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Liouville-type results in two dimensions for
stationary points of functionals with linear growth

Michael Bildhauer and Martin Fuchs

Abstract. We consider elliptic systems generated by variational integrals of linear growth
satisfying the condition of µ-ellipticity for some exponent µ > 1 and prove that stationary points
u : R2 → R

N with the property

lim sup
|x|→∞

|u(x)|
|x| < ∞

must be affine functions. The latter condition can be dropped in the scalar case together with

appropriate assumptions on the energy density providing an extension of Bernstein’s theorem.

Kaksiulotteisia Liouvillen-tyyppisiä tuloksia

lineaarisesti kasvavien funktionaalien stationaarisille pisteille

Tiivistelmä. Tarkastelemme lineaarisesti kasvavien variaatiointegraalien tuottamia yhtälösys-
teemeitä, jotka toteuttavat µ-elliptisyysehdon jollakin eksponentilla µ > 1, ja todistamme, että
kaikki ehdon

lim sup
|x|→∞

|u(x)|
|x| < ∞

toteuttavat ratkaisut u : R2 → R
N ovat affiineja. Viimeksi mainittu ehto voidaan skalaaritapauk-

sessa korvata sopivilla oletuksilla energiatiheydestä, mikä antaa yleistyksen Bernsteinin lauseelle.

1. Introduction

In this note we mainly present results of Liouville-type for entire solutions u : R2 →
R

N of the system

(1.1) div
[

∇F (∇u)
]

= 0 on R
2,

concentrating on the case of energy densities F : R2N → R with linear growth.
To be precise we assume that F is of class C2

(

R
2N

)

satisfying with constants M ,
λ, Λ > 0 and for some exponent µ > 1

|∇F (Z)| ≤ M,(1.2)

λ(1 + |Z|)−µ|Y |2 ≤ D2F (Z)(Y, Y ) ≤ Λ(1 + |Z|)−1|Y |2(1.3)

for all Y , Z ∈ R
2N , where the first inequality in (1.3) expresses the fact that F is a

µ-elliptic integrand. Note that (1.2) and (1.3) exactly correspond to the requirements
of Assumption 4.1 in [2] and as outlined in Remark 4.2 of this reference, conditions
(1.2) and (1.3) imply that F is of linear growth in the sense that

a|Z| − b ≤ F (Z) ≤ A|Z|+B, Z ∈ R
2N ,

holds with constants a, A > 0, B, b ≥ 0.
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Note also that the “minimal surface case” is included by letting F (Z) := (1 +
|Z|2)1/2. In this case we have the validity of (1.3) with the choice µ = 3, and two
families of densities satisfying (1.2) and (1.3) with prescribed exponent µ > 1 are
given by

F (Z) :=















ˆ |Z|

0

ˆ s

0

(1 + r)−µ dr ds
ˆ |Z|

0

ˆ s

0

(1 + r2)−µ/2 dr ds















, Z ∈ R
2N .

Our results on the behaviour of global solutions of the Euler equations (1.1) with
µ-elliptic densities F are as follows.

Theorem 1.1. Let u ∈ C2
(

R
2,RN

)

denote a solution of (1.1) with density F
such that (1.2) and (1.3) hold.

a) Suppose that in addition

(1.4) lim
|x|→∞

|u(x)|
|x| = 0.

Then u is a constant function.
b) If the function u has the property

(1.5) sup
x∈R2

|∇u(x)| < ∞,

then u is affine.
c) If we have

(1.6) lim sup
|x|→∞

|u(x)|
|x| < ∞,

then the conclusion of b) holds.

Remark 1.1. a) Clearly (1.4) holds in the case that u is a bounded solution,
and evidently (1.5) implies (1.6).

b) We do not know if there are versions of Theorem 1.1 for entire solutions
u : Rn → R

N of (1.1) in the case n ≥ 3.
c) Our discussion of smooth solutions of the system (1.1) includes the vector case

N > 1 for densities F of linear growth. The existence of smooth solutions is
known provided that µ is not too large and provided that F (Z) = f(|Z|). It
is a challenging question whether the smoothness of solutions remains true (to
some extend) if the second hypothesis is dropped.

