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On big pieces approximations
of parabolic hypersurfaces

Simon Bortz, John Hoffman, Steve Hofmann,
Jose Luis Luna-Garcia and Kaj Nyström

Abstract. Let Σ be a closed subset of Rn+1 which is parabolic Ahlfors–David regular and
assume that Σ satisfies a 2-sided corkscrew condition. Assume, in addition, that Σ is either time-
forwards Ahlfors–David regular, time-backwards Ahlfors–David regular, or parabolic uniform recti-
fiable. We then first prove that Σ satisfies a weak synchronized two cube condition. Based on this
we are able to revisit the argument of Nyström and Strömqvist (2009) and prove that Σ contains
uniform big pieces of Lip(1, 1/2) graphs. When Σ is parabolic uniformly rectifiable the construction
can be refined and in this case we prove that Σ contains uniform big pieces of regular parabolic
Lip(1, 1/2) graphs. Similar results hold if Ω ⊂ Rn+1 is a connected component of Rn+1 \ Σ and in
this context we also give a parabolic counterpart of the main result of Azzam et al. (2017) by prov-
ing that if Ω is a one-sided parabolic chord arc domain, and if Σ is parabolic uniformly rectifiable,
then Ω is in fact a parabolic chord arc domain. Our results give a flexible parabolic version of the
classical (elliptic) result of David and Jerison (1990) concerning the existence of uniform big pieces
of Lipschitz graphs for sets satisfying a two disc condition.

Parabolisten hyperpintojen likiarvioiminen suurten osien mielessä

Tiivistelmä. Olkoon Σ avaruuden Rn+1 suljettu osajoukko, joka toteuttaa sekä parabolisen
Ahlforsin–Davidin säännöllisyysehdon että kaksipuolisen korkkiruuviehdon. Oletetaan lisäksi, että
Σ on joko ennakoivasti tai takautuvasti Ahlforsin–Davidin säännöllinen taikka parabolisesti tasai-
sesti suoristuva. Todistamme, että tällöin Σ toteuttaa heikon tahdistetun kahden kuution ehdon.
Tämän avulla voimme palata Nyströmin ja Strömqvistin (2009) päättelyyn ja osoittaa, että Σ

sisältää Lip(1, 1/2)-kuvaajien tasaisen suuria osia. Tapauksessa, jossa Σ on parabolisesti tasaisesti
suoristuva, tarkastelua voidaan hienontaa, ja tällöin osoitamme, että Σ sisältää jopa säännöllis-
ten parabolisten Lip(1, 1/2)-kuvaajien tasaisen suuria osia. Vastaavat tulokset ovat voimassa, jos
Ω ⊂ Rn+1 on joukon Rn+1\Σ yhtenäinen komponentti, ja tässä tilanteessa saamme myös parabolisen
vastineen Azzamin ym. (2017) päätulokselle osoittamalla, että jos Ω on yksipuolinen parabolinen
jännekaarialue ja Σ on parabolisesti tasaisesti suoristuva, niin Ω on itse asiassa parabolinen jän-
nekaarialue. Tuloksemme tarjoavat joustavan parabolisen vastineen Davidin ja Jerisonin (1990)
klassisille (elliptisille) tuloksille, jotka koskevat Lipschitzin kuvaajien tasaisen suurten osien olemas-
saoloa kahden kiekon ehdon toteuttavissa joukoissa.

1. Introduction

An important result due to David and Jerison [DJ] states that if Σ ⊂ Rn+1

is a closed set which is Ahlfors–David regular with respect to the surface measure
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σ = HnbΣ, (i.e., the restriction of n-dimensional Hausdorff measure to Σ), and if Σ
satisfies what they call a two disc condition, then Σ contains uniform big pieces of
Lipschitz graphs, see [DJ]. This result and its ramifications have had deep impact on
the theory of elliptic boundary value problems and on the analysis of and on uniformly
rectifiable sets. Indeed, if Ω is one component of Rn \ Σ, and if, in addition, Ω is
an NTA-domain in the sense of [JK], then the result of David and Jerison implies
that the harmonic measure on ∂Ω belongs to the Muckenhoupt class A∞ defined
with respect to σ; equivalently, that the Dirichlet problem for Laplace’s equation is
solvable in such domains, with Lp boundary data. Furthermore, the results of [DJ],
combined with the monumental works of David and Semmes [DS, DS1], have led to
additional characterizations of uniform rectifiability: see, e.g. [HMM, GMT].

In this paper we are interested in parabolic counterparts of the result of David and
Jerison. In general the theory of parabolic boundary value problems, and the analysis
of and on parabolic uniformly rectifiable sets, is less developed compared to the
elliptic counterparts and there are essentially only two strains of main results in the
field: the results due to Hofmann, Lewis, Murray, Silver, see [H1, HL, HL1, LM, LS]
and the results due to Hofmann, Lewis, Nyström, see [HLN1, HLN2].

To indicate the scope of the present paper, we give rough statements of three the-
orems to be proved; more precise statements, as well as definitions of our terminology,
will be given in the sequel.

Theorem 1. If Σ is parabolic ADR and satisfies a “weak time synchronized two
cube condition”, then Σ contains big pieces of Lip(1, 1/2) graphs.

This “weak time-synchronized two cube condition” is automatically satisfied in
the presence of two sided corkscrews and parabolic uniform rectifiability, see Theo-
rem 3.2. In fact, when Σ is parabolic uniformly rectifiable, we can transfer regularity
from the set Σ to the approximating graph, which gives the additional subtle t-
regularity required for boundedness of parabolic singular integrals and for parabolic
potential theory.

Theorem 2. If Σ is parabolic uniformly rectifiable and satisfies the two-sided
corkscrew condition, then Σ contains big pieces of regular Lip(1, 1/2) graphs. If
in addition, Σ is time-symmetric ADR, and Σ = ∂Ω is the boundary of an open
set Ω ⊂ Rn+1 satisfying an interior corkscrew condition, then Σ satisfies a uniform
interior big pieces of regular Lip(1, 1/2) graphs condition.

Corollary 1. Let Ω ⊂ Rn+1 be an open set satisfying an interior corkscrew
condition. If Σ = ∂Ω is parabolic uniformly rectifiable, time-symmetric ADR, and
satisfies the two-sided corkscrew condition, then caloric measure ω is absolutely con-
tinuous with respect to “surface measure” σ on Σ, the parabolic “Poisson kernel”
dω/dσ verifies a uniform scale invariant weak reverse Hölder estimate, and the Lp
(initial)-Dirichlet problem for the heat equation is solvable in Ω, for some p <∞.

Theorem 3. If Ω is a one-sided parabolic chord arc domain, whose boundary
is parabolic uniformly rectifiable and time-symmetric ADR, then Ω is a (two-sided)
chord arc domain. Moreover, the caloric measure of Ω satisfies a (local) A∞ condition.

A few comments are in order concerning Corollary 1, and Theorem 3. By the
main result of [GH] (and the maximum principle), in the setting of Theorem 3, and
of the second part of Theorem 2, we immediately deduce that caloric measure satis-
fies a local, scale-invariant weak-A∞ condition with respect to the natural parabolic
analogue of surface measure on Σ. In the setting of Theorem 3, caloric measure
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is doubling (by a fairly routine extension of the results of [FGS] essentially follow-
ing [HLN2]), and so in that case the weak-A∞ condition immediately improves to
(strong) A∞. Furthermore (again see [GH]), the (weak) A∞ condition is equivalent
to Lp solvability of the Dirichlet problem, for some p < ∞. Prior to this result, Lp
solvability for finite p had not been established even for parabolic chord arc domains
with parabolic uniformly rectifiable boundaries.

In [H1, HL, LM, LS], the authors established the correct notion of (time-depen-
dent) regular parabolic Lipschitz graphs from the point of view of parabolic singular
integrals and parabolic measure. To expand a bit on this, recall that ψ : Rn−1×R→ R
is called Lip(1, 1/2) (or “parabolic Lipschitz”, and we shall sometimes simply write
ψ ∈ PLip) with constant b, if

(1.1) |ψ(x, t)− ψ(y, s)| ≤ b(|x− y|+ |t− s|1/2)

whenever (x, t) ∈ Rn, (y, s) ∈ Rn. An open set Ω ⊂ Rn+1 is said to be an (unbounded)
Lip(1, 1/2) (or PLip) graph domain, with constant b, if

(1.2) Ω = Ωψ = {(x, xn, t) ∈ Rn−1 × R× R : xn > ψ(x, t)}
for some Lip(1, 1/2) function ψ having Lip(1, 1/2) constant bounded by b. A function
ψ = ψ(x, t) : Rn−1×R→ R is called a regular parabolic Lip(1, 1/2) function (and we
shall write ψ ∈ RPLip) with parameters b1 and b2, if ψ satisfies

(i) |ψ(x, t)− ψ(y, t)| ≤ b1|x− y|, x, y ∈ Rn−1, t ∈ R,
(ii) Dt

1/2ψ ∈ BMO(Rn), ‖Dt
1/2ψ‖∗ ≤ b2 <∞.(1.3)

It is well known, and essentially due to Strichartz [Stz] (but see also [HL, H2]),
that if ψ ∈ RPLip with parameters b1 and b2, then ψ is Lip(1, 1/2) with constant
b = b(b1, b2). Here Dt

1/2ψ(x, t) denotes the 1/2 derivative in t of ψ(x, ·), x ∈ Rn−1

fixed, and BMO(Rn) is the usual parabolic BMO space consisting of all f ∈ L1
loc(Rn)

(modulo constants) such that

‖f‖∗ := sup
R

 
R

|f(x, t)− fR| dx dt <∞,

where R denotes a parabolic cube in Rn, having dimensions r× · · · × r× r2 for some
r > 0, and fR :=

ffl
R
f .

This half derivative in time can be defined by way of the Fourier transform (at
least for compactly supported ψ), or by the formula

(1.4) Dt
1/2ψ(x, t) ≡ ĉ

ˆ
R

ψ(x, s)− ψ(x, t)

|s− t|3/2
ds

for properly chosen ĉ.
As noted above, every RPLip function is, in particular, Lip(1, 1/2), i.e. the

RPLip condition is stronger than Lip(1, 1/2). In fact, it is strictly stronger: there
are examples of functions ψ which are Lip(1, 1/2) but not RPLip, see [LS], [KW].

We call Ω ⊂ Rn+1 an (unbounded) regular parabolic Lip(1, 1/2) graph domain (or
simply an RPLip graph domain), with constants (b1, b2), if (1.2) holds for some reg-
ular parabolic Lip(1, 1/2) function ψ having constants (b1, b2). An important insight
in [KW, H1, HL, LM, LS], is that from the perspective of parabolic singular integrals
and parabolic measure, the Lip(1, 1/2) condition alone does not suffice; instead the
problems have to be framed in the context of regular parabolic Lip(1, 1/2) graph
domains and this induces additional complexity in the parabolic setting compared to
the elliptic situation.
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In [HLN1, HLN2] the third and fifth author, together with Lewis, introduced a
notion of parabolic uniformly rectifiable sets and proved the existence of big pieces of
regular parabolic Lipschitz graphs under the additional assumption that Σ is Reifen-
berg flat in the parabolic sense. These results were the first of their kind in the context
of parabolic problems and the studies [HLN1, HLN2] were motivated by the study of
parabolic or caloric measures in rough domains. Still, up to very recently no system-
atic and correct studies of parabolic uniformly rectifiable sets have appeared in the
literature. In the series including [BHHLN1, BHHLN2], and the present paper, we
attempt to rectify this by conducting a thorough and detailed study of these objects.
In particular, in [BHHLN1] we prove, among other things, that parabolic uniformly
rectifiable sets satisfy a corona decomposition with respect to regular Lip(1, 1/2)
graphs. In [BHHLN2], we obtain a converse to this result from [BHHLN1], as we
prove that corona decomposition with respect to regular Lip(1, 1/2) graphs implies
parabolic uniformly rectifiability. This converse is a consequence of more general
results established in [BHHLN2]. In combination, [BHHLN1] and [BHHLN2] prove
that, just as in the elliptic setting of [DS] and [DS1], we can characterize parabolic
uniform rectifiability in terms of the existence of a corona decomposition with respect
to an appropriate family of graphs (regular Lip(1, 1/2) graphs). In addition we obtain
that all sufficiently “nice” parabolic singular integral operators are L2 bounded on a
parabolic uniformly rectifiable set.

It is true that in [RN1, RN2, RN3], the author took on the ambitious challenge
to develop the theory of parabolic uniformly rectifiable sets. Unfortunately though,
in [RN1, RN2] the author either gives no proofs of his claims or supplies proofs which
have gaps, a few of which, pertaining to [RN1], we pinpoint in [BHHLN1]. For now,
let us point out three such errors or gaps in [RN2], as these are directly relevant to the
results in the present paper. First, [RN2, Lemma 6.2] is essentially our Theorem 2
stated above, and is stated in [RN2] without proof, except for the claim that it is
essentially proved in [HLN1]. In fact, had that been the case, the authors of [HLN1]
would have stated their results that way. To be sure, our proof here follows that of
[HLN1] to some extent, but an additional non-trivial idea, borrowed from [DS], is also
used, in order to remove the extra flatness assumption (mentioned above) imposed in
[HLN1]. Second, [RN2, Theorem 3.1] is essentially our Corollary 1 above, and relies
on [RN2, Lemma 5.3], which is a parabolic version of a deep (elliptic) result of [BL].
However, the argument in [RN2] relies on an application of Safonov’s time-backwards
(i.e., non time-lagged) Harnack inequality (see [SY]) to solutions which do not vanish
on Σ (and thus to which Safonov’s result is inapplicable in any case), in a domain
which need not verify the Harnack Chain condition, a setting in which Safonov’s
result has not been proved. Consequently, the proof of the parabolic version of the
result of [BL] (which may be found in [GH]) is rather more delicate than in the
elliptic case, as one is forced to account for the time lag in the parabolic Harnack
inequality. Finally, in [RN2, Theorem 6.1], there is a claim (without proof) that a
2-sided corkscrew condition yields big pieces of Lip(1, 1/2) graphs (and even interior
big pieces), via the method of [DJ], without any mention of time-synchronization
(even in a weak sense). It is not clear to the present authors how such a result
might be proved, given the distinguished nature of the time direction in parabolic
problems. Perhaps it is true, but a proof should be given. We have not checked in
detail the validity of the argument in [RN3], as the result claimed there is proved
using a method entirely different to ours in [BHHLN2].
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In [HLN1, HLN2] the assumption that Σ is Reifenberg flat in the parabolic sense
was motivated by the particular applications considered but this assumption may
often seem too restrictive in other contexts. Therefore in [NS] the fifth author,
together with Strömqvist, set out on the path to find and develop the parabolic
analogue of the result of David and Jerison [DJ] mentioned above. In [NS] it is proved
that if Σ ⊂ Rn+1 is a closed set which is Ahlfors–David regular in the parabolic sense,
see Definition 1 below, and if Σ satisfies what the authors called a synchronized two
cube condition, then Σ contains uniform big pieces of Lip(1, 1/2) graphs by adapting
the original arguments of [DJ].

