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A proof of Hall’s conjecture on length of ray
images under starlike mappings of order α

Peter Hästö and Saminathan Ponnusamy

Abstract. Assume that f lies in the class of starlike functions of order α ∈ [0, 1), that is,
which are regular and univalent for |z| < 1 and such that

Re

(
zf ′(z)

f(z)

)
> α for |z| < 1.

In this paper we show that for each α ∈ [0, 1), the following sharp inequality holds:

|f(reiθ)|−1
ˆ r

0

|f ′(ueiθ)| du ≤
Γ( 1

2 )Γ(2− α)

Γ( 3
2 − α)

for every r < 1 and θ.

This settles the conjecture of Hall (1980) positively.

Todistus Hallin konjektuurille säteiden kuvien pituudesta
kertaluvun α tähdenmuotoisissa kuvauksissa

Tiivistelmä. Oletetaan, että f on kertaluvun α ∈ [0, 1) tähdenmuotoinen funktio. Tämä
tarkoittaa, että f on holomorfinen injektio yksikkökiekolla, jolle

Re

(
zf ′(z)

f(z)

)
> α, kun |z| < 1.

Tässä artikkelissa osoitamme, että seuraava tarkka epäyhtälö pätee jokaiselle α ∈ [0, 1):

|f(reiθ)|−1
ˆ r

0

|f ′(ueiθ)| du ≤
Γ( 1

2 )Γ(2− α)

Γ( 3
2 − α)

jokaiselle r < 1 ja θ.

Tämä ratkaisee Hallin 1980 esittämän konjektuurin positiivisesti.

1. Introduction and the main theorem

The theory of univalent functions on domains in the complex plane C attracted
the attention of many for more than a century, and it has been centered around the
class S of functions f regular and univalent in the unit disk D = {z : |z| < 1} and
normalized by the condition f(0) = f ′(0) − 1 = 0. The conjecture of Bieberbach
which asserted |f (n)(0)/n!| ≤ n for all n ≥ 2 (if f ∈ S), was solved by de Branges [6]
in 1984. The family S together with some of its geometric subfamilies play a key role
in solving many extremal problems, and a large amount of research has been done
as evidenced by the volume of articles in the literature (cf. [10, 13, 14, 18, 24, 28])
and several monographs (cf. [15, 23, 25]). It is still an active field of research in view
of several open problems and extensions in several settings [1, 19], including planar
harmonic univalent mappings [9, 11].

This article concerns length of ray images under a special class of conformal
mappings. Suppose that f ∈ F ⊂ S and f maps D onto a domain D. Let C(r, θ)
denote the image in D of the ray joining z = 0 to z = reiθ ∈ D under the mapping

https://doi.org/10.54330/afm.113736
2020 Mathematics Subject Classification: Primary 30C45, 30C20; Secondary 30C35.
Key words: Ray-image, length of ray-image, starlike and univalent mappings, starlike functions

of order α.
c© 2022 The Finnish Mathematical Society



336 Peter Hästö and Saminathan Ponnusamy

w = f(z) belonging to the family F . Then the length `(r, θ) of the curve C(r, θ) is
given by

`(r, θ) :=

ˆ r

0

|f ′(ρeiθ)| dρ.

In 1963, Gehring and Hayman [12] showed that if f ∈ S∗ ⊂ S, i.e. f(D) is starlike
(with respect to the origin), then there exists an absolute constant M > 0 such that

(1) `(r, θ) ≤M |f(reiθ)| for every r < 1 and θ.

We refer to this as Gehring–Hayman inequality. Motivated by this remarkable fact,
Sheil-Small [29] showed that if f ∈ S∗, then the constant M in (1) can be chosen to
be 1 + log 4, and if f ∈ S∗(1

2
) ⊂ S∗ := S∗(0) (see equation (2)), then the constant

may be reduced to 1+log 2. Further investigation in this topic led Sheil-Small [29] to
conjecture that if f ∈ K ⊂ S∗(1

2
), i.e. f(D) is convex, then the correct constant is π

2
.

Hall [16, 17] showed that the best possible constants are 2 and π
2
for the families S∗

and S∗(1
2
), respectively. This settled both the conjectures of Sheil-Small. See [3] for a

simpler proof of Gehring–Hayman inequality (1) withM = 2 for the case of univalent
starlike functions. At this point it is worth recalling the fact that a function belonging
to S∗(1

2
) may not be convex univalent in |z| < R for any R >

√
2
√

3− 3 = 0.68. It
is natural to ask for the corresponding optimal constant M in (1) for several other
choices of the family F ⊂ S.

