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Sharp growth conditions for boundedness of
maximal function in generalized Orlicz spaces

Petteri Harjulehto and Arttu Karppinen

Abstract. We study sharp growth conditions for the boundedness of the Hardy–Littlewood

maximal function in the generalized Orlicz spaces. We assume that the generalized Orlicz function

ϕ(x, t) satisfies the standard continuity properties (A0), (A1) and (A2). We show that if the Hardy–

Littlewood maximal function is bounded from the generalized Orlicz space to itself then ϕ(x, t)/tp is

almost increasing for large t for some p > 1. Moreover we show that the Hardy–Littlewood maximal

function is bounded from the generalized Orlicz space Lϕ(Rn) to itself if and only if ϕ is weakly

equivalent to a generalized Orlicz function ψ satisfying (A0), (A1) and (A2) for which ψ(x, t)/tp is

almost increasing for all t > 0 and some p > 1.

Tarkat kasvuehdot maksimaalifunktion rajoittuneisuudelle

yleistetyissä Orliczin avaruuksissa

Tiivistelmä. Tutkimme tarkkoja kasvuehtoja Hardy–Littlewoodin maksimaalifunktion ra-

joittuneisuudelle yleistetyissä Orlicz-avaruuksissa. Oletamme, että yleistetty Orlicz-funktio ϕ(x, t)

toteuttaa tyypilliset jatkuvuusehdot (A0), (A1) ja (A2). Näytämme, että jos Hardy–Littlewoodin

maksimaalifunktio on rajoitettu yleistetystä Orlicz-avaruudesta itselleen, niin ϕ(x, t)/tp on melkein

kasvava suurilla t jollakin p > 1. Tämän lisäksi osoitamme, että Hardy–Littlewoodin maksimaali-

funktio on rajoitettu yleistetystä Orlicz-avaruudesta Lϕ(Rn) itselleen jos ja vain jos ϕ on heikosti

ekvivalentti yleistetyn Orlicz-funktion ψ kanssa, joka toteuttaa ehdot (A0), (A1), (A2) ja ψ(x, t)/tp

on melkein kasvava kaikilla t > 0 jollakin p > 1.

1. Introduction

The celebrated Hardy–Littlewood maximal function

Mf(x) = sup
B∋x

1

|B|

ˆ

B

|f(x)| dx

is known to be bounded in the classical Lebesgue spaces Lp(Rn) if and only if p > 1.
This was first proved by Hardy and Littlewood [12] in one dimensional case, and by
Wiener [28] in the case n > 2.

Gallardo [11] proved in the classical Orlicz spaces that the Hardy–Littlewood
maximal function is bounded if and only if the complementary function satisfies ∆2-
condition. This characterization is for N-functions. The complementary function

ϕ∗ satisfies ∆2-condition if and only if there exists p > 1 such that ϕ(t)
tp

is almost
increasing for all t > 0. We call the latter condition (aInc), for the precise definition
see Section 2. For some recent studies in this topic, see for example [17, 22].

In the variable exponent space Lp(·)(Rn) the Hardy–Littlewood maximal function
is bounded provided that 1

p
is globally Hölder continuous and p− := inf p(x) > 1.
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The right modulus of continuity for p was first observed by Diening [7], and for
later development see example [2, 6, 15, 18, 23, 24, 27]. The condition p− > 1, not
p(x) > 1 for all x, is also necessary for the boundedness of the maximal function [9,

Theorem 6.3]. Note that if p− > 1, then tp(x)

tp−
is increasing for every x and hence

(aInc) holds.
Generalized Orlicz spaces, also known as Musielak–Orlicz spaces, have gained

steady increase of interest over the last years. Many problems of harmonic analysis
and regularity theory have been studied in this setting. One of the main motivations
for these studies is to create a unified theory of previously mentioned and other
function spaces. Many standard results, such as necessity of superlinear growth
rate for boundedness of the maximal function or Hölder continuity of a solution
to an elliptic partial differential equation, have had noticeably different approaches
between Orlicz and variable exponent spaces, see for example [1, 10, 19].

In the generalized Orlicz spaces the integrability is given by a function ϕ(x, f(x)).
For the definitions see Section 2. Hästö [16] showed that the Hardy–Littlewood
maximal function is bounded from the generalized Orlicz spaces to itself provided
that ϕ satisfies the standard assumptions (A0), (A1) and (A2), and also (aInc). For
the former result and further developments see for example [8, 13, 20, 21, 25, 26]. In
this article we study here the necessity of (aInc).

We aim to give a complete picture of the relation between almost increasingness

of ϕ(x,t)
tp

(the (aInc)p condition) and boundedness of the Hardy–Littlewood maximal
function. Contrary to known special cases, in generalized Orlicz spaces the bound-
edness of the maximal function does not imply that ϕ satisfies (aInc)p for all t and
some p > 1, see Theorem 3.1. A concrete Φ-function demonstrating this phenom-
enon is given in Example 3.2. The measure of the set where (aInc)p fails plays a
significant role as shown in Example 3.4, where the maximal function is not bounded
with similar assumptions on the function ϕ.

In Theorem 4.1 we show that boundedness of maximal function implies that ϕ
satisfies (aInc)p for any t > t0 > 0 and some p > 1. To achieve a natural growth rate
also for small t we need to modify the function ϕ somehow. As the first option we
show in Proposition 4.8 that an asymptotic (not generalized) Orlicz function from
the assumption (A2) satisfies (aInc)p for every t. The second modification option
is to have a weakly equivalent generalized Orlicz function ψ. In Theorem 4.12 we
show that boundedness of the maximal function is equivalent to existence of a weakly
equivalent generalized Orlicz function satisfying (aInc)p for all t > 0 and some p > 1.

We have summarized our results in the following table. All of the assumptions
include that ϕ satisfies (A0), (A1) and (A2).

Assumptions Outcome Result
ϕ satisfies (aInc) for large t
in Ω and (aInc) fails for
small t in G, |G| <∞

⇒M is bounded in Lϕ(Ω) Theorem 3.1

ϕ satisfies (aInc) for large t ⇒M can be unbounded in Lϕ(Rn) Example 3.4
in R

n and (aInc) fails for
⇒M can be bounded in Lϕ(Rn) Example 3.5

small t in R
n

M is bounded in Lϕ(Rn)

⇒ ϕ satisfies (aInc) for large t Theorem 4.1
⇒ Modified ϕ∞ satisfies (aInc) for all t Proposition 4.8
⇔ ∃ ψ satisfying (A0), (A1), (A2)

Theorem 4.12
and (aInc) for all t such that ϕ ∼ ψ
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Let us describe the essence of our proofs. We start by showing (aInc)p of ϕ for
large t and (aInc)p of ϕ∞ for small t. We also show, that the range of validity for
(aInc)p can be always enlarged to any interval (t0, t1), where 0 < t0 < t1 < ∞.
Therefore we can match the ranges of t between ϕ and ϕ∞ and glue them together
to obtain a new generalized function satisfying (aInc)p for all t > 0. The counter
examples in Sections 3 and 4 also employ glueing of function, but this time with linear
or quadratic growth. This time the functions are combined at a point depending on
the value of the function and x. This way the glueing is done at different level sets at
different points in space and therefore we can change the growth rate of ϕ according
to asymptotic behaviour of the maximal function.

