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Local and nonlocal 1-Laplacian in Carnot groups

Wojciech Górny

Abstract. We formulate and study the nonlocal and local least gradient problem, which is the

Dirichlet problem for the 1-Laplace operator, in the non-Euclidean setting of Carnot groups. We

study the passage from the nonlocal problem to the local problem as the range of the interaction

goes to zero. During this procedure, we prove a total variation estimate of independent interest and

give an existence result for the local problem.

Paikallinen ja ei-paikallinen 1-Laplacen operaattori Carnot’n ryhmissä

Tiivistelmä. Muotoilemme ei-paikallisen ja paikallisen pienimmän gradientin ongelman, joka

on Dirichlet’n ongelma 1-Laplacen operaattorille, ja tarkastelemme sitä Carnot’n ryhmien epä-

euklidisessa asetelmassa. Tutkimme ei-paikallisen ongelman muuttumista paikalliseksi, kun vuoro-

vaikutussäde lähestyy nollaa. Samalla todistamme itsessään mielenkiintoiseen kokonaisheilahtelua

koskevan arvion sekä olemassaolotuloksen paikalliselle ongelmalle.

1. Introduction

In the Euclidean setting, the least gradient problem is the following problem of
minimisation

(LGP) min

{
ˆ

Ω

|Du| : u ∈ BV (Ω), u|∂Ω = f

}
.

The problem in this form was introduced in [27], but the ideas can be traced back
to the pioneering work of Bombieri, de Giorgi and Giusti in [5], which relate the
functions which locally minimise the total variation with minimal surfaces. This
type of problems, including anisotropic cases, appears as dimensional reduction in
the free material design [14], conductivity imaging [17], and has links to the optimal
transport problem [10, 11].

In the paper [22], Mazón, Rossi and Segura de León showed that the 1-Laplace
equation

−div

(
Du

|Du|

)
= 0

can be understood as the Euler–Lagrange equation for the least gradient problem.
The first step, namely convergence of solutions to the p-Laplace equations with con-
tinuous Dirichlet boundary data to the solutions of the corresponding least gradient
problem as p→ 1, has been shown by Juutinen in [18]; the authors of [22] have pro-
vided an Euler–Lagrange characterisation of solutions to (LGP) in terms of Anzellotti
pairings and proved existence of solutions to such a problem using approximations by
p-harmonic functions. Let us note that the least gradient problem has been studied
in a more general setting of measure metric spaces, see for instance [16], but not
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from the Euler–Lagrange point of view; in this paper, we follow the Euler–Lagrange
approach to the least gradient problem, working in the setting of Carnot groups.

The motivation for this paper comes from the nonlocal version of the least gradi-
ent problem. The nonlocal versions of 1-Laplace and p-Laplace equations, including
evolution problems, have been studied for instance in [2, 3, 7, 8, 13, 21, 24]. The two
main examples of nonlocal interaction are Markov chains on locally finite graphs and
the interaction governed by a nonnegative radial kernel on Rn. In the latter case,
the nonlocal least gradient problem (the Dirichlet problem for the nonlocal 1-Laplace
operator) takes the form




−

ˆ

Rn

J(x− y)
uψ(y)− u(x)

|uψ(y)− u(x)|
dy = 0, x ∈ Ω,

u = ψ, x ∈ Rn\Ω.

In the above equation, ψ ∈ L∞(Rn) is the boundary datum, uψ is an extension of u
by ψ outside of Ω, i.e.

uψ(x) =

{
u(x), x ∈ Ω;

ψ(x) x ∈ R
n\Ω,

and J : Rn → [0,∞) is a continuous radial function compactly supported in the
unit ball such that J(0) > 0 and

´

Rn J dx = 1. In [21], the authors show existence of
solutions to such a problem and show that equivalently we may minimise the nonlocal
total variation as follows:

min

{
1

2

ˆ

Rn

ˆ

Rn

J(x− y)|uψ(y)− uψ(x)| dx dy : u ∈ L1(Ω), ψ ∈ L1(Rn)

}
.

A natural question is what happens if we rescale the kernel J so that its support
lies in a ball B(0, ε) instead of the unit ball—are the nonlocal problems a good
approximation to the local problem? In the Euclidean space, the authors of [21]
show that the answer is yes and on a subsequence solutions to the nonlocal problems
converge to a solution to the local problem.

In a recent paper [13] the authors introduce the least gradient problem in a non-
local setting on metric measure spaces. Given a metric measure space (X, d, ν), the
nonlocal interaction is governed by a random walk m, which is a collection of proba-
bility measures mx which are invariant and reversible with respect to the underlying
measure ν. The nonlocal total variation of a function u ∈ L1(X, ν) in this case takes
the form

TVm(u) =
1

2

ˆ

X

ˆ

X

|u(y)− u(x)| dmx(y) dν(x).

Then, the authors introduce an Euler–Lagrange characterisation of the minimisers,
which depends on whether the space supports a nonlocal Poincaré inequality for all
1 ≤ p < ∞. Then, the natural question is whether an analogue of the convergence
mentioned above holds; namely, if we take the ε-step random walk mν,ε (a natural
generalisation of the random walk generated by the kernel J to the setting of metric
measure spaces) given by the formula

mx = mν,ε
x :=

ν B(x, ε)

ν(B(x, ε))
,

take solutions uε to the nonlocal least gradient problem with boundary data ψ ∈
L∞(X, ν) and pass to the limit ε → 0, we want to know if the limit function u (if
it exists) is a solution to the local least gradient problem in some appropriate sense.
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Let us again use the notation uψ for the extension of a function u ∈ L1(Ω, ν) outside
Ω by ψ. The basis for our reasoning is that the fact that uε minimise the nonlocal
total variation gives us a uniform bound on the nonlocal total variations of the form

(1.1)

ˆ

X

−

ˆ

B(x,ε)

|(uε)ψ(y)− (uε)ψ(x)| dν(y) dν(x) ≤ Mε.

Notice that the set on which we have this bound is the ε-neighbourhood of the
diagonal in X×X, in particular it changes with ε and disappears in the limit ε → 0.

In this paper, we focus our attention on Carnot groups as a model case for the
passage from a nonlocal 1-Laplace problem to the local 1-Laplace problem in a non-
Euclidean setting. Our primary motivation lies in the inequality (1.1), from which we
will deduce a bound on the total variation of the limit. In order to pass to the limit,
we need to perform a blow-up argument. Carnot groups are a natural setting for this,
because they have well-defined dilations and after a proper rescaling we may deduce
from (1.1) a uniform estimate in which the domain remains the same. This removes
the need to use Gromov–Hausdorff convergence in such a procedure. Moreover,
Carnot groups enjoy a few other properties that will later use: the Lebesgue measure
Ln is left-invariant and Ahlfors regular, so the random walk mν,ε is invariant and
reversible with respect to Ln; there exists a distance such that the balls in this
distance are symmetric in horizontal directions (the distance d∞ introduced in [12]);
and bounded domains satisfy a nonlocal Poincaré inequality for all 1 ≤ p <∞.

On the other hand, the situation is quite different from the Euclidean case. One
of the main reasons are the directional derivatives. We can consider directions as
certain curves defined using the group operation, but unlike the Euclidean case,
some of them (called the horizontal directions) are distinguished: in the exponential
coordinates (see Section 2 for the exact definition) the group operations is linear in the
horizontal directions, while it is polynomial of higher order in all other directions.
So, the fact that the difference quotients along the directional curves converge to
directional derivatives requires some additional justification, and these directional
derivatives only see the horizontal part of the gradient. This phenomenon is perhaps
most visible in the statement and proof of Theorem 4.3, which is a regularity and
structure result for the weak limit of a sequence of functions which satisfy (1.1).

The structure of the paper is as follows: in Section 2, we recall the definitions of
the Carnot groups, in particular the properties of exponential coordinates and trace
and extension theorems. Then, we recall the formulations of the (local) least gradient
problem in a Euclidean space and of the nonlocal least gradient problem in a metric
random walk space. In Section 3, we introduce an Anzellotti-type pairing on Carnot
groups, which allows us to formulate the (local) Dirichlet problem for the 1-Laplace
equation on Carnot groups and study its properties.

In the final Section, we pass to the limit with ε → 0. Firstly, in Theorem 4.3
we show that a uniform bound on the nonlocal gradients of a given sequnce implies
that the limit function lies in an appropriate Sobolev space or the BV space with
respect to the Carnot group structure. Then, in Theorem 4.5 we prove that on some
subsequence solutions to the nonlocal problems converge weakly to the solutions of
the local problem; in particular, this is an existence result for the local problem.

2. Preliminaries

2.1. Carnot–Carathéodory distance. In this subsection, we recall the notion
of the Carnot–Carathéodory distance on Rn and BV functions with respect to this
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distance (see for instance [29]). Later, we restrict our focus to Carnot groups. The
group structure will play a crucial part in the definition of Anzellotti pairings and in
the proofs in Section 4.

Definition 2.1. Let X = (X1, . . . , Xm) be a family of smooth vector fields on
Rn with m ≤ n. We will say that X1, . . . , Xm are horizontal vector fields. We say
that γ : [0, T ] → Rn is a subunit path, if

γ̇(t) =

m∑

j=1

hj(t)Xj(γ(t)) with

m∑

j=1

h2j(t) ≤ 1 for a.e. t ∈ [0, T ]

with h1, . . . , hm measurable. We define the Carnot–Carathéodory (CC) distance on
Rn as

dcc(x, y)=inf{T ≥ 0: there is a subunit path γ : [0, T ] → R
n s.t. γ(0) = x, γ(T ) = y}.

Whenever the CC distance is finite for any pair x, y ∈ Rn, the space Rn endowed
with the CC distance is a metric space. The space (Rn, dcc) is called a Carnot–
Carathéodory space.

In order to introduce BV spaces with respect to the distance dcc, we will assume
the following connectivity condition

dcc is finite and the identity map (Rn, dcc) → (Rn, | · |) is a homeomorphism.

There are a number of conditions which imply the above; as we will work primar-
ily with Carnot groups, let us recall only the Chow–Hörmander condition. Let
L(X1, . . . , Xm) be the Lie algebra generated by the vector fields X1, . . . , Xm. Then
we require that

rank L(X1, . . . , Xm) = n.

On Carnot groups this condition is automatically satisfied, see Definitions 2.11-2.13.
The most simple example of a Carnot–Carathéodory space is the Euclidean space

Rn with the Euclidean distance arising from the family given by partial derivatives
(∂x1 , . . . , ∂xn); the following definitions then coincide with the classical definitions. A
standard nontrivial example is the Heisenberg group described in Example 2.19.

Definition 2.2. Given a Lebesgue measurable function u : Ω → R defined on an
open set Ω, we define its horizontal gradient as

Xu = (X1u, . . . , Xmu),

where the derivatives are understood in the sense of distributions. We will say that
u ∈ C1

X(Ω), if both u and Xu are continuous, i.e. u ∈ C(Ω) and Xu ∈ C(Ω;Rm).