In this article, we consider a problem posed by Hall [17]. More precisely, Hall in
this paper related the following:

At the Durham Symposium on Analytic Number Theory (July 1979)
Professor Hayman asked in conversation what would be the sharp
bound for the class S∗(α) of functions starlike of order α, that is,
which are regular and univalent for |z| < 1 and such that

(2) Re

(
zf ′(z)

f(z)

)
> α for |z| < 1.

I proved in [16] that in the starlike case, that is when α = 0, this
bound is 2 (sharp for the Koebe function) and it is likely that for
0 < α < 1 the sharp constant is

Γ(1
2
)Γ(2− α)

Γ(3
2
− α)

.

From my result for α = 0, the upper bound 1 + (1 − α)(log 4)α can
be derived: this is not sharp but numerically it is pretty good, for
example for α = 1

2
it gives 1.588 . . ..

In view of the higher difficulty level of the problem, determining the optimal
constant M in (1) for other choices of the family F ⊂ S is difficult and results of
this type were not available for many standard geometric subclasses of the univalent
family S.

In the present paper we prove the above conjecture of Hall in full generality for
the class S∗(α) of functions starlike of order α, 0 ≤ α < 1. It is worth pointing
out that the present method of proof provides also alternate proofs of the two cases,
S∗(0) and S∗(1

2
), originally settled by Hall [16, 17].
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Theorem 1. Suppose that f ∈ S∗(α), i.e. f is a starlike of order α in the unit
disk D. Then

(3) |f(reiθ)|−1`(r, θ) ≤ β(α) for every r < 1 and θ,

where `(r, θ) :=
´ r
0
|f ′(ρeiθ)| dρ and

(4) β(α) :=
Γ(1

2
)Γ(2− α)

Γ(3
2
− α)

.

Furthermore, the constant β(α) is optimal.

We refer to [2, 20] for some additional research related to Hall’s work and con-
jectures on optimal constants in the Gehring–Hayman inequality. Related to this
problem, we remark that an attempt has been made by Chen and Ponnusamy [8]
for sense-preserving univalent andK-quasiconformal harmonic mappings. In order to
make a statement about what this means, we need to introduce some basic notations.

Let f be a complex-valued C1-function defined on D and let `f (θ, r) be the
length of the curve f |[0,z], where [0, z] is a radial line segment from 0 to z = reiθ ∈ D,
θ ∈ [0, 2π] is fixed and r ∈ [0, 1). Then (cf. [7])

`f (θ, r) := `
(
f([0, z])

)
=

ˆ r

0

∣∣ df(ρeiθ)
∣∣ =

ˆ r

0

∣∣fz(ρeiθ) + e−2iθfz(ρe
iθ)
∣∣ dρ.

In [22], Keogh showed that if f is a bounded, analytic and univalent function in D,
then, for each θ ∈ [0, 2π],

(5) `f (θ, r) = O (ψ(r)) as r → 1−,

where ψ(r) =
(

log(1/(1− r))
)1/2 for 0 < r < 1, and the exponent 1/2 in ψ(r) cannot

be decreased. Kennedy [21] showed by examples that

`f (θ, r) = O(µ(r)ψ(r)) as r → 1−

is false in general for every positive function µ in [0, 1) satisfying µ(r)→ 0 as r → 1−.
In [5], Carroll and Twomey proved this result without the boundedness condition in
the following form.

Theorem A. Suppose that f(z) = a1z + a2z
2 + · · · is univalent in D. Then, for

any fixed θ ∈ [0, 2π], there is a constant C1 > 0 such that

(6) `f (θ, r) ≤ C1 max
ρ∈[0,r]

|f(ρeiθ)|ψ(r) for r ∈ (0.5, 1).

If, further, f(reiθ) = O(1) as r → 1−, then (5) holds.

Later, Beardon and Carne [4] gave a relatively simple argument to Theorem A
in hyperbolic geometry and provided further examples. Thus, the two works of Hall
mentioned in the introduction are sharper versions of this in the case of functions
whose range is either a starlike domain or a convex domain. In spite of the higher level
of difficulty, ideas of [4, 5] were considered for the class SH of sense-preserving planar
harmonic univalent mappings f = h+g in D, with the normalization h(0) = g(0) = 0
and h′(0) = 1 (see [9, 10]). The family SH together with few geometric subclasses were
investigated in [9, 30]. For further details, we refer to [10, 26]. If the co-analytic part
g is identically zero in the representation f = h+ g, then the class SH coincides with
the family S. Motivated by the above consideration, in 2019, Chen and Ponnusamy
[8] obtained the following result for the case of planar harmonic mappings.
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Theorem B. For K ≥ 1, let f ∈ SH be a K-quasiconformal harmonic mapping.
Then, for any fixed θ ∈ [0, 2π], there is a constant C2 > 0 such that

`f (θ, r) ≤ C2 max
ρ∈[0,r]

|f(ρeiθ)|ψ(r) for r ∈ (0.5, 1).