This flexible interplay between x and t is not possible in many of the known non-
autonomous special cases such as with variable exponent or double phase growth
rates. Therefore these special cases do not rule out for necessary assumption of
boundedness of the maximal function to hold for small t, see [9, Theorem 6.3] and
Proposition 4.11.

2. Generalized Φ-functions

L-almost increasing means that a function satisfies f(s) 6 Lf(t) for all s < t
and some constant L > 1. L-almost decreasing is defined analogously. If there exists
a constant C such that f(x) 6 Cg(x) for almost every x, then we write f . g.
If f . g . f , then we write f ≈ g. In this article Ω ⊂ R

n is an open set. For
any measurable set A we denote χA as its characteristic function and |A| as its
Lebesgue measure. If X and Y are normed spaces, the norm in X ∩ Y is defined as
‖ · ‖X∩Y = max{‖ · ‖X , ‖ · ‖Y }.

Definition 2.1. We say that ϕ : Ω × [0,∞) → [0,∞] is a weak (generalized)
Φ-function, and write ϕ ∈ Φw(Ω), if the following conditions hold:

• For every measurable function f : Ω → R the function x 7→ ϕ(x, f(x)) is
measurable and for every x ∈ Ω the function t 7→ ϕ(x, t) is non-decreasing.

• ϕ(x, 0) = lim
t→0+

ϕ(x, t) = 0 and lim
t→∞

ϕ(x, t) = ∞ for every x ∈ Ω.

• The function t 7→ ϕ(x,t)
t

is L-almost increasing on (0,∞) with L independent
of x.

If ϕ ∈ Φw(Ω) and additionally t 7→ ϕ(x, t) is convex and left-continuous for almost
every x, then ϕ is a convex Φ-function, and we write ϕ ∈ Φc(Ω). If ϕ ∈ Φw(Ω) and
additionally t 7→ ϕ(x, t) is convex and continuous in the topology of [0,∞] for almost
every x, then ϕ is a strong Φ-function, and we write ϕ ∈ Φs(Ω).

If ϕ does not depend on x, then we omit the set and write ϕ ∈ Φw, ϕ ∈ Φc or
ϕ ∈ Φs.

A function ϕ ∈ Φc is called N-function if ϕ(t) ∈ (0,∞) for all t > 0, limt→0+
ϕ(t)
t

=

0 and limt→∞
ϕ(t)
t

= ∞. N-function is always continuous, since it is finite and convex,
and thus it is a strong Φ-function.

Two functions ϕ and ψ are equivalent, ϕ ≃ ψ, if there exists L > 1 such that
ψ(x, t

L
) 6 ϕ(x, t) 6 ψ(x, Lt) for every x ∈ Ω and every t > 0. Equivalent Φ-functions

give rise to the same space with comparable norms.
Two functions ϕ and ψ are weakly equivalent, ϕ ∼ ψ, if there exists L > 1 and

h ∈ L1(Ω) such that ψ(x, t) 6 ϕ(x, Lt) + h(x) and ϕ(x, t) 6 ψ(x, Lt) + h(x) for all
t > 0 and almost all x ∈ Ω. Weakly equivalent Φ-functions give rise to the same
space with comparable norms.
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By ϕ−1(x, t) we mean a generalized inverse defined by

ϕ−1(x, t) := inf{τ > 0: ϕ(x, τ) > t}.

For ϕ ∈ Φw(Ω) we define a conjugate ϕ-function ϕ∗ ∈ Φw(Ω) by

ϕ∗(x, t) := sup
s>0

(

st− ϕ(x, s)
)

.

It is also noteworthy that ϕ∗ ∈ Φc(Ω) always.
We collect some results how the generalized inverse behaves. For the proofs see

Lemma 2.3.3, Lemma 2.3.9 and Theorem 2.4.8 in [14].

Lemma 2.2. (a) ϕ−1(x, ϕ(x, t)) 6 t.
(b) ϕ−1(x, ϕ(x, t)) ≈ t when ϕ(x, t) ∈ (0,∞).
(c) ϕ(x, ϕ−1(x, t)) = t when ϕ ∈ Φs(Ω),
(d) ϕ−1(x, t) (ϕ∗)−1 (x, t) ≈ t.

Definition 2.3. Let A ⊂ Ω and T ⊂ [0,∞) We say that ϕ ∈ Φw(Ω) satisfies
(aInc)p on A× T if there exists a constant a > 1 such that

ϕ(x, t)

tp
6 a

ϕ(x, s)

sp

for all t, s ∈ T , t < s, and almost all x ∈ A. If no set is mentioned, then (aInc)p is
assumed to hold for all s > t > 0 and almost all x ∈ Ω. We say that (aInc) holds if
(aInc)p holds for some p > 1. We say that (aInc)∞ holds if there exists t0 such that
ϕ satisfies (aInc) on Ω× [t0,∞).

Lemma 2.4. Let T ⊂ (0,∞) be an interval. Let ϕ : Ω × [0,∞) → [0,∞) and

ψ : Ω × [0,∞) → [0,∞) be increasing with ϕ ≃ ψ. If ϕ satisfies (aInc)p on A × T ,

then ψ satisfies (aInc)p on A× T .

Proof. Let x ∈ A. Let s, t ∈ T with s < t and assume first that L2s < t, where
L > 1 is the constant from the equivalence. Note that then we have s 6 Ls 6 t/L 6 t,
and hence Ls, t/L ∈ T . By (aInc)p of ϕ with a constant a, we obtain

ψ(x, s)

sp
6 Lp

ϕ(x, Ls)

(Ls)p
6 aLp

ϕ(x, t/L)

(t/L)p
6 aL2pψ(x, t)

tp
.

Assume then that t ∈ (s, L2s] ∩ T . Using that ψ is increasing, we find that

ψ(x, s)

sp
6
ψ(x, t)

sp
=
tp

sp
ψ(x, t)

tp
6 L2pψ(x, t)

tp
.

We have shown that ψ satisfies (aInc)p with a constant aL2p and for the same range
of t than ϕ. �

We say that ϕ : Ω× [0,∞) → [0,∞) satisfies

(aDec)q if t 7→ ϕ(x,t)
tq

is Lq-almost decreasing in (0,∞) for some Lq > 1 and a.e. x ∈ Ω.

Conditions (aInc) and (aDec) correspond to the ∇2 and ∆2 conditions respec-
tively from the classical Orlicz space theory. The result for the next lemma shows
this correspondence for ∇2 and (aInc) with the additional restriction ”for t > t0”.
Traditionally ∇2 is formulated as ϕ∗ satisfying ∆2 condition, but here it is formu-
lated without any mentions of the conjugate function. This definition has been used
in the literature for example in [3].

Lemma 2.5. Let ϕ ∈ Φw(Ω). Then ϕ satisfies (aInc)∞ if and only if there exist

c > 1 and t0 > 0 such that 2cϕ(x, t) 6 ϕ(x, ct) for all t > t0 and almost all x ∈ Ω.
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Proof. Assume first that ϕ satisfies (aInc)∞p , p > 1. Then for t0 6 t < s we have

ϕ(x, t)

tp
6 a

ϕ(x, s)

sp
.