Then, we define the space of functions of bounded X-variation. Given a vector
field g = (g1, . . . , gm) ∈ C1

c (Ω;R
m), we define its X-divergence as

divX(g) = −
m∑

j=1

X∗
j gj,

where X∗
j is the formal adjoint operator of Xj. In coordinates, if Xj =

∑n

i=1 aij(x)∂i,
formally we have

X∗
jψ(x) = −

n∑

i=1

∂i(aijψ)(x).

On a Carnot group the adjoint operator is given by X∗ = −X, see for instance [28,
Lemma 1.30]; this is one of the reasons why we choose to work with Carnot groups
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in this paper. Now, we define the X-variation in a similar way as in the Euclidean
case:

Definition 2.3. Let Ω ⊂ Rn be open. We say that u ∈ L1(Ω) has bounded
X-variation in Ω, if

|Xu|(Ω) = sup

{
ˆ

Ω

u divX(g) dL
n : g ∈ C1

c (Ω;R
m), |g|∞ ≤ 1

}

is finite. The space of functions with bounded X-variation in Ω is denoted by
BVX(Ω); endowed with the norm

‖u‖BVX(Ω) = ‖u‖L1(Ω) + |Xu|(Ω)

it is a Banach space. Moreover, u ∈ BVX(Ω) if and only if Xu is a (vectorial) Radon
measure with finite total variation.

The space BVX(Ω) enjoys some properties of the Euclidean BV spaces such as
lower semicontinuity of the total variation. We will focus mostly on traces of functions
in BVX(Ω): in order to perform the construction of Anzellotti pairings, we firstly
define certain objects for smooth functions and have to approximate a given function
u ∈ BVX(Ω) in such a way that the trace of the limit function is preserved; for this
approximation in the Euclidean case, see [4, Lemma 5.2]. To this end, we recall a few
results concerning trace theory in Carnot–Carathéodory spaces, following [29] (see
also [26]).

For a set E ⊂ R
n we define the X-perimeter measure |∂Ω|X as the X-variation of

its characteristic function χE. Suppose that E has finite X-perimeter in Ω and denote
by νE : R

n → Sm−1 the density of XχE with respect to |XχE|, i.e. XχE = νE |XχE|
as measures. Then

ˆ

E

divXg dL
n = −

ˆ

Ω

g · νE d|∂Ω|X .

We call such νE the horizontal inner normal to E.
The following theorem proved in [29, Theorem 1.4] asserts the existence of traces

of functions in BVX(Ω) and shows that their traces lie in L1(∂Ω, |∂Ω|X).

Theorem 2.4. Let Ω ⊂ Rn be an X-Lipschitz domain with compact boundary.
Then, there exists a bounded linear operator

T : BVX(Ω) → L1(∂Ω, |∂Ω|X)

such that
ˆ

Ω

u divXg dL
n +

ˆ

Ω

g dXu =

ˆ

∂Ω

g · νΩ Tu d|∂Ω|X

for any u ∈ BVX(Ω) and g ∈ C1(Rn,Rm). Here, νΩ is the horizontal inner normal to
Ω.

The trace operator introduced in the above theorem enables us to consider the
restrictions of the horizontal gradient Xu to subsets of codimension one, such as the
boundary of the domain Ω. Given an X-Lipschitz domain Ω with compact boundary,
denote by T+ the trace operator T+ : BVX(Ω) → L1(∂Ω, |∂Ω|X) and by T− the trace
operator T− : BVX(R

n\Ω) → L1(∂Ω, |∂Ω|X). The following result was shown in [29,
Theorem 5.3].

Theorem 2.5. Let Ω ⊂ Rn be an X-Lipschitz domain with compact boundary.
Suppose that u ∈ L1(Rn) is such that u|Ω ∈ BVX(Ω) and u|

Rn\Ω ∈ BVX(R
n\Ω).
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Then u ∈ BVX(R
n) and

Xu = Xu Ω +Xu (Rn\Ω) + (T+u− T−u)νΩ|∂Ω|X .

The next theorem proved in [29, Theorem 1.5] concerns extensions of functions in
L1(∂Ω, |∂Ω|X ) to BVX(Ω). In particular, L1(∂Ω, |∂Ω|X) is precisely the trace space
of BVX(Ω).

Theorem 2.6. Let Ω ⊂ Rn be a X-Lipschitz domain with compact boundary.
Then, there exists C(Ω) with the following property: for any h ∈ L1(∂Ω, |∂Ω|X) and
ε > 0, there exists u ∈ C∞(Ω) ∩W 1,1

X (Ω) such that

Tu = h,

ˆ

Ω

|u| dLn ≤ ε and

ˆ

Ω

|Xu| dLn ≤ C(Ω)‖h‖L1(∂Ω,|∂Ω|X).

If ∂Ω is X-regular, then u can be chosen in such a way that
ˆ

Ω

|Xu| dLn ≤ (1 + ε)‖h‖L1(∂Ω,|∂Ω|X).

Furthermore, as we can see from the proof of [29, Theorem 1.5], we may require two
more things: firstly, we can ensure that the support of u lies in an arbitrarily small
neighbourhood of ∂Ω and require that

u(x) = 0 if dist(x, ∂Ω) > ε.

Moreover, if additionally h ∈ L∞(∂Ω, |∂Ω|X), then we may require that

‖u‖L∞(Ω) ≤ ‖h‖L∞(∂Ω,|∂Ω|X).

We turn our focus to approximations of functions inBVX(Ω) by smooth functions.

Definition 2.7. We say that uk ∈ BVX(Ω) converges X-strictly to u ∈ BVX(Ω),
if

uk → u in L1(Ω) and

ˆ

Ω

|Xuk| →

ˆ

Ω

|Xu|.

As in the Euclidean case, X-strict convergence is a natural requirement for work-
ing with approximations of BV functions. Usually, the norm convergence is too
strong a requirement to ask; on the other hand, weak* convergence does not entail
convergence of traces of the approximating sequence to the trace of the limit. The
next two results, proved in [29, Corollary 5.5] and [29, Theorem 5.6] respectively, are
generalizations of well-known results in the Euclidean case.

Proposition 2.8. Let Ω ⊂ R
n be an X-Lipschitz domain with compact bound-

ary and u ∈ BVX(Ω). Then, there exists a sequence uk ∈ C∞(Ω) ∩C0(Ω) ∩BVX(Ω)
which converges X-strictly to u. Furthermore, as we can see from the proof of [29,
Corollary 5.5], if additionally u ∈ L∞(Ω), then we may require that

‖uk‖L∞(Ω) ≤ ‖u‖L∞(Ω).

Theorem 2.9. Let Ω ⊂ Rn be an X-Lipschitz domain with compact boundary.
Suppose that the sequence uk ∈ BVX(Ω) converges X-strictly to u ∈ BVX(Ω). Then
Tuk → Tu in L1(∂Ω, |∂Ω|X).

In order to introduce Anzellotti pairings on Carnot groups, we are going to re-
quire something more than Proposition 2.8—we need the approximating sequence to
preserve the trace of the limit. Fortunately, it is an easy consequence of the results
above. For a similar result in the Euclidean case, see [4, Lemma 5.2].
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Proposition 2.10. Let Ω ⊂ R
n be an X-Lipschitz domain with compact bound-

ary and u ∈ BVX(Ω). Then, there exists a sequence uk ∈ C∞(Ω) ∩ BVX(Ω) which
converges X-strictly to u and such that Tuk = Tu. If additionally u ∈ L∞(Ω), then
also

‖uk‖L∞(Ω) ≤ 3‖u‖L∞(Ω).

Proof. Take an approximating sequence uk ∈ C∞(Ω) ∩ BVX(Ω) converging X-
strictly to u given by Proposition 2.8. Denote

hk = Tu− Tuk ∈ L1(∂Ω, |∂Ω|X).

Set δ = 1
k

and take an extension vk ∈ C∞(Ω)∩BVX(Ω) of hk given by Theorem 2.6.
Set

ũk = uk + vk ∈ C∞(Ω) ∩ BVX(Ω).

Then ũk is the desired approximating sequence. Firstly, by linearity of the trace
operator

T ũk = Tuk + Tu− Tuk = Tu.

Secondly, as
´

Ω
|vk| dL

n ≤ 1
k
, we have

ˆ

Ω

|ũk − u| dLn ≤

ˆ

Ω

|uk − u| dLn +

ˆ

Ω

|vk| dL
n ≤

ˆ

Ω

|uk − u| dLn +
1

k
→ 0.

Thirdly, as
´

Ω
|Xvk| dL

n ≤ C(Ω)
´

∂Ω
|hk| d|∂Ω|X , we have

ˆ

Ω

|Xũk| dL
n ≤

ˆ

Ω

|Xuk| dL
n +

ˆ

Ω

|Xvk| dL
n ≤

ˆ

Ω

|Xuk| dL
n + C(Ω)

ˆ

∂Ω

|hk| d|∂Ω|X

=

ˆ

Ω

|Xuk| dL
n + C(Ω)

ˆ

∂Ω

|Tu− Tuk| d|∂Ω|X →

ˆ

Ω

|Xu|,

where the second summand goes to zero by Theorem 2.9. Finally, if u ∈ L∞(Ω), then

‖ũk‖L∞(Ω) ≤ ‖uk‖L∞(Ω) + ‖vk‖L∞(Ω) ≤ ‖u‖L∞(Ω) + ‖hk‖L∞(∂Ω,|∂Ω|X)

≤ ‖u‖L∞(Ω) + ‖Tu‖L∞(∂Ω,|∂Ω|X) + ‖Tuk‖L∞(∂Ω,|∂Ω|X)

≤ 2‖u‖L∞(Ω) + ‖uk‖L∞(Ω) ≤ 3‖u‖L∞(Ω).

The L∞ bound is proved here in a crude way and is clearly suboptimal, but we are
not interested in the exact bound, as it is sufficient for the definition of Anzellotti
pairings. �

2.2. Carnot groups.

Definition 2.11. We say that a Lie algebra g is stratified, if there exist linear
subspaces g1, . . . , gl such that

g = g1 ⊕ . . .⊕ gl

and such that the following condition holds:

gj = [g1, gj−1] for j = 2, . . . , l and [g1, gl] = {0}.

We call this decomposition a stratification of g. We call the elements of g1 the
horizontal vector fields.

Definition 2.12. We say that a Lie group G is stratified if its Lie algebra is
stratified. If the group G is finite dimensional and stratified, then it is also nilpotent
of step l.

Definition 2.13. A Carnot group is a finite dimensional, connected, simply
connected and stratified Lie group G (of step l).
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On Carnot groups, the exponential map exp : g → G is a (global) diffeomorphism.
This allows for a definition of dilations on the Carnot group and the introduction of
exponential coordinates.

Definition 2.14. On a stratified Lie algebra g, we define a one-parameter group
of dilations of the algebra by the formula

δλX = λjX if X ∈ gj

and extend it to the whole of g by linearity. As the exponential map is a global
diffeomorphism, we extend it to the Lie group by the formula

δλ(x) = exp(δλ(exp
−1(x)))).

