
Annales Fennici Mathematici
Volumen 47, 2022, 573–586

Injectivity of harmonic mappings with
a specified injective holomorphic part

Dariusz Partyka and Ken-ichi Sakan

Abstract. Let F = H+G be a locally injective and sense-preserving harmonic mapping of the

unit disk D in the complex plane C, where H and G are holomorphic in D and G(0) = 0. The aim

of this paper is studying interplay between properties of Fε := H + εG, ε ∈ C, and its holomorphic

part H . In particular, several results dealing with the injectivity of Fε are obtained.

Harmonisten kuvausten injektiivisyydestä,

kun injektiivinen holomorfinen osa on annettu

Tiivistelmä. Olkoon F = H + G paikallisesti injektiivinen ja suunnistuksen säilyttävä yk-

sikkökiekon D harmoninen kuvaus kompleksitasoon C, missä H ja G ovat holomorfisia kiekolla D ja

G(0) = 0. Tämän tutkimuksen tavoitteena on tarkastella kuvauksen Fε := H + εG, missä ε ∈ C, ja

sen holomorfisen osan H välistä yhteyttä. Erityisesti saadaan useita kuvauksen Fε injektiivisyyttä

koskevia tuloksia.

1. Introduction

Let Ω be a non-empty domain in the complex plane C. A twice continuously
differentiable mapping F : Ω → C is said to be a harmonic mapping if F satisfies the
Laplace equation

∂∂̄F = 0 in Ω.

Here ∂ := 1
2
(∂x − i∂y) and ∂̄ := 1

2
(∂x + i∂y) are formal derivatives. A harmonic

mapping F in Ω is said to be sense-preserving if

J[F ](z) := |∂F (z)|2 − |∂̄F (z)|2 > 0, z ∈ Ω.

If F is a sense-preserving harmonic mapping, then the complex dilatation

µF (z) :=
∂̄F (z)

∂F (z)
, z ∈ Ω,

is well defined and

‖µF‖∞ := ess sup
z∈Ω

|µF (z)| = sup
z∈Ω

|µF (z)| ≤ 1.

A sense-preserving harmonic mapping F is said to be quasiconformal if F is injective
and ‖µF‖∞ < 1. In particular, if ‖µF‖∞ = 0, then F is an injective holomorphic
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mapping. Such a mapping F is usually called conformal or univalent. A mapping F
is said to be Lipschitz (resp. co-Lipschitz ) in Ω if F satisfies the following condition

L+(F ) := sup

{

∣

∣

∣

F (z)− F (w)

z − w

∣

∣

∣
: z, w ∈ Ω, z 6= w

}

< +∞,

(

resp. L−(F ) := inf

{

∣

∣

∣

F (z)− F (w)

z − w

∣

∣

∣
: z, w ∈ Ω, z 6= w

}

> 0

)

.

A mapping F is said to be bi-Lipschitz if L+(F ) < +∞ and L−(F ) > 0. In what
follows suppose that Ω = D := D(0, 1) where D(a, r) := {z ∈ C : |z − a| < r} for any
a ∈ C and r > 0. Then each sense-preserving harmonic mapping F is represented
uniquely by

F (z) = H(z) +G(z), z ∈ D,

where H and G are holomorphic mappings in D, G(0) = 0, and consequently

J[F ](z) = |H ′(z)|2 − |G′(z)|2 and µF (z) =
G′(z)

H ′(z)
, z ∈ D.

Let us consider the following deformation of a harmonic mapping F in D,

(1.1) D ∋ z 7→ Fε(z) := H(z) + εG(z), ε ∈ C.

Our purpose is studying interplay between properties of the harmonic mapping Fε

and its holomorphic part H under certain assumptions on ε ∈ C. In particular, we
focus our attention to the injectivity of Fε under certain conditions on F and H .
Section 2 contains results involving injectivity, quasiconformality and Lipschitz type
properties of Fε, provided ε ∈ C satisfies an additional inequality. We borrow here
from results published in [9] and [10]. Most essential results are Theorems 2.2 and
2.3. In Section 3 we prove Theorem 3.1 relevant to the classical results of Clunie and
Sheil-Small dealing with close-to-convex harmonic mappings; cf. [1]. The theorem
yields Corollary 3.4, which seems to be of special interest. It provides a simple
method of producing sense-preserving injective harmonic mappings of D onto close-
to-convex domains; see Examples 3.5 and 3.6. Section 4 is devoted to the problem of
homeomorphic extensions of harmonic mappings to the closed unit disk cl(D), where
cl denotes the closure operator in the complex plane. We prove Corollaries 4.2 and 4.4
which refer to Theorems 2.2 and 2.3, respectively. However, the most sophisticated
result here is Theorem 4.6, which is relevant to [10, Corollary 3.2].

2. Injectivity of harmonic mappings in the unit disk

For any M ≥ 1 a domain Ω in C is said to be rectifiably M-arcwise connected

if for all z, w ∈ Ω there exists an arc γ joining the points z and w in Ω with the
length |γ|1 ≤ M |w − z|; cf. [7]. Note that Ω is a convex domain if and only if Ω
is a rectifiably 1-arcwise connected domain. Write Zp,q := {k ∈ Z : p ≤ k ≤ q} for
p, q ∈ Z.

Lemma 2.1. Given M ≥ 1 let Ω be a rectifiably M-arcwise connected domain

in C. If F : Ω → C is a bi-Lipschitz mapping, then F (Ω) is a rectifiably M ′-arcwise

connected domain with M ′ := M L+(F )/L−(F ).

