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Weighted norm inequalities for the maximal

operator on Lp(·) over spaces of homogeneous type

David Cruz-Uribe, OFS and Jeremy Cummings

Abstract. Given a space of homogeneous type (X, d, µ), we prove strong-type weighted norm

inequalities for the Hardy–Littlewood maximal operator over the variable exponent Lebesgue spaces

Lp(·). We prove that the variable Muckenhoupt condition Ap(·) is necessary and sufficient for the

strong type inequality if p(·) satisfies log-Hölder continuity conditions and 1 < p
−
≤ p+ < ∞. Our

results generalize to spaces of homogeneous type the analogous results in Euclidean space proved

by Cruz-Uribe, Fiorenza and Neugebauer (2012).

Maksimaalioperaattorin painotetut normiepäyhtälöt

homogeenisen tyypin avaruuden funktioluokissa Lp(·)

Tiivistelmä. Annetussa homogeenisen tyypin avaruudessa (X, d, µ) todistamme Hardyn–

Littlewoodin maksimaalioperaattorille vahvan tyypin painotettuja normiepäyhtälöitä muuttuva-

eksponenttisissa Lebesguen avaruuksissa Lp(·). Osoitamme, että muuttuvaeksponenttinen Mucken-

houptin ehto Ap(·) on riittävä ja välttämätön vahvan tyypin epäyhtälölle, mikäli p(·) toteuttaa

logaritmisen Hölderin jatkuvuusehdon ja 1 < p
−
≤ p+ < ∞. Tuloksemme yleistävät homogeenisen

tyypin avaruuksiin Cruz-Uriben, Fiorenzan ja Neugebauerin (2012) todistamia vastaavia euklidisen

avaruuden tuloksia.

1. Introduction

This paper is concerned with extending established results in the theory of vari-
able exponent Lebesgue spaces to the setting of spaces of homogeneous type. In
recent decades—largely as a result of [29]—interest has arisen over the natural ex-
tension of the classical Lebesgue spaces Lp in which the exponent p is itself a function
of the underlying space; see [10, 19] for extensive discussions on such spaces. In par-
ticular, the development of a variable exponent Calderón–Zygmund theory has been
the subject of much research, especially since Cruz-Uribe, Fiorenza, and Neugebauer
[12], building on the work of Diening [18], proved that the Hardy–Littlewood max-
imal operator is bounded on Lp(·) for p(·) satisfying a continuity condition weaker
than Hölder continuity.

Just as with the development of classical Calderón–Zygmund theory, many results
in the theory of variable exponent spaces have only been proved to hold over R

n or
in metric spaces (see [23] for the latter). In the 1970s, this restriction was removed
by Coifman and Weiss, who in [7] introduced spaces of homogeneous type, which
they later developed in [8] as the natural spaces onto which Calderón–Zygmund
theory could be generalized. A logical step for variable exponent theory, then, is
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to perform the same generalization for Lp(·). Such a program has been underway
since the maximal operator was shown to be bounded over Rn. Early results include
[20, 21, 26, 31]; for a more detailed history, see [1].

Spaces of homogeneous type have a topological structure weaker than metric
spaces: namely, that of a quasi-metric space.

Definition 1.1. Given a set X and a function d : X×X → [0,∞), we say (X, d)
is a quasi-metric space if

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) there exists a constant A0 ≥ 1 for which d(x, y) ≤ A0(d(x, z) + d(z, y)) for all

x, y, z ∈ X.

The constant A0 is referred to as the quasi-metric constant. Some authors
(e.g. [27]) also loosen condition (2) to symmetry up to a constant, d(x, y) ≤ Kd(y, x).
An important property of quasi-metric spaces is that quasi-metric balls need not be
open; however, Macías and Segovia [30] showed that there is always an equivalent
quasi-metric whose balls are all open. Analysis can be done on quasi-metric spaces
without additional structure—see [2]—but typically measures on quasi-metric mea-
sure spaces are taken to be at least doubling.

Definition 1.2. A measure µ on a space X is said to be doubling if there exists
a constant Cµ ≥ 1 such that, for any x ∈ X and r > 0,

0 < µ(B(x, 2r)) ≤ Cµµ(B(x, r)) < ∞,

where B(x, r) = {y ∈ X : d(x, y) < r} is the quasi-metric ball of radius r centered at
x. The constant Cµ is called the doubling constant.

The assumption that balls have positive, finite measure avoids trivial measures,
and also ensures that µ is σ-finite. We are now led naturally to the well-known setting
of spaces of homogeneous type.

Definition 1.3. A space of homogeneous type is a triple (X, d, µ) where X is a
non-empty set, d is a quasi-metric on X, and µ is a doubling regular measure on the
σ-algebra generated by quasi-metric balls and open sets.

Hereafter, we will let (X, d, µ) be a fixed space of homogeneous type, and often
denote it simply by X. The assumption that µ is regular is used only to apply the
Lebesgue Differentiation Theorem in Section 5; see [2] for the possibility of weakening
this hypothesis.

We now introduce some basic notions of the variable exponent spaces Lp(·)(X).

Definition 1.4. Define P(X) to be the set of measurable functions p(·) : X →
[1,∞]. The elements of P(X) are called exponent functions. Given an exponent
function and a set E ⊆ X, we define

p−(E) = ess inf
x∈E

p(x), p+(E) = ess sup
x∈E

p(x).

In particular we denote p−(X) = p− and p+(X) = p+.

When considering the conjugate exponent function p′(·) defined by p′(x) = p(x)
p(x)−1

(with the convention that 1/0 = ∞ and 1/∞ = 0), to avoid the ambiguity inherent
to notation like “p′+” we will always write (p′)+ to denote the essential supremum of
p′(·), etc.
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Definition 1.5. Given an exponent p(·) ∈ P(X), define

• X∞ = {x ∈ X : p(x) = ∞},
• X1 = {x ∈ X : p(x) = 1},
• X∗ = {x ∈ X : 1 < p(x) < ∞}.

Intuitively, given an exponent p(·) ∈ P(X), we would like to define Lp(·)(X) as
the collection of all functions on X satisfying

ˆ

X

|f |p(x) dµ < ∞.

To properly formulate this, we require an analog to the constant exponent p-norm.
It is well-known that the following modular function provides such an analog.

Definition 1.6. The space Lp(·)(X) is the set of measurable functions f on X
for which the modular

ρp(·)(f) =

ˆ

X\X∞

|f(x)|p(x) dµ+ ‖f‖L∞(X∞)

satisfies ρp(·)(f/λ) < ∞ for some λ > 0.

If p+ < ∞, we say f is locally p(·)-integrable if ρp(·)(fχB) < ∞ for every ball

B ⊂ X. Often we write Lp(·) for Lp(·)(X); similarly, when the exponent is clear from
context, we will simply write ρp(·) = ρ. It is shown in [10, 19] that this modular

induces the following Luxembourg norm on Lp(·).

Proposition 1.7. The function ‖·‖ : Lp(·)(X) → R given by

‖f‖Lp(·)(X) = inf{λ > 0: ρ(f/λ) ≤ 1}

is a norm on Lp(·)(X), which is a Banach space with respect to ‖·‖Lp(·)(X).

When the underlying space is clear from context, we write ‖·‖Lp(·) = ‖·‖p(·). In

the case that p(·) is constant, p(·) = p, it is easy to show that ‖·‖p(·) reduces to the
usual norm in Lp.

For most purposes, the set P(X) of possible exponent functions is far too broad
to prove meaningful results. Indeed, even piecewise-constant exponents lose many
of the properties of classical Lp spaces (see [10]), such as the boundedness of the
maximal operator. In the study of variable exponent theory, it has become clear that
in many cases a sufficient condition on the exponent is log-Hölder continuity.

Definition 1.8. We say that an exponent p(·) ∈ P(X) is locally Log-Hölder
continuous, p(·) ∈ LH0, if there exists a constant C0 such that for any x, y ∈ X with
d(x, y) < 1/2,

|p(x)− p(y)| <
−C0

log(d(x, y))
.

We say that p(·) is Log-Hölder continuous at infinity, p(·) ∈ LH∞, with respect to a
base point x0 ∈ X, if there exist constants C∞ and p∞ such that for every x ∈ X,

|p(x)− p∞| <
C∞

log(e+ d(x, x0))
.

We call C0 the LH0 constant of p(·) and C∞ the LH∞ constant of p(·). If p(·) ∈ LH =
LH0 ∩ LH∞, we say that p(·) is globally Log-Hölder continuous.
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Note that p(·) ∈ LH implies that p+ < ∞, a condition that is crucial to most
of the results in this paper. Note also that the above definition appears to depend
on the choice of base point x0. In fact, such a choice is irrelevant, as shown by the
following lemma, which was proved in [1].

Lemma 1.9. Choose x0, y0 ∈ X. If p(·) ∈ LH∞ with respect to x0, then p(·) ∈
LH∞ with respect to y0.

Whenever x0 is not chosen explicitly, we assume that X has a fixed, arbitrarily
chosen base point x0.

We are interested in weighted norm inequalities on Lp(·). For classical Lebesgue
spaces, much of the theory of such inequalities is due to Muckenhoupt (see e.g. [32]).
The following definition clarifies some standard notation.

Definition 1.10. A weight is a locally integrable function w : X → [0,∞] with
0 < w(x) < ∞ almost everywhere. Given a weight w, we define its associated
measure by dw(x) = w(x) dµ(x). The weighted average integral of a function f over
a set E ⊂ X with w(E) > 0 is denoted

−

ˆ

E

f(x) dw =
1

w(E)

ˆ

E

f(x)w(x) dµ.

If w = 1, we replace dw with dµ.

We denote by M the uncentered Hardy–Littlewood maximal operator; that is,

Mf(x) = sup
B∋x

−

ˆ

|f(y)| dµ.

For classical Lebesgue spaces Lp(Rn), Muckenhoupt proved in [32] that a necessary
and sufficient condition for strong-type (p, p) weighted norm inequalities, p > 1, is
that for every ball B,

−

ˆ

B

w(x) dx

(
−

ˆ

B

w(x)1−p′ dx

)p−1

≤ C < ∞.

This is the famous Muckenhoupt Ap condition. In [14] the Ap condition is recast into
an equivalent form which may be generalized to variable exponent spaces.

Definition 1.11. Given an exponent p(·) ∈ P(X), we say w ∈ Ap(·) if there
exists a constant K such that for any ball B,

‖wχB‖p(·)‖w
−1χB‖p′(·) ≤ Kµ(B).

The infimum over all such K is called the Ap(·) constant and is denoted [w]Ap(·)
.

Remark 1.12. If we adopt the usual convention that

c · ∞ =

{
0, c = 0,

∞, c > 0,

if w ∈ Ap(·), then ‖wχB‖p(·) = ∞ implies that ‖w−1χB‖p′(·) = 0, and thus that w−1

is the zero element in Lp′(·), contrary to w being finite almost everywhere. Thus
w ∈ Lp(·) and if p+ < ∞ we can say that w is locally p(·)-integrable.

In the case that p(·) is constant, p(·) = p ∈ (1,∞), the Ap(·) condition for w is
equivalent to Mucknhoupt’s Ap condition for wp. The necessity and sufficiency of the
Ap(·) condition for strong-type weighted norm inequalities of the maximal operator
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in R
n was first proved in [9] and simultaneously [14]. The following theorem, which

is our main result, generalizes this to the case of spaces of homogeneous type.