Now, we introduce exponential coordinates. For vector fields X, Y ∈ g, we define
C(X, Y ) by the formula

exp(C(X, Y )) = exp(X) exp(Y ).

In fact, there is a direct formula for C(X, Y ) called the Baker–Campbell–Hausdorff
formula; it is formally an infinite series (not necessarily convergent) defined by iter-
ated commutators ofX, Y . We recall the first few summands in the Baker–Campbell–
Hausdorff formula:

C(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]]− [Y, [X, Y ]]) + . . .

The next summands involve iterations of an increasing number of commutators of
X, Y . Due to the stratified structure of g in the case of Carnot groups the BCH
formula is a polynomial which converges everywhere (as any iterations of l + 1 or
more commutators are zero). Moreover, we see that it is linear in the horizontal
directions (in g1).

Definition 2.15. Let (X1, . . . , Xn) be a basis of the Lie algebra g of left invariant
vector fields. We say that the basis (X1, . . . , Xn) of g is adapted to the stratification, if
it is ordered in the same way as gj ; precisely, let mj = dim(gj) and nj = m1+. . .+mj .
Then, we require that X1, . . . , Xn1

is a basis of g1 and for j > 1 we have that
Xnj−1, . . . , Xnj

is a basis of gj.

Definition 2.16. A system of exponential coordinates (of the first kind) relative
to a basis (X1, . . . , Xn) of g adapted to the stratification is a map from Rn to G defined
by

x 7→ exp

(
n∑

i=1

xjXj

)
.

We endow Rn with the group operation pulled back from G, i.e.

x ◦ y = z ⇐⇒
∑

i=1

zjXj = C

(
∑

i=1

xjXj ,
∑

i=1

yjXj

)
.

We see that Rn with this group law is a Lie group with a Lie algebra isomorphic to g.
As both G and Rn are nilpotent, connected and simply connected, the exponential
coordinates define a diffeomorphism between Rn and G. We endow Rn with the
Carnot–Carathéodory distance introduced in Definition 2.1.

Notation. In this paper, we will exploit the structure of G in exponential
coordinates and use a version of the scalar product on Rn restricted to horizontal
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directions. Given two vectors v ∈ R
n1 and w ∈ R

n2 , where m ≤ n1, n2 ≤ n with
n1 6= n2, we set

〈v, w〉 =

m∑

i=1

viwi.

The only difference with respect to the usual scalar product is that the dimensions
do not coincide. In other words, we extend v and w to R

n by setting it to zero on
the last n − n1 (respectively n − n2) coordinates and then we take the usual scalar
product. When the dimensions n1, n2 coincide, we will denote the scalar product
by v · w, so that the notation 〈v, w〉 is used to alert the reader that the dimensions
are different. Finally, we denote the group operation by ◦ or skip the multiplication
symbol when it is clear from the context.

In the next Proposition, we list a few well-known properties of exponential coor-
dinates; we refer for instance to [28].

Proposition 2.17. (Properties of exponential coordinates)

1. In this representation, the neutral element of G is (0, . . . , 0). Moreover, for
all x ∈ Rn we have x−1 = −x and the group multiplication is represented as
a polynomial function.

2. As the basis (X1, . . . , Xn) of g is adapted to the stratification, the dilations
δλ in the exponential coordinates are represented as

δλ(x1, . . . , xn) = (λx1, . . . , λxn1
, λ2xn1+1, . . . , λ

2xn2
, . . . , λlxnl−1+1, λ

lxn).

3. By the Baker–Campbell–Hausdorff formula, the group operation is linear in
the horizontal directions (directions generated from g1).

4. The length of horizontal curves is preserved by left translation in G. In
particular, we have dcc(z ◦ x, z ◦ y) = dcc(x, y).

5. The CC distance is 1-homogeneous with respect to the dilations δλ, i.e.
dcc(δλx, δλy) = λdcc(x, y).

6. In the exponential coordinates the Lebesgue measure Ln is the Haar measure
of G and is both left- and right-invariant.

7. Ln is Ahlfors regular with respect to dcc with exponent Q =
∑l

j=1 j dim(gj),
called the homogeneous dimension of G. Precisely, we have

Ln(Bcc(x, r)) = Ln(Bcc(0, r)) = rQLn(Bcc(0, 1)).

Note that the exponent Q comes from the homogeneity of dcc with respect to
dilations and the change of variables formula.

In general, one may consider distances that are left-invariant and 1-homogeneous
with respect to the dilations; such distances are for simplicity called homogeneous
([19]). Such distances satisfy properties 4–7 from the above Proposition. We will
denote balls with respect to a homogeneous distance d by U(x, r); in particular, we
have

Ln(U(x, r)) = Ln(U(0, r)) = rQLn(U(0, 1)).

With the exception of Theorem 4.5, all results in this paper are valid for any homo-
geneous distance. In the proof of Theorem 4.5, we will additionally require that the
unit ball in the chosen distance is invariant under rotations in the horizontal direc-
tions (in other words, it is symmetric in horizontal directions); every Carnot group
supports such a homogeneous distance, see the construction of the d∞ distance in
[12].
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Proposition 2.18. [12, Theorem 5.1] Denote by ‖ · ‖ the Euclidean norm. In
the notation of Definition 2.15, there exist ε1, . . . , εk such that if we set

‖(x1, . . . , xn)‖∞

:= max
{
ε1‖(x1, . . . , xn1

)‖, ε2‖(xn1+1, . . . , xn2
)‖

1

2 , . . . , εk‖(xnk−1+1, . . . , xnk
)‖

1

k

}

and for x, y ∈ G we let

d∞(x, y) := ‖x−1y‖∞

then d∞ is a homogeneous distance on G.

The simple form of d∞ makes it easier to visualise the proofs in Section 4, but
the results hold in more generality. A key assumption will be that the unit ball with
respect to a distance d is symmetric in the horizontal directions, as is clearly the case
for the distance d∞. This is known for the CC distance only in a few cases, such as
Heisenberg groups, see [25] or [15, Corollary 3.2].

As we can see from the Baker–Campbell–Hausdorff formula, in the exponential
coordinates the only abelian Carnot group of dimension n is Rn with the group action
being simply addition. A more typical example is the (non-abelian) Heisenberg group.

Example 2.19. (Heisenberg group) The Heisenberg group H1 is the space R3

equipped with the following vector fields:

X1 = ∂1 −
1

2
x2 · ∂3, X2 = ∂2 +

1

2
x1 · ∂3, X3 = [X1, X2] = ∂3.

In particular, g1 = span(X1, X2) and g2 = span(X3); in other words, the vector
fields X1, X2 are the basis of the subspace of horizontal vector fields. In exponential
coordinates, the group structure on the Heisenberg group induced by these (left-
invariant) vector fields is as follows:

(x1, x2, x3) ◦ (x
′
1, x

′
2, x

′
3) = (x1 + x′1, x2 + x′2, x3 + x′3 +

1

2
(x1x

′
2 − x2x

′
1)).

In particular, we see that the inverse of (x1, x2, x3) is (−x1,−x2,−x3). Moreover, the
Heisenberg group is equipped with the dilations δλ : H

1 → H1 defined by the formula

δλ((x1, x2, x3)) = (λx1, λx2, λ
2x3).

The space H1 is equipped with the Carnot–Carathéodory distance generated by the
horizontal vector fields X1, X2. The measure L3 is the Haar measure of this group.
Moreover, if we calculate the Jacobian of the dilation δλ, we see that dilations rescale
the measure L3 by a factor of λ4. In particular, we have that

L3(U(x, r)) = L3(U(0, r)) = L3(U(0, 1)) r4.

2.3. Local least gradient problem in R
n. Let Ω ⊂ R

n be an open bounded
set with Lipschitz boundary. The least gradient problem involves minimisation of
the relaxed total variation functional relative to Dirichlet boundary data, i.e. the
functional Φh : L

n
n−1 (Ω) → (−∞,+∞] defined by

Φh(u) =





ˆ

Ω

|Du|+

ˆ

∂Ω

|u− h| dHn−1 if u ∈ BV (Ω),

+∞ if u ∈ L
n

n−1 (Ω) \BV (Ω).

An alternative formulation, in the language of Euler–Lagrange equations, has been
introduced in [22]. The authors consider the Dirichlet problem for the 1-Laplace
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operator

(2.1)





−div

( Du
|Du|

)
= 0, in Ω,

u = h , on ∂Ω,

and show that it has a solution u ∈ BV (Ω) for every h ∈ L1(∂Ω). The notion of
a solution is introduced in the language of Anzellotti pairings; for the definition of
Anzellotti pairings in Euclidean spaces, we refer to [4]. We skip the definition in this
introduction as we need to prove existence of a similar pairing for Carnot groups in
Section 3.

Definition 2.20. We say that u ∈ BV (Ω) is a solution of the 1-Laplace equation
for boundary data h ∈ L1(∂Ω,Hn−1), if there exists a vector field z ∈ L∞(Ω;Rn) such
that ‖z‖L∞(Ω;Rn) ≤ 1 and the following conditions hold:

div(z) = 0 as distributions in Ω;

(z, Du) = |Du| as measures in Ω;

[z · ν] ∈ sign(h− u) Hn−1-a.e. on ∂Ω.

In [22], the authors prove that the two approaches are equivalent—minimisers of
the functional Φh coincide with the solutions of problem (2.1).

2.4. Nonlocal least gradient problem in a metric measure space. In this
subsection, we recall the notion of a solution to the nonlocal least gradient problem
on a metric measure space. In the final Section of this paper, we will connect the
nonlocal and local versions of the least gradient problem in the setting of Carnot
groups.

Definition 2.21. Let (X, d, ν) be a metric measure space. A metric random
walk m is a family of probability measures mx which satisfies two conditions:

(i) the dependence on x is Borelian, namely for Borel sets A ⊂ X and B ⊂ R we
have that {x ∈ X : mx(A) ∈ B} is Borel;

(ii) eachmx has finite first moment, i.e. for any z ∈ X we have
´

X
d(z, y) dmx(y) <

∞.

We say that the measure ν is invariant (with respect to a random walk m), if for any
ν-measurable set A and ν-almost all x ∈ X the map x 7→ mx(A) is ν-measurable and

ν(A) =

ˆ

X

mx(A)dν(x).

We say that the measure ν is reversible, if a more detailed balance condition holds:

dmx(y) dν(x) = dmy(x) dν(y).

We present two examples of random walks. The first one has been studied ex-
tensively, for instance in [3], [6] and [23], as a prototype of nonlocal interaction on
R
n. The second one is its analogue which can be defined in a more general setting

and which will be the focus of Section 4.

Example 2.22. (1) Let X = R
n with the Euclidean distance and let ν = Ln.