Before presenting the proof of Theorem 1.1 we wish to mention that there exists
a variety of Liouville-type theorems for entire solutions u : Rn → R

N , n ≥ 2, N ≥ 1,
of systems of the form (1.1) (and even for nonhomogeneous systems not generated by
a density F ) assuming that F is of superlinear growth. The interested reader should
consult the references on this topic quoted for example in the textbooks [12], [13],
[14], [16], [22] and [25]. A nice survey is also presented in [6].

Besides this more general discussion the validity of Liouville theorems for har-
monic maps between Riemannian manifolds turned out to be a useful tool for the
analysis of the geometric properties of the underlying manifolds. Without being
complete we refer to [4], [5], [17], [18], [19], [20], [27] and [28].

Liouville theorems are also of interest in the setting of fluid mechanics, where
in the stationary case (1.1) is replaced by a nonlinear variant of the Navier–Stokes
equation with dissipative potential F of superlinear growth and the incompressibility
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condition div u = 0 for the velocity field u : Rn → R
n has to be added. The validity

of Liouville theorems has been established in the 2-D-case, i.e. for n = 2, for instance
in the papers [3], [8], [9], [10], [11], [15], [21], [23], [29] and [30]. We like to mention
that the case of potentials F satisfying (1.2) and (1.3) is treated in [10] assuming
µ < 2.

As it stands, the conclusions of Theorem 1.1 b) and c) are in the spirit of Bern-
stein’s theorem (see [1]) for nonparametric minimal surfaces, where in this particular
setting conditions like (1.5) or (1.6) are seen to be superfluous. For completeness we
specialize the Bernstein result obtained by Farina, Sciunzi and Valdinoci in Theo-
rem 1.4 of their paper [7] to the case of linear growth integrands.

Theorem 1.2. Consider a function g ∈ C2
(

[0,∞)
)

such that with constants a1,
a3, a5 > 0, a2, a4 ≥ 0 we have for some exponent µ ≥ 1

g′(0) = 0, g′′(t) > 0 for t > 0,(1.7)

a1t− a2 ≤ g(t) ≤ a3t+ a4 for t ≥ 0,(1.8)

g′′(t) ≤ a5(1 + t)−µ for t ≥ 0.(1.9)

Let F : R2 → R, F (Z) := g
(

|Z|
)

, and consider a solution u : R2 → R of (1.1) being
of class C2. Then u is an affine function provided that µ ≥ 3.

Remark 1.2. a) Note that the minimal surface case is included with the
choices g(t) =

√
1 + t2 and µ = 3, moreover, we can cover the examples stated

in front of Theorem 1.1 provided that µ ≥ 3.
b) To our knowledge it is an unsolved problem, if Theorem 1.2 remains true for

exponents µ ∈ (1, 3).
c) Roughly speaking it follows from the work [26] of J.C.C. and J. Nitsche that

the Bernstein property fails for the equation

0 = div

[

g′
(

|∇u|
)

|∇u| ∇u

]

,

if the density of g is elliptic and of superlinear growth including even the nearly
linear case g(t) = t ln(1 + t), i.e. there exist non-affine solutions u : R2 → R.
However, the Nitsche criterion does not apply to integrands of linear growth
as considered in Theorem 1.2 (see Remark 4.1).

d) From the identity

D2F (Z)(X,X) =
1

|Z|g
′(|Z|

)

[

|X|2 − 1

|Z|2 (X · Z)2
]

+ g′′
(

|Z|
) 1

|Z|2 (X · Z)2,

X, Z ∈ R
2, it follows that (observing the boundedness of g′)

min

{

g′′
(

|Z|
)

,
g′
(

|Z|
)

|Z|

}

|X|2 ≤ D2F (Z)(X,X) ≤ Λ
(

1 + |Z|
)−1|X|2,

i.e. the second inequality in (1.3) holds with some constant Λ > 0. For t ≥ 1 we
have the lower bound g′(t)/t ≥ c/t, which by (1.9) means that in fact g′′

(

|Z|
)

measures the degree of ellipticity of D2F (Z). This shows that the integrand
F in general is not µ-elliptic in the sense of the first inequality from (1.3):
according to (1.9) the power t−µ just acts as an upper bound for the values
g′′(t). Thus we have the “Bernstein property” for any density F (Z) = g

(

|Z|
)

of linear growth and for which g′′(t) = O(t−3) as t → ∞.
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2. Proof of Theorem 1.1, Part a)

In the weak formulation of (1.1), i.e. in the equation

(2.1)

ˆ

R2

∇F (∇u) : ∇ϕ dx = 0, ϕ ∈ C1
0

(

R
2,RN

)

,

the function ϕ is replaced by ∂αϕ (α ∈ {1, 2} fixed), where now ϕ ∈ C2
0

(

R
2,RN) is

assumed. With an integration by parts we obtain from (2.1)

(2.2)

ˆ

R2

D2F (∇u)
(

∂α∇u,∇ϕ
)

dx = 0.

