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Teichmüller spaces of non-discrete groups
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Abstract. The concept of Teichmüller space of a Fuchsian group can be extended to any

non-discrete group of conformal homeomorphisms of the hyperbolic plane. In this paper, we first

present three models of Teichmüller space fulfilling that goal. Then we use them to study the

Teichmüller spaces T (G) of the non-discrete subgroups G of PSL(2,R). We show that T (G) is

not trivial if and only if G is a subgroup consisting of hyperbolic elements with two common fixed

points and accumulating to at least one non-identity element. Furthermore, we show that if T (G)

is not trivial, then (1) T (G) is conformally equivalent to the open unit disk, (2) the Teichmüller

metric on T (G) is equal to the hyperbolic metric on the disk, and (3) the length spectrum is just a

pseudometric on T (G) and when restricted to a one-dimensional real slice, it is a metric coinciding

with the Teichmüller metric.

Ei-diskreettien ryhmien Teichmüllerin avaruudet

Tiivistelmä. Fuchsin ryhmän Teichmüllerin avaruuden käsite voidaan yleistää mihin tahansa

hyperbolisen tason konformisten homeomorfismien ei-diskreettiin ryhmään. Tässä työssä esittelem-

me aluksi kolme Teichmüllerin avaruuden mallia, jotka toteuttavat tämän tavoitteen. Sitten käytäm-

me niitä ryhmän PSL(2,R) ei-diskreettien aliryhmien G Teichmüllerin avaruuksien T (G) tutkimi-

seen. Osoitamme, että T (G) on epätriviaali, jos ja vain jos aliryhmä G sisältää hyperbolisia alkioita,

joilla on kaksi yhteistä kiintopistettä ja jotka kasaantuvat ainakin yhtä ei-yksikköalkiota kohti.

Lisäksi osoitamme, että jos T (G) on epätriviaali, niin (1) T (G) on konformisessa vastaavuudessa

yksikkökiekon kanssa, (2) avaruuden T (G) Teichmüllerin metriikka on sama kuin kiekon hyper-

bolinen metriikka, ja (3) pituusspektri on avaruuden T (G) pseudometriikka, joka yksiulotteiseen

reaaliseen viipaleeseen rajoitettuna yhtyy Teichmüllerin metriikkaan.

1. Introduction

In this section, we provide background and give the statements of the results.
Denote by C the complex plane and Ĉ the extended complex plane (the Riemann
sphere). Let H be the upper half plane and H− the lower half plane, and let R be the

real line and R̂ the extended real line. Given a complex-valued measurable function
µ defined on H with norm ‖µ‖∞ < 1, denote by

fµ : Ĉ → Ĉ

the unique quasiconformal mapping fixing 1, 0 and ∞ with complex dilatation ∂̄fµ

∂fµ

equal to µ on H and µ(z̄) for any z ∈ H−, and denote by

fµ : Ĉ → Ĉ
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the unique quasiconformal mapping fixing 1, 0 and ∞ with complex dilatation equal
to µ on H and 0 on H−.

Clearly, each mapping fµ preserves H and hence R. Define by

HP (H preserving) = {fµ : ‖µ‖∞ < 1}

and
LC (lower conformal) = {fµ : ‖µ‖∞ < 1}.

Recall that the Schwarzian derivative of a conformal mapping f : A ⊆ Ĉ → Ĉ is
given by

Sf =

(

f ′′

f ′

)′

−
1

2

(

f ′′

f ′

)2

.

In the following, we first recall three different models that are used to de-
fine/represent the universal Teichmüller space T (1).

Definition 1.1. (Using quasisymmetric homeomorphisms of R̂)

T (1) = HP/ ∼,

where
fµ1 ∼ fµ2 ⇐⇒ fµ1 |R = fµ2 |R.

Definition 1.2. (Using quasidisks)

T (1) = LC/ ∼,

where
fµ1 ∼ fµ2 ⇔ fµ1 |H− = fµ2 |H− ⇐⇒ Sfµ2 |H− = Sfµ2 |H− .

Definition 1.3. (Using Bers’ embedding)

T (1) = {Sfµ|H−
: fµ ∈ LC}.

