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Adimensional weighted Sobolev
inequalities in PI spaces

David Tewodrose

Abstract. We provide a family of global weighted Sobolev inequalities and Hardy inequalities

on PI spaces with possibly non-maximal volume growth. Our results apply notably to non-trivial

Ahlfors regular spaces like Laakso spaces and Kleiner–Schioppa spaces.

Ulottuvuudesta irrotettuja painotettuja Sobolevin epäyhtälöitä PI-avaruuksissa

Tiivistelmä. Esitämme joukon globaaleja painotettuja Sobolevin epäyhtälöitä ja Hardyn

epäyhtälöitä PI-avaruuksissa, joissa tilavuus voi kasvaa suurinta mahdollista vauhtia hitaammin.

Tuloksemme soveltuvat erityisesti epätriviaaleihin Ahlforsin-säännöllisiin avaruuksiin kuten Laak-

son avaruuksiin ja Kleinerin–Schioppan avaruuksiin.

1. Introduction

On a smooth complete non-compact Riemannian manifold (M, g) of dimension
n > 2 equipped with the canonical Riemannian volume measure volg, the classical
Sobolev inequality writes as

(1.1)

(
ˆ

M

f 2⋆ d volg

)2/2⋆

≤ CS

ˆ

M

|∇f |2 d volg

for any f ∈ H1,2(M), where 2⋆ := 2n/(n − 2) is such that 1/2 − 1/2⋆ = 1/n, and
CS > 0 does not depend on f . When the manifold has non-negative Ricci curvature,
a necessary condition for this inequality to hold is the existence of a constant C > 0
such that

(1.2) volg(Br(o)) ≥ Crn

for some o ∈ X and any r ≥ 1, i.e. the manifold must have Euclidean volume growth.
In case n in (1.2) is replaced by some η ∈ [1, n), the Sobolev inequality does not hold
(see e.g. [Min09, Prop. 2.21]), but under the stronger assumption

(1.3)
volg(BR(o))

volg(Br(o))
≥ C

(

R

r

)η

∀ 0 ≤ r ≤ R < +∞

a weighted Sobolev inequality does, namely

(1.4)

(
ˆ

M

f 2⋆ dµ

)2/2⋆

≤ CW

ˆ

M

|∇f |2 d volg

for any f ∈ H1,2(M), where µ is the measure absolutely continuous with respect to
volg with density w := vol(Bro(·)(o))

2⋆/nro(·)
−2⋆ , the function ro(·) is the Riemannian
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distance to o, and CW does not depend on f . Assumption (1.3) is usually called a
reverse doubling condition.

Inequality (1.4) was established by Minerbe in [Min09] who built his proof upon
a patching procedure going back at least to the work of Grigor’yan and Saloff-Coste
[GSC05]. Later on, Hein extended (1.4) to the class of Riemannian manifolds with
quadratically decaying Ricci curvature [Hei11], after what the author provided an-
other extension of (1.4) to possibly non-smooth metric measure spaces satisfying the
Lott–Sturm–Villani CD(0, N) curvature-dimension condition [Tew21].

The goal of this note is to establish a family of weighted Sobolev inequalities
extending (1.4) to the general context of complete PIp metric measure spaces (X, d,m)
satisfying a reverse doubling condition. Here and throughout the note “PIp” qualifies
spaces supporting a global doubling condition and a weak (p, p) Poincaré inequality
for some p ≥ 1: we refer to Section 2 for the precise definitions of these two conditions.
Moreover, all the metric measure spaces considered in this note are always tacitly
assumed separable.

Before stating our main results, let us make three preliminary remarks. First,
(1.4) is an L2 weighted Sobolev inequality, and we prove Lp versions of this inequality
for any 1 ≤ p < Q, where Q is the doubling dimension of the space whose definition
we recall in Section 2. Secondly, the weight in (1.4) involves the dimension n of the
manifold; in order to remove this n we introduce two parameters s ≤ t such that

(1.5) 0 ≤
1

s
−

1

t
≤

1

Q

and formulate our inequalities in terms of these parameters: this leads to what we
call adimensional inequalities. On a Riemannian manifold whose doubling dimension
equals the Hausdorff dimension (i.e. Q = n), the second inequality in (1.5) is an
equality when s = 2 and t = 2⋆. Thirdly, an important feature of our results is that
they do not involve any curvature condition: this is a major improvement compared
to [Min09, Hei11, Tew21].

Throughout the paper we write C = C(a1, . . . , ak) to express that a constant C
depends on the parameters a1, . . . , ak only. Here is the main theorem of this note.

Theorem 1.1. Let (X, d,m) be a complete PIp space with doubling dimension

Q > 1, Poincaré exponent p ≥ 1 and Poincaré constants CP > 0 and λ ≥ 1. Assume

that p < Q and set p⋆ := pQ
Q−p

. Assume that there exists o ∈ X and η ∈ (p,Q] such

that:

(1.6)
m(BR(o))

m(Br(o))
≥ Co

(

R

r

)η

∀ 0 < r ≤ R < +∞.

Then for any s ∈ [p, η) and t ∈ [s, p⋆] there exists C = C(Q, p, CP , λ, η, Co, s, t) > 0
such that

(1.7)

(
ˆ

X

|f |t dµs,t

)1/t

≤ CChs(f)
1/s

for any f ∈ H1,s(X, d,m), where dµs,t(·) := m(Bd(o,·)(o))
t/s−1

d(o, ·)−t dm(·).

We refer to (2.3) and (2.4) in Section 2 for the definition of the s-Cheeger energy
Chs and its associated class of Sobolev functions H1,s(X, d,m).

Note that when (X, d,m) = (Mn, g) and (s, t) = (2, 2⋆), then (1.7) reduces to
(1.4).
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It is well-known that the doubling condition implies the reverse doubling one
(1.6) for some η = η(CD) ≤ 1, see e.g. [GHL14, Prop. 3.3], but in (1.6) we assume
η > p > 1 which is not a consequence of the doubling condition.

We call adimensional the inequalities (1.7) because they do not involve any no-
tion of dimension; the doubling dimension Q does provide an upper bound on the
Hausdorff dimension of (X, d) and the exponent η bounds the Hausdorff dimension
of any tangent cone at infinity of (X, d) from below, but these weak notions of di-
mension intervene only in the critical values the dimension free parameters t and s
can assume.

When η = Q, Theorem 1.1 applies to the case of Ahlfors Q-regular spaces, namely
those metric measure spaces (X, d,m) for which there exists a constant CA ≥ 1 such
that C−1

A rQ ≤ m(Br(x)) ≤ CAr
Q for any x ∈ X and r > 0.

Corollary 1.2. Let (X, d,m) be a complete Ahlfors Q-regular space satisfying a

weak (p, p) Poincaré inequality with 1 ≤ p < Q. Then for any o ∈ X, any s ∈ [p,Q)
and any t ∈ [s, p⋆], there exists C = C(Q, p, CP , s, t) > 0 such that

(1.8)

(
ˆ

X

|f |trQ(t/s−1)−1
o dm

)1/t

≤ C
1/s−1/t
A CChs(f)

1/s

for any f ∈ H1,s(X, d,m), where ro(·) := d(o, ·).

Our proof of Theorem 1.1 follows readily the lines of [Min09, Tew21], but we
provide details for the reader’s convenience. We patch local Sobolev inequalities—
derived from the PI condition like in [HaK00]—by means of a discrete Poincaré
inequality. This latter inequality holds on a graph whose structure reflects the ge-
ometry of the space.

Patching local Poincaré inequalities instead of local Sobolev inequalities yields
the following Hardy inequalities.

Theorem 1.3. Let (X, d,m), Q, p, o and η be as in Theorem 1.1. Set ro(·) :=
d(o, ·). Then for any s ∈ [p, η), there exists C = C(Q,Co, η, s) > 0 such that for any

f ∈ H1,s(X, d,m),

(1.9)

ˆ

X

|f |sr−s
o dm ≤ CChs(f).

Let us finally single out two important classes of Ahlfors regular spaces falling in
the framework of our results. The first one was introduced in [Laa00] by Laakso who
constructed, for any Q > 1, an Ahlfors Q-regular metric measure space (XQ, dQ,mQ)
supporting a weak (1, 1) Poincaré inequality. Though Laakso detailed only the con-
struction of compact spaces, he suggested a natural modification to get non-compact
spaces with the same properties. The second one was introduced by Kleiner and
Schioppa in [KS17]. For any integer n ≥ 1, they built a non-compact Ahlfors Q-
regular space (Xn, dn,mn), with Q = 1 + (n − 1)/α and α suitably chosen in (0, 1),
satisfying a weak (1, 1) Poincaré inequality. Moreover, each (Xn, dn,mn) has topo-
logical dimension n, Hausdorff dimension Q, and analytic dimension 1 (meaning that
Cheeger’s cotangent bundle [Che99] has dimension 1); in this regard, our adimen-
sional inequalities are likely to help investigating the analytic properties of these
spaces.

Acknowledgments. I thank T. Coulhon for the initial impetus he gave to this
work, L. Mari for precious comments on two successive versions of this article, and
the two anonymous referees for their kind and helpful suggesions.
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2. Analysis tools on metric measure spaces

We call metric measure space any triple (X, d,m) where (X, d) is a separable
metric space and m a non-negative Borel regular measure on (X, d) which is finite
and non-zero on balls with finite and non-zero radius. Whenever A is a subset of
a metric space, we write A for its closure. If m(A) 6= 0 and f is integrable on A,
we write fA or

ffl

A
f dm for the mean value m(A)−1

´

A
f dm, or fA,m to emphasize the

measure with respect to which the mean value is taken. We use the classical notation
Br(x) for the open ball centered at x with radius r, Sr(x) for the sphere centered

at x with radius r, and A(x, r, R) for the annulus BR(x)\Br(x), where 0 < r ≤ R.
Unless otherwise stated, whenever Γ is a set we write #Γ for its cardinality.

We use classical notations for function spaces, like C(X) for the space of con-
tinuous functions, Cc(X) for the one of compactly supported continuous functions,
Lip(X) for Lipschitz functions, Lipbs(X) for Lipschitz functions with bounded sup-
port, and if A is a m-measurable subset of X we use Lp(A,m) (resp. Lp

loc(A,m))
for (resp. locally) p-integrable functions on A, with 1 ≤ p < +∞, L∞(A,m) for
m-essentially bounded functions on A and L0(A,m) (resp. L0

+(A,m)) for (resp. non-
negative) m-measurable functions on A.

We recall that for any p ≥ 1 the function t 7→ |t|p is convex, so that for any
a, b ∈ R,

(2.1) |a+ b|p ≤ 2p−1(|a|p + |b|p),

and for any x1, . . . , xk ≥ 0,

(2.2)
∑

i

xp
i ≤

(

∑

i

xi

)p

.