Let J : Rn → [0,∞) be a measurable, nonnegative and radially symmetric function
such that

´

Rn J(z) dz = 1. Then, we define the random walk mJ by the formula

mJ
x(A) =

ˆ

A

J(x− y) dLn(y) for every Borel set A.
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(2) Let (X, d, ν) be a metric measure space. Assume that supp ν = X and that
the measure of balls in X is finite and it depends only on their radius. Given ε > 0,
we define the random walk mν,ε by the formula

mν,ε
x =

ν B(x, ε)

ν(B(x, ε))
.

The metric random walks defined in (1) and (2) are invariant and reversible.

For an open set Ω ⊂ X, denote by Ωm the set

Ωm = {x ∈ X : mx(Ω) > 0}.

Moreover, we denote
∂mΩ = Ωm\Ω

and consider open sets Ω such that

(2.2) 0 < ν(Ω) < ν(Ωm) < ν(X).

Definition 2.23. We say that (m, ν) satisfies a q-Poincaré Inequality, q ≥ 1, if

λ

ˆ

Ω

|u(x)|q dν(x) ≤

ˆ

Ω

ˆ

Ωm

|uψ(y)− u(x)|q dmx(y) dν(x) +

ˆ

∂mΩ

|ψ(y)|q dν(y)

for all u ∈ Lq(Ω, ν).

The nonlocal least gradient problem is the problem of minimisation of the nonlo-
cal total variation with respect to Dirichlet boundary condition. Given ψ ∈ L1(Ωm, ν),
we set

uψ(x) =

{
u(x), x ∈ Ω,

ψ(x), x ∈ ∂mΩ

and we minimise the relaxed total variation functional

(2.3) Jψ(u) =
1

2

ˆ

Ωm

ˆ

Ωm

|uψ(y)− uψ(x)| dmx(y) dν(x).

An equivalent formulation, of the Euler–Lagrange type, has been proved in [13] (see
also [21] for the case of the random walk mJ). On a metric measure space (X, d, µ)
equipped with a random walk m, assuming that ν is invariant and reversible, the
authors of [24] introduced the m − 1-Laplacian operator ∆m

1 , which formally is the
operator

∆m
1 u(x) =

ˆ

Ωm

uψ(y)− u(x)

|uψ(y)− u(x)|
dmx(y).

In the paper [13] the authors consider the nonlocal 1-Laplacian problem with Dirichlet
boundary condition ψ:

(2.4)

{
−∆m

1 u(x) = 0, x ∈ Ω,

u(x) = ψ(x), x ∈ ∂mΩ.

Note that due to the assumption (2.2) the boundary condition is well-defined, since
ν(∂mΩ) > 0. Now, we introduce the Euler–Lagrange equations for the functional Jψ.

Definition 2.24. Let ψ ∈ L1(∂mΩ, ν). We say that u ∈ BVm(Ω) is a solution to
(2.4) if there exists g ∈ L∞(Ωm × Ωm, ν ⊗ ν) with ‖g‖∞ ≤ 1 verifying

g(x, y) = −g(y, x) for (ν ⊗ dmx)-a.e. (x, y) in Ωm × Ωm,

g(x, y) ∈ sign(uψ(y)− uψ(x)) for (ν ⊗ dmx)-a.e. (x, y) in Ωm × Ωm,
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and

−

ˆ

Ωm

g(x, y) dmx(y) = 0 ν-a.e. x ∈ Ω.

The two notions are equivalent if we assume that the domain Ω supports a non-
local p-Poincaré inequality for all p > 1. The following result was proved in [13,
Theorem 2.8].

Theorem 2.25. Let ψ ∈ L∞(∂mΩ, ν). Suppose that Ω supports a p-Poincaré
inequality for all p > 1. Then, there exists a solution u ∈ L1(Ω, ν) to (2.4). Moreover,
any u ∈ L1(Ω, ν) is a solution to (2.4) if and only if it is a minimiser of the functional
Jψ given in (2.3).

A key point is that since Carnot groups are length spaces equipped with a dou-
bling measure, and the measure of balls depends only on their radius, by [13, Proposi-
tion 2.16] the Poincaré inequality holds for all p > 1 for bounded open sets in Carnot
groups equipped with the random walk mν,ε. In particular, there exist solutions to
the nonlocal least gradient problem. A natural question is what happens if we let
ε → 0; in [21] the authors proved that in the Euclidean space for the random walk
mJ the solutions to the nonlocal problem converge on a subsequence to a solution of
the local problem. We will explore this issue on Carnot groups in Section 4.

3. Least gradient problem in Carnot groups

In this Section, we begin by introducing the notion of Anzellotti-type pairings
on Carnot groups. The first step is existence of a weak normal trace of a divergence-
measure vector field on the boundary of a sufficiently regular set, which will later
play a role as the right notion of boundary values of a solution to the least gradient
problem. We follow the outline presented by Anzellotti in [4]; for basic facts about
BV functions in CC spaces we refer to [29]. The second step will be a construction
of a pairing (z, Xu) between a vector field and a BV function, which enables an
analogue of the Gauss-Green formula to hold for general BV functions. Finally, we
introduce the notion of solution of the least gradient problem on Carnot groups, using
the Anzellotti pairings introduced above.

Several versions of the Gauss–Green formula in Carnot groups were recently
proved in [9]; however, they are not directly applicable to our case. The main reason
is that they require the function u to be more regular, i.e. u needs to be continuous
with locally integrable horizontal gradient. Furthermore, the interior and exterior
normal traces constructed in [9] are defined for a set of finite perimeter E ⊂ Ω, while
we are interested in the normal trace at the boundary of Ω. Nonetheless, if the vector
field admits an extension to the whole group G with integrable divergence, its normal
trace defined in this paper coincides with the one introduced in [9] if we take E = Ω
and Ω = G.

3.1. Anzellotti-type pairings on a Carnot group. In this subsection, our
goal is to introduce an analogue of Anzellotti pairings on Carnot groups. Let us
introduce the following spaces:

DMX(Ω) = {z ∈ L∞(Ω;Rm) : divX(z) is a finite measure in Ω},

and

BV c
X(Ω) = BVX(Ω) ∩ L

∞(Ω) ∩ C(Ω).
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We want to construct the weak normal trace on the boundary of a sufficiently smooth
set. We follow the outline of [4]. Firstly, we will introduce an auxiliary pairing

〈z, u〉∂Ω : DMX(Ω)× BV c
X(Ω) → R

and then provide its representation by an L∞ function.

Theorem 3.1. Assume that Ω ⊂ Rn is an X-Lipschitz domain with compact
boundary. Then, there exists a bilinear map 〈z, u〉∂Ω : DMX(Ω)×BV

c
X(Ω) → R such

that

〈z, u〉∂Ω =

ˆ

∂Ω

Tu z · νΩ d|∂Ω|X if z ∈ C1(Ω;Rm),

where νΩ denotes the horizontal normal, and

|〈z, u〉∂Ω| ≤ C(Ω)‖z‖L∞(Ω;Rm) · ‖Tu‖L1(∂Ω,|∂Ω|X).

If the domain is X-regular, then the previous property holds with constant equal to
one:

|〈z, u〉∂Ω| ≤ ‖z‖L∞(Ω;Rm) · ‖Tu‖L1(∂Ω,|∂Ω|X).

Proof. In order for the first property to hold, for all z ∈ DMX(Ω) and u ∈
BV c

X(Ω) ∩W
1,1
X (Ω) we set

〈z, u〉∂Ω =

ˆ

Ω

u divX(z) dL
n +

ˆ

Ω

z ·XudLn.

By Theorem 2.4 the first property holds. Moreover, this map is bilinear. For general
u, if Xu is merely a measure, the formula above is not well-defined; we will extend
it by approximating general u ∈ BV c

X(Ω) using smooth functions. To this end, we
notice that if u, v ∈ BV c

X(Ω) ∩W
1,1
X (Ω) have the same trace, then

〈z, u〉∂Ω = 〈z, v〉∂Ω.

To this end, consider a sequence gn ∈ C∞
0 (Ω) approximating u − v as in Proposi-

tion 2.10. We obtain

〈z, u− v〉∂Ω =

ˆ

Ω

(u− v) divX(z) dL
n +

ˆ

Ω

z ·X(u− v) dLn

= lim
j→∞

(
ˆ

Ω

gj divX(z) dL
n +

ˆ

Ω

z ·Xgj dL
n

)
= lim

j→∞

ˆ

∂Ω

0 d|∂Ω|X = 0.

Since by Theorem 2.6 for every u ∈ BVX(Ω) there exists a smooth function with the
same trace, we define 〈z, u〉∂Ω for all u ∈ BV c

X(Ω) by

〈z, u〉∂Ω = 〈z, v〉∂Ω,

where v is any function in BVX(Ω) ∩W
1,1
X (Ω) with the same trace as u. In view of

the calculation above, this uniquely defines 〈z, u〉∂Ω for any u ∈ BV c
X(Ω).

Now, we have to prove the second property. Let us take a sequence uj ∈ BV c
X(Ω)

∩C∞(Ω) which converges to u as in Proposition 2.10. Then, we get that

|〈z, u〉∂Ω| = |〈z, uj〉∂Ω| =

∣∣∣∣
ˆ

Ω

uj divX(z) dL
n +

ˆ

Ω

z ·Xuj dL
n

∣∣∣∣

≤

∣∣∣∣
ˆ

Ω

uj divX(z) dL
n

∣∣∣∣ + ‖z‖L∞(Ω;Rm)

ˆ

Ω

|Xuj| dL
n.

We pass to the limit with j → +∞ and obtain

|〈z, u〉∂Ω| ≤

∣∣∣∣
ˆ

Ω

u divX(z) dL
n

∣∣∣∣+ ‖z‖L∞(Ω;Rm)

ˆ

Ω

|Xu|.
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Fix ε > 0. If the domain is X-regular, we may take u to be as in Theorem 2.6, so
that

ˆ

Ω

|Xu| ≤ (1 + ε)‖Tu‖L1(∂Ω,|∂Ω|X)

and u is supported in Ω\Ωε, where

Ωε = {x ∈ Ω: dist(x, ∂Ω) > ε}.

We insert it in the estimate above and obtain

|〈z, u〉∂Ω| ≤ |

ˆ

Ω\Ωε

‖u‖L∞(Ω) divX(z) dL
n|+ (1 + ε)‖z‖L∞(Ω;Rm)‖Tu‖L1(∂Ω,|∂Ω|X).

As ε was arbitrary, we obtain

|〈z, u〉∂Ω| ≤ ‖z‖L∞(Ω;Rm)‖Tu‖L1(∂Ω,|∂Ω|X).

If the domain Ω is onlyX-Lipschitz, then the approximating sequence instead satisfies
ˆ

Ω

|Xu| ≤ C(Ω)‖Tu‖L1(∂Ω,|∂Ω|X)

so we obtain the final estimate

|〈z, u〉∂Ω| ≤ C(Ω)‖z‖L∞(Ω;Rm)‖Tu‖L1(∂Ω,|∂Ω|X). �

Now, we provide a representation of the bilinear map 〈z, u〉∂Ω by a linear operator
into L∞(∂Ω, |∂Ω|X ).