Let G ⊆ PSL(2,R) be a Fuchsian group, i.e., a discrete group of Möbius trans-
formations preserving H. Corresponding to three different representations of the
universal Teichmüller space T (1), the Teichmüller space T (G) of G can be defined
by using one of the following three models:

Definition 1.4. (Using quasisymmetric homeomorphisms of R̂)

T (G) = {fµ ∈ HP : fµ ◦ g ◦ (fµ)−1 ∈ PSL(2,R) (∀g ∈ G)}/ ∼,

where
fµ1 ∼ fµ2 ⇐⇒ fµ1 |R = fµ2 |R.

Definition 1.5. (Using quasidisks)

T (G) = {fµ ∈ LC : fµ ◦ g ◦ f
−1
µ ∈ PSL(2,C) (∀g ∈ G)}/ ∼,

where
fµ1 ∼ fµ2 ⇐⇒ fµ1 |H− = fµ2 |H−.

Definition 1.6. (Using Bers’ embedding)

T (G) = {φ = Sfµ|H−
: fµ ∈ LC and φ(g(z))[g′(z)]2 = φ(z) (∀g ∈ G)}.

Clearly, all of the previous definitions of Teichmüller spaces of Fuchsian groups
can be directly copied to define Teichmüller spaces of non-discrete groups of conformal
homeomorphisms of the upper half plane. We say that G is elementary if there exists
a finite G-orbit (see the precise definition in the next section just before Theorem 2.3).
The first result of this paper is the following.
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Theorem 1. Assume that G is a non-discrete subgroup of PSL(2,R).

(1) If G is non-elementary, then T (G) is trivial.
(2) If G is elementary, T (G) is not trivial if and only if G consists of hyperbolic

elements with common fixed points (with multipliers having nonzero finite
accumulation points). Furthermore, if T (G) is not trivial, then T (G) is con-
formally equivalent to the unit disk and hence is a complex Banach manifold
with one chart map.

The Teichmüller metric is well defined on T (G); that is, given any two points
[fµ1 ] and [fµ2 ] of T (G),

dT ([f
µ1 ], [fµ2 ]) = log infK(f),

where f = fµ1 ◦ (fµ2)−1, K(f) denotes the maximal dilatation of f , and the infimum
is taken over all representatives of [fµ1 ] and [fµ2 ].

Now we consider another metric that can also be defined on the nontrivial case of
T (G) when G is a non-discrete subgroup of PSL(2,R). Let us recall how the length
spectrum is defined on the Teichmüller space T (S0) of a Riemann surface S0.

Let S0 be a Riemann surface. A marked Riemann surface is a pair (S, f) with
f : S0 → S being a quasiconformal mapping. Two pairs (S1, f1) and (S2, f2) are
equivalent if there exists a conformal mapping c : S1 → S2 such that c◦f1 is homotopic
to f2. The Teichmüller space T (S0) is the set of equivalence classes [S, f ]. A simple
closed curve on S is said to be essential if it is neither homotopic to a point nor to a
puncture and nor to a boundary component. Let ΣS be the collection of simple closed
curves on S containing one and exactly one representative from each homotopy class
of essential curves. For each γ ∈ ΣS, let lS(γ) denote the length of the shortest curve
in the homotopy class of γ under the metric on S. The length spectrum is defined by

dL([S1, f1], [S2, f2]) = log sup
γ∈ΣS1

{

(

lS2(f2 ◦ f
−1
1 (γ))

lS1(γ)

)±1
}

.

The length spectrum is a pseudometric on T (S0). In many cases, it is a metric. It
was proved in [9] by Sorvali that dL is bi-Lipschitz to dT on the Teichmüller space
of a torus. Later Li proved in [5] that the two metrics dL and dT define the same
topology on the Teichmüller space of a compact Riemann surface, and he proved in
[6] that the two metrics are not bi-Lipschitz if the genus of the Riemann surface is
bigger than 1. Then Liu [7] proved the topological equivalence of the two metrics on
the Teichmüller spaces of hyperbolic surfaces with boundary and of finite type. In
Liu’s paper, the reduced Teichmüller space is considered, since dL does not define a
metric on every marked Teichmüller space of surfaces with boundary (see [3]). Shiga
[8] showed that Liu’s result fails in general on Teichmüller spaces of Riemann surfaces
of infinite type and he also introduced a sufficient condition for Liu’s result to hold
on such Teichmüller spaces.