Note that by approximation equation (2.2) extends to ϕ ∈ C1
0

(

R
2,RN

)

, thus we

may choose ϕ = η2∂αu ∈ C1
0

(

R
2,RN

)

in (2.2), where η ∈ C1
0

(

R
2
)

, spt η ⊂ B2R(0),
η ≡ 1 on BR(0), 0 ≤ η ≤ 1, |∇η| ≤ cR−1. Then by Cauchy–Schwarz’s and Young’s
inequality we have (summation w.r.t. α = 1, 2)

ˆ

B2R(0)

η2D2F (∇u)
(

∂α∇u, ∂α∇u
)

dx

≤ c

ˆ

B2R(0)

D2F (∇u)
(

∇η ⊗ ∂αu,∇η ⊗ ∂αu
)

dx.(2.3)

The hypotheses (1.2) and (1.3) yield
ˆ

BR(0)

(

1 + |∇u|
)−µ|∇2u|2 dx ≤ cR−2

ˆ

B2R(0)−BR(0)

|∇u|2
√

1 + |∇u|2
dx

≤ cR−2

ˆ

B2R(0)−BR(0)

|∇u| dx(2.4)

and using the auxiliary inequality (2.9) of Lemma 2.1 given below we obtain for any
ε > 0

ˆ

BR(0)

(

1 + |∇u|
)−µ|∇2u|2 dx

≤ c

R2

ˆ

B2R(0)−BR(0)

[

ε+ c(ε)
(

∇F (∇u)−∇F (0)
)

: ∇u
]

dx.(2.5)

With (2.1) we also have

(2.6)

ˆ

R2

(

∇F (∇u)−∇F (0)
)

: ∇ϕ dx = 0, ϕ ∈ C1
0

(

R
2,RN

)

,

where we now choose ϕ = η̃2u, η̃ ∈ C1
0

(

R
2
)

, η̃ ≡ 1 on B2R(0) − BR(0), spt η ⊂
B5R/2(0)− BR/2(0), 0 ≤ η̃ ≤ 1, |∇η̃| ≤ c/R.

With this choice (2.6) gives
ˆ

R2

(

∇F (∇u)−∇F (0)
)

: ∇uη̃2 dx = −2

ˆ

R2

η̃
(

∇F (∇u)−∇F (0)
)

: (∇η̃ ⊗ u) dx

≤ cR−1

ˆ

B5R/2(0)−BR/2(0)

|u| dx

≤ cR sup
B5R/2(0)−BR/2(0)

|u|,(2.7)

where our assumption (1.2) is used.
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By the definition of η̃ we obtain using (2.7)
ˆ

B2R(0)−BR(0)

(

∇F (∇u)−∇F (0)
)

: ∇u dx ≤
ˆ

R2

(

∇F (∇u)−∇F (0)
)

: ∇uη̃2 dx

≤ cR sup
B5R/2(0)−BR/2(0)

|u|.(2.8)

If we insert (2.8) into inequality (2.5) and pass to the limit R → ∞ recalling
(1.4), we obtain for any ε > 0

ˆ

R2

(

1 + |∇u|
)−µ|∇2u|2 dx ≤ cε ,

hence ∇2u ≡ 0 and therefore we find A ∈ R
2N , a ∈ R

N such that

u(x) = Ax+ a.

Again we apply of the growth condition (1.4) and obtain A = 0, hence the first part
of Theorem 1.1 is established.

During the proof we made use of the elementary lemma

Lemma 2.1. Let F ∈ C2
(

R
2N

)

just satisfy the first inequality of (1.3) and let

θ(r) :=
λ

µ− 1

[

1− (1 + r)1−µ
]

, r ≥ 0.

Then it holds for any ε > 0 and all Z ∈ R
2N

(2.9) |Z| ≤ ε+ θ−1(ε)
[

∇F (Z)−∇F (0)
]

: Z.