Proof. Fix M , Ω and F satisfying the assumptions. Given z1, z2 ∈ F (Ω), we see
that w1 := F−1(z1), w2 := F−1(z2) ∈ Ω and

(2.1) |z1 − z2| = |F (w1)− F (w2)| ≥ L−(F )|w1 − w2|.
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Since Ω is rectifiably M-arcwise connected, there exists an arc γ : [0; 1] → C joining
the points w1 and w2 in Ω with the length |γ|1 ≤ M |w1 − w2|. Setting σ := F ◦ γ
we see that for every n ∈ N and every increasing sequence Z1,n ∋ k 7→ tk ∈ [0; 1], if
t0 = 0 and tn = 1 then

n
∑

k=1

|σ(tk)− σ(tk−1)| =
n

∑

k=1

|F (γ(tk))− F (γ(tk−1))|

≤ L+(F )

n
∑

k=1

|γ(tk)− γ(tk−1)| ≤ L+(F )|γ|1.

Hence and by (2.1),

|σ|1 ≤ L+(F )|γ|1 ≤ M L+(F )|w1 − w2| ≤ M
L+(F )

L−(F )
|z1 − z2| = M ′|z1 − z2|.

Therefore the image F (Ω) is rectifiably M ′-arcwise connected, which is the desired
conclusion. �

It is clear that the function

(2.2) [0; 1) ∋ s 7→ λ(s) := s ·

√

(1− s)2 + 1

(1− s)2 + s2

satisfies the inequalities 0 < s < λ(s) < 1 for every s ∈ (0; 1).

Theorem 2.2. Let F = H + G be a quasiconformal harmonic mapping in D

such that F (D) is a convex domain and write l := λ(‖µF‖∞). Then for every ε ∈ C

satisfying |ε|l < 1, Fε(D) is a rectifiably Mε-arcwise connected domain with

(2.3) Mε :=
1 + l

1− l
·
1 + |ε|l

1− |ε|l
,

Fε is a quasiconformal and co-Lipschitz mapping and Fε ◦ H−1 is a bi-Lipschitz

mapping.

Proof. Fix a qusiconformal harmonic mapping F : D → C and ε ∈ C. Suppose
that F (D) is a convex domain. From [9, Remark 2.3 and Lemma 2.4] it follows that
H is injective and

(2.4) |G(z2)−G(z1)| ≤ l|H(z2)−H(z1)|, z1, z2 ∈ D,

which yields,

|εG(z2)− εG(z1)| = |ε||G(z2)−G(z1)| ≤ |ε|l|H(z2)−H(z1)|, z1, z2 ∈ D.

Then

|Fε(z2)− Fε(z1)| ≤ |H(z2)−H(z1)|+ |εG(z2)− εG(z1)|(2.5)

≤ (1 + |ε|l)|H(z2)−H(z1)|, z1, z2 ∈ D,

as well as

|Fε(z2)− Fε(z1)| ≥ |H(z2)−H(z1)| − |εG(z2)− εG(z1)|(2.6)

≥ (1− |ε|l)|H(z2)−H(z1)|, z1, z2 ∈ D.

Suppose now that ε ∈ C satisfies |ε|l < 1. Then

(2.7) L+(Fε ◦H
−1) ≤ 1 + |ε|l and L−(Fε ◦H

−1) ≥ 1− |ε|l,
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and so Fε ◦H
−1 is a bi-Lipschitz mapping. In particular, L+(F ◦H−1) ≤ 1 + l and

L−(F ◦H−1) ≥ 1− l, from which

(2.8) L+(H ◦ F−1) ≤ (1− l)−1 and L−(H ◦ F−1) ≥ (1 + l)−1.

Since H(D) = (H◦F−1)(F (D)) and the image F (D) is rectifiably 1-arcwise connected,
we deduce from (2.8) and Lemma 2.1 that H(D) is rectifiably (1 + l)/(1− l)-arcwise
connected. Applying Lemma 2.1 once more we see by (2.7) that Fε(D) is a rectifiably
Mε-arcwise connected domain with Mε given by the expression (2.3). Since F (D) is
a convex domain, we conclude from [8, Corollary 3.1] (see also [3, Theorem 2.5]) that
there exists a constant c > 0 such that |H ′(z)| = |∂F (z)| ≥ c for z ∈ D. Therefore
D−(H) := inf({|H ′(z)| : z ∈ D}) ≥ c, and in view of [10, Lemma 2.5] H is a co-
Lipschitz mapping. Since Fε ◦H

−1 is a bi-Lipschitz mapping and Fε = (Fε ◦H
−1)◦H

we see that Fε is a quasiconformal and co-Lipschitz mapping, which completes the
proof. �

Theorem 2.3. Given M ≥ 1 suppose that F = H + G is a sense-preserving

harmonic mapping in D, its holomorphic part H is injective in D and H(D) is a

rectifiably M-arcwise connected domain. Then

(2.9) |G(z2)−G(z1)| ≤ M‖µF‖∞|H(z2)−H(z1)|, z1, z2 ∈ D,

as well as for every ε ∈ C,

(1−M |ε|‖µF‖∞)|H(z2)−H(z1)| ≤ |Fε(z2)− Fε(z1)|(2.10)

≤ (1 +M |ε|‖µF‖∞)|H(z2)−H(z1)|, z1, z2 ∈ D.

Moreover, for every ε ∈ C the following implications hold:

(i) If |ε|‖µF‖∞ ≤ 1 and G′/H ′ is not a constant function, then Fε is a sense-

preserving harmonic mapping in D.

(ii) If M |ε|‖µF‖∞ ≤ 1 and G′/H ′ is not a constant function, then Fε is an injective

mapping.