Theorem 3.2. Assume that Ω ⊂ Rn is an X-Lipschitz domain with compact
boundary. Then, there exists a linear operator γX : DMX(Ω) → L∞(∂Ω, |∂Ω|X) such
that

‖γX(z)‖L∞(∂Ω,|∂Ω|X) ≤ C(Ω)‖z‖L∞(Ω),

〈z, u〉∂Ω =

ˆ

∂Ω

Tu γX(z) d|∂Ω|X for all u ∈ BV c
X(Ω)

and
γX(z)(x) = z · νΩ if z ∈ C1(Ω,Rm).

If the domain is X-regular, then the constant C(Ω) equals one. The function γX(z)
is a weakly defined normal trace of z; for this reason, we will denote it by [z · ν]X .

Proof. Given z ∈ DMX(Ω), consider the linear functional G : L∞(∂Ω, |∂Ω|X) →
R defined by the formula

G(f) = 〈z, u〉∂Ω,

where u ∈ BV c
X(Ω) is such that Tu = f . By the previous theorem, we have

|G(f)| = |〈z, u〉∂Ω| ≤ C(Ω)‖z‖L∞(Ω;Rm) · ‖f‖L1(∂Ω,|∂Ω|X).

As G is a continuous functional on L1(∂Ω, |∂Ω|X ), there exists a function γX(z) ∈
L∞(∂Ω, |∂Ω|X) with norm C(Ω)‖z‖L∞(Ω;Rm) such that

G(u) =

ˆ

∂Ω

f γX(z) d|∂Ω|X .

If the domain was X-regular, then in the previous Theorem the constant in the
estimate on 〈z, u〉∂Ω equals one. �

Now, we introduce the second pairing (z, Xu). From now on, we consider only
Carnot groups; the reason for this is that left-invariant vector fields on Carnot groups
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satisfy X∗ = −X, see [28, Lemma 1.30]. We will consider the following possible
conditions:

(a) u ∈ BVX(Ω) ∩ L
∞(Ω), z ∈ DMX(Ω), divX(z) ∈ L1(Ω;Rm);

(b) u ∈ BVX(Ω) ∩ L
q(Ω), z ∈ DMX(Ω), divX(z) ∈ Lp(Ω;Rm), 1 < p ≤ n,

1
p
+ 1

q
= 1;

(c) u ∈ BV c
X(Ω), z ∈ DMX(Ω).

Definition 3.3. Suppose that Ω ⊂ G is an open subset of a Carnot group G.
Let z, u be such that one of the conditions (a),(b) holds for all open sets A ⊂⊂ Ω.
We define a linear functional (z, Xu) : C∞

c (Ω) → R as

〈(z, Xu), ϕ〉 = −

ˆ

Ω

uϕ divX(z) dL
n −

ˆ

Ω

u z ·XϕdLn.

If z, u are such that (c) holds for all open sets A ⊂⊂ Ω, we set

〈(z, Xu), ϕ〉 = −

ˆ

Ω

uϕd divX(z)−

ˆ

Ω

u z ·XϕdLn.

Proposition 3.4. Under the assumptions above, the pairing (z, Xu) is a measure
on Ω. Moreover, (z, Xu) ≪ |Xu| and we have that

|(z, Xu)| ≤ ‖z‖∞|Xu|

as measures on Ω.

Recall that the notation (z, Xu) ≪ |Xu| means that the measure (z, Xu) is
absolutely continuous with respect to |Xu|.

Proof. We will prove the Proposition under assumption (a) or (b); the other case
is similar. Suppose first that u ∈ C∞(Ω). Consider the vector field uϕz ∈ L∞(Ω;Rm)
with compact support in Ω. Then, we have that

0 =

ˆ

Ω

divX(uϕ z) dLn = −

ˆ

Ω

m∑

j=1

X∗
j (uϕ z) dLn

= −

ˆ

Ω

m∑

j=1

uϕX∗
j (zj) dL

n +−

ˆ

Ω

m∑

j=1

ϕ zjX
∗
j (u)dL

n −

ˆ

Ω

m∑

j=1

u zj X
∗
j (ϕ) dL

n

=

ˆ

Ω

uϕ divX(z)dL
n +−

ˆ

Ω

ϕ z ·X∗u dLn −

ˆ

Ω

u z ·X∗ϕdLn.

As we work on a Carnot group, X∗ = −X (see [28, Lemma 1.30]); hence

0 =

ˆ

Ω

uϕ divX(z) dL
n +

ˆ

Ω

ϕ z ·XudLn +

ˆ

Ω

u z ·XϕdLn.

We rewrite this as

|〈(z, Xu), ϕ〉| =

∣∣∣∣−
ˆ

Ω

uϕ divX(z) dL
n −

ˆ

Ω

u z ·XϕdLn
∣∣∣∣

=

∣∣∣∣
ˆ

Ω

ϕ z ·XudLn
∣∣∣∣ ≤ ‖ϕ‖∞‖z‖∞

ˆ

Ω

|Xu| dLn.

Now, we drop the assumption of smoothness of u: let u ∈ BVX(Ω). Take a sequence
uj ∈ C∞(Ω) ∩BVX(Ω) which converges X-strictly to u. Then we have

|〈(z, Xuj), ϕ〉| ≤ ‖ϕ‖∞‖z‖∞

ˆ

Ω

|Xuj| dL
n
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and taking the limit we get

|〈(z, Xu), ϕ〉| ≤ ‖ϕ‖∞‖z‖∞

ˆ

Ω

|Xu|.

Hence, (z, Xu) is a measure on Ω which satisfies |(z, Xu)| ≤ ‖z‖∞|Xu| as measures.
In particular, it is absolutely continuous with respect to |Xu|. �

Proposition 3.5. Assume that u, z satisfy one of the assumptions (a)–(c). Let
uj ∈ C∞(Ω) ∩BVX(Ω) converge to u as in Proposition 2.10. Then we have

ˆ

Ω

(z, Xuj) →

ˆ

Ω

(z, Xu).

Proof. Fix ε > 0. Then choose an open set A ⊂⊂ Ω such that
ˆ

Ω\A

|Xu| < ε.

Let g ∈ C∞
c (Ω) be such that 0 ≤ g ≤ 1 in Ω and g ≡ 1 in A. We write 1 = g+(1−g)

and estimate∣∣∣∣
ˆ

Ω

(z, Xuj)−

ˆ

Ω

(z, Xu)

∣∣∣∣ ≤ |〈(z, Xuj), g〉 − 〈(z, Xu), g〉|

+

ˆ

Ω

|(z, Xuj)|(1− g) +

ˆ

Ω

|(z, Xu)|(1− g).

But for any fixed g ∈ C∞
c (Ω) we have 〈(z, Xuj), g〉 → 〈(z, Xu), g〉. Moreover, we

have
ˆ

Ω

(1− g)|(z, Xu)| ≤

ˆ

Ω\A

|(z, Xu)| ≤ ‖z‖∞

ˆ

Ω\A

|Xu| < ε‖z‖∞

and similarly

lim sup
j→∞

ˆ

Ω

(1− g)|(z, Xun)| ≤ lim sup
j→∞

‖z‖∞

ˆ

Ω\A

|Xun| ≤ ε‖z‖∞,

so the right hand side may be arbitrarily close to zero. �

We conclude by introducing the Green’s formula, which relates the measure
(z, Xu) with the weak normal trace.

Theorem 3.6. Let Ω be a bounded open set with X-Lipschitz boundary. Let
u, z satisfy one of the conditions (a),(b). Then we have

(3.1)

ˆ

Ω

u divX(z) dL
n +

ˆ

Ω

(z, Xu) =

ˆ

∂Ω

[z · ν]X u d|∂Ω|X .

If u, z satisfy condition (c), we have

(3.2)

ˆ

Ω

u d divX(z) +

ˆ

Ω

(z, Xu) =

ˆ

∂Ω

[z · ν]X u d|∂Ω|X .

Proof. We will prove the proposition under assumption (a) or (b); the other
case is similar. Take a sequence uj ∈ C∞(Ω) ∩ BVX(Ω) that converges to u as in
Proposition 2.10. Then, by the previous proposition and Theorem 2.4, we have
ˆ

Ω

u divX(z) dL
n +

ˆ

Ω

(z, Xu) = lim
j→∞

(
ˆ

Ω

uj divX(z) dL
n +

ˆ

Ω

(z, Xuj)

)

= lim
j→∞

ˆ

∂Ω

[z · ν]X uj d|∂Ω|X =

ˆ

∂Ω

[z · ν]X u d|∂Ω|X . �
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3.2. Least gradient problem on a Carnot group. Now, we introduce three
notions of solutions to the least gradient problem on a Carnot group: as minimisers
of a variational functional with a rigid trace constraint, as minimisers to a relaxed
variational functional and as solutions to the (local) 1-Laplace problem. We will later
show that these three approaches are almost equivalent.

Definition 3.7. We say that u ∈ BVX(Ω) is a function of least gradient, if for
any v ∈ BVX(Ω) such that Tv = 0 we have

ˆ

Ω

|Xu| ≤

ˆ

Ω

|X(u+ v)|.

Definition 3.8. Consider a functional Fh : L
1(Ω) → R defined by the formula

Fh(u) =

ˆ

Ω

|Xu|+

ˆ

∂Ω

|h− u| d|∂Ω|X

with Fh(u) = +∞ if u ∈ L1(Ω)\BVX(Ω). We say that u is a solution to the least
gradient problem on Ω with boundary data h ∈ L1(∂Ω), if u ∈ argmin Fh.

These definitions are analogues of Euclidean definitions on Carnot groups, see
for instance [22]. The main difference is that if instead of adopting Definition 3.8
we require that u is a function of least gradient such that Tu = f , then even in the
Euclidean case we may lose existence of solutions for any h ∈ L1(Ω). Moreover, as
we will see, Definition 3.8 has a direct relation to the Euler–Lagrange formulation of
the problem presented below.

Definition 3.9. We say that u ∈ BVX(Ω) is a solution of the 1-Laplace equation
with Dirichlet boundary data on a Carnot group for boundary data h ∈ L1(∂Ω, |∂Ω|X),
if there exists a vector field z ∈ L∞(Ω;Rm) such that ‖z‖L∞(Ω;Rm) ≤ 1 and the fol-
lowing conditions hold:

divX(z) = 0 as distributions in Ω;

(z, Xu) = |Xu| as measures in Ω;

[z · ν]X ∈ sign(h− u) |∂Ω|X -a.e. on ∂Ω.

At this time, we will not prove existence of solutions to the Dirichlet problem for
the 1-Laplace operator; we will do this later in Theorem 4.5 using an approximation
by nonlocal problems with range of the interaction going to zero.

Proposition 3.10. Assume that Ω is X-regular. Given u ∈ BVX(Ω), consider
the following conditions:

(i) Fh(u) ≤ Fh(v) for all v ∈ BVX(Ω);
(ii) u is a solution of the 1-Laplace equation;
(iii) u is a function of least gradient.