Upper gradients and p-Cheeger energies. Let (X, d,m) be a metric measure
space. For any f : X → [−∞,+∞], a Borel function g : X → [0,+∞] is called an
upper gradient of f if for any rectifiable curve γ : [0, L] → X parametrized by arc-
length,

|f(γ(L))− f(γ(0))| ≤

ˆ L

0

g(γ(s)) ds.

For any p ∈ [1,+∞), we write UGp(f) for the set of p-integrable upper gradients of
f . When f ∈ Lp(X,m), its Cheeger p-energy [Che99] is set as

(2.3) Chp(f) := inf
{

lim inf
i→∞

‖gi‖
p
Lp

}

∈ [0,+∞],

where the infimum is taken over all the sequences {fi}i ⊂ Lp(X,m) and {gi}i ⊂
L0
+(X,m) such that gi is an upper gradient of fi and ‖fi − f‖Lp → 0. Then the

Sobolev space H1,p(X, d,m) is set as the finiteness domain of Chp:

(2.4) H1,p(X, d,m) := {f ∈ Lp(X,m) : Chp(f) < +∞}.

It is a Banach space when equipped with the norm

‖ · ‖H1,p := (‖ · ‖pLp + Chp(·))
1/p.

Moreover, for any function f ∈ H1,p(X, d,m), there exists a function |∇f |∗,p ∈
Lp(X,m) called minimal p-relaxed upper gradient of f such that |∇f |∗,p ∈ UG(f),

Chp(f) =

ˆ

X

|∇f |p∗,p dm,



Adimensional weighted Sobolev inequalities in PI spaces 355

and |∇f |∗,p ≤ g m-a.e. for any g ∈ UG(f).

Remark 2.1. In the literature, Chp is sometimes defined with a coefficient 1/p
in front, but this coefficient does not play any role in our discussion, so we skip it.

PI spaces. A metric measure space (X, d,m) is called a PI space if the two
following properties are in force:

(i) (global doubling condition) there exists CD ≥ 1 such that for any x ∈ X and
r > 0,

(2.5) m(B2r(x)) ≤ CDm(Br(x));

(ii) (weak (q, p) Poincaré inequality) there exists p, q ≥ 1, λ ≥ 1 and CP > 0 such
that for all f ∈ L1

loc(X,m), all g ∈ UGp(f), and all ball Br with radius r > 0,
(
 

Br

|f − fBr
|q dm

)q

≤ CP r

(
 

Bλr

gp dm

)1/p

.

We may use the notation PIq,p to underline the values of the exponent involved in
the weak Poincaré inequality, and write PIp in case q = p.

It is worth pointing out that the weak (q, p) Poincaré inequality implies the (q, p′)
and the (q′, p) ones with same constant CP for any p′ ≥ p and q′ ≤ q, as Hölder’s
inequality implies

(
 

Bλr

gp dm

)1/p

≤

(
 

Bλr

gp
′

dm

)1/p′

and
(
 

Br

|f − fBr
|q

′

dm

)1/q′

≤

(
 

Br

|f − fBr
|q dm

)1/q

.

If only (i) is true, we say that (X, d,m) is a doubling space, or we say that m is
a doubling measure; in this case, a simple argument shows that

m(BR(x))

m(Br(x))
≤ CD

(

R

r

)log2 CD

for any 0 < r ≤ R < +∞: see [GHL14, Prop. 3.2], for instance. This form of
the doubling condition may clarify why (1.6) is called a reverse doubling condition.
The constant Q := log2CD where CD is the lowest constant such that (2.5) holds is
called the doubling dimension of (X, d,m). Moreover, as a consequence of the strong
annular decay property [Buc99], any doubling metric measure space satisfies

m(Sr(x)) = 0(2.6)

for any x ∈ X and r > 0.
Following [HKST15], we say that a metric space (X, d) is geodesic, or equivalently

that d is a geodesic distance on X, if every pair of points in X can be joined by a
rectifiable curve whose length is equal to the distance between the points. Such a
curve is called a geodesic. Any complete PI space carries a geodesic distance that is
bi-Lipschitz equivalent to the original metric: see [HKST15, Cor. 8.3.16]. Since the PI
property is preserved by bi-Lipschitz equivalence of metrics [HKST15, Lem. 8.3.18],
with no loss of generality we can (and will from now on) assume that any complete
PI space is geodesic.

Good coverings and patching theorem. We call doubly measured metric
space any quadruple (X, d,m, µ) where (X, d,m) and (X, d, µ) are metric measure
spaces, and we write Chp for the p-Cheeger energy of (X, d,m). For simplicity, we
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assume that supp(m) = supp(µ) = X, but this assumption can be removed with the
help of a natural adaptation of the definitions below. We provide the definition of a
good covering [GSC05, Min09, Tew21].

Definition 2.2. A good covering of a doubly measured metric space (X, d,m, µ)

is a countable family of triples {(Ui, U
∗
i , U

#
i )}i∈I of Borel sets with finite m and µ

measure such that

(1) Ui ⊂ U∗
i ⊂ U#

i for any i,
(2) m(X\

⋃

i Ui) = µ(X\
⋃

i Ui) = 0,

and for some Q1, Q2 > 0,

(3) supi #{j ∈ I : U#
j ∩ U#

i 6= ∅} ≤ Q1,
(4) whenever i ∼ j there exists k(i, j) ∈ I such that Ui ∪ Uj ⊂ U∗

k(i,j) and

m(U∗
k(i,j)) ≤ Q2min(m(Ui),m(Uj)), µ(U

∗
k(i,j)) ≤ Q2min(µ(Ui), µ(Uj)).

Here and in the sequel i ∼ j means Uj ∩ Ui 6= ∅. It is worth pointing out that if

{(Ui, U
∗
i , U

#
i )}i∈I is a good covering of (X, d,m, µ), then

(2.7)
∑

i∈V

1U∗
i
≤ Q1

because U∗
i ∩ U∗

j 6= ∅ implies U#
j ∩ U#

i 6= ∅, and

(2.8)
∑

i∈V

∑

i∼j

1U∗
k(i,j)

≤ Q3
1

because
∑

i∼j

1U∗
k(i,j)

≤ Q11∪j∼iU∗
k(i,j)

≤ Q11∪j∼iU
#
k(i,j)

for any i ∈ V and
∑

i∈V

1∪j∼iU
#
k(i,j)

≤ Q2
1.

Definition 2.3. The weighted graph (V, E , µ) canonically attached to a good

covering {(Ui, U
∗
i , U

#
i )}i∈I is obtained by setting V := I, E := {(i, j) ∈ I2 : i ∼

j}, and µ : V ⊔ E → [0,+∞) where µ(i) := µ(Ui) for every i ∈ I and µ(i, j) :=
min(µ(Ui), µ(Uj)) for every (i, j) ∈ E .

Remark 2.4. If (V, E , µ) is a weighted graph as in the previous definition, then
µ provides a measure on V, still denoted by µ, defined by µ(Ω) :=

∑

i∈Ω µ(i) for
any Ω ⊂ V, and another measure on E , denoted by µ too, defined by µ(Γ) :=
∑

(i,j)∈Γ µ(i, j) for any Γ ∈ E .

For 1 ≤ s ≤ t < +∞, we say that a good covering {(Ui, U
∗
i , U

#
i )}i∈I satisfies local

(t, s) continuous Sobolev–Neumann inequalities if there exists a constant C1 > 0 such
that for any i ∈ I,

(2.9)

(
ˆ

Ui

|f − fUi,µ|
t dµ

)1/t

≤ C1

(

ˆ

U∗
i

gs dm

)1/s

for any f ∈ L1
loc(Ui, µ) and g ∈ UG(f) ∩ Ls(U∗

i ,m), and

(2.10)

(

ˆ

U∗
i

|f − fU∗
i ,µ

|t dµ

)1/t

≤ C1

(

ˆ

U#
i

gs dm

)1/s
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for any f ∈ L1
loc(U

∗
i , µ) and g ∈ UG(f) ∩ Ls(U#

i ,m); we say that {(Ui, U
∗
i , U

#
i )}i∈I

satisfies a t Poincaré inequality if the associated weighted graph (V, E , µ) admits a
constant C2 > 0 such that for any f : V → R with finite support,

(2.11)

(

∑

i∈V

|f(i)|tµ(i)

)1/t

≤ C2





∑

(i,j)∈E

|f(i)− f(j)|tµ(i, j)





1/t

.

Remark 2.5. For any f : V → R one can define |∇f | : E → R by setting
|∇f |(i, j) := |f(i) − f(j)| for any (i, j) ∈ E . In this way, (2.11) takes the more
classical form ‖f‖Lt(V ,µ) ≤ C2‖|∇f |‖Lt(E,µ).

Then the following patching theorem holds.

Theorem 2.6. Let (X, d,m, µ) be a doubly measured metric space admitting

a good covering satisfying the local (t, s) continuous Sobolev–Neumann inequalities

and the discrete t Poincaré inequality for some numbers 1 ≤ s ≤ t < +∞. Then there

exists a constant C = C(Q1, Q2, C1, C2, s, t) > 0 such that for any f ∈ H1,s(X, d,m),

(2.12)

(
ˆ

X

|f |t dµ

)1/t

≤ CChs(f)
1/s.

Proof. Take f ∈ H1,s(X, d,m). Then
ˆ

X

|f |t dµ ≤
∑

i∈V

ˆ

Ui

|f |t dµ

≤ 2t−1
∑

i∈V

(
ˆ

Ui

|f − fUi,µ|
t dµ+

ˆ

Ui

|fUi,µ|
t dµ

)

thanks to (2.1)

≤ 2t−1Ct
1

∑

i∈V

(

ˆ

U∗
i

|∇f |s∗,s dµ

)t/s

+ 2t−1
∑

i∈V

|fUi,µ|
tµ(Ui) thanks to (2.9).(2.13)

On one hand, (2.2) and (2.7) imply

∑

i∈V

(

ˆ

U∗
i

|∇f |s∗,s dµ

)t/s

≤

(

ˆ

X

∑

i∈V

1U∗
i
|∇f |s∗,s dµ

)t/s

≤ Q
t/s
1

(
ˆ

X

|∇f |s∗,s dµ

)t/s

.

(2.14)

On the other hand, (2.11) and a suitable double use of Hölder’s inequality yield
∑

i∈V

|fUi,µ|
tµ(Ui) ≤ Ct

2

∑

(i,j)∈E

||fUi,µ| − |fUj ,µ||
tµ(i, j)

≤ Ct
2

∑

(i,j)∈E

ˆ

Ui

ˆ

Uj

|f(x)− f(y)|t dµ(x) dµ(y)
µ(i, j)

µ(Ui)µ(Uj)
.