Let us choose c := (2a)1/(p−1) and s := ct. Then a straight calculation gives
2cϕ(x, t) 6 ϕ(x, ct) for t > t0.

Assume then that 2cϕ(x, t) 6 ϕ(x, ct) for all t > t0. Let s > t > t0. Choose an
integer k > 1 such that ck−1t < s 6 ckt. Then

ϕ(x, t) 6
1

2c
ϕ(x, ct) 6

1

(2c)2
ϕ(x, c2t) 6 . . . 6

1

(2c)k−1
ϕ(x, ck−1t) 6

1

(2c)k−1
ϕ(x, s).

Let p > 1. Then the previous inequality with s 6 ckt yields

ϕ(x, t)

(ckt)p
6

1

(2c)k−1

ϕ(x, s)

(ckt)p
6

1

(2c)k−1

ϕ(x, s)

sp

and furthermore

ϕ(x, t)

tp
6

cpk

(2c)k−1

ϕ(x, s)

sp
6 cp

( cp

2c

)k−1ϕ(x, s)

sp
.

Then we choose p so that cp

2c
= 1 i.e. p = log(2)

log(c)
+ 1 > 1. �

The next lemma shows that the set T in (aInc)∞ can be always enlarged.

Lemma 2.6. Let A ⊂ Ω, p > 1 and 0 < t1 < t2.

(a) If ϕ ∈ Φw(Ω) satisfies (aInc)p on A×[t2,∞) with a constant a, then ϕ satisfies

(aInc)p on A× [t1,∞) with a constant a2
(

t2
t1

)p−1
.

(b) If ϕ ∈ Φw(Ω) satisfies (aInc)p on A× (0, t1] with a constant a, then ϕ satisfies

(aInc)p on A× (0, t2] with a constant a2
(

t2
t1

)p−1
.

Proof. (a) Let x ∈ A. Assume first that t1 6 t 6 s 6 t2. Then by (aInc)1

ϕ(x, t)

tp
6 a

1

tp−1

ϕ(x, s)

s
= a

sp−1

tp−1

ϕ(x, s)

sp
6 a

tp−1
2

tp−1
1

ϕ(x, s)

sp
.

If t1 6 t 6 t2 6 s, then we obtain by the previous case and the assumption that

ϕ(x, t)

tp
6 a

tp−1
2

tp−1
1

ϕ(x, t2)

tp2
6 a2

tp−1
2

tp−1
1

ϕ(x, s)

sp
.

(b) The proof is similar than in case (a). �

We define several conditions.

Definition 2.7. We say that ϕ : Ω× [0,∞) → [0,∞) satisfies

(A0) if there exists β ∈ (0, 1] such that β 6 ϕ−1(x, 1) 6 1
β

for almost every x ∈ Ω;

(A1) if there exists β ∈ (0, 1) such that

βϕ−1(x, t) 6 ϕ−1(y, t)

for every t ∈ [1, 1
|B|

], almost every x, y ∈ B∩Ω and every ball B with |B| 6 1;

(A1’) if there exists β ∈ (0, 1) such that

ϕ(x, βt) 6 ϕ(y, t)

for every ϕ(y, t) ∈ [1, 1
|B|

], almost every x, y ∈ B ∩ Ω and every ball B with

|B| 6 1;
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(A2) if there exists ϕ∞ ∈ Φw, h ∈ L1(Ω) ∩ L∞(Ω), β ∈ (0, 1] and s > 0 such that

ϕ(x, βt) 6 ϕ∞(t) + h(x) and ϕ∞(βt) 6 ϕ(x, t) + h(x)

for almost every x ∈ Ω when ϕ∞(t) ∈ [0, s] and ϕ(x, t) ∈ [0, s], respectively.

Remark 2.8. (a) The conditions (A0)–(A2) are invariant under equivalence (≃).
However, this is not true for weak equivalence (∼) in general.

(b) (A0) holds if and only if there exists β ∈ (0, 1] such that ϕ(x, β) 6 1 and
ϕ(x, 1/β) > 1 for almost every x ∈ Ω.

(c) (A1) implies (A1’). (A0) and (A1’) imply (A1). See Proposition 4.1.5 and
Corollary 4.1.6 in [14].

(d) If conditions (A0)–(A2) hold for ϕ, then they hold also for ϕ∗ (see [14]).
(e) If (A2) holds for some s > 0, then it holds for s = 1, see [14, Lemma 4.2.9]

Ranges for the variable t are crucial in the assumptions (A1) and (A2). For
example if we assume (A1) to hold for all t < 1 also, it is not equivalent to the sharp
regularity conditions of the special cases such as log-Hölder continuity for variable
exponent case. In Table 1 we have collected conditions that imply (A0), (A1), (A2)
and (aInc) in the special cases. For the proof see Chapter 7 in [14] and in the case
of variable exponent double phase [5].

ϕ(x, t) (A0) (A1) (A2) (aInc)

ϕ(t) true true true same

tp(x)a(x) a ≈ 1 1
p ∈ C log Nekvinda p− > 1

tp + a(x)tq a ∈ L∞ a ∈ C
0,n

p
(q−p)

true p > 1

tp(x) + a(x)tq(x) a ∈ L∞











a ∈ C0,α,

q ∈ C
0, α

q− , p ∈ C log

q(x)
p(x) 6 1 + α

n

true p− > 1

Table 1. Conditions in special cases.

The generalized Orlicz space Lϕ(Ω) consists of measurable functions f satisfying
ˆ

Ω

ϕ(x, λf(x)) dx <∞

for some λ > 0. It is a quasi Banach space when equipped with a (quasi)norm

‖f‖Lϕ(Ω) := inf

{

λ > 0:

ˆ

Ω

ϕ

(

x,
f(x)

λ

)

dx 6 1

}

.

If the set Ω is understood, we abbreviate ‖f‖Lϕ(Ω) as ‖f‖ϕ.

Lemma 2.9. [14, Lemma 3.1.3(b)] Let ϕ ∈ Φw(Ω). If ϕ satisfies (aDec)q for

some q <∞, then

Lϕ(Ω) =

{

f measurable :

ˆ

Ω

ϕ(x, f(x)) dx <∞

}

.

The conjugate ϕ-function generates the associate space of Lϕ(Ω) as the following
Lemma shows.

Lemma 2.10. (Norm conjugate formula [14, Theorem 3.4.6]) If ϕ ∈ Φw(Ω), then

for all measurable f

‖f‖Lϕ(Ω) ≈ sup
‖g‖

Lϕ∗
(Ω)61

ˆ

Ω

|f(x)g(x)| dx.
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Lemma 2.11. [14, Proposition 4.4.11] Let ϕ ∈ Φw(Ω) satisfy (A0), (A1) and

(A2). Then for every ball B ⊂ Ω with |B| 6 1 and almost every y ∈ B we have

‖χB‖Lϕ(Ω) ≈
1

ϕ−1
(

y, 1
|B|

) .