(iii) If M |ε|‖µF‖∞ < 1, then Fε is a quasiconformal mapping such that Fε ◦H
−1

is a bi-Lipschitz mapping with

(2.11) L+(Fε ◦H
−1) ≤ 1 +M |ε|‖µF‖∞ and L−(Fε ◦H

−1) ≥ 1−M |ε|‖µF‖∞;

in particular, Fε(D) is a rectifiably Mε-arcwise connected domain with

(2.12) Mε := M
1 +M |ε|‖µF‖∞
1−M |ε|‖µF‖∞

.

Proof. Fix M and F satisfying the assumptions. Since the holomorphic part H
of F is injective in D, H ′(z) 6= 0 for z ∈ D, and consequently

(2.13) µF (z) =
G′(z)

H ′(z)
, z ∈ D.

Note that the estimations (2.9) and (2.10) for ε := 1 follow from [10, Lemma 3.1]
which is valid even in the case where F is not sense-preserving. Therefore we can
adopt the proof of the estimations for F replaced by Fε where ε ∈ C is arbitrarily
fixed. Setting φε := εG◦H−1 we see that the quantity D+(φε), defined by [10, (2.5)],
satisfies the following equality

D+(φε) = sup
z∈Ω

(

|∂φε(z)| + |∂̄φε(z)|
)

= ‖µFε
‖∞ = |ε|‖µF‖∞,
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where Ω := H(D). Since Fε = I[φε] ◦H , where

Ω ∋ z 7→ I[φε](z) := z + φε(z),

we conclude from [10, Lemma 2.4] that L+(I[φε]) ≤ 1+M D+(φε) = 1+M |ε|‖µF‖∞,
which implies the second estimation in (2.10). If M |ε|‖µF‖∞ ≥ 1, then the first
estimation in (2.10) is obvious. Otherwise, we have M |ε|‖µF‖∞ < 1. Applying [10,
Lemma 2.4] once more we see that L−(I[φε]) ≥ 1−M D+(φε) = 1−M |ε|‖µF‖∞, and
so the first estimation in (2.10) holds in both cases.

Suppose that M |ε|‖µF‖∞ < 1. Then from (2.10) we derive the inequalities
(2.11). Hence Fε ◦ H−1 is a bi-Lipschitz mapping. Since Fε = (Fε ◦ H−1) ◦ H and
‖µFε

‖∞ = |ε|‖µF‖∞ < 1, it follows that Fε is a quasiconformal mapping. Moreover,
by Lemma 2.1, Fε(D) is a rectifiably Mε-arcwise connected domain with Mε given
by the expression (2.12), which yields the implication (iii).

It remains to prove the properties (i) and (ii). If ‖µF‖∞ = 0, then by (2.13),
G′/H ′ is a constant function, which contradicts the assumptions of the implications
(i) and (ii). Therefore ‖µF‖∞ > 0, i.e., F is not a conformal mapping. Suppose that
|µF (ζ)| = ‖µF‖∞ for a certain ζ ∈ D. From (2.13) it follows that

(2.14)

∣

∣

∣

∣

G′(ζ)

H ′(ζ)

∣

∣

∣

∣

= |µF (ζ)| = ‖µF‖∞ = sup
z∈D

∣

∣

∣

∣

G′(z)

H ′(z)

∣

∣

∣

∣

.

Then by the maximum principle for holomorphic functions we see that G′/H ′ is a
constant function, which also contradicts the assumptions of the implications (i) and
(ii). Thus

(2.15) |µF (z)| < ‖µF‖∞ 6= 0, z ∈ D.

Suppose that |ε|‖µF‖∞ ≤ 1. If ε = 0, then J[Fε](z) = |H ′(z)| > 0 for z ∈ D. In the
opposite case we conclude from (2.13) and (2.15) that for every z ∈ D,

J[Fε](z) = |H ′(z)|2 − |εG′(z)|2 = |H ′(z)|2(1− |ε|2|µF (z)|
2)

> |H ′(z)|2(1− |ε|2‖µF‖
2
∞
) ≥ 0.

Therefore for every ε ∈ C satisfying |ε|‖µF‖∞ ≤ 1, Fε is a a sense-preserving harmonic
mapping, as stated in the conclusion of implication (i). If M |ε|‖µF‖∞ ≤ 1, then
applying [10, Corollary 3.2] to Fε we see that Fε is an injective mapping, as stated
in the conclusion of implication (ii). �

Remark 2.4. Under the hypotheses of Theorem 2.3 the condition "G′/H ′ is not
a constant function" in the implications (i) and (ii) is equivalent to the following one:

(2.16) |G(ζ)−G(0)| 6= ‖µF‖∞|H(ζ)−H(0)| for a certain ζ ∈ D \ {0}.

Indeed, suppose that G′/H ′ is a constant function. Then there exists c ∈ C such that

(2.17) G′(z) = cH ′(z), z ∈ D.

which implies ‖µF‖∞ = |c| and G(z)−G(0) = c(H(z)−H(0)) for z ∈ D. Hence for
every z ∈ D, |G(z)−G(0)| = ‖µF‖∞|H(z)−H(0)|. Therefore, by the contradiction
law, the condition (2.16) implies that G′/H ′ is not a constant function.

Now, suppose that the condition (2.16) does not hold, i.e., |G(z) − G(0)| =
‖µF‖∞|H(z)−H(0)| for z ∈ D. By the maximum principle applied to the holomorphic
function

D \ {0} ∋ z 7→
G(z)−G(0)

H(z)−H(0)
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there exists θ ∈ R such that G(z)−G(0) = eiθ‖µF‖∞(H(z)−H(0)) for z ∈ D \ {0}.
Hence the condition (2.17) holds with c := eiθ‖µF‖∞, and so G′/H ′ is a constant
function. Therefore, by the contradiction law, the condition “G′/H ′ is not a constant
function” implies the condition (2.16).