Except for the torus case, one usually considers Teichmüller spaces of hyperbolic
Riemann surfaces. In fact, if S0 is a hyperbolic Riemann surface, then the length
spectrum on T (S0) can be alternatively defined as follows. Let G be a subgroup of
PSL(2,R) representing a hyperbolic Riemann surface S0; that is, S0 = H/G. For any
hyperbolic transformation g ∈ G, let τ(g) denote the multiplier of g. Then

dL([f
µ1 ], [fµ2])) = log sup

g∈G,g hyperbolic

{

∣

∣

∣

∣

log τ(fµ1 ◦ g ◦ (fµ1)−1)

log τ(fµ2 ◦ g ◦ (fµ2)−1)

∣

∣

∣

∣

±1
}

.
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One can see clearly that this alternative definition of dL extends to the nontrivial
case of T (G) when G is a non-discrete subgroup of PSL(2,R). In this paper, we also
prove the following theorem.

Theorem 2. Let G be a non-discrete subgroup of PSL(2,R) consisting of only
hyperbolic elements with two common fixed points. Then

(1) the Teichmüller metric on T (G) is equal to the hyperbolic metric on the disk
under the identification map in Theorem 1, and

(2) the length spectrum is just a pseudometric on T (G) and when restricted to
the horizontal diameter of the disk (under the identification map), it is a
metric coinciding with the Teichmüller metric.

In the following two sections, we prove the two theorems with quite elementary
and self-contained approaches.

Acknowledgement. This work was inspired by a talk given by Professor Clifford
Earle at CUNY Graduate Center quite a few years ago. Both authors hope that this
paper honors his memory. They also wish to thank the referees for their comments
and corrections of typos.

2. Proof of Theorem 1

Let G be a non-discrete subgroup of PSL(2,R). Bers’ embedding (see Defini-
tion 1.6) is an injection from T (G) into the space of holomorphic maps, which is a
complex linear space. Using Definition 1.6, one can also obtain an estimate on the
dimension of T (G).

Theorem 2.1. Let G be a non-discrete subgroup of PSL(2,R). Then the (com-
plex) dimension of T (G) is at most 1.

Proof. We use Definition 1.6 to define T (G). Then given any two non-trivial
elements φ, ϕ ∈ T (G),

φ(g(z))

ϕ(g(z))
=

φ(z)

ϕ(z)

for any g ∈ G. Since G is not discrete, there exists a sequence {gn}
∞
n=1 of elements

in G converging to the identity element. Therefore, φ(z)
ϕ(z)

is equal to a constant c and

then φ = cϕ. This means that dimC T (G) ≤ 1. �

Now we prove a proposition due to Earle.

Proposition 2.2. (Earle) Let G be a non-discrete subgroup of PSL(2,R).

(1) If G contains infinitely many elliptic elements fixing a common point z0 ∈ H−,
then T (G) is trivial, i.e., a single-point space.

(2) If G contains infinitely many parabolic elements fixing a common point x0 ∈ R̂

and with their translation amounts accumulating at finite nonzero values, then
T (G) is trivial.

(3) If G only contains hyperbolic elements fixing two common points x1, x2 ∈

R̂, then T (G) is nontrivial and under Bers’ embedding, it is conformally
equivalent to the unit open disk D.

Let A be a simply connected domain conformally equivalent to the unit disk with
Poincaré density η. Given a holomorphic map ϕ : A → C, define

‖ϕ‖A = sup
z∈A

|ϕ(z)|η(z)−2.
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It is well-known that ‖ϕ‖A ≤ 6 (see [4] for a proof).

Proof. (1) We take the unit disk D as a model for the hyperbolic plane. We may
assume that z0 = 0 and G contains elements of the form gtk(z) = eitkz, where tk ∈ R

and {eitk}∞k=1 has accumulation points on the unit circle. Let fµ represent a point of
T (G) in Definition 1.5. In this setting, we let fµ be conformal on D. Let ϕ = Sfµ|D.
Then for any tk ∈ R,

ϕ(z) = ϕ(gtk(z))[g
′
tk
(z)]2 = ϕ(eitkz)e2itk .

Therefore, the function F (z) = ϕ(z)z2 satisfies F (z) = F (eitkz) for all tk ∈ R. Since
{eitk}∞k=1 has accumulation points on the unit circle, it follows that F is a constant,
say F ≡ C, and hence

ϕ(z) =
C

z2
.