To elaborate on the synchronized two cube condition, if Σ ⊂ Rn+1 is para-
bolic Ahlfors–David regular in the sense of Definition 1, then Σ is said to satisfy
a synchronized two cube condition with constant γ1 ∈ (0, 1) if there exist, for all
(X, t) ∈ Σ, T0 < t < T1 and 0 < r < diam Σ, two parabolic cubes Qρ(X1, t1),
Qρ(X2, t2), both contained in Qr(X, t), such that Qρ(X1, t1) ∩ (Rn × (T0, T1)) and
Qρ(X2, t2) ∩ (Rn × (T0, T1)) belong to different connected components of Rn+1 \ Σ,
and

γ1r ≤ ρ < r, t1 = t = t2.(1.5)

Note that the condition as stated in (1.5) is quite rigid as the two cubes Qρ(X1, t1),
Qρ(X2, t2) have to satisfy t1 = t = t2, where t is the time component of the original
point (X, t) fixed on the boundary. A more flexible condition would be to relax
(1.5) and to assume that Σ instead satisfies a weak synchronized two cube condition
with constant γ1, in the sense that there exist, for all (X, t) ∈ Σ, T0 < t < T1

and 0 < r < diam Σ, two parabolic cubes Qρ(X1, t1), Qρ(X2, t2), as above and both
contained in Qr(X, t), but with (1.5) replaced by

γ1r ≤ ρ < r, t1 = t2.(1.6)

(1.6) is weaker compared to (1.5) as the cubes Qρ(X1, t1), Qρ(X2, t2) still have to
have the same time coordinate but this coordinate makes no explicit reference to
time coordinate of the original point (X, t) fixed on the boundary.

The discussion of the weak synchronized two cube condition leads us to the main
contributions of this paper. First, assuming that Σ ⊂ Rn+1 is a closed set which is
parabolic Ahlfors–David regular, and satisfies the general (i.e., not necessarily syn-
chronized) 2-cube (i.e., corkscrew) condition, we prove that certain natural additional
geometrical assumptions imply a self-improvement of the corkscrew property, namely
that if in addition Σ is either time-forwards Ahlfors–David regular, time-backwards
Ahlfors–David regular, or parabolic uniform rectifiable, then in fact Σ satisfies the
weak time-synchronized two cube condition discussed above. Second, we show that
the results of [NS] continue to hold with the strong time synchronized two cube con-
dition replaced by the weak version; more precisely, using the weak synchronized two
cube condition, and revisiting the argument in [NS], we are able to establish uniform
big pieces of Lip(1, 1/2) graphs. Third, assuming that Σ ⊂ Rn+1 is parabolic uniform
rectifiable and satisfies the weak synchronized two cube condition we are able to es-
tablish not only uniform big pieces of Lip(1, 1/2) graphs but also uniform big pieces
of regular Lip(1, 1/2) graphs. This is what we need from the perspective of para-
bolic singular integrals and parabolic measure. Note that the latter conclusion was
also established (in partial form) in [NS], where the final part of the argument was
left out and the authors referred to the corresponding arguments in [HLN1]. Strictly
speaking, the argument referred to in [HLN1] applies only if the norm of the Carleson
measure underlying the notion of parabolic uniform rectifiability is sufficiently small,
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depending on the dimension n and the constant defining the Ahlfors–David regular-
ity, and thus, the proof in [NS] applies in the presence of such a size restriction. In
this paper we remove this size restriction, and spell out the details of the argument
using a parabolic version of a summation approach introduced in [DS]. Note that if,
as in [HLN1], Σ has the separation property and is δ-Reifenberg flat, then Σ satisfies
a synchronized two cube condition. This implication can not be reversed. Hence, in
particular and as already noted in [NS], our result generalizes Theorem 1 in [HLN1]
beyond the hypothesis of Σ being Reifenberg flat.

In addition, we give a parabolic counterpart of the main result in [AHMNT]
by proving that if Ω ⊂ Rn+1 is a domain defined as a connected component of
Rn+1 \ Σ, if Ω is a one-sided parabolic chord arc domain (see Definition 12), and if
Σ is parabolic uniformly rectifiable, then Ω is in fact a parabolic chord arc domain
(see Definition 13). To prove this we use [BHHLN2, Theorem 4.16] and [BHHLN2,
Theorem 4.15(iii)], and hence also [BHHLN1], to first conclude that if Σ is parabolic
uniformly rectifiable, then Σ satisfies the parabolic bilateral weak geometric lemma,
from which we then deduce the existence of exterior corkscrew points (and hence the
chord-arc condition) more or less as in the elliptic case treated in [AHMNT], using
the Harnack chain condition.

The rest of the paper is organized as follows. In Section 2 we introduce the
geometric notions and terminology used in the paper. In Section 3 we state the
results proved in the paper: Theorems 3.1–3.3, and Theorems 3.4–3.5 with their
respective corollaries. In particular, Theorems 3.1 and 3.2 give geometric criteria
for the existence of weak time-synchronized corkscrew points, and Theorem 3.3 pro-
vides the geometric foundation for Theorem 3.7. Theorem 3.4 (a precise version of
“Theorem 1” stated above), and Theorem 3.5 and Corollary 3.2 (together a precise
version of “Theorem 2” stated above) are the main results of the present work. In
Section 3, we also briefly discuss, for the record, applications of our geometric re-
sults to the study of parabolic/caloric measure along the lines of [NS] and [GH]. In
particular, we give Theorem 3.6, which is the precise version of “Corollary 1” stated
above, and we present Theorem 3.7, a precise version of “Theorem 3” stated above.
Section 4 is devoted to the proofs of Theorems 3.1–3.3 and Theorem 3.4 is proved in
Section 5. The proof of Theorem 3.5 is given in Section 6. In Section 7, we present
two counter-examples to show that our weak time-synchronization hypotheses are
strict improvements over those in [NS].

2. Preliminaries and geometrical notions

Points in Euclidean space-time Rn+1 are denoted by X := (X, t) = (x1, . . . , xn, t),
where X = (x1, . . . , xn) ∈ Rn and t represents the time-coordinate. We will always
assume that n ≥ 1. We let Ē, ∂E, be the closure and boundary of the set E ⊂ Rn+1.
〈·, ·〉 denotes the standard inner product on Rn and we let |X| = 〈X,X〉1/2 be the
Euclidean norm of X. We let ‖(X, t)‖ := |X| + |t|1/2 denote the parabolic length of
a space-time vector X = (X, t). Given (X, t), (Y, s) ∈ Rn+1, we set

dp(X, t, Y, s) := ‖(X, t)− (Y, s)‖ = |X − Y |+ |t− s|1/2 ,

and we define dp(X, t, E) to equal the parabolic distance, defined with respect to
dp(·, ·), from (X, t) ∈ Rn+1 to E. We let

Qr(X, t) := {(Y, s) ∈ Rn+1 : |yi − xi| < r, |t− s| < r2},
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whenever (X, t) ∈ Rn+1, r > 0, and we call Qr(X, t) a parabolic cube of “length” r.
We may sometimes leave the center implicit, and write simply Qr to denote such a
cube. We also introduce the time-forward and time-backwards halves of Qr(X, t) as
follows:

Q+
r (X, t) := Qr(X, t) ∩ {(Y, s) ∈ Rn+1 : s ≥ t},

Q−r (X, t) := Qr(X, t) ∩ {(Y, s) ∈ Rn+1 : s ≤ t}.
We let dx denote Lebesgue n-measure on Rn and given a number η ≥ 0, we let Hη

denote standard η-dimensional Hausdorff measure. We also define parabolic Hausdorff
measure of homogeneous dimension η, denoted Hη

p, in the same way that one defines
standard Hausdorff measure, but using coverings by parabolic cubes, i.e., for δ > 0,
and for A ⊂ Rn+1, we set

Hη
p,δ(A) := inf

∑
k

diamp(Ak)
η ,

where the infimum runs over all countable coverings of A, denoted (Ak)k, with
diam(Ak) ≤ δ for all k, and then define

Hη
p(A) := lim

δ→0+
Hη

p,δ(A) .

As is the case for classical Hausdorff measure, Hη
p is a Borel regular measure. We refer

the reader to [EG2, Chapter 2] for a discussion of the basic properties of standard
Hausdorff measure. The arguments in [EG2] adapt readily to treat Hη

p. In particular,
one obtains a measure equivalent to Hη

p if one defines Hη
p,δ in terms of coverings by

arbitrary sets of parabolic diameter at most δ, rather than cubes. As in the classical
setting, we define the parabolic homogeneous dimension of a set A ⊂ Rn+1 by

Hp,dim(A) := inf {0 ≤ η <∞ | Hη(A) = 0} .
We observe that Hp,dim(Rd) = d+ 1; in particular Hp,dim(Rn+1) = n+ 2.

Given a closed set Σ ⊂ Rn+1 of homogeneous dimension Hp,dim(Σ) = n + 1, we
then define “surface measure" on Σ by

(2.1) σ = σΣ := Hn+1
p bΣ.

We observe that this measure is apparently different to the one typically used in pre-
vious work on parabolic equations with time-varying boundaries; see, e.g., [KW, LM,
HL, HL1, HLN1, HLN2]. In those works, the following version of “surface measure”
was used: given a closed set Σ ⊂ Rn+1, for a Borel subset E ⊂ Σ, we set

(2.2) σs(E) :=

ˆ̂
E

dσt dt,

where dσt denotes the restriction of Hn−1 to the time slice E ∩ (Rn × {t}). It turns
out that in the cases of greatest interest to us, the “slice” measure σs, and the measure
σ defined in (2.1), are equivalent (similar observations have been made previously in
[He] and [MP]), although they need not be equivalent in general.

Remark 2.1. Some further remarks are in order.
(i) If σs (or for that matter any measure m defined on Σ) satisfies the parabolic

Ahlfors–David regularity (p-ADR) condition (see Definition 1 below), then
so does σ, and in that case the two measures are of course equivalent. This
follows easily from the definition of Hn+1

p measure, and it is really just the
same phenomenon that occurs in the classical (elliptic) case; see [DS].
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(ii) Consequently, if Σ is a Lip(1, 1/2) graph, then σ ≈ σs. In particular, on
a hyperplane P ⊂ Rn+1 parallel to the t-axis, which we may identify with
Euclidean space Rn, we have that HnbP≈ Hn+1

p bP , since the former is just
n-dimensional Lebesgue measure on P , which is parabolic ADR on Σ = P .

(iii) If P is a hyperplane parallel to the t-axis, and if π is the orthogonal projection
operator onto P , then Hn+1

p measure does not increase under the action of
π. In particular, by virtue of item (ii), we have for any Borel set A that
Hn(π(A)) = Hn+1

p (π(A)) ≤ Hn+1
p (A).

(iv) If Σ is parabolic uniformly rectifiable (p-UR; see Definition 5 below), where
we can initially define p-UR with respect either to σ, or to σs, then the two
measures are equivalent.

(v) On the other hand, the measures are not equivalent in general, even in the
p-ADR setting. In fact, σs . σ, but the other direction does not need to
hold.

Item (iii) follows exactly as in the classical case (see [EG2, pp. 75–76]), as one may
readily verify using that the orthogonal projection operator is Lipschitz with norm
1 with respect to the parabolic metric, i.e., ‖π(X, t) − π(Y, s)‖ ≤ ‖(X, t) − (Y, s)‖.
Items (iv) and (v) are non-trivial. We shall provide details of the proofs of the latter
two facts in our forthcoming paper [BHHLN1]. See also [He] and [MP].

As above, Σ ⊂ Rn+1 will denote a closed set. For (X, t) ∈ Σ and r > 0, we shall
denote a “surface cube” on Σ by

∆(X, t, r) := Σ ∩Qr(X, t),

and its time-forward and time-backward halves by

∆+(X, t, r) := ∆(X, t, r)) ∩ {(Y, s) ∈ Rn+1 : s ≥ t},
∆−(X, t, r) := ∆(X, t, r)) ∩ {(Y, s) ∈ Rn+1 : s ≤ t}.

The extremal time coordinates of Σ will be denoted by T0 = inf{t : ∃(X, t) ∈ Σ} and
T1 = sup{t : ∃(X, t) ∈ Σ}. When we consider an open set Ω ⊂ Rn+1, we shall define
T0 and T1 relative to Σ = ∂Ω.

Given a set A ⊂ Rn+1, we denote its topological interior by int(A).

2.1. Parabolic Ahlfors–David regular sets.

Definition 1. (Parabolic Ahlfors–David regularity) Let Σ ⊂ Rn+1 be a closed
set. We say that a measure m defined on Σ is parabolic Ahlfors–David regular,
parabolic ADR for short (or simply p-ADR, or just ADR) with constant M ≥ 1, if

(2.3) M−1 rn+1 ≤ m(∆(X, t, r)) ≤M rn+1,

whenever 0 < r < diam Σ, (X, t) ∈ Σ, T0 < t < T1 and where diam Σ is the
(parabolic) diameter of Σ (which may be infinite). As noted above (see Remark 2.1
(i)), if (2.3) holds for any measure m on Σ, then it holds for σ as in (2.1), i.e. for a
possibly different but still universal choice of M ,

(2.4) M−1 rn+1 ≤ σ(∆(X, t, r)) ≤M rn+1,

and in this case we simply say that Σ is parabolic ADR (p-ADR, or just ADR).

Definition 2. (Time-forward/time-backward/time-symmetric ADR) Let Σ ⊂
Rn+1 be a closed set which is parabolic ADR as in Definition 1 above. We say that
Σ is parabolic time-forward ADR, or TFADR for short, if T1 =∞ and there exists a
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uniform constant M ′ ≥ 1, such that for each (X, t) ∈ Σ with T0 < t we have

σ(∆+(X, t, r)) ≥ (M ′)−1rn+1.

Similarly, we say that Σ is parabolic time-backward ADR, or parabolic TBADR for
short, if T0 = −∞ and there exists a uniform constant M ′ ≥ 1, such that for each
(X, t) ∈ Σ with t < T1 we have

σ(∆−(X, t, r)) ≥ (M ′)−1rn+1.

If Σ is both time-forwards ADR and time-backwards ADR, we say that Σ is time-
symmetric ADR (TSADR for short).

Definition 3. (Dyadic cubes on an ADR set) If Σ is ADR, then (Σ, dp, dσ) is a
space of homogeneous type Σ and as such admits a parabolic dyadic decomposition
(see [Ch] for the construction, as well as [HK] for an alternative approach; the original
construction, in the elliptic ADR setting, appears in [D1], [D2]). That is, there exists
a constant α > 0 such that for each k ∈ Z there is a collection of Borel sets, Dk,
which we will call (dyadic) cubes, such that

Dk := {Qkj ⊂ Σ: j ∈ Ik},

where Ik denotes some index set depending on k (if Σ is unbounded, then we may
simply take Ik to be the set of positive integers, for each k), satisfying:

(i) Σ =
⋃
j Qkj for each k ∈ Z.

(ii) If m ≥ k then either Qmi ⊂ Qkj or Qmi ∩Qkj = ∅.
(iii) For each (j, k) and each m < k, there is a unique i such that Qkj ⊂ Qmi .
(iv) diam

(
Qkj
)
. 2−k.

(v) Qkj ⊃ Σ ∩Qα2−k(Z
k
j , t

k
j ) for some (Zk

j , t
k
j ) ∈ Σ (the “center” of Qkj ).

The dyadic cubes also enjoy a “thin boundary property”, but we shall not make use
of that fact in the present work.

Remark 2.2. To avoid possible confusion, let us note that we shall deal with
four sorts of parabolic cubes in the sequel, each with distinct notation: the cubes
Qr = Qr(X, t) ⊂ Rn+1, and the surface cubes ∆ = ∆(X, t, r) := Qr(X, t)∩Σ, defined
above; the dyadic “cubes” on Σ, as in Definition 3, which we denote by the calligraphic
Q, and finally, n-dimensional parabolic cubes, defined on the hyperplane P := Rn−1×
{0} ×R ∼= Rn, which we define analogously to Qr in one less spatial dimension, and
which we denote by Ir = Ir(x, t) for (X, t) = (x, 0, t) ∈ P (equivalently Ir(x, t) :=
Qr(x, 0, t) ∩ P).

Mildly abusing notation, we write `(Qr) := r, `(Ir) := r, `(∆(X, t, r)) := r, and
`(Q) := 2−k when Q ∈ Dk.