As for any (i, j) ∈ E there exists k(i, j) such that Ui ∪ Uj ⊂ U∗
k(i,j) and µ(i, j) ≤

µ(U∗
k(i,j)) ≤ Q2 µ(i, j), we get

∑

i∈V

|fUi,µ|
tµ(Ui) ≤ Ct

2

∑

(i,j)∈E

ˆ

U∗
k(i,j)

ˆ

U∗
k(i,j)

|f(x)− f(y)|t dµ(x) dµ(y)
Q2

µ(U∗
k(i,j))

.



358 David Tewodrose

For any (i, j) ∈ E , applying (2.1) with a = f(x)− fU∗
k(i,j)

and b = fU∗
k(i,j)

− f(y) leads
to

ˆ

U∗
k(i,j)

ˆ

U∗
k(i,j)

|f(x)− f(y)|t dµ(x) dµ(y) ≤ 2tµ(U∗
k(i,j))

ˆ

U∗
k(i,j)

|f − fU∗
k(i,j)

|t dµ.

Therefore,
∑

i∈V

|fUi,µ|
tµ(Ui) ≤ (2C2)

tQ2

∑

(i,j)∈E

ˆ

U∗
k(i,j)

|f − fU∗
k(i,j)

|t dµ

≤ (2C1C2)
tQ2

∑

(i,j)∈E

(

ˆ

U∗
k(i,j)

|∇f |s∗,s dµ

)t/s

thanks to (2.10)

≤ (2C1C2)
tQ2





ˆ

X

∑

(i,j)∈E

1U∗
k(i,j)

|∇f |s∗,s dµ





t/s

thanks to (2.2)

≤ (2C1C2)
tQ2Q

3t/s
1

(
ˆ

X

|∇f |s∗,s dµ

)t/s

thanks to (2.8).(2.15)

Combining (2.13), (2.14) and (2.15) yield (2.12) with

C = 2t−1[Ct
1Q

t/s
1 + (2C1C2)

tQ2Q
3t/s
1 ]. �

Good coverings via κ-decomposition. In this paragraph, we provide a sys-
tematic manner to build a good covering on doubly measured metric spaces satisfying
mild assumptions.

Remark 2.7. We suggest the reader to keep in mind the set X ⊂ R2 ≈ C

defined as
B1(0) ∪A1 ∪A2 ∪ A3

where

A1 = {reiθ : r > 0, θ ∈ (−π/4, π/4)},

A2 = {reiθ : 0 < r < 20, θ ∈ (π/2, 3π/4)},

A3 = {reiθ : 0 < r < 17, θ ∈ (π, 3π/2)}\{reiθ : 3 < r < 15, θ ∈ (5π/4, 7π/4)},

as a guiding example to apply the construction described in this paragraph, in the
case where the parameter κ appearing thereafter is equal to 2.

Let (X, d) be a connected metric space, o ∈ X and κ > 1. For any fixed i ∈ Z,
consider the connected components {Vi,a}a∈Λ(i) of the annulus A(o, κi−1, κi), and note

that Vi,a ∩ Sκi−1(o) 6= ∅ for any a ∈ Λ(i).
Write Γ for the set of indices (i, a) where i ∈ Z and a ∈ Λ(i). Consider Λ ⊂ Γ

defined by
Λ := {(i, a) : Vi,a ∩ Sκi(o) 6= ∅}

and for any i ∈ Z denote by ℵ(i) the set of a ∈ Λ(i) such that (i, a) ∈ Λ. Observe
that

Γ\Λ =
⋃

κi−1<ε≤κi

{(i, a) : Vi,a ∩ Sε(o) = ∅}

because Vi,a ∩ Sε(o) = ∅ for some κi−1 < ε ≤ κi implies Vi,a ∩ Sκi(o) = ∅. This
means in particular that pieces Vi,a where (i, a) ∈ Γ\Λ may be of arbitrary small
width. In order to build a good covering from the pieces {Vi,a}(i,a)∈Γ, we want to
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avoid this arbitrary smallness, because it may contradict the measure control in (4)
of Definition 2.2. For this reason, we proceed as follows.

• First we define sets {Ui,a}(i,a)∈Λ by setting Ui,a := Vi,a for any (i, a) ∈ Λ.
• Secondly we enlarge some of these sets {Ui,a}(i,a)∈Λ as follows: for any (i, a) ∈

Γ\Λ, we choose b ∈ ℵ(i− 1) such that Vi,a ∩ Vi−1,b 6= ∅ and we set

Ui−1,b := Vi,a ∪ Vi−1,b ∪ (Vi,a ∩ Vi−1,b).

In this way, we obtain a family of sets {Ui,a}(i,a)∈Λ such that

(2.16) Ui,a ∩ Sκi−1(o) 6= ∅ and Ui,a ∩ Sκi(o) 6= ∅

for any (i, a) ∈ Λ. Note also that

(2.17) X\
⋃

(i,a)∈Λ

Ui,a ⊂
⋃

i∈Z

Sκi(o).

Definition 2.8. Let (X, d) be a metric space, o ∈ X and κ > 1. We call κ-
decomposition of X centered at o the family of connected open sets {Ui,a}(i,a)∈Λ built
as above.

On geodesic doubling metric measure spaces, κ-decompositions satisfy the fol-
lowing key lemma.

Lemma 2.9. Let (X, d,m) be such that (X, d) is geodesic and m is doubling of

doubling dimension Q. Then for any o ∈ X and κ > 1, the cardinality h(i) of each

layer {Ui,a}a∈ℵ(i) of the κ-decomposition of X centered at o is finite and bounded

from above by a finite number h = h(κ,Q).

Proof. Take κ > 1. Take i ∈ Z. Let {Vi,a}a∈Λ(i) be the connected components of
the annulus A(o, κi−1, κi). Set ri := (κi + κi−1)/2. Then

Vi,a ∩ Sri 6= ∅

for any (i, a) ∈ Λ. Indeed, this follows from the intermediate value theorem applied
to the continuous function [0, 1] ∋ t 7→ d(o, γ(t)) where γ is a geodesic joining a point
in Vi,a ∩ Sκi−1(o) to another point in Vi,a ∩ Sκi(o).

Set ρi := (κi − κi−1)/4. Note that if xa ∈ Vi,a ∩ Sri(o), then

{Bρi(xa)}a∈ℵ(i) is a disjoint family of balls.

Indeed, since (X, d) is geodesic these balls are all connected, and they all entirely lie
in disjoint connected components of A(o, κi−1, κi).

Now observe that the balls {Bρi(xa)}a∈ℵ(i) are all included in Bκi(o). Therefore,
for any integer N > 1, if we pick N such balls {Bρi(xaℓ)}1≤ℓ≤N we have

N min
1≤ℓ≤N

m(Bρi(xaℓ)) ≤
∑

1≤ℓ≤N

m(Bρi(xaℓ)) ≤ m(Bκi(o)).

Let b be an integer between 1 and N such that µ(Bρi(xb)) = min1≤ℓ≤N m(Bρi(xaℓ)).
Since Bκi(o) ⊂ Bκi+d(o,b)(xb) ⊂ B2κi(xb), we get

N ≤
m(Bκi(o))

m(Bρi(xb))
≤

m(B2κi(xb))

m(Bρi(xb))
≤ 2Q

(

2κi

ρi

)Q

= 2Q
(

8κ

κ− 1

)Q

=: h.

This implies that ℵ(i) has a finite cardinality not greater than h. �

We are now in a position to build good coverings on a suitable class of doubly
measured metric spaces.
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Proposition 2.10. Let (X, d,m, µ) be such that (X, d) is geodesic and m is

doubling with doubling dimension Q. Assume that µ is absolutely continuous with

respect to m with density F (·) = m(Bd(o,·)(o))
α
d(o, ·)−β for some o ∈ X and α ≥ 0,

β > 0. Then for any κ > 1, the space (X, d,m, µ) admits a good covering with

parameters Q1 = Q1(Q, κ) and Q2 = Q2(Q, κ, α, β).

Proof. Take κ > 1 and build the κ-decomposition {Ui,a}(i,a)∈Λ of X centered at

o. For any (i, a) ∈ Λ, set Λ∗(i, a) := {(j, b) ∈ Λ: Ui,a ∩ Uj,b 6= ∅} and

U∗
i,a :=

⋃

(j,b)∈Λ∗(i,a)

Uj,b,

then set Λ#(i, a) := {(j, b) ∈ Λ : U∗
i,a ∩ U∗

j,b 6= ∅} and

U#
i,a :=

⋃

(j,b)∈Λ#(i,a)

U∗
j,b.

We claim that the family of triples {(Ui,a, U
∗
i,a, U

#
i,a)}(i,a)∈Λ is a good covering of the

doubly measured metric space (X, d,m, µ).

Indeed, for any (i, a) ∈ Λ, we obviously have Ui,a ⊂ U∗
i,a ⊂ U#

i,a. Moreover, since
m is doubling, we know from (2.6) and (2.17) that m(X\

⋃

i,a Ui,a) = 0, and since µ

is absolutely continuous with respect to m we also get µ(X\
⋃

i,a Ui,a) = 0. Hence (1)

and (2) in Definition 2.2 are satisfied, and we are left with proving (3) and (4).

To prove (3), take (i, a) ∈ Λ and observe that U#
i,a ∩U#

j,b 6= ∅ implies U#
i,a ∪U#

j,b ⊂

A(o, κi−50, κi+50), where 50 is by no means optimal but enough for our purposes.

Since U#
i,a and U#

j,b are made of pieces {Uk,c} belonging to A(o, κi−50, κi+50), and since
the number of such pieces is bounded from above by 101h where h = h(Q, κ) is
given by Lemma 2.9, then the number of distinct pair of indices (j, b) such that

U#
i,a ∩ U#

j,b 6= ∅ is bounded from above by a number which depends only on h. Thus
we have (3) with Q1 = Q1(Q, κ).

To prove (4), take (i, a) ∈ Λ and observe that the very definition of U∗
i,a ensures

that if Ui,a∩Uj,b 6= ∅ then Ui,a ∪Uj,b ⊂ U∗
i,a, so we may choose k((i, a), (j, b)) = (i, a).

Moreover, for any (j, b) such that Ui,a∩Uj,b 6= ∅, if we let xj,b be a point in Uj,b∩Srj(o)
where rj = (κj + κj−1)/2—the existence of xj,b is guaranteed by (2.16)—then

Bρj (xj,b) ⊂ Uj,b

where ρj = (κj − κj−1)/4, and

U∗
i,a ⊂ Bκi+1(o) ⊂ Bκi+1+d(o,xj,b)(xj,b) ⊂ B2κi+1(xj,b).