Theorem 1.13. Given p(·) ∈ LH with 1 < p− ≤ p+ < ∞ and a weight w,

‖(Mf)w‖p(·) ≤ C‖fw‖p(·)

if and only if w ∈ Ap(·).

By analogy with weak- and strong-type inequalities in classical Lp spaces, The-
orem 1.13 naturally suggests the following weak-type inequality, which remains an
open problem.

Conjecture 1.14. Given p(·) ∈ LH with p+ < ∞ and a weight w,

‖tχ{x∈X :Mf(x)>t}w‖p(·) ≤ C‖fw‖p(·)

if and only if w ∈ Ap(·).

We will prove the necessity of the Ap(·) condition for the weak-type inequality
in Section 5. Moreover, if p− > 1 then the conjecture follows from Theorem 1.13.
Conjecture 1.14 is claimed to be true in R

n in [14], but the proof contains a gap: if
p− = 1, then (p′)+ = ∞, and so Lemmas 3.3-3.6 (which are analogous to Lemmas 3.3
and 3.4 in this paper) may not be applied to w−1 ∈ Ap′(·), as is done several times
throughout the proof.

The remainder of this paper is devoted to proving Theorem 1.13. In Sections 2, 3,
and 4, we will collect several elementary results about Lp(·) spaces, the Ap(·) condition,
and dyadic grids, respectively, on spaces of homogeneous type. In Section 5 we will
prove the necessity of the Ap(·) condition, and in Section 6 we will prove its sufficiency.

We adopt the convention throughout that C denotes a large constant dependent
only on fixed quantities (usually X, p(·), w, and the dyadic grid D, unless other-
wise stated or obvious from context). Multiples of balls are written as CB(x, r) =
B(x, Cr). By A ≈ B, we mean that there are constants c, C with cB ≤ A ≤ CB.
Finally for a weight w and a set E we write w(E) =

´

E
w(x) dµ.

2. Variable Lebesgue spaces

This section is a collection of elementary results regarding variable Lebesgue
spaces on spaces of homogeneous type. We begin with two lemmas concerning spaces
of homogeneous type which will be used to prove many of the results in this paper.
The first is well-known, and we omit the proof. The second characterizes finite spaces
of homogeneous type and is proved in [4, Lemma 1.9].

Lemma 2.1. (Lower Mass Bound) There exists a positive constant C = C(X)
such that for all x ∈ X, 0 < r < R, and y ∈ B(x,R),

µ(B(y, r))

µ(B(x,R))
≥ C

( r

R

)log2 Cµ

.

Lemma 2.2. A space of homogeneous type X has µ(X) < ∞ if and only if
µ(X) = B(x, r) for some x ∈ X and r > 0.

The remainder of the lemmas in this section are facts which are well-known in
R

n. We omit proofs that are unchanged from their Euclidean case, which may be
found in [10, 19]. We do, however, reproduce the proof of Lemma 2.3, as we later
make reference to the constants implicit in the proof.
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Lemma 2.3. Given p(·) ∈ P(X) with p+ < ∞, ‖f‖p(·) ≤ C1 if and only if

(2.1)

ˆ

X

|f(x)|p(x) dµ ≤ C2.

Moreover, if one constant is equal to 1, we may take both to be.

Proof. Assume first that (2.1) holds. Since p+ < ∞, we have that ‖f‖L∞(X∞) = 0.

Given C2 ≤ 1, we have ρ(f/1) ≤ 1 and hence we may take C1 = 1. If C2 ≥ 1, then
we may divide to obtain

ˆ

X

∣∣∣∣∣
f(x)

C
1/p(x)
2

∣∣∣∣∣

p(x)

dµ ≤ 1.

Now C
1/p(x)
2 is bounded by C1 = C

1/p−
2 , for which ρ(f/C1) ≤ 1 and so ‖f‖p(·) ≤ C1.

Conversely, given ‖f‖p(·) ≤ C1, then by the definition of the norm we get that

1 ≥

ˆ

X

∣∣∣∣
f(x)

C1 + 1

∣∣∣∣
p(x)

dµ ≥
1

(C1 + 1)p+

ˆ

X

|f(x)|p(x) dµ,

and so that (2.1) holds. If C1 = 1, then for any ǫ > 0, there exists λǫ ∈ [1, 1+ ǫ) such
that

ρ(f/λǫ) =

ˆ

X

∣∣∣∣
f(x)

λǫ

∣∣∣∣
p(x)

dµ ≤ 1.

Since the integrand is dominated by |f(x)|p(x), taking ǫ = 1/n and applying the
Dominated Convergence Theorem, we get that

ˆ

X

|f(x)| dµ ≤ 1,

and so C2 may be taken to be 1. �

Lemma 2.4. Given p(·) ∈ P(X) with p+ < ∞,

ˆ

X

(
|f(x)|

‖f‖p(·)

)p(x)

dµ = 1.

In particular, if ‖f‖p(·) = 1, then
ˆ

X

|f(x)|p(x) dµ = 1.

Lemma 2.5. Let p(·) ∈ P(X) be such that p+ < ∞. If ‖f‖p(·) ≤ 1, then

‖f‖
p+
p(·) ≤

ˆ

X

|f(x)|p(x) dµ ≤ ‖f‖
p−
p(·).

On the other hand, if ‖f‖p(·) ≥ 1, then

‖f‖
p−
p(·) ≤

ˆ

X

|f(x)|p(x) dµ ≤ ‖f‖
p+
p(·).

Lemma 2.6. If p(·) ∈ P(X) is such that p+ < ∞, bounded functions with
support contained in Br(x0) for some r and x0 (bounded support) are dense in Lp(·).
Moreover, any nonnegative f ∈ Lp(·) is the limit of an increasing sequence of such
functions.
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Proof. All bounded functions of bounded support are in Lp(·), because they are
bounded by constant functions on finite-measure domains and p+ < ∞. To prove
that such functions are dense, choose f ∈ Lp(·) and let ǫ > 0. By decomposing f as

f(x) = f+(x)− f−(x),

with both f+, f− ≥ 0, it suffices to consider the case f(x) ≥ 0. Since ‖f‖p(·) < ∞,

there exists Λ > 0 for which ρ(f/Λ) ≤ 1. If Λ/ǫ = λ ≥ 1, then
ˆ

X

∣∣∣∣
f(x)

ǫ

∣∣∣∣
p(x)

dµ =

ˆ

X

∣∣∣∣
λf(x)

Λ

∣∣∣∣
p(x)

dµ ≤ λp+

ˆ

X

∣∣∣∣
f(x)

Λ

∣∣∣∣
p(x)

dµ ≤ λp+ < ∞.

If λ < 1, the same argument holds with p− replacing p+. Thus ρ(f/ǫ) < ∞. Now
define (choosing some base point x0 ∈ X)

fn(x) = min{f(x), n}χB(x0,n).

It is clear that fn → f pointwise. Then by the dominated convergence theorem,
ˆ

X

∣∣∣∣
f(x)− fn(x)

ǫ

∣∣∣∣
p(x)

dµ → 0,

since ρ(f/ǫ) is finite and | f(x)
ǫ
|p(x) dominates the above integrand. But then for n

large enough that the above integral is less than one, ‖f − fn‖p(·) ≤ ǫ. It follows that

the fn converge to f in Lp(·) and consequently that bounded functions of bounded
support are dense. Finally, we have that fn+1(x) ≥ fn(x), so the sequence increases
to f . �

Lemma 2.7. (Monotone Convergence Theorem) Given an exponent p(·) ∈ P(X),
let {fk}

∞
k=1 be a sequence of non-negative measureable functions that increase point-

wise almost everywhere to a function f ∈ Lp(·). Then ‖fk‖p(·) → ‖f‖p(·).

Lemma 2.8. (Hölder’s Inequality) Given an exponent p(·) ∈ P(X),
ˆ

X

|f(x)g(x)| dµ ≤ 4‖f‖p(·)‖g‖p′(·)

for any f, g.

The following two lemmas are stated erroneously in [14, Lemmas 2.7, 2.8]. For
clarity, we provide the correct proofs here.

Lemma 2.9. Given a set G ⊆ X and two exponents s(·) and r(·) such that

0 ≤ r(y)− s(y) ≤
C0

log(e+ d(x0, y))

for each y ∈ G, then for every t ≥ 1 there exists a constant C = C(t, C0) such that
for all functions f ,

(2.2)

ˆ

G

|f(y)|s(y) dy ≤ C

ˆ

G

|f(y)|r(y) dy +

ˆ

G

1

(e+ d(x0, y))ts−(G)
dy.

Proof. Let G′ = {y ∈ G : |f(y)| ≥ (e + d(x0, y))
−t}. Then decomposing the

domain of the left integral in the inequality into G′ and G \ G′, we see that since
(e+ d(x0, y))

−t ≤ 1,
ˆ

G\G′

|f(y)|s(y) dy ≤

ˆ

G\G′

(e+ d(x0, y))
−ts(y) dy ≤

ˆ

G

1

(e + d(x0, y))ts−(G)
dy.
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If y ∈ G′, then

|f(y)|s(y) = |f(y)|r(y)|f(y)|s(y)−r(y) ≤ |f(y)|r(y)(e+ d(x0, y))
t(r(y)−s(y))

≤ |f(y)|r(y)(e+ d(x0, y))
C0t/ log(e+d(x0,y)) ≤ C|f(y)|r(y).

The desired inequality follows. �

Lemma 2.10. Given a set G ⊆ X and two exponents s(·) and r(·) such that

|r(y)− s(y)| ≤
C0

log(e+ d(x0, y))

for each y ∈ G, then for every t ≥ 1 there exists a constant C = C(t, C0) such that
(2.2) holds for all functions f with |f(y)| ≤ 1.

Proof. Define the two sets A = {y ∈ G : r(y) ≥ s(y)} and B = G\A. Lemma 2.9
takes care of A. For B, construct B′ = {y ∈ B : |f(y)| ≥ (e+d(x0, y))

−t} and observe
that the B \B′ component holds as in the previous proof. But since |f(y)| ≤ 1,

|f(y)|s(y) = |f(y)|r(y)|f(y)|s(y)−r(y) ≤ |f(y)|r(y).

Since C ≥ 1, this proves the inequality. �

Our proof of the final lemma in this section is based on the proof of [1, Lemma 3.1].

Lemma 2.11. Given an exponent p(·) ∈ LH, for all balls B ⊆ X,

µ(B)p−(B)−p+(B) ≤ C.

Proof. Fix B = B(y0, r) and define B0 = B(x0, 1), where x0 is the LH∞ condition
base point. Also let k = 2⌈log2 4A0⌉ + 2 and C1 = µ(B0)/C

k
µ. We will show that for

any x, y ∈ B,
µ(B)−|p(x)−p(y)| ≤ C;

a simple limiting argument shows that this is equivalent to the stated form, by the
continuity of p(·). If µ(B) ≥ min{1, C1}, then

µ(B)−|p(x)−p(y)| ≤ min{1, C1}
−|p(x)−p(y)| ≤ min{1, C1}

−p+,

since p(·) ∈ LH implies |p(x) − p(y0)| ≤ p+ < ∞. Thus we may assume µ(B) ≤
min{1, C1}.