We shall also use the letter I, and sometimes J , to denote a dyadic parabolic
cube in P ∼= Rn; in particular, such a cube has dimensions 2m × · · · × 2m × 22m for
some integer m, and in this case we write `(I) = 2m. We apologize for the fact that
this notation for side length differs from that for the cubes Ir, by a factor of 2.

2.2. Parabolic uniform rectifiability.

Definition 4. Assume that Σ ⊂ Rn+1 is parabolic ADR in the sense of Defini-
tion 1. Let

β(Z, τ, r) := inf
P

(
r−n−1

ˆ̂
∆(Z,τ,r)

(
d(Y, s, P )

r

)2

dσ(Y, s)

)1/2

,
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whenever (Z, τ) ∈ Σ, r > 0, and where the infimum is taken with respect to all n
dimensional planes P containing a line parallel to the t axis. Let

dν(Z, τ, r) := β2(Z, τ, r) dσ(Z, τ) r−1 dr.(2.5)

We say that ν is a Carleson measure on ∆(Y, s, R) × (0, R) if there exists M̃ < ∞
such that

ν(∆(X, t, ρ)× (0, ρ)) ≤ M̃ ρn+1,(2.6)

whenever (X, t) ∈ Σ and Qρ(X, t) ⊂ QR(Y, s). The least such M̃ in (2.6) is called
the Carleson norm of ν on ∆(Y, s, R)× (0, R).

Definition 5. (Parabolic uniform rectifiability) Assume that Σ ⊂ Rn+1 is para-
bolic ADR in the sense of Definition 1 with constant M . Let ν be defined as in (2.5).
Then Σ is parabolic uniformly rectifiable, parabolic UR (or simply p-UR) for short,
with UR constants (M, M̃) if

(2.7) ‖ν‖ := sup
(X,t)∈Σ, ρ>0

ρ−n−1ν(∆(X, t, ρ)× (0, ρ)) ≤ M̃.

2.3. Corkscrews and the weak time-synchronized two cube condition.
In the following definitions, Definitions 6-10, we consistently assume that Σ ⊂ Rn+1

is a closed set.

Definition 6. (Corkscrew, 2-cube condition) Let γ0 ∈ (0, 1) be given. We say
that Σ satisfies a corkscrew condition (more precisely, 2-sided corkscrew condition,
or 2-cube condition) with constant γ0, if there exists, for all (X, t) ∈ Σ, T0 < t < T1

and 0 < r < diam Σ, two parabolic cubes Qρ(X1, t1), Qρ(X2, t2), both contained in
Qr(X, t), such that Qρ(X1, t1)∩(Rn×(T0, T1)) and Qρ(X2, t2)∩(Rn×(T0, T1)) belong
to different connected components of Rn+1 \ Σ, and with

γ0r ≤ ρ < r.

Definition 7. (Weak time-synchronized 2-cube condition) Let γ1 ∈ (0, 1) be
given. We say that Σ satisfies a weak time-synchronized two cube condition with
constant γ1, if there exist, for all (X, t) ∈ Σ, T0 < t < T1 and 0 < r < diam Σ,
two parabolic cubes Qρ(X1, t1), Qρ(X2, t2), both contained in Qr(X, t), such that
Qρ(X1, t1) ∩ (Rn × (T0, T1)) and Qρ(X2, t2) ∩ (Rn × (T0, T1)) belong to different con-
nected components of Rn+1 \ Σ, and with

γ1r ≤ ρ < r, t1 = t2 .

Remark. The (strong) synchronized 2-cube condition considered in [NS] entailed
the further requirement that the cubes Qρ(X1, t1) and Qρ(X2, t2) be synchronized also
with Qr(X, t), i.e., t1 = t = t2.

Definition 8. (Interior corkscrew condition) Let γ0 ∈ (0, 1) be given. Let Ω ⊂
Rn+1 be an open set with boundary ∂Ω = Σ. We say that Ω satisfies an interior
corkscrew condition with constant γ0, if there exists, for all (X, t) ∈ Σ, T0 < t < T1

and 0 < r < diam Σ, a parabolic cube Qρ(X1, t1), contained in Qr(X, t), such that
Qρ(X1, t1) ∩ (Rn × (T0, T1)) ⊂ Ω and with

γ0r ≤ ρ < r.

Definition 9. (Corkscrew condition w.r.t. an open set Ω) Let γ0 ∈ (0, 1) be
given. Let Ω ⊂ Rn+1 be an open set with boundary ∂Ω = Σ. We say that Ω (or
sometimes, in keeping with previous terminology, ∂Ω) satisfies a corkscrew condition
(more precisely 2-sided corkscrew condition) with constant γ0, if there exists, for all
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(X, t) ∈ Σ, T0 < t < T1 and 0 < r < diam Σ, two parabolic cubes Qρ(X1, t1),
Qρ(X2, t2), both contained in Qr(X, t), such that Qρ(X1, t1) ∩ (Rn × (T0, T1)) ⊂ Ω
and Qρ(X2, t2) ∩ (Rn × (T0, T1)) ⊂ Rn+1 \ Ω, and with

γ0r ≤ ρ < r.

Definition 10. (Weak time-synchronized 2-cube condition w.r.t. an open set)
Let γ1 ∈ (0, 1) be given. Let Ω ⊂ Rn+1 be an open set with boundary ∂Ω = Σ.
We say that Ω (or sometimes, in keeping with previous terminology, ∂Ω) satisfies
a weak time-synchronized two cube condition with constant γ1, if there exist, for all
(X, t) ∈ ∂Ω, T0 < t < T1 and 0 < r < diam Σ, two parabolic cubes Qρ(X1, t1),
Qρ(X2, t2), both contained in Qr(X, t), such that Qρ(X1, t1) ∩ (Rn × (T0, T1)) ⊂ Ω,
Qρ(X2, t2) ∩ (Rn × (T0, T1)) ⊂ Rn+1 \ Ω, and with

γ1r ≤ ρ < r, t1 = t2.

Remark. We observe that in Definition 9 (resp. 10), we are assuming that
Σ = ∂Ω satisfies Definition 6 (resp. 7), but with the additional requirement that
one of the stipulated components of Rn+1 \ ∂Ω lies in Ω, at every scale and at every
boundary point.

2.4. Harnack chains and parabolic chord arc domains. In the following
definitions, Definitions 11–13, we consistently assume that Σ ⊂ Rn+1 is a closed set
and that Ω ⊂ Rn+1 is a connected open set (a domain) with boundary ∂Ω = Σ.
In addition we will simply assume diam Σ = ∞, T0 = −∞ and T1 = ∞, to avoid
tedious notation. If T0 or T1 is finite, the interested reader can formulate the localized
versions of the definitions.

Definition 11. (Harnack chain condition) We say that Ω is Harnack chain con-
nected (or that it satisfies the Harnack chain condition) with constants κ > 100 and
C∗ ≥ 1 if the following holds. For every (U1, s1), (U2, s2) ∈ Ω, with

(s2 − s1)1/2 ≥ κ−1dp((U1, s1), (U2, s2))

there exists a chain of parabolic cubes {Qi}`i=1, Qi = Qri(Xi, ti), i = 1, 2, . . . , ` with
Qi ∈ Ω, such that

(i) (U1, s1) ∈ Q1 and (U2, s2) ∈ Q`,
(ii) Qi+1 ∩Qi 6= ∅, i = 1, 2, . . . , `− 1,
(iii) (C∗)

−1 diam(Qi) ≤ d(Qi, ∂Ω) ≤ C∗ diam(Qi),
(iv) ti+1 − ti ≥ (C∗)

−1r2
i and

(v) the length of the chain, `, satisfies ` ≤ C∗ log2

(
2 + d((U1,s1),(U2,s2))

mini=1,2 d((Ui,si),∂Ω)

)
.

Definition 12. (One-sided parabolic chord-arc domain) We say that Ω is a one-
sided parabolic chord arc domain with constants (M,γ0, κ, C

∗) if
(a) ∂Ω is parabolic Ahlfors–David regular with constant M ,
(b) Ω satisfies the interior corkscrew condition with constant γ0,
(c) Ω satisfies the Harnack chain condition with constants (κ,C∗).

Definition 13. (Parabolic chord-arc domain) We say that Ω is a parabolic chord
arc domain with constants (M,γ0, κ, C

∗) if
(a) ∂Ω is parabolic Ahlfors–David regular with constant M ,
(b) ∂Ω satisfies the (two-sided) corkscrew condition with constant γ0,
(c) Ω satisfies the Harnack chain condition with constants (κ,C∗).
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Note that the only difference between Definition 12 and Definition 13 relates
to the corkscrew conditions stated in (b): in Definition 12 only interior corkscrews
in the sense of Definition 8 are assumed while in Definition 13 the (full) corkscrew
condition in the sense of Definition 9 is assumed.

2.5. Uniform big pieces. Assume that Σ ⊂ Rn+1 is parabolic ADR in the
sense of Definition 1. Let in the following π denote the orthogonal projection onto
the plane {(x, xn, t) ∈ Rn−1 × R × R : xn = 0}. At instances we identify Rn with
Rn−1 × {0} × R, and put

Ir(z, τ) = {(y, s) ∈ Rn : |yi − zi| < r, i = 1, . . . , n− 1, |s− τ | < r2}
for (z, τ) ∈ Rn, r > 0.

Definition 14. (Uniform big pieces of Lip(1, 1/2) graphs). We say that Σ con-
tains uniform big pieces of Lip(1, 1/2) graphs with constants (ε, b) if the following
condition holds: Given (X, t) ∈ Σ, T0 < t < T1 and 0 < R < diam Σ, there exists,
after a possible rotation in the space variable, a Lip(1, 1/2) function ψ with constant
b, and ε > 0, such that

(2.8) Hn(π(Σψ ∩∆(X, t, R))) ≥ εRn+1,

where

(2.9) Σψ := {(x, xn, t) ∈ Rn−1 × R× R : xn = ψ(x, t)}.
Remark 2.3. Note that (2.8) implies, as Hausdorff measure does not increase

under projections, that

(2.10) σ(Σψ ∩∆(X, t, R)) ≥ εRn+1.

Definition 15. (Uniform big pieces of RPLip graphs) We say that Σ contains
uniform big pieces of regular parabolic Lip(1, 1/2) (RPLip for short) graphs with
constants (ε, b1, b2) if (2.8) and (2.9) hold whenever (X, t) ∈ Σ, T0 < t < T1 and
0 < R < diam Σ, but with a regular parabolic Lip(1, 1/2) function ψ, satisfying (1.3)
with constants b1, b2, and for ε > 0.

Definition 16. (Interior big pieces of Lip(1, 1/2) graphs) Let Ω ⊂ Rn+1 be an
open set with boundary ∂Ω = Σ. We then say that ∂Ω satisfies a uniform interior
big pieces of Lip(1, 1/2) graphs condition with constants

ε > 0, b ≥ 0, C ≥ 1, c > 0, A > 0,

if the following holds: given (X̂, t̂) = (x̂, x̂n, t̂) ∈ Ω, we can find a Lip(1, 1/2) function
ψ with constant b, and a domain Ω̃, such that with d := d(X̂, t̂,Σ), we have

(i) Qεd(X̂, t̂) ⊂ Ω̃ ⊂ Ω ∩QCd(X̂, t̂).
(ii) After a possible rotation in the space variables we have

Ω̃ = {(y, yn, s) : (y, s) ∈ Icd(x, t), ψ(y, s) < yn < x̂n + Ad},

where (X, t) = (x, xn, t) is some point in Σ ∩QCd(X̂, t̂) with

∆d/2(X, t) ⊆ Σ ∩QCd(X̂, t̂).

(iii) Hn
(
π(Σ ∩ ∂Ω̃) ∩Qcd(x, t)

)
≥ εdn+1.

Definition 17. (Interior big pieces of RPLip graphs) Let Ω ⊂ Rn+1 be an open
set with boundary ∂Ω = Σ. We then say that ∂Ω satisfies a uniform interior big pieces
of regular parabolic Lip(1, 1/2) graphs condition with constants (ε, b1, b2, C, c, A) if
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the following hold. Given (X̂, t̂) ∈ Ω, we can find a domain Ω̃ such that (i)–(iii) of
Definition 16 hold for some regular parabolic Lip(1, 1/2) function ψ with constants
(b1, b2) and for some constant b = b(b1, b2).

3. Statement of main results

We first prove the following two theorems concerning additional weak geometri-
cal assumptions beyond parabolic ADR which imply that Σ satisfies the weak time-
synchronized two cube condition. We consider these theorems elementary but im-
portant.

Theorem 3.1. Let Σ be a closed subset of Rn+1 which is parabolic ADR with
constant M and assume that Σ satisfies a corkscrew condition in the sense of Def-
inition 6 with constant γ0. Assume, in addition, that Σ is either time-forwards
ADR with constant M ′ or time-backwards ADR with constant M ′. Then Σ sat-
isfies the weak time-synchronized two cube condition in the sense of Definition 7
with γ1 = γ1(n,M, γ0,M

′). Furthermore, given (X, t) ∈ Σ, T0 < t < T1 and
0 < r < diam Σ, and if Σ is time-forwards ADR or time-backwards ADR, then
the two synchronized cubes in the weak time-synchronized two cube condition can
be constructed to be contained in Q+

r (X, t) and Q−r (X, t), respectively.

Theorem 3.2. Let Σ be a closed subset of Rn+1 which is parabolic ADR with
constant M and assume that Σ satisfies a corkscrew condition in the sense of Defini-
tion 6 with constant γ0. Assume, in addition, that Σ is parabolic UR in the sense of
Definition 4 with UR constants (M, M̃). Then Σ satisfies the weak time-synchronized
two cube condition in the sense of Definition 7 with γ1 = γ1(n,M, γ0, M̃).

We are able to prove the following parabolic counterpart of the result in [AHMNT].

Theorem 3.3. Let Ω be a one-sided parabolic chord arc domain with constants
(M,γ0, κ, C

∗). If, in addition, Σ is parabolic uniformly rectifiable with constants
(M, M̃), then Ω is a parabolic chord arc domain with constants (M, γ̂0, κ, C

∗), where
γ̂0 = γ̂0(n,M, M̃, γ0, κ, C

∗).

Concerning uniform big pieces of Lip(1, 1/2) graphs we prove the following.

Theorem 3.4. Let Σ be a closed subset of Rn+1 which is parabolic ADR with
constantM . Assume that Σ satisfies the weak time-synchronized two cube condition
in the sense of Definition 7 with γ1 ∈ (0, 1). Then Σ contains uniform big pieces of
Lip(1, 1/2) graphs with constants (ε, b) depending only n,M and γ1.

Corollary 3.1. Let Σ be a closed subset of Rn+1 which is parabolic ADR with
constant M , and let Ω ⊂ Rn+1 be an open set with boundary ∂Ω = Σ. Assume
that ∂Ω satisfies a corkscrew condition in the sense of Definition 9 with constant γ0

and that ∂Ω is time-symmetric ADR in the sense of Definition 2 with constant M ′.
Then ∂Ω satisfies a uniform interior big pieces of Lip(1, 1/2) graphs condition with
constants (ε, b, C, c, A) depending only on n,M, γ0 and M ′.

Concerning uniform big pieces of regular parabolic Lip(1, 1/2) graphs we prove
the following.

Theorem 3.5. Let Σ be a closed subset of Rn+1 which is parabolic UR with
constants (M, M̃), and which satisfies the corkscrew condition in the sense of Defini-
tion 6 with constant γ0. Then Σ contains uniform big pieces of RPLip graphs with
constants (ε, b1, b2) depending only on n,M, M̃ and γ0.
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Corollary 3.2. Let Σ be a closed subset of Rn+1 which is parabolic UR with
constants (M, M̃). let Ω ⊂ Rn+1 be an open set with boundary ∂Ω = Σ. Assume
that Ω satisfies a corkscrew condition in the sense of Definition 9 with constant γ0 and
that ∂Ω is time-symmetric ADR in the sense of Definition 2 with constant M ′. Then
∂Ω satisfies a uniform interior big pieces of RPLip graphs condition with constants
(ε, b1, b2, C, c, A) depending only on for some n,M, M̃, γ1 and M ′.