These inclusions and the doubling condition imply

m(U∗
i,a)

m(Uj,b)
≤

m(B2κi+1(xj,b))

m(Bρj (xj,b))
≤ 2Q

(

8κi+1

(κj − κj−1)

)Q

= 2Q
(

8κi−j

(κ− 1)

)Q

.

Since j ∈ {i− 1, i+ 1}, then i− j ≤ 1, hence we get

m(U∗
i,a)

m(Uj,b)
≤ 2Q

(

8κ

κ− 1

)Q

.

Moreover, since U∗
i,a ⊂ A(o, κi−2, κi+1), then

F (x) ≤ m(Bκi+1(o))ακ−(i−2)β
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for any x ∈ U∗
i,a, and since Uj,b ⊂ A(o, κj−1, κj+1) ⊂ A(o, κi−2, κi+2), then

F (x) ≥ m(Bκi−2(o))ακ−(i+2)β

for any x ∈ Uj,b. Therefore,

µ(U∗
i,a)

µ(Uj,b)
=

ˆ

U∗
i,a

F (x) dm(x)

(

ˆ

Uj,b

F (x) dm(x)

)−1

≤ m(Bκi+1(o))ακ−(i−2)β
m(U∗

i,a)

(

m(Bκi−2(o))ακ−(i+2)β
m(Uj,b)

)−1

=

(

m(Bκi+1(o))

m(Bκi−2(o))

)α

κ4β
m(U∗

i,a)

m(Uj,b)

≤ 2Qα

(

κi+1

κi−2

)αQ

κ4β2Q
(

8κ

κ− 1

)Q

≤ 2Q(α+1)κ3αQ+4β

(

8κ

κ− 1

)Q

.

Note that 2Q(α+1)κ3αQ+4β > 1. Thus we have (4) with Q2 = 2Q(α+1)κ3αQ+4β
(

8κ
κ−1

)Q
.

�

RCA property. The next definition is taken from [GSC05, Def. 5.1].

Definition 2.11. We say that a metric space (X, d) has the Relatively Connected
Annuli (RCA) property with respect to a point o ∈ X if there exists κ > 1 such that
for any R ≥ κ2, any two points x, y ∈ SR(o) can be joined by a continuous path
whose image is contained in A(o, κ−1R, κR).

Spaces satisfying the assumptions of Theorem 1.1 have the RCA property, as
implied by the next proposition.

Proposition 2.12. Let (X, d) be a complete geodesic metric space equipped

with a doubling measure m such that for some o ∈ X,

(1) there exists p ∈ [1,+∞), λ ≥ 1 and CP > 0 such that for all f ∈ L1
loc(X,m)

and g ∈ UGp(f), for all r > 0,
ˆ

Br(o)

|f − fBr(o)|
p dm ≤ CP r

p

ˆ

Bλr(o)

gp dm,

(2) there exists Co > 0 and η > p such that for any 0 < r ≤ R,

m(BR(o))

m(Br(o))
≥ Co

(

R

r

)η

.

Then (X, d) has the RCA property with respect to o. Moreover, the coefficient κ of

this property depends only on the doubling dimension Q, p, λ, CP , η and Co.

Note that compared to the assumptions of Theorem 1.1, in the previous propo-
sition we only need the weak (p, p) Poincaré inequality to hold on all balls centered
at o.

Proof. Let us fix R ≥ 1. For the sake of clarity, we call relative thickness of
an annulus A(o, r1, r2) the quantity r2/r1, and for any integers i < j we denote by
A(i, j) the annulus A(o, 2iR, 2jR). For any l ∈ N\{0}, we let il ∈ {1, . . . , l} be:
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• equal to l if for any i ∈ {1, . . . , l − 1} the annulus A(i− 1, 1) is contained in
two different connected components of the larger annulus A(i− 1, l),

• equal to the greatest integer i between 1 and l − 1 such that the annulus
A(i−1, i) is included in one single connected component of the larger annulus
A(i−1, l) in case there exists i ∈ {1, . . . , l−1} such that this property holds.

We aim at establishing

(2.18) sup
l∈N\{0}

(l − il) ≤ D

for some D = D(CD, p, CP , η, Co) < +∞. Indeed, this bound would imply that for
any l the maximal relative thickness of a non-connected annulus of the form A(i, l)
with i ∈ {1, . . . , l} is bounded from above by 2D. Since D is independant of R,
if we set κ = 2D we get that any annulus A(o, κ−1R, κR) is connected and then
path-connected since X is geodesic.

To prove (2.18), fix l ∈ N\{0} such that l − il > 2. Up to a m-negligible set,
divide the ball Bl := B2lR(o) into five domains V , Y1, Y2, Z1 and Z2 in the following
way:

• set V := B2ilR(o),
• by maximality of il, the set Bl\V = A(il, l) is not connected; choose one of its

connected component and call it W1; call W2 the union of the other connected
components;

• finally, for any α ∈ {1, 2}, set Yα := Wα∩A(i, i+1) and Zα := Wα\A(i, i+1).

Apply the weak (p, p) Poincaré inequality to the function f defined on Bl by

f(x) :=



























0 if x ∈ V ,

(2ilr)−1
d(o, x)− 1 if x ∈ Y1,

−m(Z1)m(Z2)
−1((2ilr)−1

d(o, x)− 1) if x ∈ Y2,

1 if x ∈ Z1,

−m(Z1)m(Z2)
−1 if x ∈ Z2,

and extended in a Lipschitz manner outside of Bl (using for instance Whitney’s or
McShane’s extension). Note that f is constructed in such a way that the mean-value
fZ1∪Z2 equals 0. Since f is Lipschitz its local Lipschitz constant lipf is an upper
gradient: see [Che99, Prop. 1.11]. Since

lipf(x) =











(2ilr)−1 if x ∈ Y1,

−m(Z1)m(Z2)
−1(2ilr)−1 if x ∈ Y2,

0 on X\(Y1 ∪ Y2),

we get

(2.19)

ˆ

Bl

|f − fBl
|p dm ≤ CP2

p(l−il)

(

m(Y1)−
m(Z1)

p

m(Z2)p
m(Y2)

)

.

Convexity of the function t 7→ |t|p applied to the quantity |f(x) − f(y)| = |f(x) −
fBl

+ fBl
− f(y)| provides

ˆ

Bl

|f − fBl
|p dm ≥ 2−p

 

Bl

ˆ

Bl

|f(x)− f(y)|p dm

≥ 2−pm(Z1)m(Z2)

m(Bl)

(

1 +
m(Z1)

m(Z2)

)p

.(2.20)
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Combining (2.19) and (2.20), noticing that the right hand side in (2.19) is bounded
above by CP2

p(l−il)m(Y1 ∪ Y2)(1−m(Z1)
p
m(Z2)

−p) and that Y1 ∪ Y2 ⊂ B2il+1(o), the
elementary inequality (1−ap)(1+a)−p ≤ 1 holding for any a > 0 applied to the case
a = m(Z1)/m(Z2) eventually yields to

(2.21) 1 ≤ 2pCP2
p(l−il)

m(Bl)m(B2il+1(o))

m(Z1)m(Z2)
.

A simple reasoning based on the doubling condition shows that for any i ∈ {1, 2},
we have m(Zi) ≥ C−1

D 11− log2(CD)
m(Bl), so that

(2.22) 1 ≤ 2pCP2
p(l−il)C2

D121
log2(CD)m(B2il+1(o))

m(Bl)
.

Then the reverse doubling condition implies

1 ≤ Do2
(l−il)(p−η)

where Do := 4ηCoCPC
2
D121

log2(CD) = 4ηCoCp484
Q depends only on Q, Cp, Co and η.

As η > p, (2.18) follows by setting D := (η − p)−1 log2(Do). �

Remark 2.13. Our proof yields κ = [4ηCoCP484
Q](η−p)−1

.

A final lemma. We conclude with an elementary lemma.

Lemma 2.14. Let (X, µ) be a measured space, A ⊂ Y a measurable set such

that µ(A) > 0, and f ∈ Lp(A, µ) for some p > 0. Then:

(2.23)

ˆ

A

|f − fA,µ|
p dµ ≤ 2p inf

c∈R

ˆ

A

|f − c|p dµ.

Proof. Take c ∈ R. Then ‖f − fA,µ‖Lp(A,µ) ≤ ‖f − c‖Lp(A,µ) + ‖c − fA,µ‖Lp(A,µ)

and

‖c− fA,µ‖Lp(A,µ) ≤ µ(A)1/p|c− fA,µ| ≤ µ(A)1/p−1

ˆ

A

|c− f | dµ ≤ ‖f − c‖Lp(A,µ)

by Hölder’s inequality. We get ‖f − fA,µ‖Lp(A,µ) ≤ 2 infc∈R ‖f − c‖Lp(A,µ) which gives
(2.23). �

3. Local Sobolev inequalities

For our purposes, we need suitable local Sobolev inequalities. To prove them,
we adapt arguments from [HaK00] which are based on an extension of the classical
Euclidean Riesz potentials [Sob38, Ste16] to the setting of metric measure spaces.

As explained e.g. in [Ste16, V.1. & V.2.], one way to prove the local Euclidean
Sobolev inequality, i.e. the existence of a constant C > 0 depending only on n and
p ∈ (1, n) such that for any ball B ⊂ Rn and any f ∈ C∞(B),

(3.1) ‖f − fB‖Lp⋆(B) ≤ C‖|∇f |‖Lp(B),

is to rely on the Riesz potential of this ball, IB1 , defined by

IB1 g(x) :=

ˆ

B

g(z)

|x− z|n−1
dz

for any g ∈ L1(B) and x ∈ B. The first step consists in establishing a so-called
representation formula: for any f ∈ C∞(B) and almost any x ∈ B,

(3.2) |f(x)− fB| ≤ C1I
B
1 |∇f |(x),
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for some C1 depending only on n. The second step is to apply the Hardy-Littlewood-
Sobolev fractional integration theorem which states that there exists C2 > 0 depend-
ing only on n and p such that

(3.3) ‖IB1 g‖Lp⋆(B) ≤ C2‖g‖Lp(B)

for any g ∈ Lp(B). Finally, raising (3.2) to the power p⋆, integrating over B, taking
the 1/p⋆-th power of the resulting inequality and applying (3.3) gives (3.1).

In [HaK00], this strategy was successfully carried out to the context of doubling
metric measure spaces thanks to a natural extension of the Riesz potential IB1 . We
adapt arguments from there to prove the following.

Proposition 3.1. Let (X, d,m) be a complete PIp space. Then for any s ∈ [p,Q),
there exists a constant Cs = Cs(Q,CP , λ, s) > 0 such that for any t ∈ [s, p⋆),

(3.4)

(
ˆ

B

|f − fB|
t dm

)1/t

≤ Cs
R

m(B)1/s−1/t

(
ˆ

B

gs dm

)1/s

for any ball B ⊂ X with radius R > 0, any f ∈ L1
loc(X,m) and any g ∈ UG(f) ∩

Ls(B,m).