Proof of Lemma 2.1. We fix ε > 0. If |Z| ≥ ε then

|Z|θ
(

|Z|
)

≥ |Z|θ(ε) ,

which implies

|Z| ≤ θ−1(ε) |Z| θ
(

|Z|
)

,

and if Z ∈ R
2N is arbitrarily given, we have

|Z| ≤ ε+ θ−1(ε) |Z| θ
(

|Z|
)

.

Moreover,

(2.10) θ
(

|Z|
)

|Z| ≤
[

∇F (Z)−∇F (0)
]

: Z

easily follows from

[

∇F (Z)−∇F (0)
]

: Z =

ˆ 1

0

d

dt
∇F (tZ) : Z dt =

ˆ 1

0

D2F (tZ)(Z,Z) dt

and the first inequality in (1.3) as outlined in [2], formula (1), p. 98, and (2.10) gives
(2.9). �

Remark 2.1. Clearly Lemma 2.1 is not limited to the case n = 2 and without
condition (1.3) it would be sufficient to assume (2.10) for an increasing non-negative
function θ : [0,∞) → R.
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3. Proof of Theorem 1.1, Parts b) and c)

For Part b) we remark, that the idea of applying a Liouville argument to the
derivatives of solutions, which are seen to solve an appropriate elliptic equation,
has been successfully used by Moser [24], Theorem 6, with the result that entire
solutions of the minimal surface equation with bounded gradients in fact must be
affine functions in any dimension n ≥ 2.

In our setting, i.e. for n = 2 together with N ≥ 1, one may just follow the
arguments presented in [12], Chapter III, p. 82, for an elementary proof essentially
based on the “hole-filling” technique.

In Theorem 1.1, Part b) turns out to be a corollary of Part c), which we now
prove following some ideas given in [11].

As in the proof of the first part of Theorem 1.1 we obtain from (2.3) the following
variant of inequality (2.4)

(3.1)

ˆ

BR(0)

D2F (∇u)
(

∂α∇u, ∂α∇u
)

dx ≤ cR−2

ˆ

B2R(0)−BR(0)

|∇u| dx

and, as outlined after (2.4), (3.1) gives for all R > 0 and with the choice ε = 1

(3.2)

ˆ

BR(0)

D2F (∇u)
(

∂α∇u, ∂α∇u
)

dx ≤ c
[

1 +R−1 sup
B5R/2(0)−BR/2(0)

|u|
]

.

Inequality (3.2) shows, using (1.6),

(3.3)

ˆ

R2

D2F (∇u)
(

∂α∇u, ∂α∇u
)

dx < ∞.

We finally claim that

(3.4)

ˆ

R2

D2F (∇u)
(

∂α∇u, ∂α∇u
)

dx = 0,

which gives |∇2u| = 0, hence the proof will be complete.
To prove (3.4) we again consider (2.2) and choose ϕ as done after this inequality.

We obtain with TR := B2R(0)− BR/2(0) using the Cauchy–Schwarz inequality
ˆ

R2

D2F (∇u)
(

∂α∇u, ∂α∇u
)

η2 dx = −2

ˆ

TR

D2F (∇u)
(

η∂α∇u,∇η ⊗ ∂αu
)

dx

≤ c

[

ˆ

TR

η2D2F (∇u)
(

∂α∇u, ∂α∇u
)

dx

]
1

2

·
[

ˆ

TR

D2F (∇u)
(

∇η ⊗ ∂αu,∇η ⊗ ∂αu
)

dx

]
1

2

=: I1(R) · I2(R).

We recall (3.3) which gives

I1(R) → 0 as R → ∞.

Assumption (1.3) yields the estimate

I2(R) ≤ c

[

R−2

ˆ

TR

|∇u| dx
]

1

2

.
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Thus we obtain (3.4), if we can prove

(3.5)

ˆ

BR(0)

|∇u| dx ≤ c
(

1 +R2
)

.