Naturally Theorems 3.1–3.3 and Theorems 3.4–3.5, along with their corollaries,
have applications to the study of parabolic/caloric measure. Given an open set
Ω ⊂ Rn+1, and a point (X, t) ∈ Ω, we let ω(X, t, ·) denote caloric measure for Ω
with pole at (X, t). Then in particular, combining Corollary 3.2 with the results
of [GH], we have the following. For simplicity, we state the result in the case that
diam Σ = ∞, T0 = −∞ and T1 = ∞. In the case that T0 or T1 is finite, one may
modify the formulation appropriately; see [GH].

Theorem 3.6. Let Ω ⊂ Rn+1 and Σ = ∂Ω be as in Corollary 3.2. Then caloric
measure is absolutely continuous with respect to σ, and satisfies a local weak reverse
Hölder condition. More precisely, there are constants C ≥ 1, λ > 0 depending on
the constants in Corollary 3.2, such that, given (X0, t0) ∈ Σ and r > 0, we have for
every (X, t) ∈ Ω \ Q4r(X0, t0) that ω(X, t, ·) � σ on ∆r(X0, t0) = Σ ∩ Qr(X0, t0),
with dω(X, t, ·)/dσ =: h satisfying(

ρ−n−1

ˆ̂
∆ρ(Y,s)

h1+λdσ

)1/(1+λ)

≤ Cρ−n−1

ˆ̂
∆2ρ(Y,s)

h dσ

= Cρ−n−1ω(X, t, ·) (∆2ρ(Y, s)) ,(3.1)

whenever (Y, s) ∈ Σ and Q2ρ(Y, s) ⊂ Qr(X0, t0), where ∆ρ(Y, s) = Qρ(Y, s) ∩ Σ,
and ∆2ρ(Y, s) = Q2ρ(Y, s) ∩ Σ. Equivalently, we obtain solvability of the Dirichlet
problem1 with Lp (lateral) boundary data, for some p <∞.

We remark that the results in [GH] are stated and proved with underlying mea-
sure σ given by our measure σs defined as in (2.2), however, all the arguments in
[GH] carry over with this measure replaced by our σ measure defined as in (2.1).

Next, we state another application, in the context of parabolic chord arc domains.
To set the stage, let Σ be a closed subset of Rn+1 which is parabolic ADR with
constant M , let Ω ⊂ Rn+1 be a connected component of Rn+1 \ Σ and assume that
diam Σ = ∞, T0 = −∞ and T1 = ∞. Using the Wiener criterion in [EG1]2 we can
conclude that any point (X, t) ∈ ∂Ω is regular for the bounded continuous Dirichlet
problem for the heat equation, as well as the adjoint heat equation, in Ω. Using
this and exhausting Ω by bounded sets, and applying Perron–Wiener–Brelot type
arguments, one can conclude that the bounded continuous Dirichlet problems for the
heat equation, as well as the adjoint heat equation, in Ω always have unique solutions.

1See [GH] for the precise formulation of the Lp Dirichlet problem (and initial-Dirichlet problem
in the case that T0 is finite).

2In the initial discussion of the Dirichlet problem in Section 4 in [NS] the correct assumption
is of course that Σ should be parabolic time-backward parabolic ADR, not only parabolic ADR.
Indeed, if Σ is parabolic time-backward parabolic ADR and Ω ⊂ Rn+1 is a connected component of
Rn+1 \ Σ, then the uniform capacity estimate stated in [NS] can be verified and using the Wiener
criterion in [EG1] one can conclude that if diam Σ = ∞, T0 = −∞ and T1 = ∞, then any point
(X, t) ∈ ∂Ω is regular for the bounded continuous Dirichlet problem for the heat equation in Ω.
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Recall that ω(X̂, t̂, ·) is the caloric measure, at (X̂, t̂) ∈ Ω, associated to the heat
equation in Ω. For (X, t), r > 0, and A ≥ 100, we define

(3.2) Γ+
A(X, t, r) = {(Y, s) : |Y −X|2 ≤ A(s− t), s− t ≥ 5r2}.

Definition 18. Let (X, t) ∈ ∂Ω, r > 0, and consider (X̂, t̂) ∈ Ω ∩ Γ+
A(X, t, 4r).

We say that ω(·) = ω(X̂, t̂, ·) satisfies a reverse Hölder condition (equivalently the
A∞ condition) on ∂Ω∩Qr(X, t), with constants L and λ > 0 if the following is true:
ω is a doubling measure, i.e.,

ω(Q2ρ(X̃, t̃)) . ω(Qρ(X̃, t̃)),

and dω/ dσ = h exists on ∆(X, t, r) with

(3.3)
ˆ̂

∆(X̃,t̃,ρ)

h1+λ dσ ≤ Lσ(Qρ(X̃, t̃))
−λ(ω(Qρ(X̃, t̃)))

1+λ

whenever (X̃, t̃) ∈ ∂Ω, Q2ρ(X̃, t̃) ⊂ Qr(X, t).

The following theorem is an immediate consequence of the combination of Theo-
rem 3.3 (which gives the (2-sided) corkscrew condition), Theorem 3.2 (which gives the
weak time-synchronized two cube condition), Corollary 3.2 ( which gives the uniform
interior big pieces of RPLip graphs condition), the doubling property of parabolic
measure (which can be proved as in [HLN2]), and a familiar argument based on the
maximum principle. We note that the following is a parabolic analogue of the main
result of [HM], although our approach is based on the much more efficient method
of [AHMNT], using big pieces technology.

Theorem 3.7. Suppose that Ω is a one-sided parabolic chord arc domain with
constants (M,γ0, κ, C

∗), and with boundary ∂Ω =: Σ. Assume also that diam Σ =∞,
T0 = −∞ and T1 =∞,and that Σ is time-symmetric ADR and parabolic uniformly
rectifiable with constants (M, M̃). Let (X, t) ∈ ∂Ω, r > 0, A ≥ 100, and consider
(X̂, t̂) ∈ Ω ∩ Γ+

A(X, t, 4r). Then ω(X̂, t̂, ·) is a doubling measure in the sense that
there exists a constant c = c(n,M, M̃, γ0, κ, C

∗, A) such that

(3.4) ω(X̂, t̂,∆(X̃, t̃, 2ρ)) ≤ cω(X̂, t̂,∆(X̃, t̃, ρ)),

for all (X̃, t̃) ∈ ∂Ω, Qρ(X̃, t̃) ⊂ Q2r(X, t). Furthermore, ω(X̂, t̂, ·) satisfies the reverse
Hölder condition (i.e., the A∞ condition) on ∆(X, t, r) in the sense of Definition 18
with constants L and λ > 0 depending only on (n,M, M̃, γ0, κ, C

∗, A).

In the following sections we give the proofs of Theorems 3.1–3.3, and Theo-
rems 3.4–3.5 with their corollaries, in the case that diam Σ = ∞, T0 = −∞ and
T1 = ∞. If T0 or T1 is finite, the proofs are completely analogous and in this case
the difference is that all sets occurring have to be intersected with Rn × (T0, T1) and
the notation will be more cumbersome.

We conclude this section by recalling the following elementary lemma from [GH]
which we shall use in the sequel.

Lemma 3.1. [GH] Let Σ be a closed subset of Rn+1 which is parabolic ADR
with constantM . Assume that Σ is time-forward ADR or time-backwards ADR with
constant M ′. Then there exist constants a1 ∈ (0, 1/2), a2 ∈ (0, 1), both depending
only on n,M and M ′ such that the following is true. Let (X, t) ∈ Σ. If Σ is time-
forward ADR, then

σ(∆+(X, t, r) ∩ {(Y, s) : s < t+ (a1r)
2}) ≥ a2r

n+1
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and if Σ is time-backwards ADR, then

σ(∆−(X, t, r) ∩ {(Y, s) : s < t− (a1r)
2}) ≥ a2r

n+1.

Proof. See [GH]. �

4. Proof of the geometric theorems

In this section we prove Theorem 3.1, Theorem 3.2, and Theorem 3.3; when
diam Σ =∞, T0 = −∞ and T1 =∞.

4.1. Proof of Theorem 3.1. Let Σ be a closed subset of Rn+1 which is parabolic
ADR with constantM and assume that Σ satisfies a corkscrew condition in the sense
of Definition 6 with constant γ0. Assume, in addition, that Σ is time-backwards ADR
with constant M ′. That case in turn implies the time-forward case, by the change
of variable t→ −t. Our goal is to prove that Σ satisfies the weak time-synchronized
two cube condition in the sense of Definition 7 with γ1 = γ1(n,M, γ0,M

′).
Let (X, t) ∈ Σ, r > 0. We first apply the corkscrew condition at (X, t) and on

the scale r/C1 where C1 a large constant to be chosen, to produce two cubes

Q1 := Qγ0r/C1(Y1, s1), Q2 := Qγ0r/C1(Y2, s2),

both contained in Qr/C1(X, t), but belonging to different connected components of
Rn+1 \ Σ. If s1 = s2, then we are done and hence we can without loss of generality
assume that s1 < s2. Let δ := s2 − s1.

Assume that δ ≤ (γ0r/2C1)2. In this case it follows readily that we can find two
cubes Q′1 and Q′2, both of size γ0r/(2C1), Q′1 ⊂ Q1, Q′2 ⊂ Q2, such that the centers
of Q′1 and Q′2 have the same time coordinate and we are done.

Assume that δ > (γ0r/2C1)2. Using that Q1 and Q2 are contained in different
connected components of Rn+1\Σ we see that the line connecting (Y1, s1) and (Y2, s2)
intersects Σ at some point (Z1, τ1) ∈ Σ. Set δ′ = τ1 − s1. Our strategy is now to
use Lemma 3.1 to produce a chain of cubes, starting with a cube centred at (Z1, τ1),
such that the terminal cube in the chain has time coordinate very close to s1. To
start the construction of the chain we let

∆1 := ∆(Z1, τ1, γ0r/C2)

where C2 > C1 is yet an other large constant to be chosen. Applying Lemma 3.1 to
∆1 we can pick

(Z2, τ2) ∈ ∆1 ∩ {(X, t) ∈ Σ: t < τ1 − a2γ2
0r

2/(C2
2)},

where a is the constant denoted by a1 in the statement of Lemma 3.1. Also, let

∆2 := ∆(Z2, τ2, γ0r/C2).

We can now repeat this argument with (Z1, τ1) replaced by (Z2, τ2) to iteratively
produce a sequence of points (Zi, τi) ∈ Σ and we let N be the first integer such
that |τN − s1| < (γ0r/C2)2. At (ZN , τN) we apply the corkscrew condition at
scale γ0r/(2C2) to produce a corkscrew cube Q0 centered at (Y0, s0), contained
in a component of Rn+1 which is different the component containing Q1, of para-
bolic size γ2

0r/(2C2), and such that Q0 ⊂ Qγ0r/(2C2)(ZN , τN). Then, as in the case
δ ≤ (γ0r/2C1)2 it follows readily that Q1 contains a cube of size γ2

0r/(2C2) with the
same time coordinate as Q0.
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To complete the proof it only remains to show how to choose C1 and C2 appro-
priately to ensure that Q0 lies inside Qr(X, t). However, it is easy to see that

N
a2γ2

0r
2

C2
2

≤ s1 − s2 =⇒ N ≤ C2
2(s1 − s2)

a2γ2
0r

2
≤ 4C2

2

C2
1γ

2
0a

2
.

This implies that

‖Z1 − ZN‖ ≤
4C2

2

C2
1a

2

γ0r

C2

=
4C2γ0r

C2
1a

2
and ‖Z1 −X‖ ≤

r

C1

.

Hence, if we choose C1 > 100, and C2 = max{C1 + 1, C2
1a

2/(40γ0)} (here we can
make γ0 smaller than a if necessary), then ‖ZN −X‖ ≤ r/50 and consequently

‖(X − Y0, t− s0)‖ ≤ r/25.

This proves that Q0 ⊂ Qr(X, t).
To see that the corkscrew cube constructed can be constructed as to be contained

in Q−r (X, t) we first apply Lemma 3.1 and then repeat the same argument above,
but with (X, t, r) replaced by (X ′, t′, r′) where (X ′, t′) ∈ ∆−(X, t, r/100) and where
r′ = r′(a1, r) is chosen so that ∆(X ′, t′, r′) ⊆ ∆−(X, t, r/100). This completes the
proof of Theorem 3.1.

4.2. Proof of Theorem 3.2. We introduce for (Z, τ) ∈ Σ, r > 0,

(4.1) β∞(Z, τ, r) := inf
P

sup
(Y,s)∈∆(Z,τ,r)

d(Y, s, P )

r
,

where the infimum is taken over all n-planes P containing a line parallel to the t axis.
Given (Z, τ), r as above, in display (2.2) in [HLN1] it is proved that

(4.2) β∞(Z, τ, r)n+3 ≤ 16n+3β2(Z, τ, 2r).

We also consider the dyadic versions

(4.3) β∞(Q) := inf
P

diam(Q)−1 sup
{(Y,s)∈kQ}

dist(Y, s, P ),

and

(4.4) β(Q) = β2(Q) := inf
P

(
diam(Q)−d−2

ˆ
2kQ

dist2(Y, s, P ) dσ(Y )

)1/2

,

where Q is a dyadic cube as in Definition 3, k is a sufficiently large number to be
chosen, and for k ≥ 1 we define the “dilate” kQ := {(Y, s) ∈ Σ: dist (Y, s,Q) ≤
k diam(Q)}. We then have the dyadic version of (4.2), by the same argument:

(4.5) β∞(Q)n+3 ≤ Cβ2(Q),

where C = C(n,ADR).
By definition, since Σ is p-UR, we have that β2(X, t, r) dσ(X, t) dr/r is a Carleson

measure on Σ × (0,∞), which readily implies in turn (in fact is equivalent to) the
fact that β(Q) satisfies the dyadic Carleson measure condition

(4.6) sup
Q

1

σ(Q)

∑
Q′⊂Q

β2(Q′)σ(Q′) =: ‖β‖C <∞.

Using (4.5), one may readily verify (basically via Tchebychev’s inequality) that (4.6)
implies a Carleson packing condition for “non-flat” cubes, as follows: given ε > 0,
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there is a constant Cε <∞ such that

(4.7) sup
Q

1

σ(Q)

∑
Q′⊂Q

αε(Q′) ≤ Cε,

where

αε(Q′) :=

{
σ(Q′), if β∞(Q′) ≥ ε,

0, if β∞(Q′) < ε.

Consider a cube Qr(X, t) centered on Σ. By the standard properties of the dyadic
system, there is a dyadic cube

Q0 ⊂ ∆(X, t, r/10) = Qr/10(X, t) ∩ Σ,

with `(Q0) ≈ r. Fix ε suitably small to be chosen, and note that as a consequence
of the packing condition (4.7), there is a dyadic subcube Q1 ⊂ Q0 with

cεr ≤ r1 := diam(Q1) < r/100,

such that β∞(Q1) < ε. Fixing X1 = (X1, t1) = (x1, x1
n, t

1) ∈ Q1, we see that by the
definition of dyadic β∞, see (4.3), there is a hyperplane P1 parallel to the t-axis such
that

(4.8) dist(Y, s, P1) < εr1, ∀ (Y, s) ∈ ∆1 := Q10r1(X
1) ∩ Σ.

provided that k is chosen large enough, depending on the constants in the con-
struction of the dyadic system in Definition 3. By translation we may suppose that
X1 = (0, 0), and by a spatial rotation we may suppose that P1 = Rn−1 × {0} × R.
Set Q1 := Q10r1(X

1) = Q10r1(0, 0), define

Qup
1 := Q1 ∩ {yn ≥ εr1}, Qdown

1 := Q1 ∩ {yn ≤ −εr1}
and observe that Qup

1 ∩ Σ = ∅ = Qdown
1 ∩ Σ, by (4.8). By the (2-sided) corkscrew

condition (Definition 6), we see that Qup
1 and Qdown

1 lie in distinct connected compo-
nents of Rn+1 \ Σ, call them Ω+ and Ω− respectively, provided that we fix ε small
enough depending on the constant γ0 in Definition 6. In particular, we choose ε < 1,
and then define

Q± := Qr1(0,±3r1, 0) ⊂ Ω± ∩Q1.