Proof. Let s ∈ [p,Q), t ∈ [s, p⋆), f ∈ L1
loc(X,m) and B ⊂ X with radius R > 0

be fixed. We begin with an overview of the proof. Our first step is to introduce an
operator

J : Ls(B,m) → L0(B,m)

which we call the s-Hajłasz–Koskela–Riesz potential of B. Our second step is to
establish the following representation formula: there exists C1 = C1(Q,CP , λ) > 0
such that for any g ∈ UG(f) ∩ Ls(B,m),

(3.5) |f(x)− fB| ≤ C1Jg(x) for m-a.e. x ∈ B.

Our last step is to show the existence of C2 = C2(Q, λ, s) > 0 such that

(3.6)

(
ˆ

B

|Jh|t dm

)1/t

≤ C2
R

m(B)1/s−1/t

(
ˆ

B

|h|s dm

)1/s

for any h ∈ Ls(B,m). Raising (3.5) to the power t, integrating over B, taking
the (1/t)-th power of the resulting inequality and applying (3.6) leads to (3.4) with
Cs = C1C2. Let us now provide the details.

Step 1. (Construction of the s-Hajłasz–Koskela–Riesz potential) Let a be the
center of the ball B. For any x ∈ B\{a}, define a chain of balls {Bi}i∈I as follows.
Set

(3.7) cλ :=
2λ− 1

2λ
.

(A) If R/2 ≤ d(a, x) < R, set I := N and Bi = Bri(xi) for any i ∈ N, where
{xi, ri} are defined recursively by setting

x0 := a, r0 :=
d(x, a)

2λ

and then choosing xi+1 ∈ argmin{d(y, x) : y ∈ Sri(xi)} for any i ≥ 0 and
setting

ri+1 :=
d(xi+1, x)

2λ
.
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(B) If 0 < d(a, x) < R/2, define the balls Bi for any i ≥ 0 as above and for any
i < 0, take xi−1 ∈ argmax{d(y, x) : y ∈ Sri(xi)},

ri−1 := c−1
λ ri,

and Bi := Bri(xi). Finally, set io as the unique negative integer i such that
λBi ⊂ B and λBi−1 ∩ (X\B) 6= ∅, and I := {i ∈ Z : i ≥ io}.

If R/2 ≤ d(a, x) < R we set io = 0.
Our construction is made in such a way that the following assertions are true.

(1) The balls {λBi}i∈I are all contained in B.
(2) For any ball Bi there exists a ball Wi such that Wi ⊂ Bi∩Bi+1 and Bi∪Bi+1 ⊂

(2λ)3Wi.
(3) For any i ≥ 0, the point xi lies on a geodesic from a to x and

d(a, x) = d(x, xi) + d(xi, xi−1) + . . .+ d(x1, x0)

= (2λ)ri + ri−1 + . . .+ r0.

Then (2λ)ri+1 + ri + . . .+ r0 = (2λ)ri + ri−1 + . . .+ r0, hence ri+1 = cλri.
(4) For any io ≤ i < 0, the point xi lies on a geodesic from a to xio , and ri−1 =

c−1
λ ri. With the previous point (3), this implies

(3.8) ri := (cλ)
id(a, x)

2λ
for any i ∈ I.

(5) Take x ∈ B such that 0 < d(a, x) < R/2. Then
∑0

i=io
ri + λrio−1 > R holds

and implies
0
∑

i=io

ciλ + λcio−1
λ > R

2λ

d(a, x)

thanks to (3.8). Now

0
∑

i=io

ciλ + λcio−1
λ =

cioλ − cλ
1− cλ

+ λcio−1
λ < cioλ

(

1

1− cλ
+

λ

cλ

)

.

Therefore, if we set

ωλ :=
2λ

1
1−cλ

+ λ
cλ

,

we get

(3.9) (cλ)
io > ωλ

R

d(a, x)
.

(6) By Lebesgue’s differentiation theorem on doubling metric measure spaces (see
e.g. [HaK00, Section 14.6]), for m-a.e. x ∈ B,

(3.10) lim
i→+∞

fBi
= f(x).

For any h ∈ Ls(B,m), we define the s-Hajłasz–Koskela–Riesz potential of h as:

Jh(x) :=
∑

i∈I

ri

(
 

Bi

|h|s dm

)1/s

+R

(
 

B

|h|s dm

)1/s

∀x ∈ B.

Step 2. (Proof of (3.5)) Take f ∈ L1
loc(X,m) and g ∈ UG(f) ∩ Ls(B,m). Let

x ∈ B\{a} be such that (3.10) is satisfied.
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a) Assume first R/2 ≤ d(a, x) < R. Then

|f(x)− fB| ≤
+∞
∑

i=0

|fBi+1
− fBi

|+ |fB0 − fB|

≤
+∞
∑

i=0

(

|fBi+1
− fWi

|+ |fWi
− fBi

|

)

+ |fB0 − fB|

≤
+∞
∑

i=0

(
 

Wi

|f − fBi+1
| dm+

 

Wi

|f − fBi
| dm

)

+

 

B0

|f − fB| dm.(3.11)

For any i, the inclusions Wi ⊂ Bi and Bi ⊂ (2λ)3Wi and then the doubling condition
imply

 

Wi

|f − fBi
| dm =

m(Bi)

m(Wi)

1

m(Bi)

ˆ

Wi

|f − fBi
| dm

≤
m((2λ)3Wi)

m(Wi)

1

m(Bi)

ˆ

Bi

|f − fBi
| dm

≤ (2λ)3Q
 

Bi

|f − fBi
| dm.

By the (p, p) Poincaré inequality, which implies the (1, p) one with same constant
CP , and then Hölder’s inequality, we get1

 

Bi

|f − fBi
| dm ≤ CP ri

(
 

Bi

gp dm

)1/p

≤ CP ri

(
 

Bi

gs dm

)1/s

which leads to

(3.12)

 

Wi

|f − fBi
| dm ≤ (2λ)3QCP ri

(
 

Bi

gs dm

)1/s

.

In the exact same fashion we get, for any i,

(3.13)

 

Wi

|f − fBi+1
| dm ≤ (2λ)3QCP ri+1

(
 

Bi+1

gs dm

)1/s

.

Moreover, since B ⊂ B2d(a,x)(x), the doubling condition implies m(B)/m(B0) ≤
m(B2d(a,x)(x))/m(Bd(a,x)/2(x)) ≤ C2

D = 22Q. Combined with B0 ⊂ B, this gives
 

B0

|f − fB| dm ≤
m(B)

m(Bo)

 

B

|f − fB| dm

≤ 22Q
 

B

|f − fB| dm ≤ 22QCPR

(
 

B

gs dm

)1/s

(3.14)

where we have used again the (1, p) Poincaré inequality and Hölder’s inequality to
get the last term. Combining (3.12), (3.13) and (3.14) with (3.11) and observing that
22Q ≤ 2(2λ)3Q we get

(3.15) |f(x)− fB| ≤ 2(2λ)3QCPJg(x).

1this is the only place where we use s ≥ p
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b) Assume now 0 < d(a, x) < R/2. Acting as above, we get

|f(x)− fB| ≤
+∞
∑

i=io

|fBi+1
− fBi

|+ |fBio
− fB|

≤ 2(2λ)3QCP

+∞
∑

i=io

ri

(
 

Bi

gs dm

)1/s

+

 

Bio

|f − fB| dm.

Our construction ensures that Bio ⊂ B so we get
 

Bio

|f − fB| ≤
m(B)

m(Bio)

 

B

|f − fB| ≤
m(B)

m(Bio)
CPR

(
 

B

gs dm

)1/s

≤
m(B2R(xio))

m(Bio)
CPR

(
 

B

gs dm

)1/s

.

In order to bound m(B2R(xio))/m(Bio) from above by means of the doubling condi-
tion, we look for c > 0 such that BcR(xio) ⊂ Bio , that is to say such that

cR < (cλ)
io d(a, x)

2λ
.

It follows from (3.9) that we can choose c = ωλ. Then

m(B2R(xio))

m(BcR(xio))
≤ (4/ωλ)

Q.

In the end we get

(3.16) |f(x)− fB| ≤ max(2(2λ)3Q, (4/ωλ)
Q)CPJg(x).

To conclude, from (3.15) and (3.16), we obtain (3.5) with

C1 := max(2(2λ)3Q, (4/ωλ)
Q)CP .

Step 3. (Proof of (3.6)) Let h ∈ Ls(B,m) and x ∈ B\{a} be fixed. For any
ρ ∈ (0, d(x, a)/λ), let iρ be the unique positive integer such that

(3.17) c
iρ+1
λ ≤

λρ

d(a, x)
< c

iρ
λ

where we recall that cλ ∈ (0, 1) is defined in (3.7). Write

Jh = J1h + J2h+R

(
 

B

|h|s dm

)1/s

where J1h(x) :=

iρ
∑

i=io

ri

(
 

Bi

|h|s dm

)1/s

and J2h(x) :=

+∞
∑

i=iρ+1

ri

(
 

Bi

|h|s dm

)1/s

.

Claim 3.2. There exists C3 = C3(Q, λ, s) ≥ 1 such that

(3.18) J1h(x) ≤ C3R
Q/sρ1−Q/s

(
 

B

|h|s dm

)1/s

.

Proof. For any io ≤ i ≤ iρ we have B ⊂ B2R(xi) so the doubling condition
implies

m(B)

m(Bi)
≤

(

4R

ri

)Q

.
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Thus

J1h(x) =

iρ
∑

i=io

ri

(

m(B)

m(Bi)

1

m(B)

ˆ

Bi

|h|s dm

)1/s

≤ (4R)Q/s

iρ
∑

i=io

r
1−Q/s
i

(
 

B

|h|s dm

)1/s

.

Using the concrete expression of ri given in (3.8) and noting that 1−Q/s < 0 implies

c
1−Q/s
λ > 1, we get

iρ
∑

i=io

r
1−Q/s
i =

(

d(a, x)

2λ

)1−Q/s iρ
∑

i=io

(

c
1−Q/s
λ

)i

=

(

d(a, x)

2λ

)1−Q/s
c
(1−Q/s)(iρ+1)
λ − c

(1−Q/s)io
λ

c
1−Q/s
λ − 1

≤

(

d(a, x)

2λ

)1−Q/s
c
(1−Q/s)(iρ+1)
λ

c
1−Q/s
λ − 1

=

(

d(a, x)

2λ
c
iρ
λ

)1−Q/s
1

1− c
Q/s−1
λ

≤
(ρ

2

)1−Q/s 1

1− c
Q/s−1
λ

,

where the last inequality follows from (3.17). Finally, we obtain (3.18) with

C3 =
8Q/s

2(1− c
Q/s−1
λ )

. �

Claim 3.3. There exists C4 = C4(Q, λ, s) ≥ 1 such that

(3.19) J2h(x) ≤ C4ρ (M |h|s(x))1/s

where M |h|s(·) = supr>0

ffl

Br(·)
|h|s dm is the maximal function of |h|s.

