 2. The infinitesimal unit circle of the weak norm ‖ · ‖δp at ζ = 0 for p = 1, 0.3, and 0.

Each infinitesimal unit circle has the origin as a focus, and the lower dot is another focus for the

infinitesimal unit circle for p = 0.3.
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It follows that {δp}0≤p≤1 is a continuous family of weak Finsler metrics giving
a deformation from δ = δ0 to the hyperbolic metric δ1 (which is the Teichmüller
metric). Notice that

|ζ − x|2
Im(ζ)

coincides with the extremal length of the measured foliation corresponding to x ∈ R

up to a constant factor (depending only on x). (We recall that the extremal length
of a simple closed curve c on a Riemann surface is defined to be the infimum of the
reciprocals of the moduli of the annuli whose core curves are homotopic to c, and
the extremal length function can be extended continuously to the space of measured
foliations.) Hence, our expression of δ1 in (4.1) coincides with Kerckhoff’s formula
for the Teichmüller distance [2] adapted to the case of the torus.
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