Remark 2.5. Suppose that F = H+G is a sense-preserving harmonic mapping
in D such that its holomorphic part H is a convex holomorphic mapping, i.e., H is
injective in D and H(D) is a convex domain. Then H(D) is a rectifiably 1-arcwise
connected domain, and thereby Theorem 2.3 is applicable in this case with M := 1.
Furthermore, in the item (iii), Fε is a co-Lipschitz mapping. To show this we can
apply Theorem 2.2 for F := H and ε := 0. Then H is a co-Lipschitz mapping. Since
Fε ◦H

−1 is a bi-Lipschitz mapping and Fε = (Fε ◦H
−1) ◦H , it follows that Fε is a

co-Lipschitz mapping.

3. Close-to-convex harmonic mappings

Let us recall that a harmonic mapping F : D → C is said to be close-to-convex

provided F is injective and F (D) is a close-to-convex domain, i.e., its complement
C \ F (D) is a union of non-crossing half-lines; cf. [1, p. 13, 5.1], [4].

Theorem 3.1. Let F = H + G be a sense-preserving harmonic mapping in D

such that H + ε0G is convex for a certain ε0 ∈ C satisfying |ε0|‖µF‖∞ ≤ 1. Then for

every ε ∈ C the following implications hold:

(i) If |ε|‖µF‖∞ ≤ 1 and G′/H ′ is not a constant function, then Fε is a sense-

preserving and close-to-convex harmonic mapping in D.

(ii) If |ε|‖µF‖∞ < 1, then Fε is a quasiconformal and close-to-convex harmonic

mapping in D.

Moreover, F is a close-to-convex harmonic mapping in D.

Proof. Given F satisfying the assumptions, suppose first that G′/H ′ is not a
constant function. As in the proof of Theorem 2.3 we show that the condition (2.15)
holds. Let a, b ∈ C be arbitrarily fixed such that

(3.1) |aνF (z)| < 1 and |bνF (z)| < 1, z ∈ D,

where νF (z) := G′(z)/H ′(z) for z ∈ D. Assume that |a| ≤ |b| and a 6= b. Then b 6= 0
and Re(1− a/b) > 0, and so 1− a/b = reiθ for some r > 0 and θ ∈ (−π/2; π/2). For
each z ∈ D, Re(1/(1 + bνF (z))) > 1/2, which gives

Re

(

e−iθ 1 + aνF (z)

1 + bνF (z)

)

= Re

(

e−iθ 1− a/b

1 + bνF (z)
+ e−iθ a

b

)

= Re

(

r

1 + bνF (z)

)

+ Re
(

e−iθ a

b

)

>
r

2
+ Re

(

e−iθ − r
)

= cos(θ)−
r

2
.

On the other hand

r2 = |1− a/b|2 = 1− 2Re(a/b) + (|a|/|b|)2 ≤ 2r cos(θ).

Therefore

(3.2) Re

(

e−iθ 1 + aνF (z)

1 + bνF (z)

)

> 0, z ∈ D.
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If |a| ≥ |b| and a 6= b, then the inequality (3.2) holds with a and b replaced respectively
by b and a, where θ ∈ (−π/2; π/2) is chosen such that 1 − b/a = reiθ for a certain
r > 0. Therefore,

Re

(

eiθ
1 + aνF (z)

1 + bνF (z)

)

=

∣

∣

∣

∣

1 + aνF (z)

1 + bνF (z)

∣

∣

∣

∣

2

Re

(

e−iθ 1 + bνF (z)

1 + aνF (z)

)

> 0.

If a = b, then the inequality (3.2) evidently holds with θ := 0. Thus the inequality
(3.2) holds for all a, b ∈ C satisfying the condition (3.1) and suitably chosen θ ∈
(−π/2; π/2) in dependence of a and b.

Let ε, η ∈ C be arbitrarily fixed such that |ε|‖µF‖∞ ≤ 1 and |η| ≤ 1. Setting
a := ηε and b := ε0 we see by (2.15) that the condition (3.1) holds, and thereby there
exists α ∈ R such that

(3.3) Re

(

eiα
H ′(z) + ηεG′(z)

H ′(z) + ε0G′(z)

)

> 0, z ∈ D.

Since e−iα(H + ε0G) is a convex holomorphic mapping, we conclude from (3.3) and
the classical Kaplan univalence criterion [5], [11, pp. 51–52] that H + ηεG is a close-
to-convex holomorphic mapping for every η ∈ cl(D). Since Fε = H + εG = H + εG
and |εG′(0)| < |H ′(0)|, we deduce from [1, Lemma 5.15] that Fε is a sense-preserving
and close-to-convex harmonic mapping. Moreover, if |ε|‖µF‖∞ < 1, then ‖µFε

‖∞ =
|ε|‖µF‖∞ < 1, and so Fε is a quasiconformal mapping.

It remains to consider the case where G′/H ′ is a constant function. Since the
mapping F is sense-preserving, there exists c ∈ D such that G′(z) = cH ′(z) for z ∈ D.
Then

G(z)−G(0) = c(H(z)−H(0)), z ∈ D,

which yields

(3.4) (H + ε0G)(z) = (1 + cε0)H(z) + ε0(G(0)− cH(0)), z ∈ D.