If, further, f(reiθ) = O(1) as r → 1−, then

`f (θ, r) = O(ψ(r)) as r → 1−,

and the exponent 1/2 in ψ(r) defined above cannot be replaced by a smaller number.

First we remark that Theorem B implies Theorem A when K = 1. Secondly, the
proof of Theorem B is relatively harder than the proof of Theorem A because of the
fact that the arguments of Beardon and Carne [4] for Theorem A are not applicable
in the proof of Theorem B.

2. Proof of Theorem 1

2.1. Part 1: Proof of the main theorem.

Lemma 1. Suppose that f ∈ S∗(α). Then the desired inequality (3) holds
whenever

(7) I(s, t) + I(t, s) ≤ 2(β(α)− 1) for s, t ∈ (0, π).

where

I(s, t) =

ˆ 1

0

{√
1 + (1− 2α)2u2 + 2(1− 2α)u cos t√

1 + u2 − 2u cos t
− 1− (1− 2α)u2 − 2αu cos t

1 + u2 − 2u cos t

}

×
{

2(1− cos s)

1 + u2 − 2u cos s

}1−α

du.(8)

Proof. The family S∗(α) is rotationally invariant in the sense that e−iθf(eiθz)
belongs to S∗(α) whenever f ∈ S∗(α). Therefore, without loss of generality, let us
suppose that θ = 0 in (3). As a consequence, we let h(z) = f(rz), r ∈ (0, 1). Then
h is regular and univalent for |z| ≤ 1, h(0) = 0 and h(1) = f(r). Therefore to prove
(3) we have to show equivalently that

(9)
ˆ 1

0

|h′(u)| du ≤ β(α)|h(1)|,

where β(α) is defined by (4). It remains to show that (9) holds whenever (7) holds.
Now, we let f ∈ S∗(α). Then, we have

H(z) :=
zh′(z)

h(z)
=
rzf ′(rz)

f(rz)
and ReH(z) > α, z = reiθ ∈ D.

Using the Herglotz representation theorem for regular functions with positive real
part (cf. [14, 24, 28]) and the fact that h ∈ S∗(α), we also have, for z ∈ D,

(10) H(z) =
zh′(z)

h(z)
=

1

2π

ˆ π

−π

1 + (1− 2α)ze−it

1− ze−it
dV (t),

where V (t) is an increasing function for t ∈ [−π, π] which satisfies V (π)−V (−π)
2π

= 1.
Therefore, using standard arguments and some computations, we find that

H(u) =

ˆ π

0

1 + (1− 2α)ue−it

1− ue−it
dW (t),
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and
∂

∂u
log |h(u)| = u−1ReH(u) =

ˆ π

0

1− (1− 2α)u2 − 2αu cos t

u(1 + u2 − 2u cos t)
dW (t),(11)

where W (t) := V (t)−V (−t)
2π

. Note that W (0) = 0, W (π) = 1 and W is increasing on
[0, π] and so dW is nonnegative and has a total mass 1. Using (10) it follows that

|H(u)| − ReH(u) ≤
ˆ π

0

[√
1 + (1− 2α)2u2 + 2(1− 2α)u cos t√

1 + u2 − 2u cos t

− 1− (1− 2α)u2 − 2αu cos t

1 + u2 − 2u cos t

]
dW (t).

(12)

Next we note from the definition of H(z) thatˆ 1

0

|h′(u)| du =

ˆ 1

0

|H(u)| |h(u)|u−1 du

=

ˆ 1

0

ReH(u)|h(u)|u−1 du+

ˆ 1

0

[|H(u)| − ReH(u)]|h(u)|u−1 du.
(13)

Regarding the first integral on the right, we find by (11) that

(14)
ˆ 1

0

ReH(u)|h(u)|u−1 du =

ˆ 1

0

|h(u)| ∂
∂u

log |h(u)| du = |h(1)|.

We then estimate the second of the integrals in (13). From (11) we also have

log

{
|h(u)|
|h(1)|

}
=

ˆ u

1

∂

∂v
log |h(v)| dv =

ˆ u

1

v−1ReH(v) dv

=

ˆ π

0

ˆ u

1

1− (1− 2α)v2 − 2αv cos t

v(1 + v2 − 2v cos t)
dv dW (t)

=

ˆ π

0

log

{
u(2− 2 cos t)1−α

(1 + u2 − 2u cos t)1−α

}
dW (t).