Proof. For any i ≥ iρ +1, we may use the inclusion Bi = Bri(xi) ⊂ Bd(xi,x)+ri(x)
to get

(
 

Bi

|h|s dm

)1/s

≤

(

m(Bd(xi,x)+ri(x))

m(Bi)

 

Bd(xi,x)+ri
(x)

|h|s dm

)1/s

≤

(

m(Bd(xi,x)+ri(x))

m(Bri(xi))

)1/s

(M |h|s(x))1/s.

Moreover,

(

m(Bd(xi,x)+ri(x))

m(Bi)

)1/s

≤

(

m(B2d(xi,x)+ri(xi))

m(Bri(xi))

)1/s

≤ 2Q/s (4λ+ 1)Q/s

where we have used the doubling condition and the equality ri =
d(x,xi)

2λ
. Then

J2h(x) ≤ 2Q/s (4λ+ 1)Q/s (M |h|s(x))1/s
+∞
∑

i=iρ+1

ri.
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Now if we use (3.8) and (3.17), we obtain

+∞
∑

i=iρ+1

ri =
d(a, x)

2λ

+∞
∑

i=iρ+1

(cλ)
i ≤

d(a, x)

2λ

c
iρ+1
λ

1− cλ
≤

ρ

2(1− cλ)
.

In the end, we get (3.19) with

�(3.20) C4 =
2Q/s (4λ+ 1)Q/s

2(1− cλ)
.

We now combine the two previous claims to get the following.

Claim 3.4. There exists C5 = C5(Q, λ, s) ≥ 1 such that

(3.21) Jh(x) ≤ C5R

(

(
 

B

|h|s dm

)1/s

+

(
 

B

|h|s dm

)1/Q

(M |h|s(x))1/s−1/Q

)

.

Moreover, we can choose C5 = 2max(C3, C4).

Proof. Let F : (0,+∞) → [0,+∞] be defined by

F (ρ) := RQ/sρ1−Q/s

(
 

B

|h|s dm

)1/s

+ ρ (M |h|s(x))1/s

for any ρ > 0. It is easily checked that F admits a global minimum

F (ρo) = 2R

(
 

B

|h|s dm

)1/Q

(M |h|s(x))1/s−1/Q

at

ρo := R

(
 

B

|h|s dm

)1/Q

(M |h|s(x))−1/Q .

a) Assume

ρo <
d(a, x)

λ
·

From the two previous claims, we know that for any ρ ∈ (0, d(x, a)/λ), it holds

(3.22) Jh(x) ≤ max(C3, C4)

(

R

(
 

B

|h|s dm

)1/s

+ F (ρ)

)

since C3 ≥ 1 and C4 ≥ 1. Choosing ρ = ρo in (3.22) yields (3.21) with C5 =
2max(C3, C4).

b) Assume

ρo ≥
d(a, x)

λ
·

We may act as in the proof of Claim 3.3 to show that

J1h(x) + J2h(x) ≤ 2Q/s (4λ+ 1)Q/s (M |h|s(x))1/s
+∞
∑

i=io

ri.

The chain of balls {Bi} is made in such a way that

+∞
∑

i=io

ri < 2R.
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Moreover, 2Q/s (4λ+ 1)Q/s ≤ C4 ≤ max(C3, C4). Thus

J1h(x) + J2h(x) ≤ 2max(C3, C4)R(M |h|s(x))1/s,

hence (3.21) holds with C5 = 2max(C3, C4). �

We are now in a position to conclude. Claim 3.4 together with (2.1) yields

 

B

|Jh|t dm ≤ Ct
52

t−1Rt

(

(
 

B

|h|s dm

)t/s

+

(
 

B

|h|s dm

)t/Q( 

B

(M |h|s)α dm

)

)

with α := t(1/s− 1/Q). Since α > 1, we can apply the Hardy–Littlewood maximal
theorem for doubling metric measure spaces (see e.g. [HaK00, Section 14.5]) to |h|s.
This gives

 

B

(M |h|s)α dm ≤

 

B

|h|sα dm.

Hölder’s inequality implies
 

B

|h|sα dm ≤

(
 

B

|h|s dm

)α

.

Therefore, observing that t/Q + α = t/s, we get

(
 

B

|h|s dm

)t/Q  

B

(M |h|s)α dm ≤

(
 

B

|h|s dm

)t/s

and finally
 

B

|Jh|t dm ≤ Ct
52

tRt

(
 

B

|h|s dm

)t/s

.

Hence we get (3.6) with C2 := 4max(C3, C4), i.e.

C2 = 2Q/s+1max

(

4Q/s

1− c
Q/s−1
λ

,
(4λ+ 1)Q/s

1− cλ

)

.

�

When the space (X, d,m) additionally satisfies the reverse doubling condition of
Theorem 1.1, the above constant Cs can be made independent of s.

Corollary 3.5. Let (X, d,m) be satisfying the assumptions of Theorem 1.1.

Then there exists a constant CLS = CLS(Q,CP , λ, η) > 0 such that for any s ∈ [p, η),
any t ∈ [s, p⋆], any f ∈ L1

loc(X,m), any ball B ⊂ X with radius R > 0 and any

g ∈ UG(f) ∩ Ls(B,m),

(3.23)

(
ˆ

B

|f − fB|
t dm

)1/t

≤ CLS
R

m(B)1/s−1/t

(
ˆ

B

gs dm

)1/s

.

Proof. Recall from the previous proof that Cs in Proposition 3.1 is equal to C1C2

where C1 = C1(Q,CP , λ) and

C2 = 2Q/s+1max

(

4Q/s

1− c
Q/s−1
λ

,
(4λ+ 1)Q/s

1− cλ

)

.
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Since 1 ≤ s < η < Q, we have Q/s ≤ Q and Q/s − 1 > Q/η − 1. Since cλ ∈ (0, 1),

then c
Q/s−1
λ < c

Q/η−1
λ so we can bound C2 from above by

C ′
2 := C ′

2(Q, λ, η) = 2Q+1max

(

4Q

1− c
Q/η−1
λ

,
(4λ+ 1)Q

1− cλ

)

. �

4. Weighted Sobolev inequalities

In this section, we prove Theorem 1.1. Let (X, d,m) be satisfying the assump-
tions of this theorem. By Proposition 2.12, we know that (X, d) has the RCA
property with respect to o, and we denote by κ > 1 the coefficient of this prop-
erty. Take s ∈ [p, η) and t ∈ [s, p⋆]. Recall that dµs,t(·) = ws,t(·) dm(·) where
ws,t(·) = m(Bd(o,·)(o))

t/s−1
d(o, ·)−t. As t/s−1 > p/η−1 > 0, it follows from Proposi-

tion 2.10 that the doubly measured metric space (X, d,m, µs,t) admits a good covering

{(Ui,a, U
′
i,a, U

#
i,a)}. Let (V, E , µ) be the associated weighted graph in the sense of Def-

inition 2.3. Then the weighted Sobolev inequality (1.7) is proved by the patching
Theorem 2.6, provided one shows

(4.1)

(

ˆ

Ui,a

|f − fUi,a,µs,t
|t dµs,t

)1/t

≤ C1

(

ˆ

U∗
i,a

|∇f |s∗,s dm

)1/s

for any f ∈ L1
loc(X,m) and (i, a) ∈ Λ, and

(4.2)

(

∑

i∈V

|f(i)|tµ(i)

)1/t

≤ C2

(

∑

i∼j

|f(i)− f(j)|tµ(i, j)

)1/t

for any f : V → R with finite support. Since the proof of (4.1) with Ui,a and U∗
i,a

replaced by U∗
i,a and U#

i,a respectively is similar to the one we provide for (4.1), we
skip it.

4.1. The discrete t Poincaré inequality. Let us begin with showing (4.2).
To this aim, we need two known properties of the discrete 1 Poincaré inequality on a
general weighted graph, see [Min09, Section 1.2]. We provide proofs for the reader’s
convenience. We say that a weighted graph (V ′, E ′, µ′) satisfies an isoperimetric in-
equality if there exists I > 0 such that

(4.3) µ′(∂Ω) ≥ Iµ′(Ω)

for any Ω ⊂ V ′ with µ′(Ω) < +∞, where ∂Ω := {(i, j) ∈ E : i ∈ Ω, j /∈ Ω}; here we
use the measures µ′ on V and E defined in Remark 2.4.

Lemma 4.1. Let (V ′, E ′, µ′) be a weighted graph. Then:

(1) the discrete 1 Poincaré inequality with constant C is equivalent to the isoperi-

metric inequality with constant C−1;

(2) if there exists A,B ≥ 1 such that supi #{j : i ∼ j} ≤ A and supi,j µ
′(i)/µ′(j) ≤

B, then the discrete 1 Poincaré inequality with constant C implies the τ -one

for any τ ≥ 1, with constant 2Cτ(AB)1−1/τ .

Proof. (1) For any Ω ⊂ V ′ with µ′(Ω) < +∞, the discrete 1 Poincaré inequality
applied to the characteristic function of Ω implies µ′(Ω) ≤ C2µ

′(∂Ω), hence one side
of the equivalence is proved. Conversely, if f : V ′ → R has a finite support, by
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Cavalieri’s principle and the isoperimetric inequality,

∑

i∈V ′

f(i)µ′(i) = ‖f‖L1(V ′,µ′) =

ˆ +∞

0

µ′({f > t}) dt ≤ I−1

ˆ +∞

0

µ′(∂{f > t}) dt

= I−1

ˆ +∞

0

∑

i∼j
f(j)≤t≤f(i)

µ′(i, j) dt = I−1
∑

(i,j)∈E ′

|f(i)− f(j)|µ′(i, j).

(2) Take τ ≥ 1. Let f : V ′ → R be with finite support. Apply the discrete 1
Poincaré inequality to |f |τ :

∑

i∈V ′

|f(i)|τµ′(i) ≤ C
∑

(i,j)∈E ′

||f(i)|τ − |f(j)|τ |µ′(i, j).