Since H + ε0G is a convex holomorphic function, we have 0 6= (H + ε0G)′(0) =
(1 + cε0)H

′(0). Hence and by (3.4) we see that H is a convex holomorphic function.
Thus for each ε ∈ C,

Fε(z) = H(z) + εG(z) = H(z) + εcH(z) + ε(G(0)− cH(0))

= L ◦H(z) + ε(G(0)− cH(0)), z ∈ D,

where C ∋ z 7→ L(z) := z + εc z is an affine mapping. Suppose that |ε|‖µF‖∞ < 1.
Then |εc| < 1, and so L(H(D)) is a convex domain and L ◦ H is a quasiconformal
mapping. Hence Fε is a quasiconformal mapping and Fε(D) is a convex domain,
and thereby close-to-convex. Therefore, Fε is a quasiconformal and close-to-convex
harmonic mapping, which completes the proof of the properties (i) and (ii).

Moreover, if ‖µF‖∞ < 1, then using the property (ii) we see that F = F1 is a
close-to-convex harmonic mapping. If ‖µF‖∞ = 1, then the last claim follows from
[1, Theorem 5.17]. �

Corollary 3.2. Let F = H + G be a sense-preserving harmonic mapping in

D such that H is convex. Then for every ε ∈ C the implications (i) and (ii) of

Theorem 3.1 hold.

Proof. Fix F satisfying the assumptions. Setting ε0 := 0 we see that |ε0|‖µF‖∞ =
0 ≤ 1 and H + ε0G is convex. Thus the corollary follows from Theorem 3.1. �
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Remark 3.3. Let F = H + G be a sense-preserving harmonic mapping in D

such that H is convex and G′/H ′ is a constant function. Then ‖µF‖∞ = |c|, where
c := G′(0)/H ′(0). Analysing the last part of the proof of Theorem 3.1 we see that
for every ε ∈ C satisfying |ε|‖µF‖∞ < 1, Fε is a quasiconformal harmonic mapping
and Fε(D) is a convex domain.

Corollary 3.4. Let V be a conformal mapping in D and U be a non-constant

holomorphic function in D such that V (D) is a convex domain in C and

(3.5) sup
z∈D

ReU(z) ≤
1

2
.

Then the function F := H +G defined by the formulas

(3.6) D ∋ z 7→ G(z) :=

ˆ z

0

U(ζ)V ′(ζ)dζ and D ∋ z 7→ H(z) := V (z)−G(z)

is sense-preserving in D and satisfies 0 < ‖µF‖∞ ≤ 1. Furthermore, for every ε ∈ C

the implications (i) and (ii) of Theorem 3.1 hold.

Proof. Given V and U satisfying the assumption of the corollary we deduce from
the formulas (3.6) that G′(z) = U(z)V ′(z) and H ′(z) = (1 − U(z))V ′(z) for z ∈ D.
Since

G′(z)

H ′(z)
=

U(z)

1− U(z)
, z ∈ D,

we see that G′/H ′ is not a constant function. By (3.5) we have
∣

∣

∣

∣

G′(z)

H ′(z)

∣

∣

∣

∣

2

=
|U(z)|2

|1− U(z)|2
=

|U(z)|2

1− 2ReU(z) + |U(z)|2
≤ 1, z ∈ D.

Then from the maximum principle for holomorphic functions we see that

0 ≤

∣

∣

∣

∣

G′(z)

H ′(z)

∣

∣

∣

∣

< ‖µF‖∞ = sup
z∈D

∣

∣

∣

∣

G′(z)

H ′(z)

∣

∣

∣

∣

≤ 1, z ∈ D,

and thus F is a sense-preserving harmonic mapping in D. Since H+G = V , H+G is
a convex function. Theorem 3.1 now implies that for every ε ∈ C, if |ε| ≤ 1/‖µF‖∞,
then Fε := H + εG is a sense-preserving and close-to-convex harmonic mapping.
Moreover, if |ε| < 1/‖µF‖∞, then Fε is a quasiconformal mapping. �

Notice that Corollary 3.4 can be applied for constructing injective harmonic map-
pings, because the conditions on holomorphic functions U and V are not much re-
strictive. The following two examples illustrate this approach.

Example 3.5. Let V be a convex holomorphic mapping in D and Φ be a non-
constant holomorphic function in V (D) such that Φ(V (0)) = 0 and

sup
ζ∈V (D)

ReΦ′(ζ) ≤
1

2
.

Then the function U := Φ′ ◦ V satisfies the condition (3.5). By the formulas (3.6) we
have

(3.7) Fε(z) = V (z)− Φ(V (z)) + εΦ(V (z)), z ∈ D.

Corollary 3.4 now implies that for every ε ∈ C, if |ε| ≤ 1, then Fε is a sense-
preserving and close-to-convex harmonic mapping. Moreover, if |ε| < 1, then Fε is a
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quasiconformal mapping. In particular, this is true for the functions

D ∋ z 7→ V (z) :=
z

z + 1
and C ∋ ζ 7→ Φ(ζ) :=

ζ2

2
.

Then (3.7) takes the following form

Fε(z) =
z

z + 1
−

z2

2(z + 1)2
+

ε

2

z̄2

(z̄ + 1)2
, z ∈ D.

Example 3.6. Setting

D ∋ z 7→ V (z) := log
1 + z

1− z
and D ∋ z 7→ U(z) :=

z

z + 1

we see that V is a convex holomorphic mapping in D and U is a non-constant holo-
morphic function satisfying the inequality (3.5). By the formulas (3.6) we have

Fε(z) =
1

2
log

1 + z

1− z
+

z

1 + z
+ ε

[1

2
log

1 + z̄

1− z̄
−

z̄

1 + z̄

]

, z ∈ D.