We begin by asserting that we need only prove the inequality when one of the
points is the center point y0 of B. If this is not the case, then

µ(B)−|p(x)−p(y)| = µ(B)−|p(x)−p(y0)+p(y0)−p(y)| ≤ µ(B)−|p(x)−p(y0)|−|p(y)−p(y0)|,

and so it suffices to prove that

µ(B)−|p(x)−p(y0)| ≤ C

for any x ∈ B.
We consider first the case where r ≥ 1. For any y ∈ r−1B, we have that

d(x0, y) ≤ A0(d(x0, y0) + d(y0, y)) ≤ A0(1 + d(x0, y0)).

Consequently r−1B ⊆ A0(1+d(x0, y0))B0, and so by the lower mass bound (Lemma 2.1),

µ(B0) ≤ µ(A0(1 + d(x0, y0))B0) ≤ C(1 + d(x0, y0))
log2 Cµµ(r−1B)

≤ C(1 + d(x0, y0))
log2 Cµµ(B).

Dividing by µ(B) and raising to the power of |p(x)− p(y0)|, we get

(2.3) µ(B)−|p(x)−p(y0)| ≤ C(1 + d(x0, y0))
log2 Cµ|p(x)−p(y0)|.
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To estimate the quantity on the right of (2.3), we argue that B0 ∩ 2A0B = ∅. If to
the contrary there exists y ∈ B0 ∩ 2A0B, then for any z ∈ B0 we have

d(y0, z) ≤ A0(d(y0, y) + d(y, z)) ≤ 2A0(1 + A0r) ≤ 4A2
0r,

since A0, r ≥ 1. Consequently B0 ⊆ 4A2
0B. From the doubling condition,

µ(B) ≥ µ(4A2
0B)/Ck

µ ≥ µ(B0)/C
k
µ = C1,

contrary to assumption. Hence the claim is true; in particular x0 6∈ 2A0B, so
d(x0, y0) > 2A0r. By the quasi-triangle inequality,

d(x0, y0) ≤ A0(d(x0, x) + d(x, y0)) ≤ A0(r + d(x0, x)).

Since d(x0, y0) > 2A0r we have that d(x0, x) > r and so d(x0, y0) ≤ 2A0d(x0, x).
Thus

(1 + d(x0, y0))
|p(x)−p(y0)| ≤ (1 + d(x0, y0))

|p(y0)−p∞|(1 + 2A0d(x0, x))
|p(x)−p∞|.

That this is bounded by a constant is implied by the LH∞ condition and the fact
that the function

(2.4) f(x) =
log(e+ ax)

log(e+ bx)

is bounded on x > 0 by a
b

when a > b > 0. This completes the case when r ≥ 1.
If r < 1, we argue much as before with the lower mass bound to obtain

µ(B)−|p(x)−p(y0)| ≤ Cr−|p(x)−p(y0)|µ(r−1B)−|p(x)−p(y0)|;

The r−|p(x)−p(y0)| term is bounded by the LH0 condition. �

3. The Ap(·) Condition

In this section we develop the Ap(·) condition in spaces of homogeneous type.
Our first lemma characterizes various properties of A∞ weights. For a proof, see [33,
Chapter I, Theorem 15].

Lemma 3.1. Given a weight W , the following are equivalent.

• W ∈ A∞ =
⋃

p≥1Ap.
• There exist constants ǫ > 0 and C2 > 1 such that given any ball B and any

measurable set E ⊆ B,

µ(E)

µ(B)
≤ C2

(
W (E)

W (B)

)ǫ

.

• W is doubling (in the sense that the measure ν given by dν(x) = W (x) dµ(x)
is doubling) and there exist constants δ > 0 and C1 > 1 such that given any
ball B and any measurable set E ⊆ B,

W (E)

W (B)
≤ C1

(
µ(E)

µ(B)

)δ

.

To utilize the properties described in Lemma 3.1, we will use the Ap(·) condition
to construct a weight W in A∞. To do so, we require the following lemmas.

Lemma 3.2. Given an exponent p(·) ∈ P(X), if w ∈ Ap(·), then there exists a
constant C depending on p(·) and w such that given any ball B and any measurable
set E ⊂ B,

µ(E)

µ(B)
≤ C

‖wχE‖p(·)
‖wχB‖p(·)

.
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Proof. Fix B and E ⊂ B. By Hölder’s inequality and the Ap(·) condition (Defi-
nition 1.11),

µ(E) =

ˆ

X

w(x)χEw(x)
−1χB dµ ≤ C‖wχE‖p(·)‖w

−1χB‖p′(·)

≤ C‖wχE‖p(·)‖wχB‖
−1
p(·)µ(B). �

Lemma 3.3. Given an exponent p(·) ∈ LH and a weight w ∈ Ap(·), there exists
a constant C0 depending on p(·), w, and X such that for all balls B,

‖wχB‖
p−(B)−p+(B)
p(·) ≤ C0.

Proof. Our proof is reminiscent of the proof of Lemma 2.11. Fix B = B(y0, r)

and define B0 = B(x0, 1). If ‖wχB‖p(·) ≥ 1, then ‖wχB‖
p−(B)−p+(B)
p(·) ≤ 1, so we

may assume that ‖wχB‖p(·) < 1. We consider three cases; first, suppose r ≤ 1

and d(x0, y0) ≤ 2A0. By the quasi-triangle inequality (Definition 1.1), for any point
y ∈ B, we have that

d(x0, y) ≤ A0(d(y0, y) + d(x0, y0)) ≤ A0(r + 2A0) ≤ A0(1 + 2A0),

and so

B ⊆ A0(1 + 2A0)B0 = B1.

If we apply Hölder’s inequality, the lower mass bound on B0 and B1, and the Ap(·)

condition, we get

µ(B) =

ˆ

B

w(x)w(x)−1 dµ ≤ C‖wχB‖p(·)‖w
−1χB‖p′(·)

≤ C‖wχB‖p(·)‖w
−1χB1‖p′(·)(2A0)

log2 Cµ
µ(B0)

µ(B1)
≤ C‖wχB‖p(·)‖wχB1‖

−1
p(·).

(3.1)

Here the constant depends on both X and x0. After rearranging, raising to the power
p−(B)− p+(B), and applying Lemma 2.11, we obtain

‖wχB‖
p−(B)−p+(B)
p(·) ≤ Cµ(B)p−(B)−p+(B)‖wχBq

‖p−(B)−p+(B) ≤ C(1 + ‖wχB1‖
−1
p(·))

p+−p−,

which is a bound independent of B.
Consider now the case where r > 1 and d(x0, y0) ≤ 2A0r. Applying the quasi-

triangle inequality as before,

B0 ⊆ A0(1 + 2A0r)B = B2.

Using Hölder’s inequality and the Ap(·) condition as in the previous case,

µ(B) ≤ C‖wχB‖p(·)‖w
−1χB‖p′(·) ≤ C‖wχB‖p(·)‖w

−1χB2‖p′(·)

≤ C‖wχB‖p(·)µ(B2)‖wχB2‖
−1
p(·) ≤ C‖wχB‖p(·)µ(B)‖wχB0‖

−1
p(·).

(3.2)

Thus

‖wχB‖
p−(B)−p+(B)
p(·) ≤ C(1 + ‖wχB0‖

−1
p(·))

p+−p−.

Consider now the remaining case, namely when d(x0, y0) > 2A0max{1, r}. Let
d = 2A0d(x0, y0) so that B,B0 ⊆ B(x0, d) = B3. Arguing as we did in inequality
(3.1) (if 1 ≥ r) or (3.2) (if r > 1) with B3 in place of B1 or B2, we get

µ(B) ≤ Cµ(B3)‖wχB‖p(·)‖wχB3‖
−1
p(·).
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In order to bring µ(B3) into the constant as in the previous cases and obtain the
corresponding inequality, we need

µ(B3)
p+(B)−p−(B) ≤ C.

To see that this is the case, observe that p(·) is continuous (since it is in LH0) and
so there exist y1, y2 ∈ B for which p(y1) = p−(B) and p(y2) = p+(B). And since

d(x0, y0) ≤ A0(d(x0, yk) + r) ≤ A0d(x0, yk) +
1

2
d(x0, y0)

for k = 1, 2, we have that d(x0, yk) ≥ (2A0)
−1d(x0, y0), so the LH∞ condition implies

p+(B)− p−(B) ≤ |p(y1)− p∞|+ |p(y2)− p∞| ≤
C

log(e+ (2A0)−1d(x0, y0))
.

Using this together with the lower mass bound,

µ(B3) ≤ Cdlog2 Cµµ(B0) = C(2A0d(x0, y0))
log2 Cµµ(B0) ≤ C(e+ A0d(x0, y0))

log2Cµ ,

we get that

µ(B3)
p+(B)−p−(B) ≤

[
C(e + A0d(x0, y0))

log2Cµ
]C/ log(e+(2A0)−1d(x0,y0))

≤ CeC log2 Cµ log(e+A0d(x0,y0))/ log(e+(2A0)−1d(x0,y0)) ≤ CeC log2 Cµ .

This last inequality is from the bound on (2.4). Since the above bound is independent
of B,

[µ(B)‖wχB3‖p(·)]
p+(B)−p−(B) ≤ C‖wχB‖

p+(B)−p−(B)
p(·) .

If we apply Lemma 2.11 on the left and the bound just derived on the right, we
obtain

‖wχB‖
p−(B)−p+(B)
p(·) ≤ C(1 + ‖wχB0‖

−1)p+−p−. �

We can now prove the following lemma, which will allow us to apply Lemma 3.1
to weights in variable exponent spaces.

Lemma 3.4. Given an exponent p(·) ∈ LH and a weight w ∈ Ap(·), we have

that W (·) = w(·)p(·) ∈ A∞.

Proof. Fix a ball B and a measurable set E ⊆ B. We will show that

(3.3)
µ(E)

µ(B)
≤ C

(
W (E)

W (B)

)1/p+

,

which by Lemma 3.1 is sufficient to show W (·) ∈ A∞. We will prove this in three
cases. Consider first the case that ‖wχB‖p(·) ≤ 1. By Lemma 3.2,

µ(E)

µ(B)
≤ C

‖wχE‖p(·)
‖wχB‖p(·)

≤ C
‖wχE‖p(·)

‖wχB‖
p−(B)/p+(B)
p(·) ‖wχB‖

1−p−(B)/p+(B)
p(·)

.

If we appeal to Lemma 2.5 for the inequalities ‖wχE‖p(·) ≤ W (E)1/p+(B) and

‖wχB‖
p−(B)
p(·) ≥ W (E), then apply Lemma 3.3 on the remaining term, we get that

µ(E)

µ(B)
≤ C

(
W (E)

W (B)

)1/p+

‖wχB‖
p−(B)/p+(B)−1 ≤ C

(
W (E)

W (B)

)1/p+

.
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Now considering the case ‖wχE‖p(·) ≤ 1 ≤ ‖wχB‖p(·), by the same lemmas as before,

µ(E)

µ(B)
≤ C

‖wχE‖p(·)
‖wχB‖p(·)

≤ C
‖wχE‖p(·)

‖wχB‖
p−(B)/p+(B)
p(·) ‖wχB‖

1−p−(B)/p+(B)
p(·)

≤ C
W (E)1/p+

‖wχB‖
p−(B)/p+(B)‖wχB‖

1−p−(B)/p+(B)
,

which, given ‖wχB‖p(·) ≥ 1 and p+ ≥ p+(B), yields

µ(E)

µ(B)
≤ C

(
W (E)

W (B)

)1/p+

.