Then (ii) implies (i). If there exists a solution u ∈ BVX(Ω) in the sense of Defini-
tion 3.9, then also (i) implies (ii). Furthermore, if Tu = h, then (i) and (iii) are
equivalent.

Proof. (ii) ⇒ (i). Given w ∈ BV (Ω), we apply the Green’s formula (Theorem 3.6)
to see that

0 =

ˆ

Ω

(w− u) divX(z) dL
n = −

ˆ

Ω

(z, Xw) +

ˆ

Ω

(z, Xu) +

ˆ

∂Ω

[z · ν]X (w− u) d|∂Ω|X .
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We use the equality above in the definition of Fh to see that

Fh(u) =

ˆ

Ω

|Xu|+

ˆ

∂Ω

|h− u| d|∂Ω|X =

ˆ

Ω

(z, Xu) +

ˆ

∂Ω

[z · ν]X(h− u) d|∂Ω|X

=

ˆ

Ω

(z, Xw) +

ˆ

∂Ω

[z · ν]X(h− w) d|∂Ω|X ≤

ˆ

Ω

|Xw|+

ˆ

∂Ω

|h− w| d|∂Ω|X

= Fh(w),

where in the last estimate we used X-regularity of Ω, as we estimate |[z · ν]X | ≤
‖z‖∞ ≤ 1; by Theorem 3.1 this estimate without an additional constant holds only
for X-regular domains.

(i) ⇒ (ii). We assume that there exists a solution u ∈ BVX(Ω) in the sense of
Definition 3.9; in particular, take the vector field z ∈ L∞(Rn;Rm) subordinate to u.
Using Green’s formula (Theorem 3.6), we have that

0 =

ˆ

Ω

(u− u) divX(z) dL
n = −

ˆ

Ω

(z, Xu) +

ˆ

Ω

(z, Xu) +

ˆ

∂Ω

[z · ν]X (u− u) d|∂Ω|X .

By the minimality of u and the above equality, we have

Fh(u) ≤ Fh(u) =

ˆ

Ω

|Xu|+

ˆ

∂Ω

|h− u| d|∂Ω|X

=

ˆ

Ω

(z, Xu) +

ˆ

∂Ω

[z · ν]X(h− u) d|∂Ω|X

=

ˆ

Ω

(z, Xu) +

ˆ

∂Ω

[z · ν]X(h− u) d|∂Ω|X

≤

ˆ

Ω

|Xu|+

ˆ

∂Ω

|h− u| d|∂Ω|X = Fh(u),

where in the inequality we used X-regularity of Ω in the same way as in the converse
implication. In particular, this inequality is in fact an equality, so

ˆ

Ω

(
|Xu| − (z, Xu)

)
+

ˆ

∂Ω

(
|h− u| − [z · ν]X(h− u)

)
d|∂Ω|X = 0.

Since Ω is X-regular, both integrands are nonnegative, hence (z, Xu) = |Xu| as
measures and |h− u| = [z · ν]X(h− u) almost everywhere with respect to |∂Ω|X , so
u satisfies Definition 3.9.

(i) ⇒ (iii). Since Tu = h, by minimality of u for v ∈ BVX(Ω) with Tv = 0 we
have

ˆ

Ω

|Xu| = Fh(u) ≤ Fh(u+ v) =

ˆ

Ω

|X(u+ v)|.

(iii) ⇒ (i). Given w ∈ BVX(Ω), we have to prove that Fh(u) ≤ Fh(w). As Ω is
X-regular, we fix ε > 0 and use Theorem 2.6 to find a function w̃ ∈ C∞(Ω)∩BVX(Ω)
such that

w̃ = w − h on ∂Ω;
ˆ

Ω

|Xw̃| ≤ (1 + ε)

ˆ

∂Ω

|w − h| d|∂Ω|X .
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Consider the function w− w̃ with trace h. Since u is a function of least gradient with
trace h, we have

Fh(u) =

ˆ

Ω

|Xu| ≤

ˆ

Ω

|X(w − w̃)| ≤

ˆ

Ω

|Xw|+

ˆ

Ω

|Xw̃|

≤

ˆ

Ω

|Xw|+ (1 + ε)

ˆ

∂Ω

|w − h| d|∂Ω|X = Fh(w) + ε

ˆ

∂Ω

|w − h| d|∂Ω|X .

As ε is arbitrary, we see that u ∈ argminFh. �

4. Convergence of the nonlocal least gradient functions

In this Section, we will prove convergence of minimisers of nonlocal least gradient
problems in a Carnot group to a solution of the local least gradient problem. For
this, we need a few preliminary results. We start with an explicit calculation of the
limit of a certain difference quotient, which we will use to prove Theorem 4.3 - a
result on the structure of the derivative of a weak limit of a sequence of functions
with uniformly bounded nonlocal gradients. Then, we will use Theorem 4.3 to prove
the aforementioned convergence of minimisers.

4.1. Structure of the limit. One of the steps in the proof of Theorem 4.3 will
be calculating on a Carnot group the following object:

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1)).

In the Euclidean case, this reduces to

d

dε

∣∣∣∣
ε=0

ϕ(x− εz) = −z · ∇ϕ(x).

We want to perform a similar calculation in a Carnot group G. Firstly, we do this in
a model case of the Heisenberg group H1. Then, we prove the result in full generality.

Example 4.1. For the definition of the operations in the Heisenberg group H
1

and the horizontal vector fields defining it, see Example 2.19. We use the group law in
the Heisenberg group to explicitly compute the derivative: we write x = (x1, x2, x3),
z = (z1, z2, z3) and calculate

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1)) =

d

dε

∣∣∣∣
ε=0

ϕ((x1, x2, x3) ◦ (−εz1,−εz2,−ε
2z3))

=
d

dε

∣∣∣∣
ε=0

ϕ((x1 − εz1, x2 − εz2, x3 − ε2z3 +
1

2
ε(−x1z2 + x2z1)))

= −z1 · ∂1ϕ(x)− z2 · ∂2ϕ(x)−
1

2
x1z2 · ∂3ϕ(x) +

1

2
x2z1 · ∂3ϕ(x)

= −z1(∂1 −
1

2
x2 · ∂3)ϕ(x)− z2(∂2 +

1

2
x1 · ∂3)ϕ(x)

= −z1 ·X1ϕ(x)− z2 ·X2ϕ(x) = −〈z,Xϕ〉.

In general, given horizontal vector fields X1, . . . , Xm, we can use the Baker–
Campbell–Hausdorff formula to obtain the group law in G and make a similar cal-
culation. The main problem in this approach is that the group operation quickly
becomes complicated, so that xδε(z

−1) becomes tiresome to compute. However, the
graded structure of the group, with properties listed in Proposition 2.17, forces some
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terms (including the coordinates zi corresponding to nonhorizontal coordinates) to
disappear in the limit.

Lemma 4.2. Suppose that G is a Carnot group represented in exponential co-
ordinates. Suppose that i = 1, . . . , m are the horizontal directions. Then

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1)) = −

m∑

j=1

ziXiϕ(x) = −〈z,Xϕ〉.

Proof. Recall that by Proposition 2.17 the group multiplication is a polynomial
function. In coordinates, notice that for y of the form y = (y1, . . . , ym, 0, . . . , 0) it
has the form

(x1, . . . , xn) ◦ (y1, . . . , ym, 0, . . . , 0) =

(
x1 + y1, . . . , xm + ym,

xm+1 +

m∑

j=1

W
j
m+1(x)yj +Rm+1(x, y), . . . , xn +

m∑

j=1

W j
n(x)yj +Rn(x, y)

)
,

i.e. it is a linear function on the horizontal coordinates (by Proposition 2.17) and
on all the other coordinates we decide to write the multiplication in the form as
above, where W j

k (x) are polynomials of x1, . . . , xn and Rk(x, y) are polynomials of
x1, . . . , xn, y1, . . . , ym involving only quadratic (or higher) terms in y1, . . . , ym. In
particular, we have

(x1, . . . , xn) ◦ (−εz1, . . . ,−εzm, 0, . . . , 0) = (x1 − εz1, . . . , xm − εzm,

xm+1 − ε

m∑

j=1

W
j
m+1(x)zj +O(ε2), . . . , xn − ε

m∑

j=1

W j
n(x)zj +O(ε2)).

Now, we know enough structure of the group operation to compute the desired de-
rivative. We have

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1))

=
d

dε

∣∣∣∣
ε=0

ϕ((x1, . . . , xm, xm+1 . . . , xn)δε((−z1, . . . ,−zm,−zm+1, . . . ,−zn))

=
d

dε

∣∣∣∣
ε=0

ϕ((x1, . . . , xm, xm+1 . . . , xn)(−εz1, . . . ,−εzm, O(ε
2), . . . , O(ε2))).

In particular, all terms involving zm+1, . . . , zn will disappear in the limit, so

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1)) =

d

dε

∣∣∣∣
ε=0

ϕ((x1, . . . , xm, xm+1 . . . , xn)(−εz1, . . . ,−εzm, 0, . . . , 0))

=
d

dε

∣∣∣∣
ε=0

ϕ

((
x1 − εz1, . . . , xm − εzm, xm+1

− ε

m∑

j=1

W
j
m+1(x)zj +O(ε2), . . . , xn − ε

m∑

j=1

W j
n(x)zj +O(ε2)

))

= −

m∑

j=1

zj(∂j +W
j
m+1(x)∂m+1 + . . .+W j

n(x)∂n)ϕ(x).

In particular, the result is a linear function of z1, . . . , zm - all terms involving zi with a
higher index will disappear in the limit. As the group multiplication is a polynomial
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function, also all terms involving higher powers of zi will have at least ε2 in front of
them and disappear in the limit. We will see that the differential operator appearing
above reduces to the horizontal gradient. To see, let us calculate for j = 1, . . . , m

Xjϕ(x) =
d

dε

∣∣∣∣
ε=0

ϕ(x ◦ exp(εXj)) =
d

dε

∣∣∣∣
ε=0

ϕ((x1, . . . , xn) ◦ (0, . . . , 0, ε, 0, . . . , 0))

=
d

dε

∣∣∣∣
ε=0

ϕ((x1, . . . , xj−1, xj + ε, xj+1, . . . , xm,

xm+1 + εW
j
m+1(x) +O(ε2), . . . , xn + εW j

n(x) +O(ε2)))

= (∂j +W
j
m+1(x)∂m+1 + . . .+W j

n(x)∂n)ϕ(x).

Hence, we plug it in the calculation above and get

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1)) = −

m∑

j=1

zjXjϕ(x)

and the Lemma is proved. We recall that 〈z,Xϕ〉 :=
∑m

j=1 zjXjϕ(x); we again stress
that this is not the usual scalar product, as z has n coordinates and Xϕ has m
coordinates. �

Now, we want to prove a result analogous to the first point of [3, Theorem 6.11].
We use the notation so that each function is prolonged by zero outside of D.