Since

‖ϕ‖D = sup
z∈D

∣

∣

∣

∣

C

z2

∣

∣

∣

∣

(1− |z|2) ≤ 6,

the constant C must be 0 and then the first part of Proposition 2.2 follows.
(2) We may assume, without loss of generality, that x0 = ∞. Then G contains

elements of the form gtk(z) = z + tk, where tk ∈ R and {tk}
∞
k=1 has nonzero finite

accumulation points. Let [fµ] represent a point of T (G) in Definition 1.5 and let
ϕ = Sfµ|H−

. Then for any t ∈ R,

ϕ(z) = ϕ(gtk(z))[g
′
tk
(z)]2 = ϕ(z + tk).

It follows that ϕ is constant, say ϕ ≡ C. Since

‖ϕ‖H− = sup
z∈H−

|C|4(Im(z))2 ≤ 6,

the constant C must be 0 and then the second part of Proposition 2.2 follows.
(3) Let G ⊆ PSL(2,R) be a non-discrete group containing only hyperbolic ele-

ments with two common fixed points x1, x2 ∈ R̂. Through conjugation by an element
in PSL(2,R), we may assume that

G = {gtk(z) = etkz : t ∈ R},

where tk ∈ R and {tk}
∞
k=0 has at least one nonzero finite accumulation point. Using

Definition 1.6, one can see that ϕ(z) = 1
z2

∈ T (G) and hence dimC T (G) ≥ 1.
Combining this with Theorem 2.1, we see dimC T (G) = 1. The main work is to
show that T (G) is conformally identified with the unit open disk D. To do this, we
first prove that if Definition 1.6 is used to define T (G), then T (G) consists of the
Schwarzian derivatives of all functions fβ of the form

fβ(z) =

{

zzβ if z ∈ H−,

zz̄β if z ∈ H,

where β is a constant with |β| < 1. Note that each mapping fβ is extremal in its
class.

Let us first use Definition 1.5 for T (G). Given [f ] ∈ T (G), f ◦ gtk ◦ f−1 is a

Möbius transformation on Ĉ fixing 0 and ∞. Thus

(f ◦ gtk ◦ f
−1)(z) = λtkz.

Moreover, since f fixes 1, we obtain

f(etk) = (f ◦ gtk ◦ f
−1)(1) = λtk .
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Then for each tk,

f(etk)f(z) = λtkf(z) = (f ◦ gtk ◦ f
−1)(f(z)) = f(etkz).

Consider the universal covering map p : C → C \ {0} given by p(ζ) = eζ , and let

f̃ : C → C be the lift of f : C \ {0} → C \ {0} fixing 0. For each tk,

ef̃(ζ+tk) = f(eζ+tk) = f(etk)f(eζ) = ef̃(tk)ef̃(ζ).

This implies

f̃(ζ + tk) = f̃(ζ) + f̃(tk) + c,

where c is constant. By letting ζ = 0 and using f̃(0) = 0, we conclude c = 0. Then

f̃(ζ + tk) = f̃(ζ) + f̃(tk) for each tk.

The strip A = {ζ : − π < Im(ζ) < 0} is mapped by p onto H−, where f is

holomorphic. Then f̃ is holomorphic on A and for any ζ ∈ A, we obtain

f̃ ′(ζ + tk) = f̃ ′(ζ).

Since {tk}
∞
k=1 has finite accumulation points, it follows that f̃ ′ is constant on A and

then f̃(ζ) = αζ on A for some α ∈ C \ {0}. Then

f(z) = f(elog z) = ef̃(log z) = eα log z = zα for all z ∈ H
−,

where the branch of log is given by

log z = log |z| + i arg z for − π < arg z < π.

The region f̃(A) is a strip bounded by the lines l1 = {z : z = αx for x ∈ R} and
l2 = {z : z = α(x− iπ) for x ∈ R}. Let α = a+ bi. Since no two points in the closure

of f̃(A) can project to the same point under p, we must have a 6= 0. Moreover, l2
intersects the y-axis at − (b2+a2)π

a
i and l1 intersects the y-axis at the origin. It follows

that the line segment between the origin and − (b2+a2)π
a

i is contained in f̃(A). Then

(b2 + a2)π

a
< 2π,

that is,

(a− 1)2 + b2 < 1.

Thus, α = a+ bi = 1 + β with |β| < 1. We conclude that

f(z) = zα = z1+β = zzβ for z ∈ H.