The third case is ‖wχE‖p(·) ≥ 1. Let λ = ‖wχB‖p(·) ≥ ‖wχE‖. Since p(·) ∈ LH∞, by

Lemma 2.10 with dµ replaced by W (x) dµ, for all t > 1 there exists a constant Ct

for which

(3.4)

ˆ

B

W (x)

λp∞
dµ ≤ Ct

ˆ

B

W (x)

λp(x)
dµ+

ˆ

B

W (x)

(e + d(x0, x))tp∞
dµ.

The first integral on the right hand side is less than 1 by Lemma 2.4. We claim that
the same is true of the second term for sufficiently large t independent of B. This is
obvious if W (X) < ∞, since

ˆ

X

W (x)

(e + d(x0, x))tp∞
dµ ≤ Ce−tp∞W (X),

which may be made arbitrarily small. If on the other hand W (X) = ∞, let Bk =
B(x0, 2

k). Then by Lemma 2.5,
ˆ

X

W (x)

(e+ d(x0, x))tp∞
dµ ≤ e−tp∞W (B0) + C

∞∑

k=1

ˆ

Bk\Bk−1

W (x)

(e+ d(x0, x))tp∞
dµ

≤ e−tp∞W (B0) + C
∞∑

k=1

2−ktp∞W (Bk)

≤ e−tp∞W (B0) + C
∞∑

k=1

2−ktp∞ max

{
‖wχBk

‖
p+
p(·), ‖wχBk

‖
p−
p(·)

}

≤ e−tp∞W (B0) + C
∞∑

k=1

2−ktp∞‖wχBk
‖
p+
p(·).

The last inequality comes from the fact that ‖wχBk
‖p(·) > 1 for all k sufficiently

large, by continuity of the measure dW = W (x) dµ and the fact that X =
⋃∞

k=1Bk.
By Lemma 3.2,

‖wχBk
‖p(·) ≤ C

µ(Bk)

µ(B0)
‖wχB0‖p(·) ≤ C2k log2 Cµ.

Combining these two estimates yields

(3.5)

ˆ

X

W (x)

(e + d(x0, x))tp∞
dµ ≤ e−tp∞W (B0) + C

∞∑

k=1

2kp+ log2 Cµ−ktp∞ .

For t > p∞/ log2 C
p+
µ the sum converges, and choosing t sufficiently large (indepen-

dent of B) makes the right hand side less than 1. Thus the right hand side of (3.4)
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is bounded, and so we may rearrange to obtain

(3.6) W (B)1/p∞ ≤ C‖wχB‖p(·).

Now repeating the argument switching B with E and p(·) with p∞, we get

1 ≤

ˆ

E

W (x)

λp(x)
dµ ≤ Ct

ˆ

E

W (x)

λ−p∞
dµ+

ˆ

E

W (x)

(e + d(x0, x))tp∞
dµ.

As before, we can make the rightmost term less than 1/2, so that

(3.7) λp∞ = ‖wχE‖
p∞
p(·) ≤ CW (E).

Then by Lemma 3.2,

µ(E)

µ(B)
≤ C

‖wχE‖p(·)
‖wχBs‖p(·)

≤ C

(
W (E)

W (B)

)1/p∞

≤ C

(
W (E)

W (B)

)1/p+

. �

From the latter stages of the proof of Lemma 3.4, we may pull the following
corollary.

Corollary 3.5. Given an exponent p(·) ∈ LH, if w ∈ Ap(·) is a weight satisfying

‖wχB‖p(·) ≥ 1 on a ball B, then ‖wχB‖p(·) ≈ W (B)1/p∞.

We conclude this section with a lemma that will allow for the reduction from our
main result to the unweighted case.

Lemma 3.6. If p(·) ∈ LH and p− > 1, then 1 ∈ Ap(·).

Proof. Fix a ball B. If µ(B) ≤ 1, then by Lemma 2.5,

‖χB‖
p+(B)
p(·) ≤

ˆ

B

1p(x) dµ = µ(B),

which implies

‖χB‖p(·) ≤ µ(B)1/p+(B),

and by the same argument applied to p′(·),

‖χB‖p′(·) ≤ µ(B)1/(p
′)+(B) = µ(B)1−1/p−(B).

Thus (applying Lemma 2.11)

‖χB‖p(·)‖χB‖p′(·) ≤
[
µ(B)p−(B)−p+(B)

]1/p+(B)p−(B)
µ(B) ≤ Kµ(B),

which is the desired inequality. Suppose now µ(B) > 1. By an argument that is
essentially the same as the proof of Corollary 3.5 with w = 1, we get that

‖χB‖p(·)‖χB‖p′(·) ≤ Kµ(B)1/p∞+1/p′∞ = Kµ(B). �

4. Dyadic cubes

Important to the proofs of many results of variable exponent spaces in R
n are

the dyadic cubes of the form

Q = [m12
−k, (m1 + 1)2−k)× · · · × [mn2

−k, (mn + 1)2−k), m1, . . . , mn ∈ Z.

Due to the usefulness of dyadic objects in many areas of harmonic analysis, a great
deal of effort has gone into developing similar systems in metric and quasi-metric
spaces, for example [6, 24, 28]. We will use the form of Hytönen and Kairema’s
construction [24] presented in [3].
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Theorem 4.1. There exist constants Cd > 0, d0 > 1, and 0 < ǫ < 1 depending
on X, a family D =

⋃
k∈ZDk, called the dyadic grid on X of subsets of X, called

dyadic cubes, and a collection {xc(Q)}Q∈D of points such that:

(1) For every k ∈ Z the cubes in Dk are pairwise disjoint and X =
⋃

Q∈Dk
Q. We

will refer to the cubes in Dk as cubes in the kth generation.
(2) If Q1, Q2 ∈ D, then either Q1 ∩Q2 = ∅, or Q1 ⊆ Q2, or Q2 ⊆ Q1.
(3) For any Q1 ∈ Dk, there exists at least one Q2 ∈ Dk−1, which is called a child

of Q1, such that Q2 ⊆ Q1, and there exists exactly one Q3 ∈ Dk+1, which is
called a parent of Q1, such that Q1 ⊆ Q3.

(4) If Q2 is a child of Q1, then µ(Q2) ≥ ǫµ(Q1).
(5) For every k and Q ∈ Dk, B(xc(Q), dk0) ⊆ Q ⊆ B(xc(Q), Cdd

k
0).

In general, we may freely switch back and forth between the settings of cubes
and balls. Consider, for example, the following equivalent formulation of the Ap(·)

condition.

Lemma 4.2. (The Ap(·) condition for cubes) Given a dyadic grid D and p(·) ∈
LH, if w ∈ Ap(·), then there exists a constant K such that for any Q ∈ D,

‖wχQ‖p(·)‖w
−1χQ‖p′(·) ≤ Kµ(Q).

Proof. Fix Q ∈ Dk. Then by Theorem 4.1, the Ap(·) condition, and the lower
mass bound,

‖wχQ‖p(·)‖w
−1χQ‖p′(·) ≤ ‖wχB(xc(Q),Cdd

k
0)
‖p(·)‖w

−1χB(xc(Q),Cdrd
k
0)
‖p′(·)

≤ Kµ(B(xc(Q), Cdk0)) ≤ Cµ(B(xc(Q), dk0)) ≤ Cµ(Q).

The constant C is independent of k. �

In general, the argument in the proof of Lemma 4.2, in which we expand cubes
to fill balls and then apply the lower mass bound to shrink back to cubes, may be
used to show that any previously stated result is also true when balls are replaced
by cubes. In particular, Lemmas 3.1 and 3.3 hold in this way. Another object which
it is convenient to recast into a dyadic form is the maximal operator.

Definition 4.3. Given a weight σ and a dyadic grid D, define the weighted

dyadic maximal operator MD
σ with respect to D by

MD
σ f(x) = sup

Q∋x
Q∈D

−

ˆ

Q

|f(y)| dσ

for any locally integrable function f . When σ = 1, we will denote MD
σ simply by

MD.

The weighted dyadic maximal operator satisfies the same weak- and strong-type
inequalities as the classical maximal operator. Given a fixed grid D and weight σ,
for each λ > 0, we define the set

XD
λ = {x ∈ X : MD

σ f(x) > λ}.

Then the following lemma holds.

Lemma 4.4. Given a dyadic grid D on X and a weight σ, the dyadic maximal
operator MD

σ is weak (1, 1): for f ∈ L1(σ) and all λ > 0,

σ
(
XD

λ

)
≤

1

λ

ˆ

X

|f(x)| dσ.
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Further, for 1 < p < ∞, MD
σ is strong (p,p): there exists a constant C depending on

p and X such that for any f ∈ Lp(σ),
ˆ

X

MD
σ f(x)p dσ ≤ C

ˆ

X

|f(x)|p dσ.

Proof. For each integer n, define the truncated maximal operator

Mn
σ f(x) = sup

x∈Q∈Dk
k≤n

−

ˆ

Q

|f(y)| dσ.

Observe that for every x ∈ X, the sequence
{
Mk

σf(x)
}

increases to MD
σ f(x). Cer-

tainly, it is increasing and bounded; if MD
σ f(x) < ∞, then for any ǫ > 0 there exists

a cube Q for which

MD
σ f(x)− ǫ ≤ −

ˆ

Q

|f(y)| dσ;

but then for any n greater than the generation of Q,

−

ˆ

Q

|f(y)| dσ ≤ Mn
σ f(x),

and so the sequence converges. A similar argument shows that if MD
σ f(x) = ∞, then

Mn
σ f(x) can be made greater than any integer.

Therefore, by the monotone convergence theorem, it suffices to prove the weak-
type inequality for the truncated maximal operator. To that end, fix λ > 0. If
Mn

σ f(x) > λ, then there exists a cube Qx containing x such that

−

ˆ

Qx

|f(y)| dσ > λ,

and Qx is of generation at most n. Without loss of generality, take Qx to be the
maximal of all such cubes, and let its generation be k. Since there are countably
many dyadic cubes, the set {Qx : x ∈ X} may be enumerated as {Qj}. If Qi∩Qj 6= ∅

for some i 6= j, then we have some containment Qi ⊆ Qj (without loss of generality),
and thus Qi = Qj by maximality, so the cubes are mutually disjoint. Then

σ ({x ∈ X : Mn
σ f(x) > λ}) =

∑

j

σ(Qj) ≤
1

λ

∑

j

ˆ

Qj

|f(y)| dσ ≤

ˆ

X

|f(y)| dσ.

This proves the weak-type inequality.
For the strong-type inequality,

−

ˆ

Q

|f(y)| dσ ≤
1

σ(Q)
‖f‖L∞(σ)

ˆ

Q

dσ = ‖f‖L∞(σ).

Now fix 1 < p < ∞ and f ∈ L1(σ) ∩ L∞(σ). Without loss of generality, assume
fσ 6= 0. Then MD

σ f ∈ L1,∞(σ) ∩ L∞(σ), and consequently by Tonelli’s theorem,
ˆ

X

MDf(x)p dσ =

ˆ ∞

0

pλp−1σ
(
{x ∈ X : MD

σ f(x) > λ}
)
dλ

≤ C

ˆ ‖MD
σ f‖L∞(σ)

0

λp−2 dλ < ∞.