Since Q1 ⊂ Qr(X, t), and r1 ≈ r, the conclusion of Theorem 3.2 follows.

4.3. Proof of Theorem 3.3. The proof of Theorem 3.3 has similarities with
the proof of Theorem 3.2. Let k ≥ 2. We introduce the bilateral dyadic β∞ numbers

bβ∞(Q) := diam(Q)−1 inf
P

{
sup
Y∈kQ

dist(Y, P ) + sup
Z∈P∩B(XQ,k diam(Q))

dist(Z,Σ)

}
,

where XQ is the “center” of the dyadic cube Q ⊂ Σ, as in Definition 3 (v). We say
that Σ satisfies the bilateral weak geometric lemma with parameter ε, if there exists
Mε > 0 such that for every dyadic cube R ∈ D(Σ),∑

Q⊆R
bβ∞(Q)>ε

σ(Q) ≤Mεσ(R).

Since Σ is parabolic UR we can apply [BHHLN2, Theorem 4.16] and [BHHLN2,
Theorem 4.15(iii)] to conclude that Σ satisfies the parabolic bilateral weak geometric
lemma, for every fixed ε > 0, where k ≥ 2 is at our disposal, and will eventually be
chosen large enough. We now follow one of the two arguments in [AHMNT].
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Let Qr(X, t) be centered on Σ, and let ε > 0 be a sufficiently small number to
be chosen. Following the proof of Theorem 3.2 in the preceding subsection, we may
again construct a dyadic cube Q1, of diameter r1 ≈ r, for which now bβ∞(Q1) < ε,
along with slightly modified versions of the cubes Q± as above, still disjoint from Σ,
and contained in the same cube Q1 as before, but now off-set in time, so that

Q± := Qr1(0,±3r1,±r2
1).

In addition, by the interior corkscrew condition, choosing ε small enough we may
assume without loss of generality that Q+ ⊂ Ω. If Q− lies in a different connected
component of Rn+1 \Σ than does Q+, we are done. Otherwise if both Q± ⊂ Ω, then
by the Harnack Chain condition we may connect the points Y± := (0,±3r1,±r2

1) by
a chain of cubes {Qm}m of uniformly bounded cardinality, with

Qm ⊂ Ω ∩QCr1(0, 0), and `(Qm) ≈ dist(Qm,Σ) ≥ cr1,

for every m, and with c, C each depending on the constants in the Harnack chain
condition. For k � C, and ε � c, we contradict the fact that bβ∞(Q1) < ε. The
proof of Theorem 3.3 is complete.

5. The proof of Theorem 3.4 and Corollary 3.1

We here prove Theorem 3.4 and Corollary 3.1. We will give the proofs only in the
case when diam Σ =∞, T0 = −∞ and T1 =∞. Throughout the section we assume
that Σ is a closed subset of Rn+1, which is parabolic ADR with constant M , and we
assume that Σ satisfies the weak time-synchronized two cube condition in the sense
of Definition 7 with γ1 ∈ (0, 1).

It is true that the proof of Theorem 3.4 has substantial overlap with the corre-
sponding result in [NS] and the difference is that in our proof we have to be even
more careful as we only assume that Σ satisfies the weak time-synchronized two cube
condition while in [NS] it is assumed that Σ satisfies the synchronized two cube con-
dition. For the convenience of the reader we in the following give what we believe is a
sufficiently detailed presentation of the proof of Theorem 3.4 and we try to highlight
the key differences in the proof compared to [NS].

We have divided our presentation into three subsections, Subsections 5.1–5.3. In
Subsection 5.1 we reduce the proof of Theorem 3.4 to Proposition 5.1. In Subsec-
tion 5.2 we prove Corollary 3.1 and in Subsection 5.3 we prove Proposition 5.1.

5.1. Reducing Theorem 3.4 to Proposition 5.1. The argument in this sub-
section follows closely its counterpart in [DJ], but of course adapted to the parabolic
setting. We start by redefining

(5.1) M to equal max{M,
√
nγ1, 4n}.

Based on (5.1) we can without loss of generality assume that Σ is parabolic ADR
with constant M and that there exist, for all (X, t) ∈ Σ and R > 0, two parabolic
cubes Qρ(X1, t1), Qρ(X2, t2), both contained in QR(X, t) but belonging to different
connected components of Rn+1 \ Σ, and with

ρ = M−1R, t1 = t′ = t2.(5.2)

Consider the points (X1, t
′), (X2, t

′), and consider the line in Rn × {t′} connecting
(X1, t

′) and (X2, t
′). As (X1, t

′), (X2, t
′) belong to different connected components of

Rn+1\Σ, this line meets Σ at a point which we denote by (X ′, t′). Let δi := ||Xi−X ′||,
i = 1, 2, and note thatM−1R ≤ δi ≤ R. We will construct the big piece of Lip(1, 1/2)
graph to be contained in the set of points on Σ which are reached by lines emanating
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from points in Qρ(X1, t1) and which are parallel to the line connecting X1 and X2.
It is clear that we can translate and re-scale our setting about the point (X ′, t′) and
in particular we can in the following and without loss of generality assume that

R = 2M and (X ′, t′) = (0, 0).

Through this (X1, t
′), (X2, t

′) are mapped to (Y1, 0), (Y2, 0), the corkscrew cubes
Qρ(X1, t1), Qρ(X2, t2) are mapped to Q2(Y1, 0), Q2(Y2, 0), and Σ is mapped to a new
closed set having the same quantitative properties as Σ: for simplicity we will, with
an abuse of notation, also use the notation Σ for this set.

Consider the time-independent hyperplane P which passes through (0, 0) and is
orthogonal to (Y1, 0). Then by construction we can after a possible rotation in the
spatial coordinates, represent points in Rn+1 as X = (x, xn, t) ∈ Rn−1 × R× R, and
in this coordinate system Y1 := (Y1, 0) and Y2 := (Y2, 0) are represented by

Y1 = (0,M1, 0), Y2 = (0,M2, 0), respectively,

where 2 ≤ M i ≤ 2M . We may then identify the hyperplane P with Rn−1 × {0} ×
R. Let π denote the orthogonal projection onto this plane and let π⊥ denote the
orthogonal projection onto the normal to the plane. Let U be the component of
Rn+1 \ Σ containing Y1.

Given (z, τ) ∈ Rn we let

Ir(z, τ) = {(y, s) ∈ Rn : |yi − zi| < r, i = 1, . . . , n− 1, |s− τ | < r2}.

Define I0 := I1(0, 0), and set M := M1,

(5.3) IM := {X : (x, t) ∈ I0, xn = M}.

By construction, IM is a closed n-dimensional parabolic cube contained in the same
component as Q2(Y1) (namely U), and d(IM ,Σ) ≥ 1. We also note that

D := π
(
Q1/2(Y2)

)
=

1

2
I0,

and σ(D) = Hn(D) = 2−n−1. In particular, choosing

(5.4) γ = 2−n−2,

we have

(5.5) σ(D) ≥ 2γ.

Note that any line in the xn direction connecting D × {xn = −M} with IM has to
intersect Q1/2(Y2) and Q2(Y1), thus it also has to intersect Σ.

Given h > 0 we introduce

Γ = Γh := {X ∈ Rn+1 : xn ≥ h‖(x, t)‖},
i.e. Γ is a parabolic cone with aperture h, and we let

S :={X ∈ Σ : −M ≤ xn ≤M, and if Y ∈ X + Γ, yn = M , then Y ∈ IM}.(5.6)

Note that S ⊂ Σ, and that π(S) ⊂ I0. Also, if in this construction we choose
h ≥ 6M , it follows that if X = (x, xn, t) ∈ Σ, −M ≤ xn ≤M , and if (x, t) ∈ D, then
Y ∈ IM whenever Y ∈ X + Γ is such that yn = M . Indeed, for such a point Y, we
have

3M ≥M +M ≥ yn − xn ≥ h‖(y, s)− (x, t)‖ ≥ h(‖(y, s)‖ − ‖(x, t)‖).
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Hence

3M ≥ h(‖(y, s)‖ − 1/2) =⇒ 1 ≥ ‖(y, s)‖,

as h ≥ 6M and the last conclusion in the display implies that (y, s) ∈ I0. In
particular, D ⊂ π(S) and thus by (5.5),

(5.7) Hn(π(S) ∩ I0) = Hn(π(S)) ≥ 2γ.

To prove Theorem 3.4 it suffices to prove the following proposition.

Proposition 5.1. Let γ be as in (5.4), (5.5). Then there exists h > 0, depending
only on n and M , such that if we let Γ = Γh, and if we define

W := {(x, t) ∈ I0 : ∃ X = (x, xn, t) ∈ S, (X + Γ) ∩ S = {X}}
(so that in particular, W ⊂ π(S)), then Hn(π(S) \W ) ≤ γ.

We defer the proof of Proposition 5.1 until Subsection 5.3 below.

Remark 5.1. Let us record a remark summarizing the preceding observations.
Set

W ′ :=
{
X = (x, xn, t) ∈ S : (X + Γ) ∩ S = {X}, and π(X) = (x, t) ∈ I0

}
(thus, π(W ′) = W ), and define

Ω′ := int

( ⋃
X∈W ′

(X + Γ)

)
.

Then
Ω′ ∩ {yn < M + 2} ⊂ U

(recall that U is the component of Rn+1 \ Σ containing Y1), and ∂Ω′ is given by a
Lip(1, 1/2) graph {(y, ψ(y, s), s)}, where ψ has Lip(1, 1/2) norm equal to h. Note
that W ′ ⊂ Σ ∩ ∂Ω′, and thus

π(Σ ∩ ∂Ω′) ∩ I0 ⊃ π(W ′) = W .

Also, by Proposition 5.1, we have Hn(π(S) \W ) ≤ γ, and therefore by (5.7),

Hn(π(Σ ∩ ∂Ω′) ∩ I0) ≥ Hn(W ) ≥ γ

Furthermore, if for some N ≥ 2, we have that QN(Y1) ⊂ U , then
(5.8) Ω′ ∩ {yn < M +N} ⊂ U .

Thus, taking Proposition 5.1 for granted, we conclude that there is a Lip (1,1/2)
graph G with constant h such that Hn(π(Σ ∩ G) ∩ I0) ≥ γ. Thus, conditioned on
Proposition 5.1 the proof of Theorem 3.4 is complete.

Proposition 5.1 is essentially Lemma 2.1 in [NS], and we again emphasize that
the difference now is that in the present proof of this key result we assume only
that Σ satisfies the weak time-synchronized two cube condition, while in [NS] it is
assumed that Σ satisfies the (strong) synchronized two cube condition. This weaker
assumption will force us to revisit certain subtleties of the proofs in [NS] and [DJ].

5.2. Proof of Corollary 3.1. Let Ω ⊂ Rn+1 be an open set with ∂Ω = Σ,
and assume that Ω satisfies a corkscrew condition in the sense of Definition 9 with
constant γ0 and that Σ is time-symmetric ADR in the sense of Definition 2 with
constant M ′. Consider (X̂, t̂) ∈ Ω and let (X ′, t′) ∈ ∂Ω be a point such that

dp(X̂, t̂, X
′, t′) = dp(X̂, t̂, ∂Ω) =: d.
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Our hypotheses are invariant under the change of variable t 7→ −t, so without loss
of generality we may assume that t′ ≥ t̂.

Let N be a sufficiently large number to be chosen. If t′ − t̂ ≤ (N−2h−1d)2, then
we translate in time so that (X ′, t′) = (X ′, 0). Otherwise, if t′ − t̂ > (N−2h−1d)2,
then using TBADR, and iterating Lemma 3.1, we may find (X ′′, t′′) ∈ Σ such that

dp(X̂, t̂, X
′′, t′′) ≈ d

(depending implicitly on the constants in Lemma 3.1), with |t′′ − t̂| ≤ (N−2h−1d)2.
In this case, we translate in time so that (X ′′, t′′) = (X ′′, 0). We set X̃ := X ′ in
the first case, and X̃ := X ′′ in the second. In either case, upon application of the
corkscrew condition at (X̃, 0), we can produce a corkscrew cube

Q0 = Q0(X0), for some X0 = (X0, t0) ∈ Rn+1 \ Σ,

of (parabolic) diameter N−2h−1γ0d/100, whose distance to (X̃, 0) is no more than
N−2h−1d, and which is contained in a connected component of Rn+1 \ Σ that does
not contain (X̂, t̂). We define the point

X1 = (X1, t1) := (X̂, t0)

and we construct the subcube

Q1(X1, t1) =: Q1 ⊂ Qd(X̂, t̂),

of (parabolic) diameter N−2h−1γ0d/100 (i.e., equal to that of Q0). Note that by
construction, for N large we have (X1, t1) ∈ Ω, and in fact

dp(X
1, t1, X̂, t̂) = |t0 − t̂|1/2 . N−2h−1d� d.

SinceX1 andX0 lie in different connected components of Rn+1\Σ, the line connecting
them meets Σ, say at the point X2 = (X2, t0) (here we are using that t1 = t0), and
by a translation in the space variables, we may suppose that X2 = 0. Let P denote
the hyperplane through (X2, t0) = (0, t0) orthogonal to the line joining X1 to X0,
and note that since t1 = t0, the plane P is parallel to the t-axis. Letting π denote
projection onto P , we have by construction that π(X1) = π(X0). We perform a
rotation in the spatial variables, so that P = Rn−1 × {0} × R, and so that in this
new coordinate system, for N large,

(X̂, t̂ ) = (0, x̂n, t̂) = (0, κd, ad2), with
1

2
≤ κ ≤ κ0, and |a| ≤ (N2h)−2,

where κ0 is uniformly controlled from above, and

X2 ∼= π(X2) = π(X1) = π(X0) = (0, t0) = (0, ãd2), with |ã| . (N2h)−2,

After making a possible slight adjustment in diameter, by a purely dimensional factor
c(n), we may assume that Q0 and Q1 have been rotated so that their faces are parallel
to the coordinate hyperplanes in the new coordinate system.

Clearly, there is a constant C ≥ 1 such that Qd(X̂, t̂), Q0 and Q1 are all con-
tained in QCd(0, t0). Furthermore, we can view Q0 and Q1 as weak time-synchronized
corkscrew cubes relative to QCd(0, t0), so using the boundary point (0, t0) in place
of the origin, we can run the argument above (as in the proof of Theorem 3.4), with
corkscrew cubes Q0 and Q1 at point (0, t0) and scale 2d, to obtain the interior domain
(see Remark 5.1):

(5.9) Ω̃ = {(Y, s) : (y, s) = π(Y, s) ∈ I∗, ψ(y, s) < yn < κ1d} ⊆ Ω,
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where ψ is a Lip(1, 1/2) function with norm h, and where

(5.10) I∗ := π(Q∗), Q∗ := Q(Nh)−1d(0, 0, t
0), κ1 := κ+ c(n)/200

(so that κ1d = x̂n + c(n)d/200), and

(5.11) Hn(π(Σ ∩ ∂Ω̃) ∩ I∗) ≥ εdn+1,

for some ε = ε(n, γ0,M
′). We should note that, when running the argument as in

the proof of Theorem 3.4, we perform a parabolic rescaling, and then we “undo" the
parabolic rescaling to obtain the set Ω̃ above. We observe that by construction,

(5.12) QN−2h−1d(X̂, t̂) ⊂ Ω̃,

provided that we choose N large enough.
This concludes the proof of Corollary 3.1.