Applying Jensen’s inequality [31, p. 24] and performing exponentiation on both sides
of the last relation, we get

(15) |h(u)|u−1 ≤ |h(1)|
ˆ π

0

{
2(1− cos t)

1 + u2 − 2u cos t

}1−α

dW (t).

Therefore, from (12) and (15) we deduce thatˆ 1

0

{|H(u)| − ReH(u)}|h(u)|u−1 du ≤ |h(1)|
ˆ π

0

ˆ π

0

I(s, t) dW (t) dW (s)

≤ |h(1)|
2

ˆ π

0

ˆ π

0

[I(s, t) + I(t, s)] dW (t) dW (s),(16)

where I(s, t) is given by (8).
Thus to complete the proof of the inequality (9), using (13), (14) and (16), it

suffices to show

�(17) sup{I(s, t) + I(t, s) : 0 ≤ t ≤ π, 0 ≤ s ≤ π} ≤ 2(β(α)− 1).

2.2. Part 2: Proof of the inequality (7). To establish the inequality (7), we
need to evaluate the integrals I(t, s) and I(s, t), where I(t, s) is defined by (8). In
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order to do this, we rewrite (8) in the following form

(18) I(s, t) = [2(1− cos s)]1−α[J(t, s)−K(t, s)],

where

J(s, t) =

ˆ 1

0

√
(1 + (1− 2α)u)2 − 2(1− 2α)u(1− cos t)√
(1 + u2 − 2u cos t)(1 + u2 − 2u cos s)1−α

du,

and

K(s, t) =

ˆ 1

0

[1− (1− 2α)u2 − 2αu cos t]

(1 + u2 − 2u cos t)(1 + u2 − 2u cos s)1−α
du.

In order to prove the inequality (7), we need to establish several lemmas.
Let us denote S := 2(1 − cos s), T := 2(1 − cos t) and γ := 1 − 2α so that

S, T ∈ (0, 4) and γ ∈ (−1, 1]. Then (18) can be written in terms of S and T , which
we denote by I(S, T ) for obvious reason, and thus, we have

I(S, T ) =

ˆ 1

0

(
S

(1−u)2 + Su

)1+γ
2
[√

(1 + γu)2 − γTu√
(1− u)2 + Tu

−
1− γu2 − (1−γ)(1− T

2
)u

(1− u)2 + Tu

]
du.

Our first aim is to give an upper bound for the sum I(S, T ) + I(T, S) in terms of
a simpler integrand. We begin by giving the bound for the first term in the square
bracket factor in the integrand of I(S, T ).

Lemma 2. For T ∈ (0, 4), γ ∈ (−1, 1] and u ∈ (0, 1),

(19)
√

(1 + γu)2 − γTu√
(1− u)2 + Tu

≤ 1 + γ

2

1 + u√
(1− u)2 + Tu

+
1− γ

2
.

Proof. The claim is clear if γ = 1, so we assume that γ ∈ (−1, 1). As

1 + γu =
1 + γ

2
(1 + u) +

1− γ
2

(1− u),

we calculate
1 + γu√

(1− u)2 + Tu
=

1 + γ

2

1 + u√
(1− u)2 + Tu

+
1− γ

2

1− u√
(1− u)2 + Tu

.

Subtracting this from the inequality in the statement of the lemma, we see that the
claim (19) is equivalent to√

(1 + γu)2 − γTu− (1 + γu)√
(1− u)2 + Tu

≤ 1− γ
2

[
1− 1− u√

(1− u)2 + Tu

]
,

or, multiplied by 1
1−γ

√
(1− u)2 + Tu,

(20)
1

1− γ

[√
(1 + γu)2 − γTu− (1 + γu)

]
≤ 1

2

[√
(1− u)2 + Tu− (1− u)

]
.

When γ ≥ 0, the left-hand side of (20) is non-positive, so the claim is clear, and
therefore, we may assume that γ < 0 and denote b := −γ > 0, where 0 < b < 1.
When T = 0, both sides equal 0, so the inequality holds. We may next rewrite (20)
equivalently as ϕ(T ) ≥ 0, where

ϕ(T ) =
1

2

[√
(1− u)2 + Tu− (1− u)

]
− 1

1 + b

[√
(1− bu)2 + bTu− (1− bu)

]
.
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We observed that ϕ(0) = 0 and thus it suffices to show that ϕ is increasing on (0, 4).
We calculate

ϕ′(T ) =
1

4

u√
(1− u)2 + Tu

− 1

2(1 + b)

bu√
(1− bu)2 + bTu

and it is non-negative when√
(1− bu)2 + bTu ≥ 2b

1 + b

√
(1− u)2 + Tu.