3. Sufficient conditions

Let Ω ⊂ R
n be open, where n > 1. For every f ∈ L1

loc(Ω) we define the (non-
centered Hardy–Littlewood) maximal function by

Mf(x) := sup
B

1

|B|

ˆ

B∩Ω

|f(y)| dy,

where the supremum is taken over all open balls B containing the point x.
The maximal function M is bounded from Lϕ(Ω) to Lϕ(Ω) provided that ϕ ∈

Φw(Ω) satisfies (A0), (A1), (A2) and (aInc), see [14, Theorem 4.3.4]. This was first
proved by Hästö [16] in R

n, see also [8, 20, 21, 25]. Let us first show that (aInc) is
not necessary for the boundedness of the maximal function.

Theorem 3.1. Assume that ϕ ∈ Φw(Ω) satisfies (A0), (A1), (A2) and (aInc)∞.

Assume that there exists G ⊂ Ω such that 0 6 |G| < ∞ and ϕ satisfies (aInc)p for

some p > 1 on Ω \G. Then M : Lϕ(Ω) → Lϕ(Ω) is bounded.

Proof. Since ϕ satisfies (A0), it is equivalent with ψ1 ∈ Φs(Ω) with ψ1(x, 1) = 1
for almost every x by [14, Lemma 3.7.3]. Thus we need to show that M : Lψ1(Ω) →
Lψ1(Ω) is bounded.

Since ϕ ≃ ψ1, we obtain that ψ1 satisfies (A0), (A1), (A2), (aInc)∞ in R
n and

(aInc) in Ω \G. By Lemma 2.6 we may assume that (aInc)p for some p > 1 holds for
all t > 1 and almost all x.

Let us define ψ2 by

ψ2(x, t) :=











ψ1(x, t)
p, if x ∈ G, t ∈ [0, 1];

ψ1(x, t), if x ∈ G, t > 1;

ψ1(x, t), if x ∈ Ω \G.

A short calculation show that ψ2 ∈ Φw(Ω). Since ψ2(x, 1) = 1, it satisfies (A0).
We will show that ψ2 satisfies (A1’), which together with (A0) yields (A1). So

let us assume that ψ2(y, t) ∈ [1, 1/|B|] and x, y ∈ B ∩ Ω. Let β be from (A1’) of ψ1.
If βt > 1, then (A1’) follows from the definition and (A1’) of ψ1. If βt 6 1, then
ψ2(x, βt) 6 ψ2(x, 1) = 1 6 ψ2(y, t).

Let us then study (A2). Let ψ∞ and h1 ∈ L1(Ω) ∩ L∞(Ω) be from (A2) of ψ1.
Note that χG ∈ L1(Ω) ∩ L∞(Ω). For all t ∈ [0, 1] we have ψ1(x, t), ψ2(x, t) ∈ [0, 1].
We obtain for x ∈ G by (A2) of ψ1 that

ψ∞(βt) 6 ψ1(x, t) + h1(x) 6 h1(x) + χG(x) 6 ψ2(x, t) + h1(x) + χG(x)

and ψ2(x, βt) 6 χG(x) 6 ψ∞(t) + χG(x). If x ∈ Ω \G, then

ψ∞(βt) 6 ψ1(x, t) + h1(x) = ψ2(x, t) + h1(x)

and ψ2(x, βt) = ψ1(x, βt) 6 ψ∞(t) + h1(x). Thus ψ2 satisfies (A2) with ψ∞ and
h2 := h1 + χG.

Since ψ2(x, t) = ψ1(x, t) for t > 1, we obtain that ψ2 satisfies (aInc)p, p > 1, for
t > 1 on Ω, and for t > 0 on Ω \ G. It is also easy to see that we have (aInc)p for
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0 < t 6 1 on G. Then by continuity of t 7→ ψ2(x, t) we obtain that ψ2 satisfies (aInc)p
for t > 0 on Ω. Thus by [14, Theorem 4.3.4] M : Lψ2(Ω) → Lψ2(Ω) is bounded.

Let us finally show that Lψ1(Ω) = Lψ2(Ω) with comparable norm, since this yields
that M : Lψ1(Ω) → Lψ1(Ω) is bounded. For t > 1, ψ1(x, t) = ψ2(x, t). For t ∈ [0, 1]
we immediately obtain that

ψ1(x, t) 6 ψ2(x, t) + χG(x) and ψ2(x, t) 6 ψ1(x, t) + χG(x).

Thus ψ1 and ψ2 are weakly equivalent, and by [14, Corollary 3.2.7] Lψ1(Ω) = Lψ2(Ω)
with comparable norms. �

Next we give an example of a generalized Φ-function that satisfies the assumptions
of Theorem 3.1.

Example 3.2. Let

G :=

{

(x, y) : x > 1 and −
1

x2
6 y 6

1

x2

}

.

It is clear that the set G is unbounded and |G| = 2. Let us define ϕ : R2 × [0,∞) →
[0,∞) by

ϕ(x, t) :=











t, if x ∈ G and t ∈ [0, 1];

t2, if x ∈ G and t > 1;

t2, if x 6∈ G.

A short calculation gives ϕ ∈ Φs(R
2). Note that ϕ is not an N-function since

limt→0
ϕ(x,t)
t

= 1 6= 0 for x ∈ G. We will show that

(a) ϕ satisfies (A0), (A1), (A2) and (aInc)∞;
(b) ϕ does not satisfy (aInc) and it fails on an unbounded set with a finite mea-

sure;
(c) M : Lϕ(R2) → Lϕ(R2) is bounded.

(a) (A0) is clear since ϕ(x, 1) = 1 for all x ∈ R
2. For all ϕ(x, t) > 1, i.e. for

all t > 1, and all x, y ∈ R
2 we have ϕ(x, t) = ϕ(y, t), and thus (A1’) holds. These

together yield (A1).
Let us define that ϕ∞(t) := t2 and h := χG. Then h ∈ L1(R2) ∩ L∞(R2), and

ϕ∞(t) 6 ϕ(x, t) and ϕ(x, t) 6 ϕ∞(t) + h(x)

for all x ∈ R
2 and all t ∈ [0, 1], and thus especially if ϕ(x, t), ϕ∞(t) ∈ [0, 1]. Thus

(A2) holds with β = 1. (aInc)∞2 is clear for t > 1.
(b) ϕ does not satisfy (aInc) for t ∈ [0, 1] on G, since for all p > 1 we have

limt→0+
ϕ(x,t)
tp

= ∞.
(c) Now the boundedness of the maximal function follows by Theorem 3.1.

In a bounded domain (A2) is trivially satisfied. By choosing that the exceptional
set G is the whole bounded domain, we obtain by Theorem 3.1 the following corollary.

Corollary 3.3. Let Ω ⊂ R
n be bounded. Assume that ϕ ∈ Φw(Ω) satisfies (A0),

(A1) and (aInc)∞. Then M : Lϕ(Ω) → Lϕ(Ω) is bounded.