Now let z1 = x+ πi and z2 = x− πi, where x ∈ R. These points are mapped by
p to the same point on C \ {0}. Since p(f̃(z1)) = f(p(z1)) = f(p(z2)) = p(f̃(z2)), it

follows that f̃(z1) = f̃(z2) + 2kπi, where k is an integer. Since f̃ : C → C is the lift
of f : C \ {0} → C \ {0} fixing 0, it follows that k = 1. Then

f̃(x+ πi) = f̃(x− πi) + 2πi = α(x− πi) + 2πi = (x+ πi) + β(x− πi).

This verifies that if z1 = x+ πi, then f̃(z1) = z1 + βz̄1 for any x ∈ R.

Let B = {ζ : 0 < Im(ζ) < π}. Now we define an extension f̃β of f̃ |A to the
closure of the union A ∪ B by

f̃β(z) =

{

αz if z ∈ A,

z + βz̄ if z ∈ B.
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The Beltrami coefficient of f̃β is equal to the constant β. This map projects to a qua-
siconformal map fβ from C\{0} onto itself and hence it extends to a quasiconformal
homeomorphism of C fixing the origin. (Note that the Beltrami coefficient of fβ is
equal to βz/z̄ for each z ∈ H. So if we use the notation fµ given in the introduction,
then fβ should be denoted by fβz/z̄. Just for sake of notation, we denote it by fβ.)
For any z ∈ H,

fβ(z) = fβ(e
log z) = ef̃β(log z) = elog z+µlog z = zz̄β for all z ∈ H,

where we use again the branch of log given by

log z = log |z| + i arg z for − π < arg z < π.

Hence f̃β projects to fβ given by

fβ(z) =

{

zzβ if z ∈ H−,

zz̄β if z ∈ H.

Using Definition 1.5 for T (G), one can see that fβ represents the point [f ] in
T (G). In fact, it follows from Strebel’s works [10] and [11] that fβ is the unique
extremal representation of [f ]. Obviously, for two different values β1 and β2 in D,
fβ1 and fβ2 represent two different points in T (G). Therefore, T (G) can be identified
with the open unit disk D.

Furthermore, for any β ∈ D,

Sfβ |H−
(z) =

−β(β + 2)

2z2
.

Since the map β 7→ −β(β + 2) is a holomorphic bijection between D and its image,
it follows that T (G) is conformally equivalent to D if Definition 1.6 is used to define
T (G). Furthermore, this conformal map enables us to view this Teichmüller space
as a complex Banach manifold by using one chart map. �

Using Proposition 2.2 and some background on the classification of non-discrete
groups of Möbius transformations given in [2], we obtain the conclusions presented
in our Theorem 1. In the following, we first summarize a minimal background on the
classification and properties of non-discrete subgroups of PSL(2,R) that we need to
apply in order to prove Theorem 1.

We identify the extended complex plane Ĉ = C ∪ {∞} with R̂2 = R2 ∪ {∞}. In
terms of quaternions, the three-dimensional hyperbolic space is expressed by

H
3 = {z + tj : z = x+ yi ∈ C, t > 0}.

Then Ĉ is the boundary of H3. The group M(R̂2) of orientation-preserving Möbius

transforms of R̂2 onto itself can be alternatively defined as the collection M of linear
fractional maps (page 57, [2]); that is,

M(R̂2) = M =

{

g : g(z) =
az + b

cz + d
, where a, b, c, d ∈ C and ad− bc 6= 0

}

.

The group M acts as the group of directly conformal homeomorphisms of H3. A
subgroup G of M is said to be elementary if there exits a finite G-orbit in the closure
of the hyperbolic space H3. Denote this finite G-orbit by {p1, p2, · · · , pn}. Elementary
subgroups of M are classified at the beginning of Section 5.1 in [2].
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Theorem 2.3. [2, page 84] Assume that a subgroup G of M is elementary and
let {p1, p2, · · · , pn} be a finite G-orbit in the closure of H3. Then G belongs to one
of the following three types:

Type 1: Suppose that n ≥ 3 or that {p1, p2, · · · , pn} is not in Ĉ. Then G contains
only elliptic elements and the identity element.

Type 2: Suppose that n = 1 and p1 ∈ Ĉ. Then G is conjugate to a subgroup of M,
every element of which fixes ∞ and so is of the form z 7→ az + b, where a 6= 0.

Type 3: Suppose that n = 2 and p1, p2 ∈ Ĉ. Then G is conjugate to a subgroup of
M, every element of which fixes {0,∞} and so is of the form z 7→ azs, where
a 6= 0 and s2 = 1.

Note that all elements of PSL(2,R) preserve the hyperbolic plane H. The follow-
ing result is proved in [2].