472 David Cruz-Uribe, OFS and Jeremy Cummings

Thus 0 < ‖MD
σ f‖Lp(σ) < ∞. Hence, by the weak-type inequality, Tonelli’s Theorem,

and Hölder’s inequality,
ˆ

X

MD
σ f(x)pσ(x) dµ = p

ˆ ∞

0

λp−1σ
(
{x ∈ X : MD

σ f(x) > λ}
)
dλ

≤ p

ˆ ∞

0

λp−2

ˆ

X

|f(x)| dσ dλ

= p

ˆ

X

|f(x)|

ˆ

{λ : MD
σ f(x)>λ}

λp−2 dλ dσ

≤
p

p− 1

ˆ

X

|f(x)|[MD
σ f(x)]p−1 dσ

≤ C‖f‖Lp(σ)‖M
D
σ f‖p−1

Lp(σ).

Rearranging, we obtain that
ˆ

X

MD
σ f(x)p dσ ≤ C

ˆ

X

|f(x)|p dσ,

which is the desired strong-type inequality. For general functions f ∈ Lp(X), the
desired inequality follows from an approximation argument if we use Lemma 2.6 and
the monotone convergence theorem. �

We now prove the Calderón–Zygmund decomposition for the maximal operator
over spaces of homogeneous type. This result is known, but since we could not find
the precise formulation we wanted, for completeness we include the proof here.

Lemma 4.5. (Calderón–Zygmund Decomposition) If µ(X) = ∞, given a weight
σ ∈ A∞, let D be a dyadic grid on X. If f ∈ L1

loc(σ) is such that −
´

Qk |f(x)|σ(x) dµ → 0

for any nested sequence {Qk ∈ Dk}
∞
k=0, where each Qk is a child of Qk+1, then for

each λ > 0, there exists a (possibly empty) set {Qj}, called the Calderón–Zygmund
(CZ) cubes of f at height λ, of pairwise disjoint dyadic cubes and a constant CCZ =
CCZ(D, X, σ) > 1, independent of λ, such that

XD
λ =

⋃

j

Qj .

Moreover, for each j,

(4.1) λ < −

ˆ

Qj

|f(x)| dσ ≤ CCZλ.

If {Qk
j} are the Calderón–Zygmund cubes at height ak for k ∈ Z and a > CCZ , define

Ek
j = Qk

j \ XD
ak+1. These sets are pairwise disjoint for all j and k, and σ(Ek

j ) ≥
a−CCZ

a
σ(Qk

j ).
If µ(X) < ∞, then the Calderón–Zygmund cubes may be constructed for any

function f ∈ L1
loc(σ) and at any height λ > −

´

X
|f(y)| dσ = λ0, with (4.1) still holding.

In this case, the sets Ek
j are defined only for k > loga λ0, and are pairwise disjoint

with σ(Ek
j ) ≥

a−CCZ

a
σ(Qk

j ).

Proof. Suppose first µ(X) = ∞ and fix λ > 0. If XD
λ is empty, then take {Qj}

to be the empty set. Otherwise, fix x ∈ XD
λ . Then x is contained in exactly one cube
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Qx
k of each generation k and MD

σ f(x) > λ, so there exists at least one k for which

(4.2) −

ˆ

Qx
k

|f(y)| dσ > λ.

Since by assumption

lim
k→∞

−

ˆ

Qx
k

|f(y)| dσ → 0,

we may take k to be the largest integer for which (4.2) holds. Let {Qx : x ∈ XD
λ }

be the set of all such maximal cubes. As in the proof of Lemma 4.4, this set must
be countable and mutually disjoint. Clearly, XD

λ is contained in the union of these
cubes. Conversely, given any z ∈ Qx for some x, we have that

MD
σ f(z) ≥ −

ˆ

Qx

|f(y)| dσ > λ,

and so z ∈ XD
λ ; consequently,

XD
λ =

⋃

j

Qj .

We now wish to show the inequalities (4.1). The first holds by choice of Qj . For the

second, the maximality of each Qj ensures that its parent, Q̂j , satisfies

−

ˆ

Q̂j

|f(y)| dσ ≤ λ.

From this fact together with Lemma 4.1 and the lower mass bound,

−

ˆ

Qj

|f(y)|σ(y) dµ ≤
σ(Q̂j)

σ(Qj)
λ ≤

σ(B(xc(Q̂j), Cdk+1
0 ))

σ(B(xc(Qj), dk0))
λ ≤ Cd

log2 Cµ

0 λ,

which is the second inequality in (4.1).
Now fix a > CCZ and consider the Calderón–Zygmund cubes {Qk

j} at heights

ak for k ∈ Z. For simplicity, we define Xk = XD
ak . Observe that Xk+1 ⊂ Xk.

Consequently, given any Qk+1
i , the set {Qx

k} (constructed above) for an arbitrary
x ∈ Qk+1

i contains Qk+1
i , and so there exists j such that Qk+1

i ⊂ Qk
j .

We claim that this implies that the sets Ek
j are pairwise disjoint for all j, k. To see

this, consider two arbitrary sets Ek1
j1

and Ek2
j2

and suppose without loss of generality

that k1 ≤ k2. By the above argument, there exists j3 such that Qk2
j2

⊂ Qk1
j3

. If j3 = j1,

then k1 6= k2 and so disjointness arises from the containment Ek2
j2

⊂ Xk2 ⊂ Xk1 ;

otherwise, the disjointness of Qk
j for fixed k implies that for Ek1

j1
and Ek2

j2
.

Now fix Qk
j ; we have that

(4.3) σ(Qk
j ) = σ(Qk

j ∩Xk+1) + σ(Ek
j ).

By the properties listed above,

σ(Qk
j ∩Xk+1) =

∑

i:Qk+1
i ⊂Qk

j

σ(Qk+1
i ) ≤

1

ak+1

∑

i:Qk+1
i ⊂Qk

j

ˆ

Qk+1
i

|f(y)| dσ

≤
1

ak+1

ˆ

Qk
j

|f(y)| dσ ≤
CCZ

a
σ(Qk

j ).
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After plugging this into (4.3) and rearranging, we obtain

σ(Ek
j ) ≥

a− CCZ

a
σ(Qk

j ),

which is the desired inequality.
For µ(X) < ∞, the proof is the same, with one exception. Since X is bounded,

for all cubes Q sufficiently large, Q = X. As such, choosing λ > −
´

X
|f(y)| dσ ensures

that we may find maximal cubes as before. �

5. Necessity

In this section we prove the necessity of the Ap(·) condition in Theorem 1.13.
Actually, we will prove necessity in Conjecture 1.14, but by the monotonicity of
the norm, we get that the strong-type inequality implies the weak-type, so to prove
necessity in both results it suffices to demonstrate that any weight satisfying the
latter is in Ap(·).

To that end, let w be such a weight and fix a ball B ⊆ X. First, we will show that
w is p(·)-integrable on B. Supposing to the contrary, since p+ < ∞ we have from
Lemma 2.3 that ‖wχB‖p(·) = ∞. Fix x ∈ B and choose any ball E with x ∈ E ⊆ B.

If we choose f = χE then Mf(x) ≥ µ(E)
µ(B)

χB. Then for each t < µ(E)
µ(B)

the weak-type

inequality implies that

t‖wχB‖p(·) ≤ ‖tχ{x∈X :Mf(x)>t}w‖p(·) ≤ C‖wχE‖p(·).

Thus the right hand side must be infinite, and so by Lemma 2.3,
ˆ

E

w(x)p(x) dµ = ∞.

Letting E shrink to x and applying the Lebesgue Differentiation Theorem (since µ is
Borel regular; see [2, Theorem 1.4]), we find that w(x)p(x) = ∞ and thus w(x) = ∞
for almost every x, contrary to the definition of a weight. It follows that w is locally
p(·)-integrable.

Now we show that w ∈ Ap(·). We first assume that ‖w−1χB‖p′(·) < ∞; later, we
will see that this is necessarily the case. By the homogeneity of both the weak-type
inequality and the Ap(·) condition in w, we can assume that ‖w−1χB‖p′(·) = 1.

We partition B into the sets

F0 = {x ∈ B : p′(x) < ∞}, F∞ = {x ∈ B : p′(x) = ∞}.

By the definition of the norm, for any λ ∈ (1
2
, 1),

1 < ρp′(·)

(
w−1χB

λ

)
=

ˆ

F0

(
w(x)−1

λ

)p′(x)

dµ+ λ−1‖w−1χF∞
‖∞.

One of the terms on the right must be greater than 1
2
. More specifically, one of the

following must be true: either ‖w−1χF∞
‖∞ ≥ 1

2
, or there exists λ0 ∈ (1

2
, 1) for which

´

F0

(
w(x)−1

λ

)p′(x)
dµ ≥ 1

2
for any λ ∈ [λ0, 1). Suppose for now it is the first.

Fix s > ‖w−1χF∞
‖−1
∞ = ess infx∈F∞

w(x). There exists a subset E ⊆ F∞ with
µ(E) > 0 such that w(E) ⊆ (0, s]. Choose the function f = χE. Since p(·) is
identically 1 on F∞,

‖fw‖p(·) = ‖wχE‖p(·) = w(E).
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Further, we see that for all x ∈ B,

Mf(x) ≥
µ(E)

µ(B)
.

Thus if we fix t < µ(E)
µ(B)

, the weak-type inequality implies that

t‖wχB‖p(·) ≤ t‖wχ{x : Mf(x)>t}‖p(·) ≤ C‖fw‖p(·) = Cw(E).

If we take the supremum over all such t and rearrange, we get that

1

µ(B)
‖wχB‖p(·) ≤ C

w(E)

µ(E)
≤ Cs.

Now taking the infimum over all such s, we get

1

µ(B)
‖wχB‖p(·) ≤ C‖w−1χF∞

‖−1
∞ ≤ 2C.

Since ‖w−1χB‖p′(·) = 1, this is the Ap(·) condition on B.
We now consider the case that

ˆ

F0

(
w(x)−1

λ

)p′(x)

dµ ≥
1

2

for all λ ∈ [λ0, 1). If we define FR = {x ∈ F0 : p
′(x) < R} for R > 1, by the monotone

convergence theorem for Lp(·) norms (Lemma 2.7) we may find R sufficiently large
that

ˆ

FR

(
w(x)−1

λ0

)p′(x)

dµ >
1

3
.

Further, since ‖w−1χB‖p′(·) = 1, by Lemma 2.3,

ˆ

FR

(
w(x)−1

λ0

)p′(x)

dµ ≤

ˆ

FR

(
2

λ0

)p′(x)(
w(x)−1

2

)p′(x)

dµ

≤

(
2

λ0

)R ˆ

FR

(
w(x)−1

2

)p′(x)

dµ ≤

(
2

λ0

)R

< ∞.

Now define the function

G(λ) =

ˆ

FR

(
w(x)−1

λ

)p′(x)

dµ.

Then we know from the above computations that 1
3
< G(λ0) < ∞ and by the

dominated convergence theorem that G is continuous on [λ0, 1]. If G(1) ≥ 1
3
, then

by Lemma 2.3, for any λ ∈ [λ0, 1),

1

3λ
≤

1

λ

ˆ

FR

w(x)−p′(x) dµ ≤ G(λ) ≤ λ−R < ∞.