The next example shows that if the exceptional set G has an infinite measure,
then the maximal function is not necessarily bounded. More precisely we give a
generalized Φ-function ϕ that satisfies (A0), (A1), (A2) and (aInc)∞, and show that
M : Lϕ(Rn) → Lϕ(Rn) is not bounded. Here (aInc) fails for every x ∈ R

n. The key
difference to previous example is that now the asymptote ϕ∞ has linear growth.
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Example 3.4. Suppose that the dimension n is at least 2. Let us define

ϕ(x, t) :=

{

t, if 0 6 t 6 1
|x|+2

;

t2 + t, if t > 1
|x|+2

.

Now we have

ϕ(x, t)

t
=

{

1, if 0 6 t 6 1
|x|+2

;

t+ 1, if t > 1
|x|+2

.

and hence ϕ satisfies (Inc)1. The other conditions of generalized Φ-function are clear,
and thus ϕ ∈ Φw(R

n). Moreover ϕ is left-continuous, but not convex.
ϕ satisfies (A0) since ϕ(x, 1) = 2 for all x ∈ R

n. If ϕ(y, t) > 1, then ϕ(y, t) = t+t2,
and hence ϕ(x, βt) 6 t + t2 = ϕ(y, t) for all x, y ∈ R

n. Thus (A1’) holds, and this
together (A0) yield (A1).

Let ϕ∞(t) := t and h ≡ 0. Then

ϕ∞(t) 6 ϕ(x, t) and ϕ
(

x,
t

2

)

6
t2

4
+
t

2
6
t

4
+
t

2
6 ϕ∞(t)

for all t ∈ [0, 1]. Therefore these inequalities are especially satisfied for t such that
ϕ(x, t), ϕ∞(t) ∈ [0, 1] for all x and thus (A2) holds with β = 1

2
.

Now we have verified that ϕ ∈ Φw(Ω) satisfies (A0), (A1) and (A2). Since

ϕ(x, t)

t2
6 1 +

1

t
6 2 6 2

(s2 + s

s2

)

= 2
ϕ(x, s)

s2

for 1 6 t < s, we find that ϕ satisfies (aInc)∞2 with a constant 2. Similarly we can
show that ϕ satisfies (aDec)2 for t > 0. Since for every p > 1 and every x ∈ R

n, we
have

lim
t→0+

ϕ(x, t)

tp
= lim

t→0+

t

tp
= ∞,

ϕ does not satisfy (aInc).
Let us choose f(x) := χB(0,1)(x), and note that f ∈ Lϕ(Rn) due to (A0). Standard

calculations yield Mf(x) ≈ 1
(|x|+1)n

. As n > 1, we know that |x|n grows faster

than |x| and so we obtain a radius R such that c
(|x|+1)n

6 1
|x|+2

for all x ∈ R
n \

B(0, R). Therefore, for such x, the maximal function is small enough to guarantee
ϕ(x,Mf(x)) = c

(|x|+1)n
but large enough that

ˆ

Rn

ϕ(x,Mf(x)) dx >

ˆ

Rn\B(0,R)

c

(|x|+ 1)n
dx = ∞.

Since ϕ satisfies (aDec)2 this yields that Mf 6∈ Lϕ(Rn) due to Lemma 2.9.

The next example shows that in some cases the maximal function is bounded
even if the exceptional set G has an infinite measure.

Example 3.5. Let us define

ϕ(x, t) :=

{

t
(|x|+1)n

, if 0 6 t 6 1
(|x|+1)n

;

t2, if t > 1
(|x|+1)n

.

Now we have

ϕ(x, t)

t
=

{

1
(|x|+1)n

, if 0 6 t 6 1
(|x|+1)n

t, if t > 1
(|x|+1)n

.
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and hence ϕ satisfies (Inc)1. The other conditions of generalized Φ-function are clear,
and thus ϕ ∈ Φw(R

n). Moreover ϕ is continuous, but not necessarily convex.
We have

(3.6) t2 6 ϕ(x, t) 6 t2 +
1

(|x|+ 1)2n

for every t > 0 and x ∈ R
n. Let us denote h := 1

(|x|+1)2n
, and note, by standard

calculations, that h ∈ L1(Rn) ∩ L∞(Rn). Hence we have ϕ ∼ t2, and thus by [14,
Corollary 3.2.7] Lϕ(Rn) = L2(Rn) with comparable norm. Hence M : Lϕ(Rn) →
Lϕ(Rn) is bounded.

(A0) holds since ϕ(x, 1) = 1 for all x. (A1) holds since ϕ−1(x, t) = t1/2 is
independent of x for all t > 1. (A2) holds by (3.6) with ϕ∞(t) := t2 and h. (aInc)

fails since for all p > 1 and all x we have limt→0+
ϕ(x,t)
tp

= ∞.

4. Necessary conditions

Our first main result shows that boundedness of maximal function under as-
sumptions (A0), (A1) and (A2) implies that ϕ satisfies (aInc)∞. The proof is a
generalization of the proof by Gallardo [11] and it is based on estimates of norms
of characteristic functions in suitable balls and annuli by means of the conjugate
Φ-function. The proof fails for small t since there is no way to estimate ϕ(x, t) by
ϕ(y, t) for t 6 1 with (A1).

Let us write Ωε := {x ∈ Ω: dist(x,Rn \ Ω) > ε}.

Theorem 4.1. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1) and (A2), and suppose that

the maximal function is bounded from Lϕ(Ω) to Lϕ(Ω). Then for every ε > 0 we

obtain that ϕ|Ωε satisfies (aInc)∞.

By choosing Ω = R
n in the theorem, we obtain that ϕ satisfies (aInc)∞.

Proof. Assume first that ϕ ∈ Φs(Ω). By assumption ‖Mf‖ϕ 6 K‖f‖ϕ for some
K > 1 and all f ∈ Lϕ(Ω). Let t > 1 and s > 1, define ωn := |B(0, 1)| and let

Bt(x0) := B
(

x0,
(

1
ωnt

)1/n
)

. A direct calculation yields

|Bt(x0)| = ωn

(

1

(ωnt)1/n

)n

=
1

t
.(4.2)

Let us choose t0 > 1 so that 3Bt0(x0) ⊂ Ω for all x0 ∈ Ωε. For now on assume that
t > t0.

We also have the inclusion Bts(x0) ⊂ B(x, 2|x− x0|) for all x ∈ Bt(x0) \B
ts(x0).

Therefore, if we choose the ball B(x, 2|x − x0|) in the maximal function, we get a
pointwise estimate

MχBts(x) = sup
r>0

 

B(x,r)

χBts(y) dy >
1

|B(x, 2|x− x0|)|

ˆ

B(x,2|x−x0|)

χBts(y) dy

=
1

2nωn|x− x0|n
|Bts| =

1

2nωn|x− x0|nts

(4.3)

for x ∈ Bt(x0) \B
ts(x0).

Choose g(x) := (ϕ∗)−1 (x, t)χBt(x0)\Bts(x0)(x), and note that ‖g‖ϕ∗ 6 1 because
ˆ

Bt(x0)\Bts(x0)

ϕ∗
(

x, (ϕ∗)−1(x, t)
)

dx 6

ˆ

Bt(x0)

t dx = |Bt(x0)| · t = 1.
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Note that this also yields that (ϕ∗)−1 (x, t) is finite for all t > t0 and almost all
x ∈ Bt(x0) \ B

ts(x0). Since ‖g‖ϕ∗ 6 1 we use g as a test function for the ϕ-norm of
MχBts in the Norm conjugate formula, Lemma 2.10. Thus

‖MχBts(x0)‖ϕ &

ˆ

Ω

MχBts(x0)(x)g(x) dx =

ˆ

Bt(x0)\Bts(x0)

MχBts(x0)(x) (ϕ
∗)−1 (x, t) dx.