Theorem 4.3. Let G be a Carnot group represented in exponential coordinates
equipped with a homogeneous distance d. Denote by U(x, r) balls with respect to d.
Assume that fε ⇀ f in Lq(D) for q ≥ 1 and that the sequence fε satisfies

(4.1)

ˆ

D

−

ˆ

U(x,ε)

|fε(y)− fε(x)|
q dLn(x) dLn(y) ≤Mεq.

If q > 1, then f ∈ W
1,q
X (D). If q = 1, then f ∈ BVX(D). Moreover, on a subsequence

(still denoted by fε) we have

(4.2) χU(0,1)(z)χD(xδε(z))
fε(xδε(z))− fε(x)

ε
⇀ χU(0,1)(z) · 〈z,Xf〉

weakly as functions in Lq(D × Rn) (if q > 1) or weakly* as measures (if q = 1).

Proof. We start by rewriting the estimate (4.1) using dilations in the group G,
so that we have an estimate on a fixed domain and not on a set changing with ε.
To this end, we will utilise the group structure of G, the invariance of the Lebesgue
measure, rescaling using the dilation δλ and the behaviour of the Lebesgue measure
with respect to this scaling.

First, notice that since all homogeneous distances are equivalent, by the Ahlfors
regularity of Ln if (4.1) holds for any homogeneous distance d, it holds (with a
different constant M) for all homogeneous distances; therefore, we may assume that
d = d∞. In particular, it is symmetric in horizontal directions. We rewrite equation
(4.1) as

(4.3)

ˆ

D

ˆ

U(x,ε)

1

Ln(U(x, ε))

∣∣∣∣
fε(y)− fε(x)

ε

∣∣∣∣
q

dLn(x) dLn(y) ≤M.

Recall that by the Ahlfors regularity of Ln we have that Ln(U(x, ε)) = CεQ, where
C = Ln(U(0, 1)) is the measure of the unit ball and Q is the homogeneous dimension
of G. We also notice that if y ∈ U(x, ε), then x−1y ∈ U(0, ε). Furthermore, if we
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set z = δε−1(x−1y), then z ∈ U(0, 1). We will use this change of variables, so that
y = xδε(z) and dLn(y) = εQdLn(z). Hence, equation (4.3) takes the form

ˆ

D

ˆ

U(0,1)

1

CεQ
χD(xδε(z))

∣∣∣∣
fε(xδε(z))− fε(x)

ε

∣∣∣∣
q

εQdLn(x) dLn(z) ≤ M.

The factors εQ cancel out; moving the constant C (which does not depend on ε)
into M and representing the integration over U(0, 1) as a characteristic function, we
obtain that

ˆ

D

ˆ

Rn

χU(0,1)(z)χD(xδε(z))

∣∣∣∣
fε(xδε(z))− fε(x)

ε

∣∣∣∣
q

dLn(x) dLn(z) ≤M.

As the integrand is uniformly bounded in Lq(D×Rn), up to a subsequence we have

χU(0,1)(z)χD(xδε(z))
fε(xδε(z))− fε(x)

ε
⇀ χU(0,1)(z) g(x, z)

weakly in Lq(D × Rn) (if q > 1) or

χU(0,1)(z)χD(xδε(z))
fε(xδε(z))− fε(x)

ε
⇀ µ(x, z)

weakly* in M(D×Rn) (if q = 1). We want to obtain a representation of the function
g (or the measure µ) in terms of the partial derivatives Xi of f , which would show
that these are functions in Lq(D) (if q > 1), so that f ∈ W

1,q
X (D), or bounded Radon

measures (if q = 1), so that f ∈ BVX(D).
We multiply the expression above by a smooth test function with separated

variables: let ϕ ∈ D(D) and ψ ∈ D(Rn), then for sufficiently small ε we may move
the differential quotient from fε onto ϕ and we have

ˆ

D

ˆ

Rn

χU(0,1)(z)χD(xδε(z))
fε(xδε(z))− fε(x)

ε
ϕ(x)ψ(z) dLn(x) dLn(z)

=

ˆ

supp(ϕ)

ˆ

Rn

χU(0,1)(z)
fε(xδε(z))− fε(x)

ε
ϕ(x)ψ(z) dLn(x) dLn(z)

=

ˆ

Rn

χU(0,1)(z)ψ(z)

(
ˆ

D

fε(xδε(z))− fε(x)

ε
ϕ(x) dLn(x)

)
dLn(z)

= −

ˆ

Rn

χU(0,1)(z)ψ(z)

(
ˆ

D

fε(x)
ϕ(x)− ϕ(xδε(z

−1))

ε
dLn(x)

)
dLn(z).

(4.4)

We want to pass to the limit with ε → 0. Firstly, we will investigate the differential
quotient involving ϕ; once we establish the form of its limit and its continuity, we
may pass with fε to the limit using the assumption of weak convergence. We need
to calculate the directional derivative of ϕ in the direction z. We notice that

lim
ε→0

ϕ(x)− ϕ(xδε(z
−1))

ε
= −

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1))

whenever the limit is defined. By Lemma 4.2 we have that

d

dε

∣∣∣∣
ε=0

ϕ(xδε(z
−1)) = −〈z,Xϕ〉 := −

m∑

j=1

ziXiϕ(x).

This limit is precisely z multiplied by the horizontal gradient of ϕ (with zero on the
non-horizontal coordinates).
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Suppose that q > 1. We pass to the limit in (4.4) to obtain
ˆ

D×Rn

χU(0,1)(z) g(x, z)ϕ(x)ψ(z) dL
n(x) dLn(z)

= −

ˆ

D×Rn

χU(0,1)(z) f(x) 〈z,Xϕ〉ψ(z) dL
n(x) dLn(z).

By choosing appropriately the functions ψ ∈ D(Rn), we see that
ˆ

D

g(x, z)ϕ(x) dLn(x) = −

ˆ

D

f(x) 〈z,Xϕ〉 dLn(x) for all z ∈ U(0, 1).

We recall that the adjoint operator of a left-invariant vector field X is −X ([28,
Lemma 1.30]). Hence, on the right hand side we may move the horizontal gradient
onto f to obtain

ˆ

D

g(x, z)ϕ(x) dLn(x) =

ˆ

D

ϕ(x) 〈z,Xf〉 dLn(x) for all z ∈ U(0, 1),

in particular, by choosing z = sei for sufficiently small s we see that the components
Xif are functions in Lq(D), so f ∈ W 1,q(D); moreover, g = 〈z,Xf〉, which proves
(4.2).

Now, suppose that q = 1. We pass to the limit in (4.4) to obtain
ˆ

D×Rn

ϕ(x)ψ(z) dµ(x, z) = −

ˆ

D×Rn

χU(0,1)(z)ψ(z)〈z,Xϕ〉f(x) dL
n(x) dLn(z).

Again, we use the fact that the adjoint operator of a left-invariant vector field X is
−X. Hence, on the right hand side we may move the horizontal gradient onto f to
obtain
ˆ

D×Rn

ϕ(x)ψ(z) dµ(x, z) =

ˆ

D×Rn

χU(0,1)(z)ψ(z) 〈z,Xf〉ϕ(x) dL
n(x) dLn(z).

By the disintegration theorem (see for instance [1, Theorem 2.28]), we may write
µ = ν ⊗ µx, where ν ∈ M(D) and µx ∈ P(Rn) for ν-almost all x. We obtain

ˆ

D

(
ˆ

Rn

ψ(z) dµx(z)

)
ϕ(x) dν(x)

=

ˆ

D

(
m∑

i=1

ˆ

Rn

χU(0,1)(z)ψ(z) ziXif dL
n(z)

)
ϕ(x) dLn(x).

Hence, in the sense of measures as functionals on the space of continuous functions,
we have that

(4.5)

(
ˆ

Rn

ψ(z) dµx(z)

)
ν =

m∑

i=1

(
ˆ

Rn

χU(0,1)(z)ψ(z) zi dL
n(z)

)
Xif.

Let us take ψ̃ ∈ D(Rn) be a function such that ψ̃ ≡ 1 in U(0, 1). For i = 1, . . . , m,

we take ψ(z) = ψ̃(z)zi. Since the unit ball in the distance d∞ is symmetric in the
horizontal directions, for i, j = 1, . . . , m such that i 6= j we have

ˆ

Rn

χU(0,1)(z) zi zj ψ̃(z) dL
n(z) =

ˆ

Rn

χU(0,1)(z) zi zj dL
n(z) = 0.

Then equation (4.5) takes the form
(
ˆ

Rn

ψ̃(z) zi dµx(z)

)
ν =

(
ˆ

Rn

χU(0,1)(z) z
2
i dL

n(z)

)
Xif.
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The right hand side is Xif multiplied by a positive number; the left hand side is a
bounded Radon measure. Hence the horizontal gradient of f is a bounded Radon
measure, so f ∈ BVX(D). Moreover, we see that

µ(x, z) =

m∑

i=1

Xif(x)χU(0,1)(z) zi L
n(z),

which proves (4.2). �

4.2. Convergence of nonlocal least gradient functions. Let us rewrite
the definition of the solution to the nonlocal least gradient problem in the setting of
Carnot groups. Choose a homogeneous distance d and denote by Ωε the set

Ωε = {x ∈ G : d(x,Ω) < ε}.

Notice that for each ε ∈ (0, 1) we have Ωε ⊂ Ω1; we will use Ω1 as a domain on which
we will prove the necessary uniform estimates. Now, denote by uψ the function

uψ(x) =

{
u(x), x ∈ Ω,

ψ(x), x ∈ G\Ω.

Now, we recall Definition 2.24 and rewrite it in this setting:

Definition 4.4. Let ψ ∈ L1(Ωε\Ω). We say that uε ∈ L1(Ω) is a solution
to the nonlocal least gradient problem for the ε-step random walk, if there exists
gε ∈ L∞(Ωε × Ωε) with ‖gε‖∞ ≤ 1 verifying

gε(x, y) = −gε(y, x) almost everywhere in Ωε × Ωε,

gε(x, y) ∈ sign((uε)ψ(y)− (uε)ψ(x)) almost everywhere in Ωε × Ωε,(4.6)

−

ˆ

U(x,ε)

gε(x, y) dL
n(y) = 0 for almost every x ∈ Ω.(4.7)

Theorem 4.5. Suppose that Ω is an X-regular bounded domain in G. Assume
that the homogeneous distance d is symmetric in horizontal directions and let ψ ∈
BVX(G) ∩ L∞(G). Let uε be a sequence of solutions to the nonlocal least gradient
problem corresponding to boundary data ψ in the sense of Definition 4.4. Then, on
a subsequence, we have uε ⇀ u in L1(Ω), where u is a solution of the (local) least
gradient problem on Ω with boundary data h = T−ψ in the sense of Definition 3.9.
Here, T−ψ denotes the one-sided trace of ψ from G\Ω.

While we have an additional assumption that d is symmetric in horizontal di-
rections, let us again stress that on any Carnot group there exists at least one such
distance; the distance d∞ given in [12, Theorem 5.1]. Let us stress that Theorem 4.5
is in particular an existence result for the local problem.