Because 1 + b ≥ 2
√
b, the last inequality holds if√

(1− bu)2 + bTu ≥
√
b
√

(1− u)2 + Tu.

Squaring both sides gives the equivalent condition

(1− bu)2 + bTu ≥ b((1− u)2 + Tu) ⇐⇒ 1− b ≥ b(1− b)u2,

which holds since b ∈ (0, 1) and u ∈ (0, 1). Thus, ϕ(T ) ≥ ϕ(0) = 0 and the proof of
the lemma is complete. �

Lemma 3. Let a := T
S
, a ∈ (0,∞). Then with S, T ∈ (0, 4) and I(S, T ) defined

as above, we have

I(S, T ) + I(T, S) ≤ 1 + γ

2

ˆ ∞
0

[
(a+ w)−

1+γ
2 +

(
1
a

+ w
)− 1+γ

2

]√
1 + w − 1

1 + w
w−

1−γ
2 dw,

where γ ∈ (−1, 1].

Proof. By Lemma 2, we recall that√
(1 + γu)2 − γTu√

(1− u)2 + Tu
≤ 1 + γ

2

(
1 + u√

(1− u)2 + Tu

)
+

1− γ
2

.

For the numerator of the integrand of K(s, t) with the change of variables as in the
beginning of Subsection 2, i.e. precisely the second term of the square-bracked term
in the expression of I(S, T ), we use

1− γu2 − (1− γ)
(

1− T

2

)
u =

1 + γ

2

(
1− u2

)
+

1− γ
2

(
(1− u)2 + Tu

)
so that

1− γu2 − (1− γ)(1− T
2
)u

(1− u)2 + Tu
=

1 + γ

2

(
1− u2

(1− u)2 + Tu

)
+

1− γ
2

.

Using these relations, we can therefore estimate√
(1 + γu)2 − γTu√

(1− u)2 + Tu
−

1− γu2 − (1− γ)(1− T
2
)u

(1− u)2 + Tu

≤ 1 + γ

2

[
1 + u√

(1− u)2 + Tu
− 1− u2

(1− u)2 + Tu

]
=

1 + γ

2

[
1√

(1− u)2 + Tu
− 1− u

(1− u)2 + Tu

]
(1 + u).
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Thus, we have established the inequality

I(S, T ) ≤ 1 + γ

2

ˆ 1

0

(
S

(1− u)2 + Su

)1+γ
2

[
1√

(1−u)2 + Tu
− 1−u

(1− u)2 + Tu

]
(1 + u) du

=
1 + γ

2

ˆ 1

0

(
S

1 + Su
(1−u)2

) 1+γ
2

 1√
1 + Tu

(1−u)2

− 1

1 + Tu
(1−u)2

 1 + u

(1− u)2+γ
du

and for I(T, S), it follows similarly that

I(T, S) ≤ 1 + γ

2

ˆ 1

0

(
T

1 + Tu
(1−u)2

) 1+γ
2

 1√
1 + Su

(1−u)2

− 1

1 + Su
(1−u)2

 1 + u

(1− u)2+γ
du.

Let us continue with the change of variables

w :=
Tu

(1− u)2
.

Then
dw = T

1 + u

(1− u)3
du

so that

I(S, T ) ≤ 1 + γ

2

ˆ 1

0

(
S

1 + S
T
w

) 1+γ
2
[

1√
1 + w

− 1

1 + w

]
1 + u

(1− u)2+γ
du

=
1 + γ

2

ˆ ∞
0

( S
T

1 + S
T
w

) 1+γ
2
√

1 + w − 1

1 + w
[T−

1
2 (1− u)]1−γ dw.

From the relation (1− u)2 = T
w
u, or equivalently the quadratic equation

w(1− u)2 + T (1− u)− T = 0,

we solve for 1− u with the restriction 0 < u < 1:

1− u =
1

2

(
−T
w

+

√(T
w

)2
+ 4

T

w

)
=

√
T 2 + 4Tw − T

2w
=

2T√
T 2 + 4Tw + T

so that

1− u =
2
√
T

√
T + 4w +

√
T
≤
√
T√
w
, i.e., T−

1
2 (1− u) ≤ 1√

w
.