Since ϕ satisfies (A1), so does ϕ∗, as stated in Remark 2.8. By (4.2) we have 1 6 t =
1

|Bt(x0)|
and (A1) yields

(4.4) β (ϕ∗)−1 (y, t) 6 (ϕ∗)−1 (x, t)

for all y ∈ Bt(x0) \N , where |N | = 0. This additionally confirms that (ϕ∗)−1 (y, t) is
finite for almost every y ∈ Bt(x0). We continue the estimate with (4.3) and obtain

‖MχBts(x0)‖ϕ > β (ϕ∗)−1 (y, t)

ˆ

Bt(x0)\Bts(x0)

MχBts(x0)(x) dx

> β (ϕ∗)−1 (y, t)
1

2nωnts

ˆ

Bt(x0)\Bts(x0)

|x− x0|
−n dx

= c(n)β (ϕ∗)−1 (y, t)
1

2nωnts

ˆ
1

(ωnt)1/n

1

(ωnst)1/n

̺−n̺n−1 d̺ ≈
(ϕ∗)−1 (y, t)

ts
ln(s).

On the other hand by Lemmata 2.11 and 2.2 we can estimate the norm of the
characteristic function of a ball Bts(x0):

‖χBts(x0)‖ϕ .
1

ϕ−1
(

y, 1
|Bts(x0)|

) .
(ϕ∗)−1 (y, 1

|Bts(x0)|
)

1
|Bts(x0)|

= |Bts(x0)| (ϕ
∗)−1

(

y,
1

|Bts(x0)|

)

=
(ϕ∗)−1 (y, ts)

ts
.

We combine our estimates of the norms with the boundedness assumption

‖MχBts(x0)‖Lϕ(Ω) 6 K‖χBts‖Lϕ(Ω)

and get

(ϕ∗)−1 (y, t)

ts
ln(s) .

(ϕ∗)−1 (y, ts)

ts
,

for all t > t0 and all y ∈ Bt(x0) \N . Recall that the right hand side in the inequality
was deduced to be finite.

By ϕ−1(x, t) (ϕ∗)−1 (x, t) ≈ t, Lemma 2.2, we obtain

ϕ−1(y, ts) ln(s) 6 Csϕ−1(y, t)

for all t > t0 and all y ∈ Bt(x0)\N . Here the constant C is independent of t. Choose
s := e2C > 1 so the previous inequality becomes

2ϕ−1(y, e2Ct) 6 e2Cϕ−1(y, t).

Next we choose t′ such that t0 < t := ϕ(y, t′) <∞. Note that since ϕ is a continuous
Φ-function this is possible for every t > 0, and almost every y, where the exceptional
set N ′ is independent of t. The lower bound is satisfied by (A0) and (aInc)1 provided
that t′ > at0/β:

ϕ(y, t′)

t′
>

1

a

ϕ(y, 1/β)

1/β
>
β

a
.
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The situation where ϕ(y, t′) = ∞ is considered later. With the substitution we have

2ϕ−1(y, e2Cϕ(y, t′)) 6 e2Cϕ−1(y, ϕ(y, t′)) 6 e2Ct′

where the last inequality follows from Lemma 2.2(a). As ϕ(y, ·) is increasing, we
apply it to the both side of the inequality to get

ϕ(y, ϕ−1(y, e2Cϕ(y, t′))) 6 ϕ
(

y, 1
2
e2Ct′

)

.

Since ϕ ∈ Φs(Ω), this yields by Lemma 2.2 that

e2Cϕ(y, t′) 6 ϕ
(

y, 1
2
e2Ct′

)

(4.5)

for all t′ > at0/β with ϕ(y, t′) <∞, and all y ∈ Bt(x0) \ (N ∪N ′), where t = ϕ(y, t′)
and |N ∪N ′| = 0.

Note that in (4.5) the size of the ball, variable t, and t′ are connected by the
equality t = ϕ(y, t′), and thus when t′ grows the size of the ball shrinks and vice
versa. However two observations help us. First the equality can be replaced by the
inequality t > ϕ(y, t′), and secondly (4.5) holds trivially if the right hand side is
infinity. Then we do this with details.

The inequality (4.5) trivially holds also for all y ∈ Ω with ϕ(y, t′) = ∞. Recall
that the constant C is independent of t. The exceptional set in (A1) is same for all t,
with 1 6 t 6 1

|B|
. Moreover if t1 < t2, then Bt2(x0) ⊂ Bt1(x0), and thus we actually

have for a fixed t that (4.5) holds for all y ∈ Bt(x0) \ (N ∪N ′) with t′ > at0/β, and
ϕ(y, t′) 6 t or ϕ(y, t′) = ∞, where N is from (4.4) and N ′ is from (4.5). Since ϕ is
continuous t′ can have all the values from the range (at0/β, sup{s : ϕ(y, s) = t}).

For a fixed t we cover Ωε by balls Bt(xi) ⋐ 3Bt0(xi) ⊂ Ω, xi ∈ Ωε and i =
1, 2, 3, . . ., and obtain that (4.5) holds for all y ∈ Ωε \ Nt with t′ > at0/β, and
ϕ(y, t′) 6 t, where |Nt| = 0, and for all y ∈ Ωε with ϕ(y, t′) = ∞. Finally by taking
a sequence (ti) with ti → ∞, we see that (4.5) holds for all t′ > at0/β and all y in

∞
⋃

i=1

(

{y ∈ Ωε : ϕ(y, t
′) 6 ti} \Nti

)

∪ {y ∈ Ωε : ϕ(y, t
′) = ∞} = Ωε \

∞
⋃

i=1

Nti .

Thus we have that (4.5) holds for every t′ > at0/β and almost every x and y. Now
Lemma 2.5 yields that ϕ|Ωε satisfies (aInc)∞.

Assume then that ϕ ∈ Φw(Ω). Then by [14, Theorem 2.2.3] there exists ψ ∈
Φs(Ω) such that ϕ ≃ ψ. By the first part of the proof we see that ψ satisfies (aInc)∞,
and thus by Lemma 2.4 ϕ satisfies (aInc)∞. �

Next result generalize Gallardo’s result [11] from N -functions to all weak Φ-
functions.

Corollary 4.6. Let ϕ ∈ Φw and M : Lϕ(Rn) → Lϕ(Rn) be bounded. Then ϕ
satisfies (aInc).