Proof. We represent the group G in exponential coordinates. Since we assumed
that ψ ∈ BVX(G) ∩ L∞(G), using an estimate proved in [13, Proposition 2.12] (see
also [20, Theorem 3.1]) on a subsequence (still denoted by uε) we have

(4.8)

ˆ

Ω1

−

ˆ

U(x,ε)

|(uε)ψ(y)− (uε)ψ(x)| dL
n(x) dLn(y) ≤Mε.

Since we assumed that ψ ∈ L∞(G), it is easy to see that also uε ∈ L∞(G) and
‖(uε)ψ‖∞ ≤ ‖ψ‖∞ (for instance, see the proofs of [13, Theorems 2.9, 2.10]). In
particular, (uε)ψ ⇀ uψ weakly in L1(Ω1) on a subsequence (still denoted by ε). By
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(4.8) the sequence (uε)ψ on the set Ω1 satisfies the assumptions of Theorem 4.3, so
u ∈ BVX(Ω) and

(4.9) χU(0,1)(z)χD(xδε(z))
(uε)ψ(xδε(z))− (uε)ψ(x)

ε
⇀ χU(0,1)(z) · 〈z,Xu〉.

Moreover, on a subsequence (still denoted by ε) we have that

(4.10) χU(0,1)(z)χD(xδε(z)) gε(x, xδε(z))⇀ Λ(x, z)

weakly* in L∞(Ω1 × Rn), as the sequence above is bounded from above by 1. In
particular, we have Λ(x, z) ≤ χU(0,1)(z) almost everywhere in Ω1.

Take v ∈ C∞
c (Ω). We multiply (4.7) by v(x) and integrate over Ω. We obtain

ˆ

Ω

ˆ

U(x,ε)

gε(x, y) v(x) dL
n(y) dLn(x) = 0.

We use the antisymmetry of gε to obtain
ˆ

Ω

ˆ

U(x,ε)

χΩ(y)gε(x, y) (v(y)− v(x)) dLn(y) dLn(x) = 0.

Now, we change variables. We set z = δε−1(x−1y), so that z ∈ U(0, 1) and y = xδε(z).
In particular, dLn(y) = εQdLn(z). The equation above takes the form

ˆ

Ω

ˆ

U(0,1)

χΩ(xδε(z)) gε(x, xδε(z)) (v(xδε(z))− v(x)) εQ dLn(z) dLn(x) = 0.

We represent the integration over U(0, 1) using an indicator function and divide both
sides of the equation by εQ+1. We obtain
ˆ

Ω

ˆ

Rn

χU(0,1)(z)χΩ(xδε(z)) gε(x, xδε(z))
v(xδε(z))− v(x)

ε
dLn(z) dLn(x) = 0.

We pass to the limit with ε → 0. We use (4.10) and Lemma 4.2; the first one gives
us weak convergence of the first three factors to Λ(x, z), while the second one gives
us strong convergence of the last factor to 〈z,Xv〉. We put these results together to
see that

(4.11)

ˆ

Ω

ˆ

Rn

Λ(x, z) 〈z,Xv〉 dLn(z) dLn(x) = 0

for all v ∈ C∞
c (Ω). Set ζ = (ζ1, . . . , ζm) to be the vector field defined by

ζi(x) =
1

CG

ˆ

Rn

Λ(x, z) zi dL
n(z) for i = 1, . . . , m,

where CG is a constant depending only on the Carnot group G (and the chosen
distance d) and defined by the formula

CG :=

ˆ

U(0,1)

|〈z, ν〉| dLn(z) =

ˆ

U(0,1)

|z1| dL
n(z) = . . . =

ˆ

U(0,1)

|zm| dL
n(z),

where ν ∈ lin(e1, . . . , em) is any horizontal unit vector. The equalities follow from
the assumption that the unit ball in the distance d is symmetric in horizontal di-
rections. The constant CG is chosen in such a way so that ‖ζ‖L∞(Ω1;Rm) ≤ 1: given
a vector ξ ∈ Rn\{0} lying in the space spanned by the horizontal directions, i.e.
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ξ ∈ lin(e1, . . . , em), we denote by R the rotation preserving the origin such that
ξ = |ξ| · Re1. We set z = Ry, so that dLn(z) = dLn(y), and calculate

〈ζ, ξ〉 =
1

CG

ˆ

Rn

Λ(x, z) z · ξ dLn(z) =
1

CG

ˆ

Rn

Λ(x,Ry)Ry · ξ dLn(y)

=
1

CG

ˆ

Rn

Λ(x,Ry) y · R−1ξ dLn(y) =
1

CG

ˆ

Rn

Λ(x,Ry) y1 |ξ| dL
n(y),

so

|〈ζ, ξ〉| ≤
1

CG

ˆ

Rn

Λ(x,Ry) |y1| |ξ| dL
n(y) ≤ |ξ|.

Therefore, ‖ζ‖L∞(Ω1;Rm) ≤ 1.
Coming back to equation (4.11), it reduces to

ˆ

Ω

ζ(x) ·Xv(x) dLn(x) = 0,

so divX(ζ) = 0 as a distribution in Ω. In particular, by Riesz representation theorem
divX(ζ) is a (zero) Radon measure; as it is absolutely continuous with respect to Ln

and we can say that divX(ζ) ∈ L∞(Ω) with divX(ζ) = 0.
It remains to show that

(ζ,Xu) = |Xu| as measures in Ω;

[ζ · ν]X ∈ sign(h− u) |∂Ω|X -a.e. on ∂Ω.

Let us choose a function w ∈ C∞(Ω) ∩W 1,1
X (Ω) such that Tw = h; this is possible

due to Theorem 2.6. Now, set vε = (uε)ψ − wψ. We take the property (4.7) of the
solution, multiply it by vε and integrate over Ω1 to obtain

ˆ

Ω1

ˆ

U(x,ε)

gε(x, y) vε(x) dL
n(y) dLn(x) = 0.

We proceed similarly as we did in the proof of equation (4.11): we use the antisym-
metry of gε, change variables to z = δε−1(x−1y), represent the integration over U(0, 1)
using an indicator function and divide both sides of the equation by εQ+1. We obtain
ˆ

Ω1

ˆ

Rn

χU(0,1)(z)χΩ(xδε(z)) gε(x, xδε(z))
vε(xδε(z))− vε(x)

ε
dLn(z) dLn(x) = 0.

We divide the above equation into two parts: we set

H1
ε =

ˆ

Ω1

ˆ

Rn

χU(0,1)(z)χΩ(xδε(z)) gε(x, xδε(z))
(uε)ψ(xδε(z))−(uε)ψ(x)

ε
dLn(z) dLn(x)

=

ˆ

Ω1

ˆ

Rn

χU(0,1)(z)χΩ(xδε(z))

∣∣∣∣
(uε)ψ(xδε(z))− (uε)ψ(x)

ε

∣∣∣∣ dL
n(z) dLn(x),

where equality follows from property (4.6), and

H2
ε = −

ˆ

Ω1

ˆ

Rn

χU(0,1)(z)χΩ(xδε(z)) gε(x, xδε(z))
wψ(xδε(z))− wψ(x)

ε
dLn(z) dLn(x).

By definition, we have H1
ε +H2

ε = 0. We will estimate the limits of both expressions
separately. By (4.9) and the definition of CG, we have

lim inf
ε→0

H1
ε ≥ CG

ˆ

Ω1

|Xuψ| = CG

ˆ

Ω

|Xu|+ CG

ˆ

∂Ω

|Tu− h| d|∂Ω|X + CG

ˆ

Ω1\Ω

|Xψ|,
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where the equality follows from Theorem 2.5. Similarly, we will estimate the limit of
H2
ε . Since w ∈ C∞(Ω) ∩W 1,1

X (Ω), (4.10) implies

lim
ε→0

H2
ε = −

ˆ

Ω1

ˆ

Rn

Λ(x, z) 〈z,Xwψ〉 dL
n(z) dLn(x) = −CG

ˆ

Ω1

ζ(x) ·Xwψ dL
n(x).

We pass to the limit with ε → 0 in the equation H1
ε + H2

ε = 0, divide by CG and
obtain

(4.12) 0 ≥

ˆ

Ω

|Xu|+

ˆ

∂Ω

|Tu− h| d|∂Ω|X +

ˆ

Ω1\Ω

|Xψ| −

ˆ

Ω1

ζ(x) ·Xwψ dL
n(x).

We use the Green’s formula (Theorem 3.6) and the fact that divX(ζ) = 0 as a function
in L∞(Ω) to take a closer look at the last summand:

−

ˆ

Ω1

ζ(x) ·Xwψ dL
n(x) = −

ˆ

Ω

ζ(x) ·Xw dLn(x)−

ˆ

Ω1\Ω

ζ(x) ·Xψ dLn(x)

= −

ˆ

∂Ω

[ζ, ν]X h d|∂Ω|X −

ˆ

Ω1\Ω

ζ(x) ·Xψ dLn(x).

Since ‖ζ‖L∞(Ω1;Rm) ≤ 1, we have that
ˆ

Ω1\Ω

|Xψ| dLn(x) ≥

∣∣∣∣
ˆ

Ω1\Ω

ζ(x) ·Xψ dLn(x)

∣∣∣∣,

so the estimate (4.12) reduces to

0 ≥

ˆ

Ω

|Xu|+

ˆ

∂Ω

|Tu− h| d|∂Ω|X −

ˆ

∂Ω

[ζ, ν]X h d|∂Ω|X .

Again, we use Green’s formula (Theorem 3.6) and the fact that divX(ζ) = 0 as a
function in L∞(Ω) to obtain

0 ≥

ˆ

Ω

|Xu|+

ˆ

∂Ω

|Tu− h| d|∂Ω|X −

ˆ

Ω

(ζ,Xu)

+

ˆ

∂Ω

[ζ, ν]X Tu d|∂Ω|X −

ˆ

∂Ω

[ζ, ν]X h d|∂Ω|X .

Since ‖ζ‖L∞(Ω1;Rm) ≤ 1, by Proposition 3.4 we have |(ζ,Xu)| ≤ |Xu|. Finally, since
we assumed Ω to be X-regular, Theorem 3.2 implies that |[ζ, ν]X | ≤ 1. We rewrite
the equation above and obtain
ˆ

∂Ω

|Tu− h| d|∂Ω|X ≤ −

ˆ

Ω

|Xu|+

ˆ

Ω

(ζ,Xu) +

ˆ

∂Ω

[ζ, ν]X (h− Tu) d|∂Ω|X

≤

ˆ

∂Ω

[ζ, ν]X (h− Tu) d|∂Ω|X ≤

ˆ

∂Ω

|Tu− h| d|∂Ω|X ,

so all inequalities above are equalities. In particular, (ζ,Xu) = |Xu| as measures
and [ζ, ν]X ∈ sign(h − u) |∂Ω|X -a.e. on ∂Ω, so u is a solution to the (local) least
gradient problem with boundary data h in the sense of Definition 3.9. �
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