Therefore, we conclude that

I(S, T ) ≤ 1 + γ

2

ˆ ∞
0

(
1

a+ w

) 1+γ
2
√

1 + w − 1

1 + w
w−

1−γ
2 dw,

where a = T
S
∈ (0,∞). Interchanging the role of S and T in the above proof gives

an analogous inequality for I(T, S):

I(T, S) ≤ 1 + γ

2

ˆ ∞
0

(
1

b+ w

) 1+γ
2
√

1 + w − 1

1 + w
w−

1−γ
2 dw, b =

S

T
∈ (0,∞).

Note that b = 1/a. Finally, adding these two estimates, we obtain the desired
claim. �
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Let us next consider the expression in the case γ = 1. Based on previous research,
it is already known that the expression in Lemma 3 is maximized when a = 1.
However, we will need the monotonicity, which is a stronger claim.

Lemma 4. The function

(21) a 7−→
ˆ ∞
0

[
1

a+ w
+

1
1
a

+ w

]√
1 + w − 1

1 + w
dw =: G1(a)

is increasing in (0, 1).

Proof. It turns out that we can explicitly calculate the integrals involved in the
expression. Since

1

(a+ w)(1 + w)
=

1

1− a

[
1

a+ w
− 1

1 + w

]
,

we calculate ˆ ∞
0

dw

(a+ w)(1 + w)
=

1

1− a
ln

(
a+ w

1 + w

)∣∣∣∣∞
0

=
ln 1

a

1− a
.

Similarly, ˆ ∞
0

dw(
1
a

+ w
)
(1 + w)

=
ln a

1− 1
a

=
a ln 1

a

1− a
.

The other two integrals are more complicated, but we find thatˆ
dw(

1
a

+ w
)√

1 + w
= 2

√
a

1− a
tan−1

(√
a

1− a
√

1 + w

)
+ C

When we use the formula for the term with a+w, the number inside the arctangent
is imaginary, so we use also the formula

tan−1(z) =
i

2
log

(
i+ z

i− z

)
.

Hence we concludeˆ
dw

(a+ w)
√

1 + w
= −

√
1

1− a
log

(√
1− a+

√
1 + w√

1− a−
√

1 + w

)
+ C.

With these integral functions, we obtain thatˆ ∞
0

[
1

a+ w
+

1
1
a

+ w

]√
1 + w − 1

1 + w
dw = −1 + a

1− a
ln

1

a

+ 2

√
a

1− a

[
π

2
− tan−1

(√
a

1− a

)]
−
√

1

1− a

[
log(−1)− log

(√
1− a+ 1√
1− a− 1

)]
= 2

√
a

1− a
tan−1

(√
1− a
a

)
+

√
1

1− a
log

(
1 +
√

1− a
1−
√

1− a

)
− 1 + a

1− a
ln

1

a
.

The graph of this function, i.e. G1(a), is shown in Figure 1.
We need to show that this expression is increasing in a. We change variables by

defining b :=
√

1−a
a

so that a = 1
1+b2

and our expression equals

G(b) :=
2

b
tan−1(b) + 2

√
1 + b2

b
log(b+

√
1 + b2)− 2 + b2

b2
ln(1 + b2), b ∈ (0,∞).
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Figure 1. The graph of the function G1(a) from Lemma 4.

Since b is decreasing in a, we establish our claim by showing that G is decreasing on
(0,∞). We calculate

1

2
G′(b) = − 1

b2
tan−1(b) +

1

b(1+b2)
− log(b+

√
1+b2)

b2
√

1 + b2
+

1

b
+

2

b3
ln(1+b2)− 2 + b2

b(1+b2)

= − 1

b2
tan−1(b)− log(b+

√
1 + b2)

b2
√

1 + b2
+

2

b3
ln(1 + b2).

Hence it suffices to show that

g(b) :=
b2

2
G′(b) = − tan−1(b)− log(b+

√
1 + b2)√

1 + b2
+

2

b
ln(1 + b2)

is negative. We see that g(0+) = 0, and show that g is decreasing on (0,∞). A
calculation gives

g′(b) = − 1

1 + b2
+ b

log(b+
√

1 + b2)

(1 + b2)
3
2

− 1

1 + b2
− 2

b2
ln(1 + b2) +

4

1 + b2

=
2

1 + b2
+ b

log(b+
√

1 + b2)

(1 + b2)
3
2

− 2

b2
ln(1 + b2).

With the new variable c := b2, we find that

h(c) := cg′(
√
c) =

2c

1 + c
+

(
c

1 + c

) 3
2

log(
√
c+
√

1 + c)− 2 ln(1 + c), c ∈ (0,∞).