Remark 5.2. For future reference, let us record some additional observations.
To begin, letting G denote the graph of ψ, we may find a point X∗ = (x∗, x∗n, t

∗) ∈
Σ ∩ G such that π(X∗) ∈ I∗: just choose X∗ in the un-rescaled version of the set
W ′ in Remark 5.1. Note that such an X∗ lies below the bottom face of Qc(n)d(X̂, t̂)
(by construction of G, since X∗ ∈ Σ), hence we see that x∗n ≤ (κ − c(n))d. Since
diam(I∗) . (Nh)−1d, and since ψ has Lip(1, 1/2) norm h, we find that

(5.13) sup
(y,s)∈100I∗

ψ(y, s) ≤ (κ− c(n) + CN−1)d ≤ (κ− c(n)/2)d,

for N large enough, and therefore with c1 = c(n)/2, we have

(5.14) x̂n − sup
(y,s)∈100I∗

ψ(y, s) ≥ c1d ≈ N diam(I∗).

We note also that Q∗ is centered on Σ, at X2 = (0, 0, t0)).

5.3. Proof of Proposition 5.1. We roughly follow the argument in [DJ], as
adapted to the parabolic setting in [NS], with some modest technical refinements to
deal with the fact that the time-synchronization in our 2-cube condition holds only
weakly. As above, we identify Rn with the hyperplane P = {xn = 0}. For any

X ∈ {X = (x, xn, t) : (x, t) ∈ I0, xn ∈ [−M, M̄ ]},
we let L(X) denote the open line segment in the xn direction which connects X to
(x, M̄, t). If X ∈ Σ, then the length of L(X) is at least d(IM̄ ,Σ) ≥ 1. Define G̃ to
be the closure of the set of all such points X ∈ Σ which satisfy L(X) ∩ Σ = ∅, and,
recalling that the set S is defined in (5.6), we let

G := G̃ ∩ S ⊂ Σ.

Given A ⊂ Rn, set
ν(A) := σ

(
π−1(A) ∩Q2M(0, 0)

)
,

where again π denotes the orthogonal projection onto P = Rn−1×{0}×R, and note
that ν defines a Borel measure with total mass

‖ν‖ ≤ σ (Q2M(0, 0)) ≤ C

(since σ is ADR). For (x, t) ∈ I0, define

M(x, t) = sup

{
1

Hn(I)
σ(π−1(I) ∩Q2M(0, 0)) : I contains (x, t)

}
,

where the supremum runs over all parabolic cubes I ⊂ P with (x, t) ∈ I, so that
M(x, t) =Mν(x, t), the parabolic Hardy–Littlewood maximal function of ν. We let
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N∗ be a suitably large constant to be chosen momentarily. Then, by the standard
weak-type bounds, we have

B := {(x, t) ∈ Rn : M(x, t) ≥ N∗} satisfies Hn(B) ≤ C/N∗,

for some constant C = C(n,M) ≥ 1. Then for N∗ = N∗(n,M, γ) large enough, we
have

(5.15) Hn(B) ≤ γ/2.

We fix N∗ with respect to (5.15). In particular, since γ is a purely dimensional
constant previously fixed (see (5.4), (5.5)) it follows that N∗ is from now on a fixed
constant depending only on n, M .

Having fixed γ and N∗, there will appear, in the construction to be outlined, four
important constants: Λ0, Λ1, Λ2, and Λ3, with 1 ≤ Λi < ∞ for i ∈ {0, 1, 2, 3}. In
general all constants appearing will depend at most on n, M , Λ0, Λ1, Λ2, and Λ3.
We will choose the degrees of freedom Λ0, Λ1, Λ2, and Λ3 to depend only on n, M ,
γ and N∗, and hence to depend only on n, M . Furthermore, Λi for i ∈ {0, 1, 2, 3},
will be chosen to be of the form 2Ni for some integer Ni ≥ 1.

We let, for Λ1 fixed and as above, we choose a dyadic number A = 2k0 large
enough that

(5.16) A > 2MΛ1.

With A fixed, we define, for j ∈ {0, 1, . . .},
Σj = {(x, t) ∈ I0 : there exist X ∈ G and Y ∈ S such that

X = (x, xn, t), Y ∈ X + Γ and A−j ≤ yn − xn < A−j+1}.

If X = (x, xn, t) ∈ S, there exists a maximal x̂n such that (x, x̂n, t) ∈ S. This follows
since xn ≤ M̄ if (x, xn, t) ∈ S, IM̄ ⊂ U and S is closed. Thus (x, x̂n, t) ∈ G, which
shows that π(G) = π(S). When (x, t) ∈ π(S) \W we have [(X + Γ) \ {X}] ∩ S 6= ∅
whenever X = (x, xn, t) ∈ S. In particular, this is true for X̂ = (x, x̂n, t) ∈ G, the
maximal point constructed above, so there exists Y ∈ S \ {X̂} such that Y ∈ X̂+ Γ.
By our restriction on A we have

π(S) \W ⊂
⋃
j Σj.

Furthermore, as by constructionHn(B) ≤ γ/2, the proof of Proposition 5.1 is reduced
to proving that

(5.17) Hn

(⋃
j

Σj ∩ (Rn \ B)

)
≤ γ/2.

To continue the proof we will need the following lemma.

Lemma 5.1. Let ε > 0 be given. Let Λ1 be as above and define A as in (5.16).
Then there exist Λ2, and Λ3 as above, and an integer N0 = N0(ε,Λ2) ≥ 1, such that
if we let Λ0 = ΛÑ0

2 , for some Ñ0 ≥ N0, and if we restrict h to satisfy h ≥ 2AΛ0Λ1Λ3,
then the following is true. Let j ≥ 0 and I ⊂ I0 be a dyadic cube of length `(I) = A−j.
Then the number of dyadic cubes J of length `(J) = Λ−1

0 A−j that are contained in
I and satisfy J ∩ (Σj ∩ (Rn \ B)) 6= ∅, is less than εΛn+1

0 .

Remark on the proof. This is Lemma 2.2 in [NS] and its proof does not rely
directly on any two cube condition. On the other hand, [NS, Lemma 2.2] is deduced
as a consequence of Lemma 2.5 in [NS], whose proof does make nominal use of the
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synchronized two cube condition. However, a careful examination of the argument
reveals that the weak synchronized two cube condition is sufficient. We omit further
details. �

Let ε > 0 be a degree of freedom to be fixed in (5.29) below. To proceed with
the proof of (5.17), given j ≥ 0 we dyadically subdivide I0 into (non-overlapping)
dyadic cubes {Ij,l}l of length `(Ij,l) = A−j. Note that there are A(n+1)j such cubes,
since I0 is a unit cube. We then subdivide each cube Ij,l further and for Λ0 as
in Lemma 5.1, we let {Jj,l,k}klk=1 denote the so constructed set of dyadic cube of
length `(Jj,l,k) = Λ−1

0 A−j, satisfying Jj,l,k ⊆ Ij,l and Jj,l,k ∩
(
Σj ∩ (Rn \ B)

)
6= ∅. By

Lemma 5.1 we have, for each Ij,l, that the cardinality kl of the collection {Jj,l,k}k is
at most εΛn+1

0 . We then have

Hn
(⋃

jΣj ∩ (Rn \ B)
)
≤
∑
j

∑
l

Hn
(
Ij,l ∩

(
Σj ∩ (Rn \ B)

))
≤
∑
j

∑
l

kl∑
k=1

Hn (Jj,l,k) .(5.18)

Hence, to prove (5.17), it suffices to show that

(5.19)
∑
j

∑
l

kl∑
k=1

Hn (Jj,l,k) ≤ γ/2.

To prove (5.19) we will associate, to each Jj,l,k, a surface S(Jj,l,k), and we intend to
estimate the measure of |Jj,l,k| in terms of the measures of the sets {S(Jj,l,k)}. The
surfaces will not be uniquely defined but as we will see we will make the construction
so that S(Jj,l,k) ∩ S(Jj′,l′,k′) = ∅ whenever (j, l, k) 6= (j′, l′, k′), thus enabling efficient
summation.

To proceed with the construction of the surface S(Jj,l,k), consider J := Jj,l,k and
choose any X ∈ G and Y ∈ S such that π(X) ∈ J , Y ∈ X+ Γ and A−j ≤ yn− xn <
A−j+1. Applying the weak time-synchronized corkscrew condition, at Y and at scale
Λ−1

1 A−j, we see that there exists a cube Q ⊂ Rn+1 of length

`(Q) = Rj := M−1Λ−1
1 A−j,

with centerU and contained in QΛ−1
1 A−j(Y), and such that Q belongs to a component

of Rn+1 \ Σ different from U . We recall that U is the component that contains IM̄ .
However, in contrast to [NS] the t-coordinates ofU andY do not necessarily coincide.
This turns out to be harmless. Given J we let

(5.20) Ĵ = Ĵ(J) := IΛ−1
1 Rj

(π(U)).

We also introduce

S := (Σ ∩Q2M(0, 0)) ∪ (I0 × {xn = −A})
and we recall that A ≥ 2M . Given J = Jj,l,k we define S(J) to be the set of all V ∈ S
such that π(V) ∈ Ĵ = Ĵ(J) = IΛ−1

1 Rj
(π(U)), with vn < un−Rj, whereU = (u, un, τ),

and such that the open line segment joining V to π(V) + (0, un − Rj, 0) does not
meet Σ. By construction, since π(S) ⊃ Ĵ , we have

(5.21) π(S(J)) = Ĵ , and Ĵ ⊂ 2J,

where the latter holds since we have chosen h very large.
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To proceed, let Kj be the number of cubes {Ij,l} that contain at least one of
the Jj,l,k. Then, given ε, Ñ0 ≥ N0 and h as stated in Lemma 5.2 below, and using
Lemma 5.1, ∑

l

kl∑
k=1

Hn (Jj,l,k) ≤ KjεΛ
n+1
0 (2Λ−1

0 A−j)n+1 = Kjε2
n+1A−j(n+1).(5.22)

Fix j, l and assume that the collection {Jj,l,k}k is non-empty. Since Jj,l,k ⊂ Ij,l, it
follows that for all k ∈ {1, . . . , kl}, one has π(S(Jj,l,k)) ⊂ 2Ij,l, and therefore by (5.20)
and (5.21),

Hn
(
π
(⋃kl

k=1S(Jj,l,k)
)
∩ 2Ij,l

)
≥ (2Λ−1

1 Rj)
n+1.(5.23)

Hence, summing the inequality in (5.23) over l∑
l

Hn
(
π
(⋃kl

k=1S(Jj,l,k)
)
∩ 2Ij,l

)
≥ Kj(2Λ−1

1 Rj)
n+1

= Kj(M
−1Λ−2

1 )n+12n+1A−j(n+1).(5.24)

Combining (5.22) and (5.24), and using that for each given j, the fattened cubes
{2Ij,l}l have bounded overlaps, we see that∑

l

kl∑
k=1

Hn(Jj,l,k) ≤ Cε(MΛ2
1)n+1Hn

(
π
(⋃

l

⋃kl
k=1S(Jj,l,k)

))
(5.25)

for all j ≥ 0, where the constant C = C(n). Hence, summing in j we have∑
j

∑
l

kl∑
k=1

Hn(Jj,l,k) ≤ Cε(MΛ2
1)n+1

∑
j

Hn
(
π
(⋃

l

⋃kl
k=1S(Jj,l,k)

))
.(5.26)

To complete the proof we will need the following lemma, Lemma 5.2.

Lemma 5.2. Let ε > 0 be given. Let Λ2, Λ3, N0, be as in the statement of
Lemma 5.1. Then there exists an integer Ñ0 ≥ N0, depending only on n,M , Λ2, Λ3,
such that if we let Λ0 = ΛÑ0

2 , Λ1 = 2Ñ0 , define A as in (5.16), and if we restrict h to
satisfy h ≥ 2AΛ0Λ1Λ3, then

S(Jj,l,k) ∩ S(Jj′,l′,k′) = ∅, ∀ l, k, l′, k′, whenever j 6= j′.

Proof. This is Lemma 2.3 in [NS], whose proof relies in turn on Lemma 2.4 in
[NS]. Neither of the proofs of these two Lemmata relies on a two cube condition,
hence Lemma 5.2 generalizes immediately to our setting. �

We can now use Lemma 5.2 to complete the proof of (5.19) and hence the proof
of Proposition 5.1. Recall that by definition,

S(Jj,l,k) ⊂ S = (Σ ∩Q2M(0, 0)) ∪ (I0 × {xn = −A}).
Hence, using that Hn and Hn+1

p are the same on a hyperplane parallel to the t-axis,
and that (parabolic) Hausdorff measure does not increase under a projection (see
Remark 2.1 (ii) and (iii)), and then Lemma 5.2, we deduce that∑

j

Hn
(
π
(⋃

l

⋃kl
k=1S(Jj,l,k)

))
≤
∑
j

Hn+1
p

(⋃
l

⋃kl
k=1S(Jj,l,k)

)
(5.27)

≤ Hn+1
p

(
Σ ∩Q2M(0, 0)

)
+Hn

(
I0 × {xn = −A}

)
≤ C,
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since Σ is ADR. Together (5.26) and (5.27) imply the bound

(5.28)
∑
j

∑
l

kl∑
k=1

Hn (Jj,l,k) ≤ Cε(MΛ2
1)n+1,

where C = C(n), 1 ≤ C <∞. Let now ε be defined through the relation

(5.29) Cε(MΛ2
1)n+1 = γ/2.

Then ε = ε(n,M,Λ1, γ) = ε(n,M, γ) = ε(n,M) and we see that Lemma 5.1 holds
with h = 2AΛ0Λ1Λ3 and, by construction, h = h(n,M). In particular, the proof of
Proposition 5.1 is now complete.

6. The proof of Theorem 3.5 and Corollary 3.2

In this section we give the proof of Theorem 3.5 when diam Σ = ∞, T0 = −∞
and T1 = ∞, followed by a sketch of the refinements to this argument needed to
prove Corollary 3.2. The proof will be a combination of ideas in [HLN1] and [DS].

In the following C will denote a positive constant satisfying 1 ≤ C < ∞. We
write c1 . c2 if c1/c2 is bounded from above by a positive constant depending at
most on n, M and γ1 if not otherwise stated. We write c1 ∼ c2 if c1 . c2 and c2 . c1.

Proof of Theorem 3.5. Let Σ be a closed subset of Rn+1 which is parabolic
ADR with constant M . Assume that Σ is parabolic UR with constants (M, ‖ν‖),
and that and that Σ satisfies a 2-sided corkscrew condition as in Definition 6. Then
by Theorem 3.2, Σ satisfies the weak synchronized two cube condition in the sense of
Definition 7 with γ1 ∈ (0, 1). If necessary, we shrink γ1 slightly so that any rotation
%(Q) of a corkscrew cube Q does not intersect Σ, and in fact retains the Whitney
property that diam (%(Q)) ≈ diam(Q) ≈ dist (%(Q),Σ), with uniform implicit con-
stants.