Proof. Since ϕ is independent of x it satisfies (A0), (A1) and (A2) so Theorem 4.1
yields (aInc)∞ for ϕ. In the proof (A1) is used to remove (ϕ∗)−1(x, t) out from the
integral. Since ϕ is independent of x, this can be done for all t. Also, as we assume
that the maximal function is bounded in R

n, we do not need to assume that t > t0
like was done for domain Ω. Hence the same proof shows that ϕ satisfies (aInc). �

In Corollary 3.3 we show that in a bounded domain (A0), (A1) and (aInc)∞

implies the boundedness of the maximal function. Next example shows that (aInc)∞

can not be replaced by the condition of Theorem 4.1, i.e. ϕ|Ωε satisfies (aInc)∞.
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Example 4.7. Let Ω := (−2, 2) ⊂ R. Let us define p : Ω → [1, 2] by p(−2) =
1 = p(2), p(x) = 2 for x ∈ [−1, 1] and p is linear in [−2,−1] and in [1, 2]. Then p is
Lipschitz-continuous. Let ϕ : Ω× [0,∞) → [0,∞), ϕ(x, t) := tp(x).

Since 1p(x) = 1 for all x, ϕ satisfies (A0). Since p is Lipschitz-continuous, it is log-
Hölder continuous and thus (A1) holds for ϕ, [14, Proposition 7.1.2]. Let ε ∈ (0, 1).
In Ωε = (−2 + ε, 2− ε) we have p(x) > 1 + ε, and thus ϕ satisfies (Inc)1+ε. However
p− = inf p = 1 and thus by [10, Theorem 4.7.1 and Remark 4.7.2] the maximal
operator is not bounded from Lϕ(Ω) to itself.

The next results shows that ϕ∞ from (A2) satisfies (aInc) in [0, s] for small s.

Proposition 4.8. Let ϕ ∈ Φw(R
n) satisfy (A0) and (A2), and suppose that the

maximal function is bounded from Lϕ(Rn) to Lϕ(Rn). Then every ϕ∞ satisfies (aInc)
for t ∈ [0, s] for some s > 0. Additionally, every ϕ∞ can be modified to satisfy (aInc)
while preserving the (A2) property.

Note that by Lemma 2.6 we may increase s to be any finite number.

Proof. Since ϕ satisfies (A0), we obtain by [14, Lemma 4.2.9] that (A2) is equiv-
alent with

Lϕ(Rn) ∩ L∞(Rn) = Lϕ∞(Rn) ∩ L∞(Rn).(4.9)

Note that the assumption “ϕ∞ satisfies (A0)” in [14, Lemma 4.2.9] is trivially satisfied,
since ϕ∞ ∈ Φw, and that the norms of these spaces are comparable.

Since ϕ and ϕ∞ satisfy (A0), there exists β0 > 0 such that ϕ(x, β0) 6 1 6 ϕ(x, 1
β0
)

and ϕ∞(β0) 6 1 6 ϕ∞( 1
β0
). We define ψ ∈ Φw by

ψ(t) := max{ϕ∞(t),∞χ(β0,∞)(t)}.

Then Lϕ∞(Rn) ∩ L∞(Rn) = Lψ(Rn) with comparable norms. Together with (4.9)
we have that Lϕ(Rn) ∩ L∞(Rn) and Lψ(Rn) have comparable norms. Since the
maximal function is trivially bounded from L∞(Rn) → L∞(Rn) and bounded from
Lϕ(Rn) → Lϕ(Rn) by assumption, we obtain that M : Lψ(Rn) → Lψ(Rn) is bounded.

By Corollary 4.6 we obtain that ψ satisfies (aInc). But this yields that ϕ∞

satisfies (aInc) for [0, s] where s = β0, as was to be proved.
Next we show that ϕ∞ can be modified so that it satisfies (aInc) but remains

valid for (A2). By assumption ϕ satisfies (A2) i.e. the condition is satisfied for all t
such that ϕ∞(t) ∈ [0, 1] and ϕ(x, t) ∈ [0, 1] for almost every x ∈ Ω. Let

t1 :=
1

2
sup{t : max{ϕ∞(t), ϕ(x, t)} 6 1 for a.e. x ∈ Ω}.

By (A0) we have ϕ(x, β) 6 1, and hence t1 > 0. Now ϕ(x, t), ϕ∞(t) ∈ [0, 1] for all
t ∈ [0, t1]. Thus ϕ satisfies (A2) with ϕ∞ for all t ∈ [0, t1].

We have proved that all asymptotes ϕ∞ satisfy (aInc)p, where p > 1, in [0, s] and
by Lemma 2.6 we may assume that s = t1. We define a new asymptote

ϕ̃∞(t) :=

{

ϕ∞(t), t ∈ [0, t1];

ϕ∞(t1) + (t− t1)
p, t > t1.

A short calculation shows that ϕ̃∞ ∈ Φw and it satisfies (aInc)p. As ϕ̃∞(t) = ϕ∞(t)
when t ∈ [0, t1], it is a valid asymptote of ϕ for (A2). Thus we can always choose an
asymptote ϕ̃∞ that satisfies (aInc). �
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Every asymptote ϕ∞ might not necessarily satisfy (aInc)∞ but we can always
modify it for large t so that it satisfies (aInc). However, if h from (A2) satisfies
lim|x|→∞ h(x) = 0, we can choose a more natural asymptote that satisfies (aInc).

Remark 4.10. Let ϕ ∈ Φw(R
n) satisfy (A0), (A1) and (A2) and suppose that

the maximal function is bounded from Lϕ(Rn) to Lϕ(Rn). Let h ∈ L1(Rn)∩L∞(Rn)
be from (A2) of ϕ, and assume additionally that lim|x|→∞ h(x) = 0. In this case we
can choose that ϕ∞ = ϕ+

∞ or ϕ∞ = ϕ−
∞, where

ϕ+
∞(t) := lim sup

|x|→∞

ϕ(x, t) and ϕ−
∞(t) := lim inf

|x|→∞
ϕ(x, t).

ϕ+
∞, ϕ

−
∞ ∈ Φw since ϕ satisfies (A0) [14, Lemma 2.5.18].

Let us choose that ϕ∞ = ϕ+
∞. By Proposition 4.8 ϕ+

∞ satisfies (aInc)p1 for t ∈ [0, s]
for some p1 > 1 and s > 0 and by Theorem 4.1 ϕ satisfies (aInc)∞p2 for t ∈ [t0,∞)
and for some p2 > 1. Let p := min{p1, p2} and notice that ϕ satisfies (aInc)p for
t ∈ [t0,∞) and ϕ+

∞ satisfies (aInc)p for t ∈ [0, s]. By Lemma 2.6 we can decrease t0
to be smaller than s. Then we obtain for t0 6 t′ < s′ that

lim sup
|x|→∞

ϕ(x, t′)

t′p
6 a lim sup

|x|→∞

ϕ(x, s′)

s′p
,

and hence ϕ+
∞ satisfies (aInc)p for t ∈ [t0,∞) as well. Since it already satisfied (aInc)p

for [0, s], it satisfies (aInc)p for all t > 0 for some p > 1. Similarly we can show that
ϕ−
∞ satisfies (aInc).

Colombo and Mingione proved in the double phase case that the maximal func-
tion is bounded provided that 1 < p 6 q <∞, a ∈ C0,α(Ω) is bounded and q

p
6 1+ α

n

, [4]. The next corollary shows that p > 1 is necessary.