Corollary 3.4 now implies that for every ε ∈ C, if |ε| ≤ 1, then Fε is a sense-
preserving and close-to-convex harmonic mapping. Moreover, if |ε| < 1, then Fε is a
quasiconformal mapping.

4. Injectivity of harmonic mappings in the closed unit disk

Given holomorphic functions H and G in D suppose that they have the continuous
extensions H∗ and G∗ to cl(D), respectively. Then for every ε ∈ C the function Fε

has the continuous extension F ∗

ε to cl(D) defined by the formula

(4.1) cl(D) ∋ z 7→ F ∗

ε (z) := H∗(z) + εG∗(z), z ∈ cl(D).

In what follows we will study the injectivity of the function F ∗

ε in cl(D). We start
from the following simple observation.

Lemma 4.1. Let F = H + G be a sense-preserving harmonic mapping in D,

such that H is injective in D, H(D) is a bounded Jordan domain and the function

G ◦H−1 is uniformly continuous in H(D). Then both the functions H and G have

the continuous extensions H∗ and G∗ to cl(D), respectively. In particular, for every

ε ∈ C the function Fε has the continuous extension F ∗

ε to cl(D).

Proof. Under the assumptions of the lemma H(D) is a bounded Jordan do-
main. From the Taylor–Osgood–Carethéodory theorem it follows that the conformal
mapping H of D onto H(D) has the continuous extension H∗ to cl(D), which is a
homeomorphism from cl(D) onto cl(H(D)); cf. [11, Theorem 9.10]. In particular, H
is uniformly continuous in D. Then the function G is uniformly continuous in D as a
composition of uniformly continuous functions G ◦H−1 and H . Therefore, G has the
continuous extension G∗ to cl(D). Consequently, the function Fε has the continuous
extension F ∗

ε for every ε ∈ C. �

Using Lemma 4.1 we derive from Theorem 2.2 the following result.

Corollary 4.2. Let F = H + G be a quasiconformal harmonic mapping in D

such that F (D) is a bounded convex domain and write l := λ(‖µF‖∞). Then both the

functions H and G have the continuous extensions H∗ and G∗ to cl(D), respectively.
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Moreover, for every ε ∈ C,

(1− |ε|l)|H∗(z)−H∗(w)| ≤ |F ∗

ε (z)− F ∗

ε (w)|(4.2)

≤ (1 + |ε|l)|H∗(z)−H∗(w)|, z, w ∈ cl(D).

In particular, F ∗

ε is injective in cl(D) provided |ε|l < 1.

Proof. Given a quasiconformal harmonic mapping F in D assume that F (D) is
a bounded convex domain. Then F (D) is a bounded Jordan domain, and thereby
F has the homeomorphic extension F ∗ to cl(D); cf. [6, Theorem 8.2 in Chap. I §8].
Since F (D) is a convex domain, H is injective, which was shown in [1, Corollary 5.8];
cf. also [9, Remark 2.3 and Lemma 2.4]. Moreover, by [9, Theorem 3.8], H ◦ F−1 is
a bi-Lipschitz mapping, and in consequence, it has the homeomorphic extension to
cl(F (D)). Therefore H(D) is a bounded Jordan domain. By [1, Corollary 5.8],

|G ◦H−1(z)−G ◦H−1(w)| ≤ |z − w|, w, z ∈ H(D),

and so the function G◦H−1 is uniformly continuous in H(D). Using now Lemma 4.1
we see that both the functions H and G have the continuous extensions H∗ and G∗

to cl(D), respectively, as well as for every ε ∈ C the function Fε has the continuous
extension F ∗

ε . Then the inequalities (4.2) follow from (2.5) and (2.6). If additionally
|ε|l < 1, then by (4.2), F ∗

ε is injective in cl(D), which completes the proof. �

Let us recall that a boundary point b of a simply connected domain Ω ⊂ C is
said to be a simple boundary point of Ω provided for each sequence N ∋ n 7→ an ∈ Ω
convergent to b there exist a continuous function γ : [0; 1] → C and an increasing
sequence N ∋ n 7→ tn ∈ [0; 1] satisfying the following properties: γ([0; 1)) ⊂ Ω,
γ(1) = b, tn → 1 as n → +∞ and γ(tn) = an for n ∈ N; cf. [12, Definition 14.16].

Lemma 4.3. Let Ω be a bounded simply connected domain in C which is a

rectifiably M-arcwise connected domain for a certain M ≥ 1. Then Ω is a bounded

Jordan domain.

Proof. Given Ω satisfying the assumptions fix a boundary point b of Ω and a
sequence N ∋ n 7→ an ∈ Ω such that an → b as n → +∞. Write tn := 1 − 1/n for
n ∈ N. Since Ω is a bounded rectifiably M-arcwise connected domain, for each n ∈ N

there exists an arc γn : [tn; tn+1] → Ω joining the points an and an+1, i.e., γn(tn) = an
and γn(tn+1) = an+1, with the length |γn|1 ≤ M |an+1 − an|. Then there exists the
unique function γ : [0; 1] → C such that γ(1) = b and for every n ∈ N,

γ(t) = γn(t), t ∈ [tn; tn+1].

Hence γ(t) → b = γ(1) as n → +∞, because an → b as n → +∞. Therefore γ is a
continuous function. Moreover, γ([0; 1)) ⊂ Ω and γ(tn) = an for n ∈ N. Thus each
boundary point b of Ω is a simple boundary point of Ω. Since Ω a bounded simply
connected domain, it follows from the Riemman mapping theorem that there exists
a conformal mapping H of D onto Ω; cf. [12, Theorem 14.8]. Then by [12, Theo-
rem 14.19], H extends to the homeomorphism H∗ of cl(D) onto cl(Ω). In particular,
Ω is a bounded Jordan domain, which is the desired conclusion. �

Using Lemmas 4.1 and 4.3 we derive from Theorem 2.3 the following result.