Convexity of r 7→ rτ and the mean value theorem gives ||a|τ−|b|τ | ≤ τ max(|a|, |b|)τ−1

·||a| − |b|| for any a, b ∈ R, and we also have max(|a|, |b|)τ−1 ≤ (|a|τ−1 + |b|τ−1) and
||a| − |b|| ≤ |a− b|. From this we get
∑

i∈V ′

|f(i)|τµ′(i) ≤ Cτ
∑

(i,j)∈E ′

(|f(i)|τ−1 + |f(j)|τ−1)|f(i)− f(j)|µ′(i, j)

= 2Cτ
∑

(i,j)∈E ′

|f(i)|τ−1|f(i)− f(j)|µ′(i, j)

≤ 2Cτ





∑

(i,j)∈E ′

|f(i)|τµ′(i, j)





1−1/τ 



∑

(i,j)∈E ′

|f(i)− f(j)|τµ′(i, j)





1/τ

,

and the result follows since
∑

(i,j)∈E ′

|f(i)|τµ′(i, j) =
∑

i∈V ′

∑

j∼i

|f(i)|τµ′(i, j) ≤ AB
∑

i∈V ′

|f(i)|τµ′(i). �

We also need the following claim. Recall that κ is the coefficient of the RCA
property of (X, d).

Claim 4.2. There exists a constant Ce = Ce(Q, κ) > 1 such that for any (i, a) ∈
Λ,

(4.4) C−1
e

m(Bκi−1(o))t/s

κ(i+1)t
≤ µ(i, a) ≤

m(Bκi+1(o))t/s

κ(i−1)t
.

Proof. Take (i, a) ∈ Λ. Then Ui,a ⊂ A(o, κi−1, κi+1), so

m(Ui,a)
m(Bκi−1(o))t/s−1

κ(i+1)t
≤ µ(i, a) ≤ m(Ui,a)

m(Bκi+1(o))t/s−1

κ(i−1)t
.

Bound m(Ui,a) from above by m(Bκi+1(o)) to get the upper bound in (4.4). Choose
x ∈ Ui,a ∩ S(κi+κi−1)/2(o) and note that

m(Bκi−1(o)) ≤ m(B2κi(x)) ≤ Cem(Bρi(x)) ≤ Cem(Ui,a),

where ρi := (κi−κi−1)/4 and Ce := (16κ/(κ− 1))Q, by the doubling condition. This
leads to the lower bound in (4.4). �

Proposition 4.3. The isoperimetric inequality (4.3) holds on the weighted graph

(V, E , µ) with a constant I depending only on Q, p, λ, Cp, η, Co, s and t.
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Proof. For any i ∈ N, let Ai be the set of vertices {(i, a) : 1 ≤ a ≤ h(i)} ⊂ V. Let
Ω ⊂ V be such that µ(Ω) < +∞. Let l be the greatest integer i such that Ai∩Ω 6= ∅.
With no loss of generality we may assume that l ≥ 3. Let a between 1 and h(l) be
such that (l, a) ∈ Ω. Let e be an element of ∂Ω chosen in the following way:

• if there is an edge between (l, a) and a vertex of the form (l + 1, b), let e be
this edge;

• otherwise, as X is non-compact and connected, there exists necessarily two
vertices (l+1, b′) and (l, b) that are linked by an edge. Then the RCA property
of (X, d) ensures that there exists a finite sequence of edges entirely included
in Al−1 ∪ Al that connects (l, a) and (l, b). Among these edges, there is
necessarily one of them which belongs to ∂Ω and which we choose as e.

Note that in both cases, there exists an integer b between 1 and h(l) such that
µ(e) ≥ µ(l, b), so that (4.4) implies

µ(∂Ω) ≥ µ(e) ≥ C−1
e

m(Bκl−1(o))t/s

κ(l+1)t
.

Moreover, thanks to (4.4) again and the upper bound on the h(i) given by Lemma 2.9,

µ(Ω) ≤
∑

0≤i≤l

∑

1≤a≤h(i)

µ(i, a) ≤ h
∑

0≤i≤l

m(Bκi+1(o))t/s

κ(i−1)t
.

Therefore, we can perform the next computation where the reverse doubling condition
(1.6) plays a crucial role:

µ(Ω)

µ(∂Ω)
≤ Ceh

∑

0≤i≤l

κt(l−i+2)

(

m(Bκi+1(o))

m(Bκl−1(o))

)t/s

≤ Ceh

(

∑

0≤i≤l−3

κt(l−i+2)

(

m(Bκi+1(o))

m(Bκl−1(o))

)t/s

+ 1 +
∑

l−1≤i≤l

κt(l−i+2)

(

m(Bκi+1(o))

m(Bκl−1(o))

)t/s
)

≤ Ceh

(

∑

0≤i≤l−3

Ct/s
o κt(l−i+2)+(i−l)ηt/s + 1 +

∑

l−1≤i≤l

2Qt/sκt(l−i+2)+(i−l+2)Qt/s

)

≤ Ceh

(

Ct/s
o κ2t

∑

0≤i≤l−3

κt(l−i)(1−η/s) + 1 + 2Qt/sκ2t(1 + κt(1−Q/s))

)

.

Now we have
∑

0≤i≤l−3

κt(l−i)(1−η/s) ≤
+∞
∑

j=0

[κt(1−η/s)]j =: S < +∞

since 1− η/s < 0. Thus

µ(Ω)

µ(∂Ω)
≤ Ceh

(

Ct/s
o κ2tS + 1 + 2Qt/sκ2t(1 + κt(1−Q/s))

)

=: I−1.

Now Ce and h depend only on Q and κ, the constant S depends only on t, s, η and
κ, and κ depends only on Q, p, λ, Cp, η and Co. Therefore, I depends only on Q, p,
λ, Cp, η, Co, s and t. �

Let us conclude. It follows from Lemma 2.9 that there exists A = A(Q, κ) ≥ 1
such that supi∈V #{j ∈ V : j ∼ i} ≤ A. Moreover, a simple reasoning based
on the doubling condition shows that there exists B = B(Q, κ) ≥ 1 such that
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sup(i,j)∈E µ(i)/µ(j) ≤ B, see e.g. [Tew21, Claim 2]. Therefore, combining Propo-
sition 4.3 and Lemma 4.1, we get that (V, E , µ) satisfies the discrete τ Poincaré
inequality for any τ ≥ 1, hence it satisfies (4.2), with a constant depending only on
Q, p, λ, Cp, η, Co, s and t.

4.2. A local Sobolev inequality on pieces of annuli. Let us now derive a
property that helps getting the continuous Sobolev–Neumann inequalities (4.1).

Proposition 4.4. Let (X, d,m) be a complete PI space with doubling dimension

Q and Poincaré exponent p < Q. Set p⋆ := Qp/(Q−p). Then for any α > 1, δ ∈ (0, 1)
and s ∈ (p, p⋆), there exists a constant C = C(Q,α, δ, s) > 0 such that for any o ∈ X,

any R > 0, any connected Borel subset A of A(o, R, αR), and any t ∈ (s, p⋆),

(
ˆ

A

|f − fA|
t dm

)1/t

≤ C
R

m(BR(o))1/s−1/t

(

ˆ

Aρ

gs dm

)1/s

for any f ∈ L1
loc(X,m) and g ∈ UG(f) ∩ Ls(Aρ,m), where ρ = δR and Aρ =

⋃

x∈ABρ(x).

In order to prove this result, we need a suitable modification of the notion of a
good covering and an associated modified patching theorem.

Let (X, d,m) be a metric measure space, and let A ⊂ A# ⊂ X be two Borel sets.

We call good covering of (A,A#) any countable family of triples {(Ui, U
∗
i , U

#
i )}i∈I of

Borel sets with finite m-measure satisfying (1), (3) and (4) in Definition 2.2 and such

that A\E ⊂
⋃

i Ui ⊂
⋃

i U
#
i ⊂ A# for some Borel set E ⊂ X with m(E) = 0. For

1 ≤ s ≤ t < +∞, we say that such a good covering satisfies local (t, s) continuous
Sobolev–Neumann inequalities if there exists a constant C1 > 0 such that for any i,

(4.5)

(
ˆ

Ui

|f − fUi
|t dm

)1/t

≤ C1

(

ˆ

U∗
i

gs dm

)1/s

for any f ∈ L1
loc(Ui, µ) and g ∈ UG(f) ∩ Ls(U∗

i ,m), and

(4.6)

(

ˆ

U∗
i

|f − fU∗
i
|t dm

)1/t

≤ C1

(

ˆ

U#
i

gs dm

)1/s

for any f ∈ L1
loc(U

∗
i , µ) and g ∈ UG(f) ∩ Ls(U#

i ,m).

From any good covering {(Ui, U
∗
i , U

#
i )}i∈I of (A,A#) as above, we can build a

weighted graph (V, E , µ) according to Definition 2.3 and say that {(Ui, U
∗
i , U

#
i )}i∈I

satisfies a discrete t Poincaré–Neumann inequality, where t ≥ 1, if there exists C2 > 0
such that

(4.7)

(

∑

i∈V

|f(i)− µ(f)|tµ(i)

)1/t

≤ C2





∑

{i,j}∈E

|f(i)− f(j)|tµ(i, j)





1/t

for all finitely supported f : V → R, where µ(f) :=
(

∑

i : f(i)6=0 µ(i)
)−1

∑

i f(i)µ(i).

Theorem 4.5. Let (X, d,m) be a metric measure space, and A ⊂ A# ⊂ X two

Borel sets such that 0 < m(A) < +∞. Assume that (A,A#) admits a good cover-

ing satisfying local (t, s) continuous Sobolev–Neumann inequalities and a discrete t
Poincaré–Neumann inequality for some numbers 1 ≤ t ≤ s < +∞. Then there exists
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a constant C > 0 such that for any f ∈ L1
loc(X,m) and any g ∈ UG(f) ∩ Ls(A#,m),

(4.8)

(
ˆ

A

|f − fA|
t dm

)1/t

≤ C

(
ˆ

A#

gs dm

)1/s

.

Moreover, one can choose

C = C1C
′(Q1, Q2, C2, s)

where C1 is the constant of the local continuous Sobolev–Neumann inequalities (4.5)
and (4.6).

Proof. Thanks to Lemma 2.14, for any c ∈ R,

ˆ

A

|f − fA,µ|
t dm ≤ 2t

ˆ

A

|f − c|t dm ≤ 2t
∑

i∈V

ˆ

Ui

|f − c|t dm

≤ 2t
∑

i∈V

ˆ

Ui

(|f − fUi,m|+ |fUi,m − c|)t dm

≤ 22t−1

(

∑

i∈V

ˆ

Ui

|f − fUi,m|
t dm+

∑

i∈V

ˆ

Ui

|fUi,m − c|t dm

)

.

Choose c = µ(f). Then both terms can be estimated as in the proof of Theorem 2.6.
�

Remark 4.6. A similar notion of a good covering and a similar patching theorem
can be stated in the case of a doubly measured metric space (X, d,m, µ). Here we
need only the case m = µ so we willingly omit the general case.