Now by taking λ sufficiently close to 1, we may make λ−R ≤ 2, so that

(5.1)
1

3
≤

ˆ

FR

(
w(x)−1

λ

)p′(x)

dµ ≤ 2.

On the other hand, if G(1) < 1
3
, then by continuity there is some λ ∈ (λ0, 1) such

that G(λ) = 1
3
, and so by choosing this λ we get that (5.1) holds in this case as well.
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Having fixed λ, we now choose our function to be

f(x) =
w(x)−p′(x)

λp′(x)−1
χFR

.

Then

ρp(·)(fw) =

ˆ

FR

(
w(x)−1

λ

)p′(x)

dµ ≤ 2.

Hence, by the proof of Lemma 2.3, ‖fw‖p(·) ≤ 21/(p
′)−. On the other hand, for all

x ∈ B,

Mf(x) ≥ −

ˆ

B

f(x) dµ =
λ

µ(B)

ˆ

FR

(
w(x)−1

λ

)p′(x)

dµ ≥
λ

3µ(B)
.

Thus for t < λ
3µ(B)

, by the weak-type inequality,

C ≥ C‖fw‖p(·) ≥ t‖wχ{x :Mf(x)>t}‖p(·) ≥ t‖wχB‖p(·),

which after taking the supremum over all such t is the Ap(·) condition.
It remains to show that w ∈ Ap(·) if ‖w−1χB‖p′(·) = ∞. To that end, fix ǫ > 0 and

define the weight wǫ(x) = w(x) + ǫ. Then w−1
ǫ ≤ ǫ−1 < ∞ and so ‖w−1

ǫ χB‖p′(·) < ∞.
We observe that

‖wǫχ{x∈X : Mf(x)>t}‖p(·) ≤ ‖wχ{x∈X : Mf(x)>t}‖p(·) + ǫ‖χ{x∈X : Mf(x)>t}‖p(·).

Since p(·) ∈ LH, M satisfies the weak type inequality on Lp(·)(X, µ). This is a result
of the sufficiency argument (Section 6) if p− > 1, and in general it is one case in the
main result of [16]. Consequently,

≤ C‖fw‖p(·) + C‖ǫf‖p(·) ≤ 2C‖fwǫ‖p(·).

This shows that wǫ satisfies the weak-type inequality, and does so with a constant
depending only on the weak-type inequality constants of w and 1, both of which
are independent of ǫ. From the argument with ‖w−1χB‖p′(·) < ∞, it follows that
wǫ ∈ Ap(·). In fact, careful inspection of the previous argument will show that

‖wχB‖p(·)‖w
−1
ǫ χB‖p′(·) ≤ ‖wǫχB‖p(·)‖w

−1
ǫ χB‖p′(·) ≤ Kµ(B)

with K depending only on p(·) and the weak-type inequality constant (in the F∞

case the dependency is only on the latter, while the F0 case involves (p′)−). Since as
we said before this is independent of ǫ, we have that K is independent of ǫ. Thus,
since w−1

ǫ increases to w−1 pointwise, by Lemma 2.7, we get that w ∈ Ap(·). While
this completes the proof of necessity, it is of note that w ∈ Ap(·) in turn implies that
the assumption ‖w−1χB‖p′(·) < ∞ must have been true originally.

6. Sufficiency

In this section we prove sufficiency in Theorem 1.13. We first assume that µ(X) =
∞; the finite measure case is much simpler, as we will later show. Consider the
following lemma, which is proved in [24, 25].

Lemma 6.1. There exists a finite family {Di}
N
i=1 of dyadic grids such that

Mf(x) ≤ C

N∑

i=1

MDif(x)

for any function f and almost every x ∈ X.
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As a result of Lemma 6.1, to prove the boundedness of M it suffices to prove the
boundedness of MD for an arbitrary dyadic grid D. To that end, fix an exponent
p(·) with 1 < p− ≤ p+ < ∞, a weight w ∈ Ap(·), and a function f ; without loss of
generality we may assume that f is nonnegative and that ‖fw‖p(·) = 1. It is useful

to define the weights W (·) = w(·)p(·) and σ(·) = w(·)−p′(·), both of which are in A∞

by Lemma 3.4 and hence doubling by Lemma 3.1.
We will want to form the Calderón–Zygmund cubes of f (with respect to µ).

In order to do so, we must show that −
´

Qk
|f(x)| dµ → 0 as k → ∞ for any nested

sequence {Qk}
∞
k=1 with Qk−1 ⊆ Qk ∈ Dk. Fix such a sequence; considering k = 1, we

have as a consequence of W being doubling that

W (Q1) ≤ W (B(xc(Q1), Cdd0)) ≤ C
log2 Cd

W W (B(xc(Q1), d0)).

By a similar argument, for any k,

1

W (Qk)
≤

C

W (B(xc(Qk), Cddk0))
.

Combining these two estimates and applying Lemma 3.1, we get

W (Q1)

W (Qk)
≤ C

W (B(xc(Q1), d0))

W (B(xc(Qk), Cddk0))
≤ C

(
µ(B(xc(Q1, d0))

µ(B(xc(Qk), Cddk0))

)δ

.

If we rearrange and apply the lower mass bound,

W (Qk) ≥ Cµ(B(xc(Qk), Cdd
k
0))

δ ≥ Cµ(B(xc(Q1), Cdk0))
δ.

As k → ∞, by continuity of µ and the fact that X =
⋃∞

k=1B(xc(Q1), Cdk0), the right
side approaches Cµ(X)δ = ∞, and thus W (Qk) → ∞. By Lemma 2.8, the Ap(·)

condition, and Lemma 2.5 respectively, for all k sufficiently large,

−

ˆ

Qk

f(x) dµ ≤ C‖fw‖p(·)µ(Qk)
−1‖w−1χQk

‖p′(·) ≤ C‖wχQk
‖−1
p(·) ≤ CW (Qk)

−1/p+ .

This gives us the desired limit.
Decompose f as f = f1 + f2 where f1 = fχ{fσ−1>1} and f2 = fχ{fσ−1≤1}. By

sublinearity, MDf ≤ MDf1 +MDf2, and by Lemma 2.5, for i = 1, 2,

(6.1)

ˆ

X

|fi(x)|
p(x)w(x)p(x) dµ ≤ ‖fiw‖p(·) ≤ 1.

Hence, by Lemma 2.3, to prove the desired inequality it suffices to show that there
exists a constant C depending on X, p(·), and w such that

(6.2)

ˆ

X

MDfi(x)
p(x)w(x)p(x) dµ ≤ C, i = 1, 2.

We begin with the estimate of (6.2) for f1. Choose a > CCZ and for each k ∈ Z

let

Xk = {x ∈ X : MDf1(x) > ak+1}.

Since f ∈ L1
loc

and −
´

Qk f(x) dµ → 0 as k → ∞, MDf1 is finite almost everywhere,
and so

{x ∈ X : Mf1(x) > 0} =
⋃

k

Xk \Xk+1
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up to a set of measure zero. Let {Qk
j} be the CZ cubes of f1 at height ak with respect

to µ. Then by Lemma 4.5, for all k,

(6.3) Xk =
⋃

j

Qk
j .

Define the sets Ek
j = Qk

j \Xk, as in Lemma 4.5. Then from (6.3) we have

Xk \Xk+1 =
⋃

j

Ek
j .

We now estimate:
ˆ

X

MDf1(x)
p(x)w(x)p(x) dµ =

∑

k

ˆ

Xk\Xk+1

MDf1(x)
p(x)w(x)p(x) dµ

≤ a2p+
∑

k

ˆ

Xk\Xk+1

akp(x)w(x)p(x) dµ

≤ C
∑

k,j

ˆ

Ek
j

(
−

ˆ

Qk
j

f1(y) dµ

)p(x)

w(x)p(x) dµ

= C
∑

k,j

ˆ

Ek
j

(
ˆ

Qk
j

f1(y)σ(y)
−1σ(y) dµ

)p(x)

µ(Qk
j )

−p(x)w(x)p(x) dµ.(6.4)

Since either f1σ
−1 ≥ 1 or f1σ

−1 = 0,
ˆ

Qk
j

f1(y)σ(y)
−1σ(y) dµ ≤

ˆ

Qk
j

(f1(y)σ(y)
−1)p(y)/p−(Qk

j )σ(y) dµ

≤

ˆ

Qk
j

(f1(y)σ(y)
−1)p(y)σ(y) dµ ≤

ˆ

Qk
j

f1(y)
p(y) dµ ≤ 1.

Therefore,

∑

k,j

ˆ

Ek
j

(
ˆ

Qk
j

f1(y)σ(y)
−1σ(y) dµ

)p(x)

µ(Qk
j )

−p(x)w(x)p(x) dµ

≤
∑

k,j

(
ˆ

Qk
j

(f1(y)σ(y)
−1)p(y)/p−(Qk

j )σ(y) dµ

)p−(Qk
j ) ˆ

Ek
j

µ(Qk
j )

−p(x)w(x)p(x) dµ.

If we multiply and divide by σ(Qk
j ) and apply Hölder’s inequality with exponent

p−(Q
k
j )/p−, we get

≤ C
∑

k,j

(
−

ˆ

Qk
j

(f1(y)σ(y)
−1)p(y)/p−σ(y) dµ

)p−

·

ˆ

Ek
j

σ(Qk
j )

p−(Qk
j )µ(Qk

j )
−p(x)w(x)p(x) dµ.

(6.5)

Assume for the moment that

(6.6)

ˆ

Qk
j

σ(Qk
j )

p−(Qk
j )µ(Qk

j )
−p(x)w(x)p(x) dµ ≤ Cσ(Qk

j ).
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Since µ(Qk
j ) ≤ Cµ(Ek

j ) by Lemma 4.5 and σ ∈ A∞ by Lemma 3.4 applied to w−1 ∈

Ap′(·), we have from Lemma 3.1 (applied to cubes instead of balls) that σ(Qk
j ) ≤

Cσ(Ek
j ). Thus (6.5) is bounded by

C
∑

k,j

(
−

ˆ

Qk
j

(f1(y)σ(y)
−1)p(y)/p− dσ

)p−

σ(Ek
j )

≤ C
∑

k,j

ˆ

Ek
j

MD
σ ((f1σ

−1)p(·)/p−)(x)p−σ(x) dµ

≤ C

ˆ

X

MD
σ ((f1σ

−1)p(·)/p−)(x)p−σ(x) dµ.

By Lemma 4.4 and (6.2),

≤ C

ˆ

X

f1(x)
p(x)σ(x)−p(x)σ(x) dµ

= C

ˆ

X

f1(x)
p(x)w(x)p(x) dµ ≤ C.

We now justify (6.6). Observe that the left-hand side is dominated by

(
σ(Qk

j )

‖w−1χQk
j
‖p′(·)

)p−(Qk
j )

·

ˆ

Qk
j

‖w−1χQk
j
‖
p−(Qk

j )−p(x)

p′(·) ‖w−1χQk
j
‖
p(x)
p′(·)µ(Q

k
j )

−p(x)w(x)p(x) dµ.

(6.7)

We will bound (6.7) by showing that, under our hypotheses, it reduces to the Ap(·)

condition. First, we show that

(6.8) ‖w−1χQk
j
‖
p−(Qk

j )−p(x)

p′(·) ≤ C.