Corollary 4.4. Given M ≥ 1 suppose that F = H + G is a sense-preserving

harmonic mapping in D, its holomorphic part H is injective in D and H(D) is a

bounded rectifiably M-arcwise connected domain. Then both the functions H and

G have the continuous extensions H∗ and G∗ to cl(D), respectively. Moreover, for
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every ε ∈ C,

(1−M |ε|‖µF‖∞)|H∗(z2)−H∗(z1)| ≤ |F ∗

ε (z2)− F ∗

ε (z1)|(4.3)

≤ (1 +M |ε|‖µF‖∞)|H∗(z2)−H∗(z1)|, z1, z2 ∈ cl(D).

In particular, F ∗

ε is injective in cl(D) provided M |ε|‖µF‖∞ < 1.

Proof. Fix M , H and G satisfying the assumptions. By Lemma 4.3, H(D) is a
bounded Jordan domain. From the conclusion (2.9) of Theorem 2.3 it follows that

|G ◦H−1(z)−G ◦H−1(w)| ≤ M‖µF‖∞|z − w|, w, z ∈ H(D),

and so the function G◦H−1 is uniformly continuous in H(D). Using now Lemma 4.1
we see that both the functions H and G have the continuous extensions H∗ and G∗ to
cl(D), respectively, as well as for every ε ∈ C the function Fε has the continuous ex-
tension F ∗

ε . Then the inequalities (4.3) follow from the ones (2.10) in Theorem 2.3. If
additionally M |ε|‖µF‖∞ < 1, then by (4.3), F ∗

ε is injective in cl(D), which completes
the proof. �

Let F = H + G be a sense-preserving harmonic mapping in D, such that its
holomorphic part H is convex, i.e., H is injective in D and H(D) is a convex domain.
Suppose that G′/H ′ is not a constant function. Then for every ε ∈ C satisfying
|ε|‖µF‖∞ ≤ 1 we can apply [10, Corollary 3.2] to the mapping Fε. As a result we see
that

(4.4) z 6= w ⇒ |H(z)−H(w)| > |ε||G(z)−G(w)|, z, w ∈ D,

and, in consequence, Fε is an injective mapping. Our aim is to extend the property
(4.4) to the closed unit disk cl(D).

Lemma 4.5. Let F = H + G be a sense-preserving harmonic mapping in D,

such that H is injective in D, H(D) is a bounded convex domain and G′/H ′ is not a

constant function. Then both the functions H and G have the continuous extensions

H∗ and G∗ to cl(D), respectively, which satisfy

(4.5) z 6= w ⇒ |H∗(z)−H∗(w)| > |ε||G∗(z)−G∗(w)|, z ∈ D, w ∈ cl(D),

for every ε ∈ C such that |ε|‖µF‖∞ ≤ 1.

Proof. Fix a harmonic mapping F satisfying the assumptions. Since H(D) is a
bounded convex domain, H(D) is a Jordan domain; cf. [2]. From the Taylor–Osgood–
Carethéodory theorem it follows that the conformal mapping H of D onto H(D) has
the continuous extension H∗ to cl(D), which is a homeomorphism from cl(D) onto
cl(H(D)); cf. [11, Theorem 9.10]. In particular, H is uniformly continuous in D.
Using the property (4.4) with ε := 1 we have

(4.6) |G(w)−G(z)| ≤ |H(w)−H(z)|, w, z ∈ D.

Hence G is uniformly continuous in D, and therefore both the functions H and G
can be extended to the continuous functions H∗ : cl(D) → C and G∗ : cl(D) → C,
respectively. Moreover, by (4.6) we see that

|G∗(w)−G∗(z)| ≤ |H∗(w)−H∗(z)|, w, z ∈ cl(D).

Since the mapping H∗ is injective, the function

D ∋ z 7→ ωw(z) :=
ε(G(z)−G∗(w))

H(z)−H∗(w)
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is well defined for all w ∈ T and ε ∈ C. The property (4.5) evidently holds if ε = 0.
It remains to consider the case where ε ∈ C \ {0} satisfies |ε|‖µF‖∞ ≤ 1. By (4.4)
and the continuity of the functions H∗ and G∗ we see that for a given w ∈ T,

(4.7) |ωw(z)| ≤ 1, z ∈ D.

Suppose that there exists ζ ∈ D such that |ωw(ζ)| = 1. From the maximum principle
for holomorphic functions we conclude that ωw is a constant function. Then there
exists c ∈ T such that

ε(G(z)−G∗(w)) = c(H(z)−H∗(w)), z ∈ D,

and consequently G′(z)/H ′(z) = c/ε for z ∈ D. Thus G′/H ′ is a constant function,
which contradicts the assumption. Therefore, there does not exist z ∈ D such that
|ωw(z)| = 1. Combining this with (4.7) we get |ωw(z)| < 1 for z ∈ D, which yields
the inequality in (4.5) in the case where z ∈ D and w ∈ T. If both z, w ∈ D, then the
implication in (4.5) follows from the property (4.4), which completes the proof. �

Theorem 4.6. Let F = H + G be a sense-preserving harmonic mapping in D,

such that H is injective in D, H(D) is a bounded convex domain and G′/H ′ is not a

constant function. Then both the functions H and G have the continuous extensions

H∗ and G∗ to cl(D), respectively, which satisfy

(4.8) z 6= w ⇒ |H∗(z)−H∗(w)| > |ε||G∗(z)−G∗(w)|, z, w ∈ cl(D),

for every ε ∈ C such that |ε|‖µF‖∞ ≤ 1. In particular, for each such ε the mapping

F ∗

ε := H∗ + εG∗ is injective in cl(D).