We need to show that h is negative on (0,∞), and we observe that h(0+) = 0. To
show that h is decreasing on (0,∞), we calculate the derivative

h′(c) =
2

(1 + c)2
+

3

2

(
c

1 + c

) 1
2 log(

√
c+
√

1 + c)

(1 + c)2
+

c

2(1 + c)2
− 2

1 + c

= −3

2

c

(1 + c)2
+

3

2

(
c

1 + c

) 1
2 log(

√
c+
√

1 + c)

(1 + c)2
,
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from which we define a function k by

k(c) := 2
3
(1 + c2)

5
2 c−

1
2h′(c) = −

√
c(1 + c) + log(

√
c+
√

1 + c), c ∈ (0,∞).

Finally, we observe that k(0+) = 0 and

k′(c) = − 1 + 2c

2
√
c(1 + c)

+
1

2
√
c(1 + c)

= −
√

c

1 + c
≤ 0: for c ∈ (0,∞).

Thus k(c) < 0 for c ∈ (0,∞), so that h is decreasing on (0,∞) and thus negative,
which implies that g is decreasing and negative for c ∈ (0,∞). Hence, G is decreasing
on (0,∞), which is equivalent to the original claim. This completes the proof of the
lemma. �

We are now ready to continue our investigation on Lemma 3, again.

Lemma 5. The maximum of the right-hand side in Lemma 3 is achieved when
a = 1, so that

I(S, T ) + I(T, S) ≤ (1 + γ)

ˆ ∞
0

[
(1 + w)−

2+γ
2 − (1 + w)−

3+γ
2

]
w−

1−γ
2 dw,

where γ ∈ (−1, 1].

Proof. We consider the function

(22) G(a) :=

ˆ ∞
0

[
(a+ w)−

1+γ
2 +

(
1
a

+ w
)− 1+γ

2

]√1 + w − 1

1 + w
w−

1−γ
2 dw,

where γ ∈ (−1, 1] and a ∈ (0,∞). We need to show that G is maximized by a = 1.
To that end, we consider the derivative with respect to a:

2

1 + γ
G′(a) =

ˆ ∞
0

[
− (a+ w)−

3+γ
2 + a−2

(
1
a

+ w
)− 3+γ

2

]√1 + w − 1

1 + w
w−

1−γ
2 dw

= −
ˆ ∞
0

( w

a+ w

)3+γ
2

√
1 + w − 1

(1 + w)w2
dw +

ˆ ∞
0

1

a2

( w
1
a

+ w

) 3+γ
2

√
1 + w − 1

(1 + w)w2
dw.

In the first integral we use the change of variables v := w
a
and this gives

ˆ ∞
0

( w

a+ w

) 3+γ
2

√
1 + w − 1

(1 + w)w2
dw =

1

a

ˆ ∞
0

( v

1 + v

) 3+γ
2

√
1 + av − 1

(1 + av)v2
dv,

whereas in the second one we use v := aw and obtain
ˆ ∞
0

1

a2

(
w

1
a

+ w

) 3+γ
2
√

1 + w − 1

(1 + w)w2
dw =

1

a

ˆ ∞
0

(
v

1 + v

) 3+γ
2

√
1 + v

a
− 1

(1 + v
a
)v2

dv.

Therefore, we have the following expression for the derivative

2a

1 + γ
G′(a) =

ˆ ∞
0

( v

1 + v

) 3+γ
2 1

v2

[√
1 + v

a
− 1

1 + v
a

−
√

1 + av − 1

1 + av

]
dv.

Denote
g(x) := x−

1
2 − x−1

and observe that the square bracket term equals g(1 + v
a
)− g(1 + va). We find that

g′(x) = −1
2
x−

3
2 + x−2 = 1

2
(2−

√
x)x−2
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so that g is increasing on [0,
√

2] and decreasing on [
√

2,∞). When a < 1, we have
1 + v

a
> 1 + av and so it follows that v 7→ g(1 + v

a
)− g(1 + va) is positive until some

value v0 and then negative. Furthermore, the function

v 7→
(

v

1 + v

)− 1−γ
2

is decreasing on (0,∞). Therefore, we have

[g(1 + v
a
)− g(1 + va)]

( v

1 + v

)− 1−γ
2 ≥ [g(1 + v

a
)− g(1 + va)]

( v0
1 + v0

)− 1−γ
2

both when v ≤ v0 and v ≥ v0. We conclude that

(23)
2a

1 + γ
G′(a) ≥

( v0
1 + v0

)− 1−γ
2

ˆ ∞
0

( v

1 + v

)2 1

v2

[√
1 + v

a
− 1

1 + v
a

−
√

1 + av − 1

1 + av

]
dv.