To start the proof of Theorem 3.5, let (X, t) ∈ Σ and R > 0. By Theorem 3.4
there exists, after possibly a rotation in the spatial variables, a coordinate system
and Lip(1, 1/2) function ψ∗ with constant b∗ = b∗(n,M) such that if we let π denote
the orthogonal projection onto the plane {(y, yn, s) ∈ Rn−1 × R× R : yn = 0}, then

σ(F ) ≥ Hn(π(F )) ≥ εRn+1 where F := Σψ∗ ∩∆(X, t, R)(6.1)

and

Σψ∗ := {(y, yn, s) ∈ Rn−1 × R× R : yn = ψ∗(y, s)}.
To prove Theorem 3.5 we need to invoke the Carleson measure condition used in

the very definition of parabolic uniform rectifiability. Let

f(Z, τ) =

ˆ 100R

0

γ(Z, τ, r)r−1 dr, (Z, τ) ∈ Σ.

Then, using (2.6) we see thatˆ̂
∆(X,t,100R)

f(Z, τ) dσ(Z, τ) ≤ ‖ν‖(100R)n+1.

Using this and weak estimates we see that if A = 1000ε−1, then

σ
(
{(Z, τ) ∈ ∆(X, t, 100R) : f(Z, τ) ≥ An+1‖ν‖}

)
≤ (100R/A)n+1

≤ (εR/10)n+1.(6.2)
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Using this inequality, (6.1) and the fact that Hausdorff measure does not increase
under a projection, we deduce the existence of a closed set F1 = F1(A) with F1 ⊂ F,
such that

(6.3) f(Z, τ) ≤ An+1‖ν‖, (Z, τ) ∈ F1,

and

(6.4) Hn(π(F1)) ≥ ε

2
Rn+1.

We construct the approximating graph by extending ψ∗ off π(F1). To do this we
again identify Rn−1 × {0} × R with Rn, and put

Ir(z, τ) = {(y, s) ∈ Rn : |yi − zi| < r, i = 1, . . . , n− 1, |s− τ | < r2},

whenever (z, τ) ∈ Rn, r > 0. Let {Īi = Iri(x̂i, t̂i)} be a Whitney decomposition of
Rn \ π(F1) into (n-dimensional parabolic) cubes, such that Ii ∩ Ij = ∅, i 6= j, and

(6.5) 10−10nd(Ii, π(F1)) ≤ ri ≤ 10−8nd(Ii, π(F1)).

Let {vi} be a partition of unity adapted to {Ii}, i.e.,
(a)

∑
vi ≡ 1 on Rn \ π(F1),

(b) vi ≡ 1 on Ii and vi ≡ 0 in Rn \ I2ri(x̂i, t̂i) for all i,
(c) vi is infinitely differentiable on Rn with

(6.6) r−li

∣∣∣∣ ∂l∂xl vi
∣∣∣∣+ r−2l

i

∣∣∣∣ ∂l∂tl vi
∣∣∣∣ ≤ c(l, n) for l = 1, 2, . . . .

In (c), ∂l

∂xl
denotes an arbitrary partial derivative with respect to the space variable

x and of order l. Next, for each i we fix (x′i, t
′
i) ∈ π(F1) with

(6.7) ρi := d((x′i, t
′
i), Ii) = d(π(F1), Ii) ≈ ri ≈ diam(Ii),

where the last two equivalences are standard properties of Whitney cubes. We set
Λ = {i : Īi ∩ I2R(x, t) 6= ∅}, where (y, s) ∼= (y, 0, s) is the projection of (Y, s) onto
Rn ∼= Rn−1 × {0} × R. We now let

(6.8) ψ(y, s) =

{
ψ∗(y, s), (y, s) ∈ π(F1),∑

i∈Λ

(
ψ∗(x′i, t

′
i) + µb∗ρi

)
vi(y, s), (y, s) ∈ Rn \ π(F1),

where µ is a non-negative constant which may be taken equal to 0, in the case of
Theorem 3.5, and which will be chosen sufficiently large in the case of Corollary 3.2.
Then, ψ ≡ 0 on Rn \Q4R(X, t), and

(6.9) Hn(π(F1)) ≥ ε

2
Rn+1, F1 ⊂ Σψ ∩∆(X, t, R),

where
Σψ := {(y, yn, s) ∈ Rn−1 × R× R : yn = ψ(y, s)}.

We intend to prove that the function ψ is a regular parabolic Lip(1, 1/2) function
with constants b1 = b1(n,M, M̃), b2 = b2(n,M, M̃).

Since ψ∗ is a Lip(1, 1/2) function with constant b∗ = b∗(n,M), one can use (6.5)–
(6.8) and a standard Whitney extension argument (see [St, Ch. VI]) to conclude that
(1.1) holds with b1 replaced by Cb∗. To verify this, the more delicate case occurs
when (y, s) is in the closure of two cubes say Ii, Ij with i ∈ Λ, j 6∈ Λ. However this
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case follows easily from the fact that |ψ∗| ≤ cb∗R and |∂vk/∂yl|(y, s) ≤ c/R for
1 ≤ l ≤ n− 1, k ∈ {i, j}. Hence it remains only to prove that

(6.10) ‖Dt
1/2ψ‖∗ ≤ b2 for some b2 = b2(n,M, M̃).

Let βψ, νψ, be as in the statement Definition 4 but with Σ replaces by Σψ as the
underlying closed set. To prove (6.10) the key step is to prove that

(6.11) ‖νψ‖ . (1 + ‖ν‖).

Once (6.11) is established, one can repeat the proof in [HLN1, pp. 368–373] to con-
clude that (6.10) holds with b2 ≈ 1 + ‖ν‖, thus completing the proof of Theorem
3.5.

It therefore remains to give the proof of (6.11). To start, we make an elementary
observation of a geometric nature. Indeed, we first note that

(6.12) d(Y, s,Σ) . (1 + b∗) d
(
y, s, π(F1)

)
, ∀ (Y, s) ∈ Σψ ∩Q100R(X, t).

Indeed, this inequality is trival when (Y, s) ∈ F1, so assume (Y, s) = (y, s, ψ∗(y, s))
with (y, s) ∈ Īi for some i. Then d(y, s, π(F1)) ≈ ρi ≈ d

(
(y, s), (x′i, t

′
i)
)
, by (6.7).

Consequently, since ψ∗ is Lip (1,1/2) with constant b∗,

(6.13) d(Y, s,Σ) ≤ d
(
(y, s, ψ∗(y, s)), (x′i, t

′
i, ψ
∗(x′i, t

′
i)
)
. (1 + b∗)ρi.

This proves (6.12).
In the following K � 1 is a degree of freedom. Given (Z, τ, r) ∈ Σ × (0,∞) we

let P(Z,τ,r) be a time-independent plane which realizes β(Z, τ,Kr).
Consider

(Z, τ) ∈ F1 and r > 0 such that Qr(Z, τ) ⊂ Q80R(X, t).(6.14)

Given i ∈ Λ, let (X ′i, t
′
i) ∈ F1 be such that π(X ′i, t

′
i) = (x′i, t

′
i) where (x′i, t

′
i) ∈ π(F1)

realizes the distance from Ii to π(F1). Let Qi be a dyadic cube on Σ (see Definition
3) containing (X ′i, t

′
i) with `(Qi) ≈ ρi. Furthermore, let

Γi = {(y, ψ(y, s), s) : (y, s) ∈ Ii}.

Then

(6.15) σ(Γi) ≈ ρn+1
i ,

(here we are using σ to denote the surface measure both on Σ and on Σψ), and

(6.16) ρi = d(x′i, t
′
i, Ii) = d

(
Ii, π(F1)

)
∼ `(Ii) ∼ `(Qi) ∼ d(X ′i, t

′
i,Γi) & d(Qi,Γi),

where in the next-to-last step we have used that Σψ is a Lip(1, 1/2) graph. Using
this notation we see that

β2
ψ(Z, τ, r) . r−(n+1)

ˆ̂
Σψ∩Qr(Z,τ)

(
d(Y, s, P(Z,τ,r))

r

)2

dσ(Y, s).(6.17)

Introducing

T (Z, τ, r) := r−(n+1)

ˆ̂
F1∩Qr(Z,τ)

(
d(Y, s, P(Z,τ,r))

r

)2

dσ(Y, s),

Ti(Z, τ, r) := r−(n+1)

ˆ̂
Γi∩Qr(Z,τ)

(
d(Y, s, P(Z,τ,r))

r

)2

dσ(Y, s),(6.18)
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we can continue the estimate in (6.17) and conclude that

β2
ψ(Z, τ, r) . T (Z, τ, r) +

∑
i∈I(Z,τ,r)

Ti(Z, τ, r),

where I(Z, τ, r) := {i : Qr(Z, τ) ∩ Γi 6= ∅}. By construction

T (Z, τ, r) . β2(Z, τ,Kr).(6.19)

To handle the sum over i ∈ I(Z, τ, r) we will combine arguments from [DS] and
[HLN1].

Let i ∈ I(Z, τ, r). Then

(6.20) ρi . r and d(Z, τ,Qi) . r.

Choose a (Zi, τi) ∈ Qi which minimizes the distance from Qi to P(Z,τ,r), i.e.

(6.21) hi := inf
(Y,s)∈Qi

d(Y, s, P(Z,τ,r)) = d(Zi, τi, P(Z,τ,r)).

For (Zi, τi) ∈ Qi fixed as above, choose Z(Z,τ,r) ∈ P(Z,τ,r) so that

(6.22) hi = d(Zi, τi, P(Z,τ,r)) = d(Zi, τi,Z(Z,τ,r)).

Using this notation and the triangle inequality, we write

Ti(Z, τ, r) . T̃i(Z, τ, r) + T̂i(Z, τ, r),(6.23)

where

T̃i(Z, τ, r) := r−(n+1)

ˆ̂
Γi∩Qr(Z,τ)

(
d(Y, s, Zi, τi)

r

)2

dσ(Y, s),

T̂i(Z, τ, r) := r−(n+1)

ˆ̂
Γi∩Qr(Z,τ)

(
d(Zi, τi,Z(Z,τ,r))

r

)2

dσ(Y, s).

We then have

T̃i(Z, τ, r) . (ρi/r)
n+3, T̂i(Z, τ, r) . (ρi/r)

n+1(hi/r)
2,(6.24)

where we have used (6.12) in the first estimate. Combining (6.19) and (6.24) we can
conclude that if (Z, τ, r) is as in (6.14), then

(6.25) β2
ψ(Z, τ, r) . β2(Z, τ,Kr) +

∑
i∈I(Z,τ,r)

(ρi
r

)n+3

+
∑

i∈I(Z,τ,r)

(ρi
r

)n+1
(
hi
r

)2

.

We first treat the last term in (6.25), following the argument in [DS, pp. 86–87].
Given i ∈ I(Z, τ, r) we set J(i) := {j : Qj ⊂ Qi}, and define

Ni(Y, s) :=
∑
j∈J(i)

1Qj(Y, s)

for (Y, s) ∈ Σ. Then, as in [DS] we have

(6.26) −
ˆ
−
ˆ
Qi
Ni dσ . 1,

and

(6.27)
∑
i

Ni(Y, s)−21Qi(Y, s) . 1 .

We sketch the proof of the latter estimate, as follows. If Ni(Y, s) =∞, then trivially
Ni(Y, s)−2 = 0. Otherwise, if Ni(Y, s) <∞, then there are only finitely many terms
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in the sum defining Ni(Y, s). Note also that for each k, there is at most one Qj ∈ Dk

such that (Y, s) ∈ Qj. Thus, Ni(Y, s) equals the number of dyadic generations k such
that there is a cube Qj ∈ Dk, with (Y, s) ∈ Qj ⊂ Qi. For the smallest Qi containing
(Y, s), we have Ni(Y, s) = 1, for the next smallest Ni(Y, s) = 2, etc., so that the sum
in (6.27) is controlled by

∑∞
k=1 k

−2.
Following [DS], we write

ρn+1
i h2

i = ρn+1
i h2

i

(
−
ˆ
−
ˆ
Qi
dσ

)3

= ρn+1
i h2

i

(
−
ˆ
−
ˆ
Qi
N−2/3
i N 2/3

i dσ

)3

.

By Hölder’s inequality, (6.21), and (6.26), we then deduce that

ρn+1
i h2

i .
ˆ̂
Qi

(d(Y, s, P(Z,τ,r)))
2Ni(Y, s)−21Qi(Y, s) dσ(Y, s)

(
−
ˆ
−
ˆ
Qi
Ni dσ

)2

.
ˆ̂
Qi

(d(Y, s, P(Z,τ,r)))
2Ni(Y, s)−21Qi(Y, s) dσ(Y, s).

Hence, summing over i, using (6.20) and (6.27), we obtain

∑
i∈I(Z,τ,r)

(ρi/r)
n+1(hi/r)

2 . r−n−3

ˆ̂
Σ∩QKr(Z,τ)

(d(Y, s, P(Z,τ,r)))
2 dσ(Y, s)(6.28)

≈ β2(Z, τ,Kr),

provided thatK is chosen large enough, depending on the implicit constants in (6.20).
In particular,

β2
ψ(Z, τ, r) . β2(Z, τ,Kr) +

∑
i∈I(Z,τ,r)

(ρi/r)
n+3(6.29)

for all (Z, τ) ∈ F1 and r > 0 such that Qr(Z, τ) ⊂ Q80R(X, t).
For given (Ẑ, τ̂) ∈ Σψ and r̂ > 0 such that with Qr̂(Ẑ, τ̂) ⊂ Q20R(X, t), we

integrate (6.29) over F1 ∩ Qr̂(Ẑ, τ̂). If F1 ∩ Qr̂(Ẑ, τ̂) = ∅ the following inequality is
trivially true. Using (6.29)

νψ(F1 ∩Qr̂(Ẑ, τ̂)× (0, r̂)) =

ˆ r̂

0

ˆ̂
F1∩Qr̂(Ẑ,τ̂)

β2
ψ(Z, τ, r) dσ(Z, τ)r−1 dr

. ν(F1 ∩Qr̂(Ẑ, τ̂)× (0, Kr̂))

+

ˆ r̂

0

ˆ̂
F1∩Qr̂(Ẑ,τ̂)

∑
i∈I(Z,τ,r)

(ρi/r)
n+3 dσ(Z, τ) r−1 dr

=: I + II.(6.30)

By our assumptions, I . ‖ν‖ r̂n+1. Note that r′i(Z, τ) := d(Z, τ,Γi) + ρi . r, by
(6.16) and (6.20). Thus, summing and interchanging the order of integration, we see
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that

II ≤
ˆ̂

F1∩Qr̂(Ẑ,τ̂)

∑
i∈I(Ẑ,τ̂ ,Cr̂)

(ˆ r̂

cr′i(Z,τ)

(ρi/r)
n+3r−1 dr

)
dσ(Z, τ)

.
∑

i∈I(Ẑ,τ̂ ,Cr̂)

ˆ̂
F1∩Qr̂(Ẑ,τ̂)

(
ρi

r′i(Z, τ)

)n+3

dσ(Z, τ)

.
∑

i∈I(Ẑ,τ̂ ,Cr̂)

ρn+1
i . r̂n+1.(6.31)

Hence, combining (6.30) and (6.31), we have proved that

(6.32) νψ(F1 ∩Qr̂(Ẑ, τ̂)× (0, r̂)) . (1 + ‖ν‖)r̂n+1

for all (Ẑ, τ̂) ∈ Σψ and r̂ > 0 such that Qr̂(Ẑ, τ̂) ⊂ Q20R(X, t).
Similarly, by repeating the argument between displays (2.30) and (2.32) in [HLN1]

we first deduce that

νψ((Σψ \ F1) ∩Qr̂(Ẑ, τ̂)× (0, r̂)) . (1 + ‖ν‖)r̂n+1,(6.33)

and then, using also (6.32), we can conclude that

νψ(Σψ ∩Qr̂(Ẑ, τ̂)× (0, r̂)) . (1 + ‖ν‖)r̂n+1,(6.34)

whenever (Ẑ, τ̂) ∈ Σψ and r̂ > 0 are such that with Qr̂(Ẑ, τ̂) ⊂ Q20R(X, t). The
other cases can be handled by the observations in display (2.33) in [HLN1]. We omit
further details and claim that the proof of (6.11), and hence the proof of Theorem 3.5,
is complete. �

Proof of Corollary 3.2. Let (X̂, t̂) ∈ Ω. We repeat the proof of Corollary 3.1 to
construct a Lip(1, 1/2) function, which we now call ψ∗, along with the local graph
subdomain Ω̃ =: Ω̃ψ∗ ⊂ Ω, defined as in (5.9) but with ψ∗ in place of ψ, above
the planar cube I∗ = π(Q∗) (see (5.10)). With ψ∗ in hand, and using (5.11), we
repeat the proof of Theorem 3.5, with ∆(X, t, R) replaced by ∆∗ := Q∗∩Σ, and thus
R ≈ d/(Nh) (we recall that Q∗ is centered on Σ; see Remark 5.2)). Specifically, we
construct ψ as in (6.8), now with µ = N1/2, where N is the suitably large constant in
the proof of Corollary 3.1, and of course with b∗ = h. By the proof of Theorem 3.5, ψ
is a regular Lip(1, 1, 2) (i.e., RPLip) graph, as desired. We now define Ω̃ = Ω̃ψ again
as in (5.9), this time with respect to ψ. To obtain the conclusion of Corollary 3.2, it
remains only to verify that Ω̃ψ ⊂ Ω, and that the corkscrew condition (5.12) holds
for Ω̃ = Ω̃ψ. The former is easy: by construction (see (6.8)), ψ∗ ≤ ψ, pointwise in
I∗, provided that N (hence also µ = N1/2) is chosen large enough. Thus, Ω̃ψ ⊂ Ω̃ψ∗ ,
and we already know that in turn, Ω̃ψ∗ ⊂ Ω.