Theorem 2.4. [2, Theorem 7.39.2] Let g ∈ PSL(2,R) be elliptic with fixed point
v and angle of rotation 2θ, where 0 < θ ≤ π. Let h be any element of PSL(2,R) not
fixing v. Then the commutator g ◦ h ◦ g−1 ◦ h−1 is hyperbolic.

The previous two theorems imply the following.

Corollary 2.5. If a subgroup G of PSL(2,R) is elementary (as a subgroup of
M), then G belongs to one of the following two types:

(1) G consists of elliptic elements with a common axis of rotation and the identity
element.

(2) G consists of parabolic or hyperbolic elements sharing a common fixed point
and the identity element.

Proof. It suffices to show that any elementary subgroup G of PSL(2,R) can not
be of type 3. Suppose such a subgroup G exists. Then the finite orbit consists of two
points p1 and p2. Through conjugation, we may assume that p1 = 0 and p2 = ∞.
Then all elements of G must be of the form z 7→ azs with a 6= 0 and s2 = 1. Since the
elements of G preserve the hyperbolic plane, it follows that s 6= −1 and all elements
have the form z 7→ az with a 6= 0. Thus, the finite G-orbit consists of only one point
0 or ∞. This is a contradiction. So G can not be of type 3. �

As one can see, we are concerned with the nature of non-discrete subgroups G
of PSL(2,R) ⊂ M. It remains to deal with the case when G is non-discrete and
non-elementary. The following two theorems are proved in Chapter 8 of [2].

Theorem 2.6. [2, Theorem 8.2.6] If a non-elementary group G of isometries of
H has no elliptic elements, then G is discrete.

Theorem 2.7. [2, Theorem 8.4.1] A non-elementary group G of isometries of H
is discrete if and only if each elliptic element of G has finite order (if exists).

Therefore, the following corollary holds.

Corollary 2.8. If a subgroup G of PSL(2,R) is non-elementary and non-discrete,
then G contains at least one elliptic element of infinite order.

Now we prove our Theorem 1.

Proof of Theorem 1. Let G be a non-discrete subgroup of PSL(2,R). If G is
non-elementary, then by Corollary 2.8 we know that G contains an elliptic element
of infinite order. Thus, the first part of Proposition 2.2 implies that T (G) is trivial.
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When G is elementary, there are two cases to consider. If G belongs to the first
type of Corollary 2.5, then G consists of elliptic elements with a common axis of
rotation and the identity element. Because of the non-discreteness, G has a sequence
of elements accumulating to a rotation or the identity element. Hence T (G) is trivial
by applying the first part of Proposition 2.2.

If G belongs to the second type of Corollary 2.5, then we need to do a little bit
more work. We divide this case into two subcases. Without loss of generality, we
assume the common fixed point is set at ∞.

Subcase 1: Assume that G has a parabolic element. Then there exists a sequence
of parabolic elements fixing ∞ and converging to a parabolic element or the identity
element. Suppose not, then there exists a parabolic element h(z) = z + b (b 6= 0)
and a sequence of hyperbolic elements {gn(z) = anz + bn, an 6= 0, 1} accumulating
to an element of PSL(2,R). Then {gn ◦ h ◦ g−1

n (z) = z − bn + anb} is a sequence of
parabolic elements fixing ∞ and converging to an element of PSL(2,R). Therefore,
T (G) is trivial.

Subcase 2: Assume that G contains only hyperbolic elements with one fixed
point at ∞. We show that all hyperbolic elements of G must share both fixed points.
Suppose not, then there exists two elements g1(z) = a1z + b1 and g2(z) = a2z + b2,
where a1, a2 6= 0, 1 and b1

1−a1
6= b2

1−a2
. It follows that a1b1 + b1 − a2b1 − b2 6= 0 and

then the commutator

g1 ◦ g2 ◦ g
−1
1 ◦ g−1

2 (z) = z + (a1b2 + b1 − a2b1 − b2)

is a parabolic element. This is a contradiction. So all hyperbolic elements must share
both fixed points. Hence, T (G) is (conformally) identified with the open unit disk
by applying the third part of Proposition 2.2.