Corollary 4.11. Let ϕ(x, t) := tp + a(x)tq. If the maximal function is bounded

from Lϕ(Ω) to Lϕ(Ω), then p > 1.

Proof. We obtain by [14, Propositions 7.2.1] that ϕ satisfies (A0) and (A2) with
ϕ∞(t) = tp and h ≡ 0. Therefore Proposition 4.8 shows that ϕ∞(t) = tp satisfies
(aInc) for small t i.e. p > 1. �

Our second main result gives a sharp growth condition for boundedness of the
maximal function.

Theorem 4.12. Let ϕ ∈ Φw(R
n) satisfy (A0), (A1) and (A2). Then the Hardy–

Littlewood maximal function is bounded from Lϕ(Rn) to Lϕ(Rn) if and only if there

exists ψ ∈ Φw(R
n) such that ϕ and ψ are weakly equivalent and ψ satisfies (A0),

(A1), (A2) and (aInc).

Proof. Assume first that ψ satisfies (A0), (A1), (A2) and (aInc). Then by [14,
Theorem 4.3.4] M : Lψ(Rn) → Lψ(Rn) is bounded. Since ψ ∼ ϕ, we have Lψ(Rn) =
Lϕ(Rn) with comparable norms, and thus M : Lϕ(Rn) → Lϕ(Rn) is bounded.

Assume then that ϕ ∈ Φw(R
n) satisfies (A0) with constant β0, (A1) and (A2),

and M : Lϕ(Rn) → Lϕ(Rn) is bounded. Let ϕ∞ ∈ Φw, h ∈ L1(Rn) ∩ L∞(Rn), β2 < 1
and s > 0 be from (A2) of ϕ. Define

t1 :=
1

2
sup{t : max{ϕ∞(t), ϕ(x, t)} 6 1 for a.e. x ∈ Ω}.

Since ϕ satisfies (A0), we have ϕ(x, β0) 6 1 for almost all x, and thus t1 > 0.
Moreover ϕ∞(t1) 6 1 and ϕ(x, t1) 6 1 for almost every x. As in the proof of
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Proposition 4.8, we see that (A2) of ϕ holds for some s′ > 0 when we restrict ourselves
to t ∈ [0, t1]. We define

ψ(x, t) :=

{

ϕ∞(β2t), t ∈ [0, t1];

ϕ∞(β2t1) + max{ϕ(x, t)− ϕ∞(β2t1), 0}, t > t1.

We need to prove that it satisfies the properties in the claim.
Let us first show that ψ satisfies (aInc). By Proposition 4.8 and Lemma 2.6

ϕ∞ satisfies (aInc) for t ∈ (0, t1]. Since ϕ∞(β2t1) 6 ϕ∞(β2t1) + max{ϕ(x, t) −
ϕ∞(β2t1), 0}, we need only show that t 7→ ϕ∞(β2t1) + max{ϕ(x, t) − ϕ∞(β2t1), 0}
satisfies (aInc) for t ∈ [t1,∞). Thus by taking smaller of the two exponent we have
(aInc) for ψ.

Let us then study t 7→ ϕ∞(β2t1) + max{ϕ(x, t) − ϕ∞(β2t1), 0} on [t1,∞). By
Theorem 4.1 and Lemma 2.6 ϕ satisfies (aInc)p, p > 1 for t ∈ [t1,∞) with a constant
a. (A0) yields ϕ(x, 1/β0) > 1 for almost every x. Thus for t > 1/β0, we have
ϕ∞(β2t1) + max{ϕ(x, t) − ϕ∞(β2t1), 0} = ϕ(x, t), and hence (aInc)p is clear for t >
1/β0. If t1 6 s < t 6 1/β0, then

ϕ∞(β2t1) + max{ϕ(x, s)− ϕ∞(β2t1), 0}

sp

6
tp

sp
ϕ∞(β2t1)

tp
+max

{

a
ϕ(x, t)

tp
−
tp

sp
ϕ∞(β2t1)

tp
, 0
}

.

Depending which one is greater in the maximum, we have two cases:

ϕ∞(β2t1) + max{ϕ(x, s)− ϕ∞(β2t1), 0}

sp
6
tp

sp
ϕ∞(β2t1)

tp

6
1

(β0t1)p
ϕ∞(β2t1)

tp
6

1

(β0t1)p
ϕ∞(β2t1) + max{ϕ(x, t)− ϕ∞(β2t1), 0}

tp

or

ϕ∞(β2t1) + max{ϕ(x, s)− ϕ∞(β2t1), 0}

sp

6 a
ϕ(x, t)

tp
6 a

ϕ∞(β2t1) + max{ϕ(x, t)− ϕ∞(β2t1), 0}

tp
.

This completes the case t ∈ [t1, 1/β0].
Other properties of weak Φ-function follows easily, since both ϕ and ϕ∞ are weak

Φ-functions, and thus ψ ∈ Φw(Ω).
Clearly ψ(x, t1) 6 1. Let β0 be from (A0) of ϕ, as before. Then ϕ(x, 1/β0) > 1

and hence t1 < 1/β0. Thus we obtain ψ(x, 1/β0) = ϕ(x, 1/β0) > 1. These yield that
ψ satisfies (A0). Now because firstly ϕ satisfies (A1’) and ψ(x, t) = ϕ(x, t), when
ψ(x, t) > 1, and secondly ψ satisfies (A0), we conclude that ψ satisfies (A1). As
ψ(x, t) = ϕ∞(β2t) and ϕ∞(β2t) ∈ [0, s′] when t ∈ [0, t1], we see that ψ satisfies (A2)
with ϕ∞(β2t), h ≡ 0 and a constant 1.

Let us finally prove that ϕ ∼ ψ. If t ∈ [0, t1], then by (A2) of ϕ we get

ϕ(x, β2
2t) 6 ϕ∞(β2t) + h(x) = ψ(x, t) + h(x).

If on the other hand t > t1, then

ϕ(x, β2
2t) 6 ϕ(x, t) 6 ψ(x, t)

and therefore ϕ(x, β2
2t) 6 ψ(x, t) + h(x) for all t > 0.
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Let us now look the other direction. If t ∈ [0, t1], then by (A2) of ϕ we get

ψ(x, t) = ϕ∞(β2t) 6 ϕ(x, t) + h(x).

For t > t1 we have two cases: either ϕ(x, t) > ϕ∞(β2t1) or not. If this inequality
holds, then

ψ(x, t) = ϕ∞(β2t1) + max{ϕ(x, t)− ϕ∞(β2t1), 0} = ϕ(x, t).

Let us then consider the case ϕ(x, t) < ϕ∞(β2t1). Now since ϕ satisfies the condition
of (A2) for t = t1, we have

ψ(x, t) = ϕ∞(β2t1) + max{ϕ(x, t)− ϕ∞(β2t1), 0} = ϕ∞(β2t1) 6 ϕ(x, t1) + h(x)

6 ϕ(x, t) + h(x).

Therefore we also have that ψ(x, t) 6 ϕ(x, t) + h(x) for all t > 0. All in all, we have
shown that ϕ ∼ ψ with a constant β2

2 and function h from (A2) of ϕ. �
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