Let us now verify that (5.12) holds for Ω̃ = Ω̃ψ. To this end, observe first
that in the proof of Theorem 3.5, by construction ψ has compact support in a ball of
parabolic radius CR, and that the planar Whitney cubes Ii have “length” ri ≈ ρi . R.
In the present setting, this means that ρi . d/(Nh) for all i. Since we have chosen
µ = N1/2, and since b∗ = h, this means that by construction (see (6.8)), applying
(5.13) to ψ∗, we have

sup
(y,s)∈100I∗

ψ(y, s) ≤ sup
(y,s)∈100I∗

ψ∗(y, s) + CN1/2hN−1h−1d

≤
(
κ− c(n) + CN−1 + CN−1/2

)
d ≤ (κ− c(n)/2))d,
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for N large enough, and therefore with c1 = c(n)/2, we have

(6.35) x̂n − sup
(y,s)∈100I∗

ψ(y, s) ≥ c1d .

Combining the latter estimate with the definition of Ω̃ = Ω̃ψ (see (5.9)), we find that
(5.12) holds for Ω̃ψ, provided that N is chosen large enough. �

7. Two counterexamples

In [NS], the authors prove that a parabolic ADR set satisfying a synchronized
two cube condition contains big pieces of Lip(1, 1/2) graphs. It is quite easy to see
that any set satisfying a synchronized two cube condition is time-symmetric ADR.
It turns out that this implication is not reversible. In particular, in light of Theorem
3.1, the weak time-synchronized two cube condition is strictly weaker than its strong
counterpart. In this section, we construct two examples of time-symmetric ADR sets
satisfying a (two-sided) corkscrew condition, which do not satisfy a synchronized two
cube condition. Moreover, our examples are also parabolic UR. Importantly, these
examples show that Theorems 3.4 and 3.5, and Corollaries 3.1 and 3.2, are strict
improvements of the corresponding results in [NS]3.

The first example is rather simple: let Ω be the open region between the two
graphs Γ± = {(ψ±(t), t} ⊂ R2, where

ψ±(t) := ±|t|1/2 ± 1, t ∈ R.
Clearly, Ω is connected. Moreover, it is easy to check that the boundary Σ = Γ+∪Γ−

is time symmetric ADR (indeed, each of Γ± is a Lip(1, 1/2) graph), and satisfies the
two sided corkscrew condition in the sense of Definition 9 (i.e., with one point interior
to Ω and one exterior). On the other hand, Σ fails to have synchronized corkscrew
points (one interior to Ω and one exterior) in the sense of Definition 10, at t = 0
(i.e., at the boundary points (±1, 0)), since the interior corkscrew points get pushed
to the side at large scales. Moreover, one may readily verify that each of the graphs
Γ± is regular Lip(1, 1/2), and thus Σ is p-UR, by checking the regularity criterion of
[Stz, Theorem 3.3], namely that each of ψ± satisfies the Carleson measure condition

sup
a∈R, h>0

1

h

ˆ a+h

a−h

ˆ a+h

a−h

|ψ(t)− ψ(s)|2

|t− s|2
ds dt ≤ C.

We observe that the construction above does not provide a counter-example to the
time-synchronized 2-cube condition in the weaker sense of Definition 7, in which one
merely insists upon the existence of time-synchronized cubes in separate connected
components of Rn+1 \Σ (not necessarily interior to one designated component). Our
next example and construction addresses this issue. The construction will be set in
R2.

To start the construction in R2 we in this example will identify the horizontal
axis as the time axis, and the vertical axis as the spatial axis. However, we will
continue to denote points by (X, t) where X refer to the spatial coordinate and t
will refer to the time coordinate. Starting at (0, 0), we draw two line segment with
slopes ±2, traveling distance 1/4 on the time axis in the positive direction. The
endpoints of these two line segments will be S1 = {±1/2, 1/4}. Set S0 = {(0, 0)},

3As noted in the introduction, Theorem 3.5 and Corollary 3.2 also improve the corresponding
results in [NS] in a further sense, namely that in the present work we have removed the size constraint
on the p-UR constants that was implicit in [NS].
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and S1 = {(1/2, 1/4), (1/2,−1/4)}. Also, we label the line segments constructed G1.
We will construct sets Gk and Sk. We will refer to the set Gk as the set of “line
segments of generation k”, and we will refer to the set Sk as the set “branch points
of generation k”. We construct Gk and Sk inductively as follows. We set t0 = 0 and
for k ≥ 1 we set

tk =
k∑

n=1

1

4n
.

Starting with a branch point b of generation 1, draw two line segments, each
with initial vertex b, one having slope 4, and the other slope −4, and each travelling
t-distance 1/42 = 1/16. Do this for each b ∈ S1. The resulting line segments define
the set G2. Additionally, the resulting branch points which define S2 are

S2 = {(3/4, t2), (1/4, t2), (−1/4, t2), (−3/4, t2)}.
Now, we iterate this process (see the figure below). From each branch point

b ∈ S2, we draw two line segments, one with slope 23, and one with slope −23, and
each with t-length 1/43. After doing this for all b ∈ S2, the resulting lines define G3,
and the resulting branch points define S3. Proceeding inductively it is not hard to
see that

Sn =

{(
±2k + 1

2n
, tn

)}2n−1−1

k=0

,

for n ≥ 2. Note that, at generation k, the total distance travelled by the connected
line segments of each previous generation is tn and tn → 1/3 as n→∞.

We set

Σ0 :=
∞⋃
k=1

⋃
lα∈Gk

lα,

and we claim that
Σ0 = Σ0 ∪ [[−1, 1]× {1/3}].
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To prove the claim, choose a point a2−n where a ∈ {±1,±2, . . . ,±(2n−1)}. It is
easily seen that a2−n is the spatial coordinate of some branch point in

⋃n
k=1 Sk. Let

a2−n be the spatial coordinate of the branch point (a2−n, tl) ∈ Sl. Then, choosing a
“child” branch point obtained by traveling down from (a2−n, tl) on the line segment
with initial point (a2−n, tl) with slope −2l+1 to the lower branch point of the next
generation, this “child" branch point has spatial coordinate

a2−n − 2l+14−l−1 = a2−n − 2−l−1.

Next, suppose that we travel “up” on every subsequent branch point. Then the
resulting spatial coordinates so obtained will converge to

a2−n − 2−l−1 +
∞∑

k=l+2

2−l = a2−n − 2−l−1 + 2−l−1 = a2−n.

Hence, (a2−n, 1/3) is a limit point of Σ0. By the arbitrary nature of the spatial
coordinate a2−n we see that ⋃

n=1

2n−1⋃
a=1

(±a2−n, 1/3)

is in the closure of Σ0. Hence, it is easy to see that the claim follows.
Now, add the ray (−∞, 0) to Σ0, and extend the resulting set by symmetry with

respect to t = 1/3. We call the resulting set Σ. The preceding figure is a computer-
generated image of the set Σ constructed (recall that the vertical axis represents X
and that the horizontal axis represents t).

We will prove that Σ is parabolic UR and that Σ satisfies a corkscrew condition.
First, let us focus on showing that it is parabolic ADR.

First, we will show the ADR bounds on surface cubes centered at (1/3)× [−1, 1].
Choose (t,X) ∈ (1/3)× [−1, 1] and consider the surface cube ∆R(t, x), R > 0.

Suppose first R ≥ 1. We note that the measure of all of the line segments between
t = 0 and t = 1/3 is

∞∑
n=1

2n4−n = 1.

Hence, the measure of all of the line segments between t = 1/3 and t = 2/3 is also 1.
So, for R ≥ 1,

σ(∆R(X, t)) ≤ 2 + 2(R− 1)2 . R2,

where the factor 2(R − 1)2 accounts for the possibility that the rays (−∞, 0) and
(1/3,∞) intersect the surface cube. Now, suppose that R ≤ 1, and that R ≈ 2−k

for some k > 0. We want to estimate the integers m such that the backward face of
QR(X, t) has t-coordinate ≈ tm, but

m∑
n=1

4−n ≈ 1

3
− 4−k =⇒ 1

3
− 4−m

3
≈ 1

3
− 4−k =⇒ m ≈ k.

If ∆R(X, t) intersect segments of generation k, it will pick up approximately 2−k of
the total measure of the segments of that generation. Hence

σ(∆−R(X, t)) ≈ 2−k
∞∑
n=k

2−n = 2−k21−k ≈ 2−2k ≈ R2.

Because σ(∆−R(X, t)) = σ(∆+
R(X, t)) by symmetry, this establishes the upper and

lower ADR bounds for cubes centered on the vertical face [−1, 1]× {1/3}.
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Now, suppose that (X, t) ∈ Σ ∩ {0 ≤ t ≤ 2/3} \ {t = 1/3}. Without loss
of generality, we can assume that 0 < t < 1/3. Let (X, t) lie on a line segment
of generation k. First, we consider the case when R ≥ 2−k−1. Then, ∆R(X, t) is
contained a surface cube of size ≈ R (but greater than R) centered on the vertical
face [−1, 1] × {1/3}. From this, we easily see that the upper ADR bound holds in
this case. The lower ADR bound holds trivially in both the forward and backward
directions. So, assume that R < 2−k−1, so that the surface cube ∆R(X, t) does not
intersect the vertical face. In fact, we can see that the surface cube only intersects a
uniformly bounded number of lines of generation k− 1, k and k+ 1. So, it is easy to
see that

σ(∆R(X, t)) ≈ R2, σ(∆+
R(X, t)) ≈ R2, σ(∆−R(X, t)) ≈ R2.

Now, the last case to consider is when (X, t) lies in one of the rays (0,∞) × {0},
(1/3,∞)× {0}. This case is easy to see. We leave the details to the reader.

Now, we show that the set is parabolic UR. First, we show Carleson measure
estimates hold on the points of the vertical face [−1, 1] × {1/3}. Choose a point
(X, t) ∈ [−1, 1] × {1/3}, and R > 0. Choose l to be the largest integer such that
R ≤ 2−l. We splitˆ R

0

ˆ
∆R(X,t)

β2(Y, s, r)
dσ(Y, s) dr

r
≤

∞∑
k=l

ˆ 2−k

0

ˆ
∆R(X,t)∩Gk

β2(Y, s, r)
dσ(Y, s) dr

r

+
∞∑
k=l

ˆ 2−l

2−k

ˆ
∆R(X,t)∩Gk

β2(Y, s, r)
dσ(Y, s) dr

r

=: I + II.

Here, Gk refers to both the “original” lines of generation k, and their reflections about
t = 1/3. First, let us deal with term I. We note that for (s, Y ) ∈ Gk, is it easy to see
that

β2(Y, s, r) .
1

r4

ˆ r2

0

|2kt2|2 dt =
22k

r4

ˆ r2

0

t2 dt ≈ 22kr2.

Hence, as ∆R(X, t) only intersects Gk for k ≥ l,

I .
∞∑
k=l

ˆ 2−k

0

ˆ
∆R(X,t)∩Gk

22kr2 dσ(Y, s) dr

r

.
∞∑
k=l

ˆ 2−k

0

2−l2−k22kr2 dσ(Y, s) dr

r
≈ 2−2l ≈ R2.

Now, we need to estimate term I. For this, we simply note that the β numbers are
all uniformly bounded by a constant which depends only on ADR. Hence

II ≤
∞∑
k=1

ˆ 2−l

2−k

ˆ
∆R(X,t)∩Gk

β2(Y, s, r)
dσ(Y, s) dr

r

.
∞∑
k=l

ˆ 2−l

2−k

ˆ
∆R(X,t)∩Gk

dσ(Y, s) dr

r

≤
∑
k=l

2−l2−kk . 2−2l ≈ R2.

So, we have appropriate Carleson measure bounds for surface cubes centered on the
vertical face. Now, we need to prove the same estimates for points in Σ ∩ {0 ≤ t ≤
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2/3} \ ([−1, 1] × {1/3}). Again, just as in proving the ADR bounds, we can reduce
this to proving the bound for points (X, t) ∈ Σ with 0 < t < 1/3. Choose such a
point (X, t), and suppose that it lies on a line segment of generation k. If we choose
a scale R ≥ 2−k+1, then, again, there is a surface cube ∆CR centered on the vertical
face, containing ∆R(X, t). Therefore

ν[∆R(X, t)× (0, R)] ≤ ν[∆CR × (0, CR)] . R2.

On the other hand, if r < 2−k, then the appropriate Carleson measure bound follows
immediately from estimating a term like I above. Finally, all that is left is to prove
the Carleson measure estimate for surface cubes which are not centered at point with
t-value between 0 and 2/3. This case is easy, and we leave the details to the reader.

Now, we need to prove that Σ satisfies a two-sided corkscrew condition. Choose
a point (X, t) on the vertical face, and a scale R. If R ≥ 1, then ∆R(X, t) will contain
an portion of the ray (0,∞)× {0} of t-length ≈ R. It is easy to produce corkscrews
in this case by considering points on the portion of the ray contained in the surface
cube. Now, suppose that R ≤ 1. then R ≈ 2−k for some k ≥ 1. It is easy to see that
∆R(X, t) will completely contain a line segment in Gl for some l ≈ k. At the midpoint
of this line segment, it is also easy to see that we can produce corkscrews at scale
2−l, each of parabolic size ≈ 2l. Now, consider the case where (X, t) lies on a line
segment in Gk. For R < 2−k+1, it is trivial to show that we can produce corkscrews
of size ≈ R which lie within QR(X, t). Now, suppose that R ≥ 2−k+1. Then there is
a surface cube ∆R/2 centered on the vertical face contained in ∆R(X, t). By the work
above, we can produce corkscrews relative to ∆R/2 of parabolic size ≈ R/2 ≈ R,
which are clearly corkscrews relative to ∆R(X, t). Finally, we need to consider when
(X, t) lies outside of {(X, t) : 0 ≤ t ≤ 2/3}. But this case is trivial.

Note that as Σ contains a vertical face, it is impossible for Σ to satisfy a syn-
chronized two-cube condition. However, Σ is parabolic UR, so in fact it satisfies a
weak synchronized two cube condition.
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