In summary, T (G) is not trivial if and only if G consists of hyperbolic elements
with two common fixed points (accumulating to a hyperbolic element or the identity)
and the identity. �

Remark 2.9. In fact, there is a different (long but interesting) method to handle
the subcase 2 in the previous proof. We can show that if T (G) is not trivial, then
all hyperbolic elements of G must share both fixed points. We use Definition 1.6 for
T (G). Given any ϕ ∈ T (G),

(2.1) ϕ(g(z))[g′(z)]2 = ϕ(z)

for any g ∈ G. Let g(z) = az + b with a 6= 0, 1. Suppose that ϕ is not constantly
equal to 0. Around ∞, ϕ(z) has a Maclaurin series expansion near ∞

ϕ(z) = c0 +
c1
z
+

c2
z2

+
c3
z3

+ · · · .

Rewrite
1

g(z)
=

1

az(1 − b
az
)
=

1

az
[1 +

b

az
+ (

b

az
)2 + (

b

az
)3 + · · · ].

This series converges when z is near ∞.
Substituting ϕ and then 1

g(z)
by their series expansions, we obtain

c0 +
c1
az

(

1 +
b

az
+

b2

a2z2
+

b3

a3z3
+ · · ·

)

+
c2
a2z2

(

1 +
b

az
+

b2

a2z2
+

b3

a3z3
+ · · ·

)2

+ · · ·

=
1

a2

[

c0 +
c1
z
+

c2
z2

+
c3
z3

+ · · ·
]

.
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Note that a 6= 0, 1. By checking the constant terms of both sides of the previous
equation, we know c0 = 0. Then by checking the coefficients of 1

z
, we know c1 = 0. It

follows that the coefficients of 1
z2

at both sides are equal for any c2. However, we note
that if c2 = 0, then c3 = 0 and inductively all cn = 0. This means ϕ is constantly
equal to 0, which can not happen by the assumption. So we know c2 6= 0. Next we
check the coefficients of 1

z3
on both sides and obtain

2bc2 + c3
a3

=
c3
a2

.

Thus,
b

a− 1
=

c3
2c2

,

for every non-identity element g(z) = az + b ∈ G. Therefore, all of them share
the second fixed point − b

a−1
. So we have proved that in this subcase all hyperbolic

elements share both fixed points.

3. Proof of Theorem 2

Through conjugation by an element in PSL(2,R), the proof of Theorem 2 is
reduced to proving the following two propositions.

Proposition 3.1. Let G be a non-discrete subgroup of PSL(2,R) containing
only hyperbolic elements with two common fixed points. Then the length spectrum
dL defines only a pseudometric on T (G).

Proof. Using the definition of dL, one can easily verify that that dL is symmetric
and satisfies the triangle inequality. The main work is to show that dL fails to
distinguish all points of T (G); that is, there are two distinct points whose dL distance
is zero.

Let us use the same notation introduced in the proof of Proposition 2.2. That is,
without loss of generality, we continue to assume that G is a non-discrete subgroup
of PSL(2,R) containing only hyperbolic elements with fixed points at 0 and ∞.
For each fβ ∈ T (G), we are now interested in finding the representative fβ of [fβ]
preserving H, where |β| < 1. Let p : C → C \ {0} be the universal covering map and

let f̃β : C → C be the lift of fβ : C \ {0} → C \ {0} fixing 0. We know that the strip
B = {ζ : 0 < Im(ζ) < π} is mapped by p onto H and

(f̃β|B)(ζ) = ζ + βζ̄,

where ζ = η + ξi. It is clear that f̃β maps B onto a strip C bounded by two parallel

lines. One of them passes through the origin and f̃β(1) = 1+ β and the other passes

through f̃β(πi) = (1 − β)πi. Through a rotation and a stretch, one can see that the
function

h̃(z) =
z

(1 + β)Im
(

1−β
1+β

i
)

maps the strip C to the strip {z : 0 < Im(z) < π}. Since

Im

(

1− β

1 + β
i

)

= Re

(

1− β

1 + β

)

=
1

2

(

1− β

1 + β
+

1− β̄

1 + β̄

)

=
1− |β|2

(1 + β)(1 + β̄)
,

it follows that

h̃(z) =
1 + β̄

1− |β|2
z.
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Hence the mapping fβ (preserving H) is given by

(3.1) fβ(z) = e(h̃◦f̃β)(log z) = z
1+β̄

1−|β|2 z̄
β(1+β̄)

1−|β|2 ,

where the branch of logarithm is given by

log z = log |z|+ i arg z for − π < arg z < π.

We know that for any gtk ∈ G, there exists λtk ∈ R such that for any z ∈ H, we
obtain

(fβ ◦ gtk ◦ (f
β)−1)(z) = λtkz.