Up to a constant, the right-hand side of (23) is the derivative of the function in the
case γ = 1. By Lemma 4, this function is increasing on (0, 1), so its derivative, and
hence the right-hand side of the inequality in (23) above, is non-negative. It follows
that G′(a) ≥ 0 on (0, 1). Furthermore, by symmetry we conclude that G′(a) ≤ 0 on
(1,∞). Hence the maximum of G occurs at a = 1, as claimed. �

Finally, we are ready to prove that the inequality (7) holds when α ∈ [0, 1).

2.3. Proof of Theorem 1. To prove (17) it suffice to show that

sup{I(S, T ) + I(T, S) : 0 ≤ S ≤ 4, 0 ≤ T ≤ 4} ≤ 2(β(α)− 1).

Recall that γ = 1− 2α and so, by Lemma 5, to suffices to show equivalently that

(1− α)

ˆ ∞
0

[
(1 + w)α−

3
2 − (1 + w)α−2

]
w−α dw ≤

Γ(1
2
)Γ(2− α)

Γ(3
2
− α)

− 1,

by the definition of β(α). We then consider the beta function (not the function β(α)
from before), and its relation to the gamma function as followsˆ ∞

0

tx−1(1 + t)−x−y dt =
Γ(x)Γ(y)

Γ(x+ y)
.

We use this formula with x = 1− α and y = 1
2
or y = 1. This gives that

(1− α)

ˆ ∞
0

[
(1 + w)α−

3
2 − (1 + w)α−2

]
w−α dw

= (1− α)

[
Γ(1

2
)Γ(1− α)

Γ(3
2
− α)

− Γ(1)Γ(1− α)

Γ(2− α)

]
=

Γ(1
2
)Γ(2− α)

Γ(3
2
− α)

− 1,

since (1−α)Γ(1−α) = Γ(2−α) and Γ(1) = 1. This completes the proof of the desired
estimate (7), which, by Lemma 1 implies that the Gehring–Hayman inequality holds
with constant β(α).

It remains to be shown that β(α) given by (4) cannot be replaced by any smaller
constant. We show that the extremal function for our problem is kα defined by
kα(z) := z/(1− z)2−2α. We calculate that

k′α(z) =
1 + (1− 2α)z

(1− z)3−2α
and

zk′α(z)

kα(z)
= α + (1− α)

1 + z

1− z
.
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From this we see that kα ∈ S∗(α). As before, we set γ = 1− 2α and we have that

|k′α(reiθ)| =
√

1 + (γr)2 + 2γr cos θ

(1 + r2 − 2r cos θ)1+
γ
2

.

Furthermore, |kα(eiθ)| = (2(1 − cos θ))−
1+γ
2 . Let us denote again T := 2(1 − cos θ).

Then we have shown that

lim
r→1

`(r, θ)

|kα(reiθ)|
= T

1+γ
2

ˆ 1

0

√
(1 + γu)2 − γTu

((1− u)2 + Tu)1+
γ
2

du.

We are interested in the limit value of the right-hand side when T → 0. For some
small ε > 0, we restrict the integral to the range u ∈ (1− ε, 1) for a lower bound, and
estimate √

(1 + γu)2 − γTu ≥ (1 + γ)(1−O(ε+ T )).

We estimate the remaining terms with the same change of variables w := Tu
(1−u)2 as

before:
ˆ 1

1−ε

T
1+γ
2

((1− u)2 + Tu)1+
γ
2

du ≥
ˆ ∞
T (1−ε)/ε2

T
−1+γ

2 (1− u)1−γ

(2− ε)(1 + w)1+
γ
2

dw.

Also as before, solving for T−
1
2 (1−u) and using T ≤ εw (which follows from u ≥ 1−ε),

we have:

T−
1
2 (1− u) =

2
√
T + 4w +

√
T
≥ 1√

ε/4 + 1 +
√
ε/4

1√
w

= (1−O(
√
ε))

1√
w
.

With the previous two estimates, we obtain

lim
T→0

ˆ 1

1−ε

T
1+γ
2

√
(1 + γu)2 − γTu

((1− u)2 + Tu)1+
γ
2

du ≥ (1−O(
√
ε))

1 + γ

2

ˆ ∞
0

w−
1−γ
2 (1 + w)−1−

γ
2 dw

so that

lim
θ→0

lim
r→1

`(r, θ)

|kα(reiθ)|
≥ (1−O(

√
ε))(1− α)

ˆ ∞
0

w−α(1 + w)α−
3
2 dw

= (1−O(
√
ε))

Γ(1
2
)Γ(2− α)

Γ(3
2
− α)

.

The claim follows from this as ε→ 0. �
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