If ‖w−1χQk
j
‖p′(·) > 1, then C = 1 works, so assume otherwise. Then

p(x)− p−(Q
k
j ) =

p′(x)

p′(x)− 1
−

(p′)+(Q
k
j )

(p′)+(Qk
j )− 1

=
(p′)+(Q

k
j )− p′(x)

[p′(x)− 1][(p′)+(Qk
j )− 1]

≤
(p′)+(Q

k
j )− (p′)−(Q

k
j )

[(p′)− − 1]2
,

and so by Lemma 3.3, we obtain (6.8). We would also like to prove the bound

(6.9)

(
σ(Qk

j )

‖w−1χQk
j
‖p′(·)

)p−(Qk
j )

≤ Cσ(Qk
j ).

If ‖w−1χQk
j
‖p′(·) > 1, then by Lemma 2.5,

(
σ(Qk

j )

‖w−1χQk
j
‖p′(·)

)p−(Qk
j )

≤
(
σ(Qk

j )
1−1/(p′)+(Qk

j )
)p−(Qk

j )

= σ(Qk
j ).
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If on the other hand ‖w−1χQk
j
‖p′(·) ≤ 1, then by Lemma 2.5 (applied twice) and

Lemma 3.3 (applied to cubes),

(
σ(Qk

j )

‖w−1χQk
j
‖p′(·)

)p−(Qk
j )

≤
(
‖w−1χQk

j
‖
(p′)−(Qk

j )−1

p′(·)

)p−(Qk
j )

≤
(
‖w−1χQk

j
‖
(p′)−(Qk

j )−1+(p′)+(Qk
j )−(p′)+(Qk

j )

p′(·)

)p−(Qk
j )

≤ C
(
‖w−1χQk

j
‖
(p′)+(Qk

j )−1

p′(·)

)p−(Qk
j )

≤ C


σ(Qk

j )

(p′)+(Qk
j )−1

(p′)+(Qk
j
)




p−(Qk
j )

≤ C


σ(Qk

j )

p−(Qk
j )′−1

p−(Qk
j
)′




p−(Qk
j )

= Cσ(Qk
j ).

Applying both (6.8) and (6.9) to (6.7), we have that in order to demonstrate
(6.6) it suffices to show

(6.10)

ˆ

Qk
j

‖w−1χQk
j
‖
p(x)
p′(·)µ(Q

k
j )

−p(x)w(x)p(x) dµ ≤ C.

By Lemma 2.3, this is equivalent to bounding

‖(Cµ(Qk
j ))

−1‖w−1χQk
j
‖p′(·)wχQk

j
‖p(·) =

1

Cµ(Qk
j )
‖wχQk

j
‖p(·)‖w

−1χQk
j
‖p′(·).

But by Lemma 4.2 this is, as claimed, the Ap(·) condition. Since w ∈ Ap(·), (6.6)
holds for any k and j. This completes the proof of (6.2) for f1.

We now proceed to show the corresponding bound for f2. Recall that 1, σ, and
W are all in A∞; from now on, we will use properties of A∞ without reference.

We would like to fix a particular LH∞ base point x0. Let {Qk
j} now represent the

CZ cubes of f2 with respect to µ. Choose a nested tower of cubes {Qk,0}. Since A∞

weights are doubling, we have that µ(Qk,0), σ(Qk,0), and W (Qk,0) all go to infinity,
and as a result we may find a cube Qk0,0 = Q0 ∈ Dk0 such that µ(Q0), σ(Q0), and
W (Q0) ≥ 1. By Lemma 1.9, we may fix x0 = xc(Q0). Let N0 = 2A0Cd, where Cd is
as in Theorem 4.1, and define the sets

F = {(k, j) : Qk
j ⊆ Q0},

G = {(k, j) : Qk
j 6⊆ Q0 and d(x0, xc(Q

k
j )) < N0d

k
0},

H = {(k, j) : Qk
j 6⊆ Q0 and d(x0, xc(Q

k
j )) ≥ N0d

k
0}.

Observe that F ∪ G ∪ H = Z× N, so that every CZ cube Qk
j has indices in one of

the three sets. By repeating the argument used to obtain (6.4) with f2 in place of
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f1, we may split the corresponding sum into three parts:

ˆ

X

MDf2(x)
p(x)w(x)p(x) dµ ≤ C

∑

k,j

ˆ

Ek
j

(
−

ˆ

Qk
j

f2(y)σ(y)σ(y)
−1 dµ

)p(x)

w(x)p(x) dµ

= C


 ∑

(k,j)∈F

+
∑

(k,j)∈G

+
∑

(k,j)∈H


 = C(I1 + I2 + I3).

We will bound each of these three sums in turn, beginning with I1. Using that
f2σ

−1 ≤ 1 to eliminate f2 and then applying (6.6), we get

I1 ≤
∑

(k,j)∈F

ˆ

Ek
j

(
−

ˆ

Qk
j

σ(y) dµ

)p(x)

w(x)p(x)dµ

≤
∑

(k,j)∈F

ˆ

Ek
j

σ(Qk
j )

p(x)−p−(Qk
j )σ(Qk

j )
p−(Qk

j )µ(Qk
j )

−p(x)w(x)p(x) dµ

≤
∑

(k,j)∈F

(1 + σ(Qk
j ))

p+(Qk
j )−p−(Qk

j )

ˆ

Ek
j

σ(Qk
j )

p−(Qk
j )µ(Qk

j )
−p(x)w(x)p(x) dµ

≤ C(1 + σ(Q0))
p+−p−

∑

(k,j)∈F

σ(Qk
j )

≤ C(1 + σ(Q0))
p+−p−

∑

(k,j)∈F

σ(Ek
j )

≤ C(1 + σ(Q0)))
p+−p−σ(Q0),

which is a constant independent of Qk
j and f .

Now to estimate I2, pick (k, j) ∈ G . Note that if xc(Q
k
j ) ∈ Q0, then since

Qk
j 6⊆ Q0 we must have that

Q0 ⊆ Qk
j ⊆ B(xc(Q

k
j ), A0(Cd + 1)N0d

k
0).

On the other hand, if xc(Q
k
j ) 6∈ Q0 ⊇ B(x0, d

k0
0 ), then by the definition of G ,

dk00 ≤ d(x0, xc(Q
k
j )) ≤ N0d

k
0.

As a result, since x0 ∈ B(xc(Q
k
j ), N0d

k
0) and x ∈ B(x0, Cdd

k0
0 ), for any x ∈ Q0,

d(x, xc(Q
k
j )) ≤ A0(d(x, x0) + d(x0, xc(Q

k
j ))) ≤ A0(Cdd

k0
0 +N0d

k
0) ≤ A0(Cd + 1)N0d

k
0.

It follows that Q0 ⊆ B(xc(Q
k
j ), A0(Cd + 1)N0d

k
0) = Bk

j for any (k, j) ∈ G . Conse-

quently, we have that W (Bk
j ), σ(B

k
j ) ≥ 1. Note also that by doubling and Lemma 4.1,

µ(Qk
j ) ≈ µ(Bk

j ). By Lemma 2.3 we also have that ‖w−1χQ0‖p′(·) ≥ 1, and so by Corol-

lary 3.5 (applied to w−1 ∈ Ap′(·)),

µ(Qk
j )

−1 ≤ Cµ(Bk
j )

−1 ≤ Cµ(Q0)
−1

(
σ(Q0)

σ(Bk
j )

)1/p′∞

≤ C‖w−1χBk
j
‖−1
p′(·) ≤ C‖w−1χQk

j
‖−1
p′(·).
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It follows from this inequality and Lemma 2.8 that

−

ˆ

Qk
j

f2(y) dµ ≤ C‖w−1χQk
j
‖−1
p′(·)‖f2w‖p(·)‖w

−1χQk
j
‖p′(·) ≤ C.

Given this, we may apply Lemma 2.10 with the exponents p(·) and p∞ to estimate:

I2 ≤ C
∑

(k,j)∈G

ˆ

Ek
j

(
C−1−

ˆ

Qk
j

f2(y) dµ

)p(x)

w(x)p(x) dµ

≤ Ct

∑

(k,j)∈G

ˆ

Ek
j

(
−

ˆ

Qk
j

f2(y) dµ

)p∞

w(x)p(x) dµ

+
∑

(k,j)∈G

ˆ

Ek
j

w(x)p(x)

(e+ d(x0, x))tp−
dµ.

(6.11)

Arguing as we did in the proof of Lemma 3.4 to obtain inequality (3.5), we may
choose t sufficiently large (depending only on X, Q0, p(·), and w) so that

(6.12)
∑

(k,j)∈G

ˆ

Ek
j

w(x)p(x)

(e + d(x0, x))tp−
dµ ≤

ˆ

X

w(x)p(x)

(e+ d(x0, x))tp−
dµ ≤ 1.

We now need only bound the first term of (6.11). But we have that

∑

(k,j)∈G

ˆ

Ek
j

(
−

ˆ

Qk
j

f2(y) dµ

)p∞

w(x)p(x) dµ

=
∑

(k,j)∈G

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p∞ (
σ(Qk

j )

µ(Qk
j )

)p∞

W (Ek
j ).

Now invoking (3.6) (applied to σ and then W , with cubes) as well as the Ap(·)

condition,

σ(Qk
j )

p∞−1 = σ(Qk
j )

p∞/p′∞ ≤ C‖w−1χQk
j
‖p∞p′(·)

≤ C

(
µ(Qk

j )

‖wχQk
j
‖p(·)

)p∞

≤ C
µ(Qk

j )
p∞

W (Qk
j )

.
(6.13)
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If we apply this estimate, Lemmas 4.4 (since by assumption p− > 1 and we must
have p∞ ≥ p−) and 2.10, and that σ(Qk

j ) ≤ Cσ(Ek
j ), then we get

∑

(k,j)∈G

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p∞ (
σ(Qk

j )

µ(Qk
j )

)p∞

W (Ek
j ).(6.14)

≤ C
∑

(k,j)∈G

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p∞

σ(Qk
j )W (Qk

j )
−1W (Ek

j )

≤ C
∑

(k,j)∈G

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p∞

σ(Ek
j )

≤ C
∑

(k,j)∈G

ˆ

Ek
j

Mσ(f2σ
−1)(x)p∞σ(x) dµ

≤ C

ˆ

X

Mσ(f2σ
−1)(x)p∞σ(x) dµ(6.15)

≤ C

ˆ

X

(f2(x)σ
−1(x))p∞σ(x) dµ(6.16)

≤ Ct

ˆ

X

(f2(x)σ(x))
p(x)σ(x) dµ+

ˆ

X

σ(x)

(e+ d(x0, x))tp−
dµ

≤ Ct

ˆ

X

f2(x)
p(x)w(x)p(x) dµ+

ˆ

X

σ(x)

(e+ d(x0, x))tp−
dµ.(6.17)

The second term is bounded by a constant independent of Qk
j and f , by an argument

identical to that used to prove (6.12) with σ in place of W . By (6.1), the first term
is also bounded by a constant, and thus I2 is as well.