For (3.5) we use (2.9) (recall η ≡ 1 on BR(0)) with the choice ε = 1, hence (compare
the derivation of (2.7))

ˆ

BR(0)

|∇u| dx ≤ |BR(0)|+ c

ˆ

BR(0)

[

∇F (∇u)−∇F (0)
]

: ∇u dx

≤ |BR(0)|+ c

ˆ

B2R(0)

η2
[

∇F (∇u)−∇F (0)
]

: ∇u dx

≤ c
[

R2 +R sup
TR

|u|
]

= cR2

[

1 +
1

R
sup
TR

|u|
]

,

and our hypothesis (1.6) gives (3.4), hence the proof of Theorem 1.1 is complete. �

4. Proof of Theorem 1.2

We follow the lines of [7] by checking the hypotheses of Theorem 1.4 in this
reference. We let

(4.1) a(t) :=
g′(t)

t
, t > 0,

and observe that on account of (1.7) the function a continuously extends to t = 0 by
letting a(0) = g′′(0). Obviously a satisfies (1.2) from [7] (g′ is strictly increasing and
thereby positive on (0,∞) due to (1.7)), and since for any t > 0 it holds (compare
(4.1))

(4.2) λ1(t) := a(t) + ta′(t) = g′′(t)

we get (1.3) in [7]. At the same time assumption (A2) from [7] is obvious by formula
(4.1) and our requirements concerning g. Moreover, the stability condition (see (1.11)
in [7]) follows from

(4.3)

ˆ

R2

(

A(∇u)∇φ
)

· ∇φ dx ≥ 0

for any φ ∈ C1
0 (R

2) with matrix (Z ∈ R
2 − {0})

Aij(Z) := |Z|−1a′
(

|Z|
)

ZiZj + a
(

|Z|
)

δij

by observing that (recall (4.1), (1.7))
(

A(Y )Z
)

· Z = |Y |−1
[

g′′
(

|Y |
)

|Y |−1 − g′
(

|Y |
)

|Y |−2
]

(Y · Z)2 + |Y |−1g′
(

|Y |
)

|Z|2

≥ g′
(

|Y |
)

[

|Y |−1|Z|2 − |Y |−3(Y · Z)2
]

≥ 0

on account of g′
(

|Y |
)

> 0 for Y 6= 0.
It remains to check (1.17) and (1.18) in [7]: since g is convex (see (1.7)) and of

linear growth (compare (1.8)) the boundedness of g′ follows, hence we get (1.17) and
by monotonicity g′∞ := limt→∞ g′(t) exists in (0,∞). By (4.2) the function λ1 defined
in (4.2) (see (1.5) of [7]) is just g′′ so that (1.18) is a consequence of (1.9) and the
aforementioned limit behaviour of g′ provided we assume µ ≥ 3. From Theorem 1.4
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in [7] it follows that u(x) = ũ(ω · x) for some ω ∈ R
2, |ω| = 1, and a function ũ:

R → R. Assuming ω = (1, 0) (w.l.o.g.) we see that (1.1) implies

d

dt

[

1

|ũ′|g
′(|ũ′|

)

ũ′

]

= 0 ,

hence

(4.4) |ũ′|−1g′
(

|ũ′|
)

ũ′ ≡ c

for some c ∈ R.
Case 1, c = 0. Recalling g′ > 0 on (0,∞) equation (4.4) yields ũ′ ≡ 0 and we are

done.
Case 2, c 6= 0. Then (4.4) shows ũ′(t) 6= 0 for any t ∈ R, thus g′

(

|ũ′|
)

≡ |c| and
in conclusion

ũ′(t) ∈
{

− (g′)−1
(

|c|
)

, (g′)−1
(

|c|
)

}

for any t ∈ R. But this immediately implies the constancy of ũ′ and our claim follows.
�

Remark 4.1. Let us end with a short remark on the failure of the Nitsche
criterion (condition (4) in [26]) for densities g with the properties (1.7) and (1.8)
from Theorem 1.2. The boundedness of g′ in particular shows that

(4.5)

ˆ ∞

1

g′′(t) dt < ∞, thus

ˆ ∞

1

1√
s
g′′(

√
s) ds < ∞.

Let us introduce the functions (compare [26])

f(t) := g(
√
t), λ(t) :=

2f ′′(t)

f ′(t)
.

Elementary calculations show

1 + tλ(t)

2 + tλ(t)
· 1
t
=

g′′(
√
t)

1√
t
g′(

√
t) + g′′(

√
t)

· 1
t
=

1

t +
√
t

g′′(
√
t)
g′(

√
t)

and for t ≥ 1 we obtain by the monotonicity of g′

1 + tλ(t)

2 + tλ(t)

1

t
≤ 1

g′(1)

g′′(
√
t)√
t

.

Recalling (4.5) it follows
ˆ ∞

1

1 + tλ(t)

2 + tλ(t)

dt

t
< ∞,

which means that the “Satz” on p. 295 of [26] does not apply to the linear growth
case.
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