Let (V, E) be a graph. Let µc : V ⊔ E → R be defined by µc(i) = µc(e) := 1 for
any i ∈ V and e ∈ E . The associated measure on (V, E), still denoted by µc, is called
counting measure. Let us point out two simple facts. We refer to [Min09, Prop. 2.12]
for a proof of the first one.

Lemma 4.7. For any s ≥ 1, any finite connected graph (V, E) with N ≥ 2
vertices equipped with the counting measure satisfies a discrete s Poincaré–Neumann

inequality:

(4.9)
∑

i∈V

|f(i)− µc(f)|
s ≤ N(N − 1)s−1

∑

(i,j)∈E

|f(i)− f(j)|s

for any f : V → R with finite support, where µc(f) = (#{i : f(i) 6= 0})−1∑

i f(i).

Lemma 4.8. Let (V, E , µ) be a weighted graph such that K−1Lµc ≤ µ ≤ KLµc

for some K > 1 and L > 0. Then for any s ≥ 1, for any f : V → R with finite

support,

∑

i∈V

|f(i)− µ(f)|sµ(i) ≤ 2sN(N − 1)s−1K2
∑

(i,j)∈E

|f(i)− f(j)|sµ(i, j).
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Proof. Let f : V → R be with finite support. Using Lemma 2.14 and (4.9),
∑

i∈V

|f(i)− µ(f)|sµ(i) ≤ KL
∑

i∈V

|f(i)− µ(f)|s ≤ KL2s inf
c∈R

∑

i∈V

|f(i)− c|s

≤ KL2s
∑

i∈V

|f(i)− µc(f)|
s

≤ KL2sN(N − 1)s−1
∑

(i,j)∈E

|f(i)− f(j)|s

≤ K22sN(N − 1)s−1
∑

(i,j)∈E

|f(i)− f(j)|sµ(i, j). �

We are now in a position to prove Proposition 4.4.

Proof. Let {xi}i be a (ρ/3)-net of A, that is to say a maximal set such that
A ⊂

⋃

iBρ/3(xi) and all the balls {Bρ/6(xi)}i are disjoint one from another. Set

Vi = Bρ/3(xi) and V ∗
i = V #

i = Bρ(xi) for any i. Then {(Vi, V
∗
i , V

#
i )}i is a good

covering of (A,Aρ) with Q1 = 60Q and Q2 = 18Q. Indeed, A ⊂
⋃

i Vi ⊂
⋃

i V
#
i ⊂ Aρ

and Vi ⊂ V ∗
i ⊂ V #

i for any i. Moreover, if ci denotes the cardinality of the set of
indices j such that j ∼ i, then

m(B3ρ(xi)) ≥ m

(

⋃

j∼i

Bρ(xj)

)

≥ m

(

⋃

j∼i

Bρ/6(xj)

)

=
∑

j∼i

m(Bρ/6(xj))

≥ cimin
j∼i

m(Bρ/6(xj)),

thus

ci ≤
m(B3ρ(xi))

minj∼im(Bρ/6(xj))
≤

m(B5ρ(xjo))

m(Bρ/6(xjo))
≤ 60Q,

where jo is such that m(Bρ/6(xjo)) = minj∼im(Bρ/6(xj)) and where we have used the
doubling condition. Finally, if i ∼ j we can choose k(i, j) = i, and then µ(V ∗

i ) ≤
6Qµ(Vi) and

µ(V ∗
j ) ≤ µ(B3ρ(xi)) ≤ 18Qµ(Vi)

by the doubling condition. Let (V, E , µ) be the weighted graph associated with

{(Vi, V
∗
i , V

#
i )}i.

Since the balls {Bρ/6(xi)}i do not intersect and are all contained in BαR+ρ/6(o),
choosing io ∈ argminim(Bρ/6(xi)) we have

|V|m(Bρ/6(xio)) ≤
∑

i∈V

m(Bρ/6(xi)) ≤ m(BαR+ρ/6(o)) ≤ m(B2αR+ρ/3(xio)).

Then the doubling condition implies |V| ≤ [4(6α/δ + 1)]Q =: N(Q,α, δ). Moreover,
it follows from the doubling condition that µ(Vi)/µ(Vj) ≤ (1 + 2α/δ)Q for any i, j.
Choosing one index io and setting L = µ(Vio), we get K−1Lµc ≤ µ ≤ KLµc with
K := (1 + 2α/δ)Q. Therefore, we can apply Lemma 4.8. We get that for any
s ≥ 1, (V, E , µ) satisfies a s Poincaré–Neumann inequality with a constant C2 =
C2(Q,α, δ, s) > 0.

Moreover, it follows from Proposition 3.1 that there exists a constant C1 =
C1(Q, p, λ) > 0 such that for any f ∈ L1

loc(X,m),

(
ˆ

Vi

|f − fVi
|t dm

)1/t

≤ C
R

m(BR(o))1/s−1/t

(

ˆ

V ∗
i

|∇f |s∗,s dm

)1/s
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and
(

ˆ

V ∗
i

|f − fV ∗
i
|t dm

)1/t

≤ C
R

m(BR(o))1/s−1/t

(

ˆ

V #
i

|∇f |s∗,s dm

)1/s

.

Therefore, Theorem 4.5 gives the desired result. �

4.3. The local (t, s) continuous Sobolev–Neumann inequalities. Let us
now prove (4.1). Take (i, a) ∈ Λ. Thanks to Lemma 2.14,

ˆ

Ui,a

|f − fUi,a,µs,t
|t dµs,t ≤ 2t

ˆ

Ui,a

|f − fUi,a,m|
t dµs,t.

Moreover, x ∈ Ui,a implies κi−2 ≤ d(o, x) ≤ κi+1 and then ws,t(x) ≤ m(Bκi+1(o))t/s−1/
κ(i−2)t, so that
ˆ

Ui,a

|f − fUi,a,m|
t dµs,t ≤

m(Bκi+1(o))t/s−1

κ(i−2)t

ˆ

Ui,a

|f − fUi,a,m|
t dm

≤ C(Q, κ, s)
m(Bκi+1(o))t/s−1

κ(i−2)t

κ(i−1)t

m(Bκi−1(o))t/s−1

(

ˆ

U∗
i,a

gs dm

)t/s

= C(Q, κ, s)

(

m(Bκi+1(o))

m(Bκi−1(o))

)t/s−1

κt

(

ˆ

U∗
i,a

gs dm

)t/s

≤ C(Q, κ, s)(CDκ
2Q)t/s−1κt

(

ˆ

U∗
i,a

gs dm

)t/s

,

where we have applied Proposition 4.4 with R = κi−1, α = κ2, A = Ui,a and δ = κ/2
to get the second inequality, and the doubling condition to get the last one. This
gives the desired local (t, s) continuous Sobolev–Neumann inequality (4.1) with C2 :=
C(Q, κ, s)1/t(CDκ

2Q)1/s−1/tκ. As 1/s − 1/t ≤ 1/Q and CD ≥ 1, κ > 1, we can take

C2 := C(Q, κ, s)1/tC
1/Q
D κ3 = C(Q, κ, s)1/t2κ3. Since κ depends only on Q,p,λ,CP ,η

and Co, then C2 depends only on Q,p,λ,CP ,η, Co, s and t.

5. Hardy inequalities

In this section, we prove Theorem 1.3. Let (X, d,m) be satisfying the assumptions
of this theorem. Like in the previous section, let κ > 1 be the coefficient of the RCA
property of (X, d). Take s ∈ [p, η) and set dµs(·) := d(o, ·)−s dm(·). It follows

from Proposition 2.10 that there exists a good covering {(Ui,a, U
∗
i,a, U

#
i,a)}(i,a)∈Λ of the

doubly measured metric space (X, d,m, µs). Let (V, E , µ) be the associated weighted
graph. Then the Hardy inequality (1.9) stems from the patching Theorem 2.6 applied
with t = s and µ = µs, provided one shows

(5.1)

(

ˆ

Ui,a

|f − fUi,a,µs
|s dµs

)1/s

≤ C1

(

ˆ

U∗
i,a

|∇f |s∗,s dm

)1/s

for any f ∈ L1
loc(X,m) and (i, a) ∈ Λ, and

(5.2)

(

∑

i∈V

|f(i)|sµ(i)

)1/s

≤ C2

(

∑

i∼j

|f(i)− f(j)|sµ(i, j)

)1/s

for any f : V → R with finite support.
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Again, the proof of (5.1) with Ui,a and U∗
i,a replaced with U∗

i,a and U#
i,a respectively

is similar, so we skip it. The discrete inequality (5.2) follows from the arguments in
Section 4.1. The continuous inequality (5.1) can be proved in a similar way as in
Section 4.3 with the help of the following local Poincaré inequality on pieces of annuli.

Proposition 5.1. Let (X, d,m) be a complete PI space with doubling dimension

Q and Poincaré exponent p < Q. Set p⋆ := Qp/(Q−p). Then for any α > 1, δ ∈ (0, 1)
and s ∈ (p, p⋆), there exists a constant C = C(Q,α, δ, s) > 0 such that for any o ∈ X,

any R > 0 and any connected Borel subset A of A(o, R, αR),

(5.3)

ˆ

A

|f − fA|
s dm ≤ CRs

ˆ

Aρ

gs dm

for any f ∈ L1
loc(X,m) and g ∈ UG(f) ∩ Ls(Aρ,m), where ρ = δR and Aρ =

⋃

x∈ABρ(x).

Proof. Let {xi}i be a (ρ/λ)-net of A. Set Vi = Bρ/λ(xi), V ∗
i = Bρ(xi) and

V #
i = Bλρ(xi) for any i. Then it is easily seen that {(Vi, V

∗
i , V

#
i )}i is a good covering

of (A,Aρ) with Q1 and Q2 depending only on Q and λ. Thus the result follows from
applying Theorem 4.5 like in the proof of Proposition 4.4. With the same arguments
as there, one gets that a discrete s Poincaré–Neumann inequality holds for any s ≥ 1.
The required continuous Sobolev–Neumann inequalities are a direct consequence of
the weak (1, p) Poincaré inequality on (X, d,m). �

We are now in a position to conclude the proof of (5.1). Take f ∈ L1
loc(X,m) and

(i, a) ∈ Λ. Then
ˆ

Ui,a

|f − fUi,a,µs
|s dµs ≤ (κi−1)−s

ˆ

Ui,a

|f − fUi,a,µs
|s dm

≤ 2s(κi−1)−s inf
c∈R

ˆ

Ui,a

|f − c|s dm

≤ 2s(κi−1)−sC(κi+1)s
ˆ

U∗
i,a

|∇f |s∗,s dm thanks to (5.3)

= 2sκ2sC

ˆ

U∗
i,a

|∇f |s∗,s dm.

This concludes the proof of Theorem 1.3.
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