We now estimate I3. Central to this part of the proof will be that d(x0, x) is
essentially constant on Qk

j ; that is,

(6.18) sup
x∈Qk

j

d(x0, x) ≤ R inf
x∈Qk

j

d(x0, x),

for some constant R ≥ 1 independent of k and j. In fact, we will show that (6.18) is
true with Qk

j replaced by the ball Ak
j = N−1

0 Bk
j ⊇ Qk

j . To that end, fix (k, j) ∈ H

and choose x ∈ Ak
j . We have that

d(x0, x) ≤ A0[d(x0, xc(Q
k
j )) + d(xc(Q

k
j ), x)]

≤ A0[d(x0, xc(Q
k
j )) + Cdd

k
0] ≤

(
A0 +

1

2

)
d(x0, xc(Q

k
j )).

Conversely,

d(x0, xc(Q
k
j )) ≤ A0[d(x, xc(Q

k
j )) + d(x0, x)]

=
1

2
N0d

k
0 + A0d(x0, x) ≤

1

2
d(x0, xc(Q

k
j )) + A0d(x0, x),

and so by rearranging terms,

d(x0, xc(Q
k
j )) ≤ 2A0d(x0, x).

It follows that d(x0, xc(Q
k
j )) ≈ d(x0, x). This is equivalent to (6.18).
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To now estimate I3, we need to divide H into two subsets,

H1 = {(k, j) ∈ H : σ(Qk
j ) ≤ 1}, H2 = {(k, j) ∈ H : σ(Qk

j ) > 1}.

We sum first over H1. Let x+ ∈ Ak
j be the point which (by continuity of p(·) ∈ LH0)

satisfies p+(A
k
j ) = p(x+). Then by the LH∞ condition and (6.18), for all x ∈ Qk

j ,

|p+(Q
k
j )− p(x)| ≤ |p(x+)− p∞|+ |p(x)− p∞|

≤
C∞

log(e + d(x0, x+))
+

C∞

log(e + d(x0, x))

≤ C∞

[
1

log(e+ (RA0)−1d(x0, x))
+

1

log(e+ d(x0, x))

]

≤
C∞(RA0 + 1)

log(e + d(x0, x))
.

This provides the necessary condition to apply Lemma 2.9, from which (bounding
the second term with (6.12) as before) we get

∑

(k,j)∈H1

ˆ

Ek
j

(
−

ˆ

Qk
j

f2(y) dµ

)p(x)

w(x)p(x) dµ ≤ Ct

∑

(k,j)∈H1

ˆ

Ek
j

(
−

ˆ

Qk
j

f2(y) dµ

)p+(Qk
j )

+ 1.

By appealing to Lemma 2.11 for the inequality

µ(Qk
j )

p(x)−p+(Qk
j ) ≤ C,

we may bound the sum on the right by

C
∑

(k,j)∈H1

ˆ

Ek
j

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p+(Qk
j )

σ(Qk
j )

p+(Qk
j )µ(Qk

j )
−p(x)w(x)p(x) dµ,

and since f2σ
−1 ≤ 1, by Lemma 2.10 we may continue to estimate

≤ C
∑

(k,j)∈H1

ˆ

Ek
j

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p∞

σ(Qk
j )

p+(Qk
j )µ(Qk

j )
−p(x)w(x)p(x) dµ

+ C
∑

(k,j)∈H1

σ(Qk
j )

p+(Qk
j )µ(Qk

j )
−p(x) w(x)p(x)

(e+ d(x0, x))tp−
dµ = CJ1 + CJ2.

To estimate J2 we use that σ(Qk
j ) ≤ 1, then apply (6.6)—together with the fact that

σ(Qk
j ) ≤ Cσ(Ek

j ), as used in the f1 argument—and subsequently (6.18), to get that

J2 ≤
∑

(k,j)∈H1

sup
x∈Ek

j

(e+ d(x0, x))
−tp−

ˆ

Ek
j

σ(Qk
j )

p−(Qk
j )µ(Qk

j )
−p(x)w(x)p(x) dµ

≤ C
∑

(k,j)∈H1

sup
x∈Ek

j

(e+ d(x0, x))
−tp−σ(Ek

j )

≤ C
∑

(k,j)∈H1

ˆ

Ek
j

σ(x)

(e+ d(x0, x))tp−
dµ

≤ C

ˆ

X

σ(x)

(e+ d(x0, x))tp−
dµ,
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which is the same quantity as the second term in (6.17), which we argued was bounded
by a constant at the end of the estimate for I2.

Similarly, to estimate J1 we may use that σ(Qk
j ) ≤ 1 and (6.6) to get that

J1 ≤ C
∑

(k,j)∈H1

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p∞

σ(Qk
j ).

Again using that σ(Qk
j ) ≤ Cσ(Ek

j ), we get that

≤ C
∑

(k,j)∈H1

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y)σ(y)
−1σ(y) dµ

)p∞

σ(Ek
j )

≤ C

ˆ

X

Mσ(f2σ
−1)(x)p∞σ(x) dµ.

But this is yet another quantity that appears near the end of the I2 estimate, and
thus it is bounded by a constant. This completes the estimate for H1.

Finally, we now estimate the sum over H2. By Lemma 2.8,
ˆ

Qk
j

f2(y) dµ ≤ c‖f2w‖p(·)‖w
−1χQk

j
‖p′(·) ≤ c‖w−1χQk

j
‖p′(·).

Thus we can apply Lemma 2.10 to get

∑

(k,j)∈H2

ˆ

Ek
j

(
−

ˆ

Qk
j

f2(y) dµ

)p(x)

w(x)p(x) dµ

≤ C
∑

(k,j)∈H2

ˆ

Ek
j

(
c‖w−1χQk

j
‖−1
p′(·)

ˆ

Qk
j

f2(y) dµ

)p(x)(
‖w−1χQk

j
‖p′(·)

µ(Qk
j )

)p(x)

w(x)p(x) dµ

≤ C
∑

(k,j)∈H2

ˆ

Ek
j

(
‖wχQk

j
‖−1
p′(·)

ˆ

Qk
j

f2(y) dµ

)p∞ (‖w−1χQk
j
‖p′(·)

µ(Qk
j )

)p(x)

w(x)p(x) dµ

+
∑

(k,j)∈H2

ˆ

Ek
j

(
‖w−1χQk

j
‖p′(·)

µ(Qk
j )

)p(x)
w(x)p(x)

(e+ d(x0, x))tp−
dµ

= K1 +K2.

To estimate K2, note that 1 ≤ σ(Qk
j ) ≤ Cσ(Ek

j ), so σ(Ek
j ) > ǫ for some fixed constant

ǫ > 0. Therefore, by (6.10) and (6.18) we have that

K2 ≤ ǫ−1
∑

(k,j)∈H2

sup
x∈Ek

j

(e + d(x0, x))
−tp−ǫ

ˆ

Qk
j

(
‖w−1χQk

j
‖p′(·)

µ(Qk
j )

)p(x)

w(x)p(x) dµ

≤ C
∑

(k,j)∈H2

sup
x∈Ek

j

(e + d(x0, x))
−tp−σ(Ek

j )

≤ C

ˆ

X

σ(x)

(e + d(x0, x))tp−
dµ,

which as we argued in J2 and I2 is bounded by a constant.
To estimate K1, we use (3.6) to get

‖w−1χQk
j
‖−p∞
p′(·) σ(Q

k)j)p∞ ≤ Cσ(Qk
j )

p∞−p∞/p′∞ = Cσ(Qk
j ).
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Therefore, applying (6.10) and that σ(Qk
j ) ≤ Cσ(Ek

j ), we have

K1 =
∑

(k,j)∈H2

ˆ

Ek
j

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y) dµ

)p∞

‖w−1χQk
j
‖
p(x)−p∞
p′(·)

σ(Qk
j )

p∞

µ(Qk
j )

p(x)
w(x)p(x) dµ

≤ C
∑

(k,j)∈H2

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y) dµ

)p∞

σ(Qk
j )

ˆ

Qk
j

‖w−1χQk
j
‖
p(x)
p′(·)µ(Q

k
j )

−p(x)w(x)p(x) dµ

≤ C
∑

(k,j)∈H2

(
1

σ(Qk
j )

ˆ

Qk
j

f2(y) dµ

)p∞

σ(Ek
j )

≤ C

ˆ

X

Mσ(f2σ
−1)(x)p∞σ(x) dµ.

This last term is the same quantity that appeared in (6.15), which as we argued in
the estimates for J2 and I2 is bounded by a constant. This completes the estimate
for I3, and thus gives us the desired estimate for f2, completing our proof of the
sufficiency of the Ap(·) condition in Theorem 1.13 for the strong-type inequality.

The finite case. If µ(X) < ∞, we may apply the same proof as in the infinite
case, with some modifications. For each i = 1, 2, in accordance with Lemma 4.5, we
may only construct the CZ cubes at heights greater than λ0 = −

´

X
fi dµ. Note that

with the assumption that ‖fw‖p(·) = 1 as before, we have from Lemma 2.8 that

λ0 ≤ 4µ(X)−1‖fiw‖p(·)‖w
−1‖p′(·) ≤ 4µ(X)−1‖w−1‖p′(·).

By Lemma 2.3, this is bounded by a constant, since from the Ap(·) condition with
B = X,

‖w−1‖p′(·) ≤ Cµ(X)‖w‖−1
p(·).

Fix a = 2CCZ and let Qk
j denote, as before, the CZ cubes of fi at height ak, where

k ≥ k0 = ⌊loga λ0 + 1⌋. These cubes cover only Xk0 = {x ∈ X : MDfi(x) > λ0}. If,
however, we define

X0 = {MDfi(x) ≤ λ0} = X \Xk0

then

X =

(
∞⋃

k=k0

Xk \Xk+1

)
⋃

X0.

Thus the analogous argument to (6.4) proceeds as
ˆ

X

MDfi(x)
p(x)w(x)p(x) dµ

=

ˆ

X0

MDfi(x)
p(x)w(x)p(x) dµ+

∞∑

k=k0

ˆ

Xk\Xk+1

MDfi(x)
p(x)w(x)p(x) dµ

≤ λ0W (X) + C
∑

k≥k0,j

ˆ

Ek
j

(
ˆ

Qk
j

fiσ
−1σ dµ

)p(x)

µ(Qk
j )

−p(x)w(x)p(x) dµ.

Since λ0 is bounded by a constant, the first term depends only on X, D, and p(·).
For f1, the second term may be controlled by an argument identical to that of the
infinite case.

The f2 case, on the other hand, simplifies greatly: essentially, we just choose
Q0 = X, and so I2 = I3 = 0. More explicitly, since f2σ

−1 ≤ 1, if σ(X) ≥ 1, then by
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(6.6) and the fact that σ(Qk
j ) ≤ Cσ(Ek

j ), the second term in the above expression is
bounded by

∑

k≥k0,j

ˆ

Ek
j

σ(Qk
j )

p(x)µ(Qk
j )

−p(x)w(x)p(x) dµ

≤
∑

k≥k0,j

ˆ

Ek
j

σ(X)p(x)

(
σ(Qk

j )

σ(X)

)p(x)

µ(Qk
j )

−p(x)w(x)p(x) dµ

≤ σ(X)p+
∑

k≥k0,j

ˆ

Ek
j

(
σ(Qk

j )

σ(X)

)p−(Qk
j )

µ(Qk
j )

−p(x)w(x)p(x) dµ

≤ σ(X)p+−p−
∑

k≥k0,j

Cσ(Ek
j ) ≤ Cσ(X)p+−p−+1.

If σ(X) < 1, simply exchange p+ with p−. This proves sufficiency for µ(X) < ∞.
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