Since fβ fixes the point 1, we must have fβ(etk) = λtk . That is,

λtk = fβ(etk) = (etk)
(1+β)(1+β̄)

1−|β|2 .

It follows that the length spectrum is given by

dL([f
β1], [fβ2]) = log sup

gtk∈G

{

∣

∣

∣

∣

log τ(fβ1 ◦ gtk ◦ (f
β1)−1)

log τ(fβ2 ◦ gtk ◦ (f
β2)−1)

∣

∣

∣

∣

±1
}

= logmax

{

∣

∣

∣

∣

(1 + β1)(1 + β̄1)

1− |β1|2
1− |β2|

2

(1 + β2)(1 + β̄2)

∣

∣

∣

∣

±1
}

.

Thus, dL([f
β1], [fβ2]) = 0 if and only if

(3.2)
1− |β1|

2

|1 + β1|2
=

1− |β2|
2

|1 + β2|2
.

Using the expression (3.1) of fβ, one can see that this condition is equivalent to
saying that fβ1 and fβ2 agree on the positive real axis.

The third part of Theorem 1 states that T (G) is conformally identified with the

open unit disk. Given a point β2 with |β2| < 1, let c = 1−|β2|2

|1+β2|2
. Then the equation

1−|β1|2

|1+β1|2
= c represents a horocylce, which is contained in the closed unit disk and

tangent to the unit circle at −1. Then the length spectrum dL is equal to 0 at any
two points on the horocycle except −1. Therefore, dL does not distinguish all points
in T (G) and hence it is just a pseudometric on T (G). �

Proposition 3.2. Let G be as the same as given in Proposition 3.1. The Teich-
müller metric on T (G) corresponds to the hyperbolic metric on the open unit disk
D, and dL agrees with dT on the slice of T (G) that is identified in Proposition 3.1
with the real diameter of D.

Proof. Given any β ∈ D, note that the expression (3.1) of fβ is an extremal
representative of [fβ]. Furthermore, for any two points β1 and β2 ∈ D, the work
to derive the expression (3.1) for fβ also shows that fβ1 ◦ (fβ2)−1 is an extremal
representative of [fβ1 ◦ (fβ2)−1]. Note that the Beltrami coefficient of fβ is given by
β z

z̄
. By applying the chain rule to fβ1 ◦(fβ2)−1, we can conclude that the Teichmüller

distance dT ([f
β1], [fβ2]) is equal to the hyperbolic distance between β1 and β2 on D.

Now let β1 = t and β2 = s be two points on the real diameter of D. It remains
to show that dL([f

t], [f s]) = 0 implies that t = s.
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From the expression (3.2), we know

dL([f
t], [f s]) = logmax

{

(

1 + t

1− t

1− s

1 + s

)±1
}

= logmax

{

(

1 + t− s− ts

1− t+ s− ts

)±1
}

.

Since the complex dilatation of f t ◦ (f s)−1 has norm |t− s|/|1− ts|, it follows that

dT ([f
t], [f s]) ≤ K(f t ◦ (f s)−1) = log

1 + |t− s|/|1− ts|

1− |t− s|/|1− ts|

= logmax

(

1− ts+ t− s

1− ts− t + s

)±1

= dL([f
t], [f s]).

(3.3)

On the other hand, for any g ∈ G, let

ht = f t ◦ g ◦ (f t)−1 and hs = f s ◦ g ◦ (f s)−1.

Then f t and f s induce two quasiconformal mappings between annuli, denoted by

f̃ t : H/〈g〉 → H/〈ht〉 and f̃ s : H/〈g〉 → H/〈hs〉.

Clearly,
K(f t) = K(f̃ t) and K(f s) = K(f̃ s).

Applying Wolpert’s lemma [1] to the map

f̃ t ◦ (f̃ s)−1 : H/〈hs〉 → H/〈ht〉,

we obtain
log τ(ht)

K(f t ◦ (f s)−1)
≤ log τ(hs) ≤ K(f t ◦ (f s)−1).

It follows that

(3.4) dL([f
t], [f s]) ≤ dT ([f

t], [f s]).

Combining the inequalities (3.3) and (3.4), we conclude that the length spectrum dL
is a metric coinciding with dT on the slice of T (G) that is identified with the real
diameter of D. �

Propositions 3.1 and 3.2 imply our Theorem 2.
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