Proof. Fix a harmonic mapping F satisfying the assumptions. From Lemma 4.5
it follows that both the functions H and G have continuous extensions H∗ and G∗,
respectively, which satisfy the property (4.5). Hence

(4.9) |H∗(u)−H∗(v)| ≥ |ε||G∗(u)−G∗(v)|, u, v ∈ T.

As it was observed in the proof of Lemma 4.5, H∗ is a homeomorphism of cl(D) onto
cl(H(D)). Thus if ε = 0, then the theorem is evidently true. Thus we can confine
ourselves to the case where 0 < |ε|‖µF‖∞ ≤ 1.

Given z, w ∈ T assume that z 6= w. Since cl(H(D)) is a convex set, there exists
a line segment L ⊂ cl(H(D)) which connects the points H∗(z) and H∗(w). Suppose
first that L ∩H(D) 6= ∅. Then H(ζ) ∈ L for a certain ζ ∈ D. Hence z 6= ζ 6= w, and
we deduce from the property (4.5) that

|H∗(z)−H∗(w)| = |H∗(z)−H∗(ζ)|+ |H∗(ζ)−H∗(w)|(4.10)

> |ε||G∗(z)−G∗(ζ)|+ |ε||G∗(ζ)−G∗(w)|

≥ |ε||G∗(z)−G∗(w)|.

Therefore the inequality in (4.8) holds provided L∩H(D) 6= ∅. Otherwise L∩H(D) =
∅. This means that the line segment L is included in the boundary of H(D), i.e.
L ⊂ H∗(T). Since H∗(z) ∈ L and H∗(w) ∈ L there exists an arc A ⊂ T such that
z, w ∈ A and H∗(A) = L. Suppose that

(4.11) |H∗(ζ)−H∗(w)| = |ε||G∗(ζ)−G∗(w)|, ζ ∈ A.
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Fix ζ ∈ A \ {w}. Since H∗(ζ) ∈ L we deduce from (4.11) and (4.9) that

|G∗(z)−G∗(w)| ≤ |G∗(z)−G∗(ζ)|+ |G∗(ζ)−G∗(w)|

≤
1

|ε|

(

|H∗(z)−H∗(ζ)|+ |H∗(ζ)−H∗(w)|
)

=
1

|ε|
|H∗(z)−H∗(w)| = |G∗(z)−G∗(w)|

Hence

|G∗(z)−G∗(ζ)|+ |G∗(ζ)−G∗(w)| = |G∗(z)−G∗(w)|,

and so the point G∗(ζ) belongs to the line segment joining the points G∗(w) and
G∗(z). Therefore

(4.12) G∗(ζ)−G∗(w) = t′(G∗(z)−G∗(w))

for a certain t′ ∈ (0; 1]. Also the point H∗(ζ) belongs to the line segment joining the
points H∗(w) and H∗(z), which gives

(4.13) H∗(ζ)−H∗(w) = t′′(H∗(z)−H∗(w))

for a certain t′′ ∈ (0; 1]. Setting λ := (G∗(z)−G∗(w))/(H∗(z)−H∗(w)) we conclude
from (4.12) and (4.13) that

G∗(ζ)−G∗(w) = t′(G∗(z)−G∗(w)) = t′λ(H∗(z)−H∗(w)) = λ
t′

t′′
(H∗(ζ)−H∗(w)).

Hence and by (4.11),

1

|ε|
=

|G∗(ζ)−G∗(w)|

|H∗(ζ)−H∗(w)|
= |λ|

t′

t′′
=

t′

t′′
|G∗(z)−G∗(w)|

|H∗(z)−H∗(w)|
=

1

|ε|

t′

t′′
,

and consequently t′ = t′′. Therefore

(4.14) G∗(ζ)−G∗(w) = λ(H∗(ζ)−H∗(w)), ζ ∈ A.

From (4.11) it follows that the function

(4.15) D ∪ (A \ {w}) ∋ ζ 7→ Ψ(ζ) :=
G∗(ζ)−G∗(w)

H∗(ζ)−H∗(w)

is holomorphic and bounded in D, continuous at every point of D ∪ (A \ {w}) and
Ψ(ζ) = λ for ζ ∈ A \ {w}. Then by [12, Theorem 11.22], Ψ(ζ) = λ for ζ ∈ D. Thus
G′/H ′ is a constant function in D, which contradicts the assumption. Accordingly
the condition (4.11) is not true. Then there exists ζ ∈ A\{w} satisfying the following
inequality

|H∗(ζ)−H∗(w)| > |ε||G∗(ζ)−G∗(w)|.

Combining this with (4.9) we obtain (4.10). Therefore the inequality in (4.8) holds
provided L ∩H(D) = ∅.

Taking into account both the cases we see that the implication in (4.8) holds
provided both z, w ∈ T. By Lemma 4.5 we know that the implication in (4.8) holds
for all z, w ∈ cl(D) provided z ∈ D or w ∈ D. This shows the property (4.8).
Furthermore, from (4.8) it follows that for all z, w ∈ cl(D), if z 6= w, then

|F ∗

ε (z)− F ∗

ε (w)| ≥ |H∗

ε (z)−H∗

ε (w)| − |ε||G∗

ε(z)−G∗

ε(w)| > 0.

This means that the mapping F ∗

ε is injective in cl(D), which completes the proof. �
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