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On the Hardy number of comb domains

Christina Karafyllia

Abstract. Let Hp (D) be the Hardy space of all holomorphic functions on the unit disk D
with exponent p > 0. If D 6= C is a simply connected domain and f is the Riemann mapping from
D onto D, then the Hardy number of D, introduced by Hansen, is the supremum of all p for which
f ∈ Hp (D). Comb domains are a well-studied class of simply connected domains that, in general,
have the form of the entire plane minus an infinite number of vertical rays. In this paper we study
the Hardy number of a class of comb domains with the aid of the quasi-hyperbolic distance and we
establish a necessary and sufficient condition for the Hardy number of these domains to be equal to
infinity. Applying this condition, we derive several results that show how the mutual distances and
the distribution of the rays affect the finiteness of the Hardy number. By a result of Burkholder
our condition is also necessary and sufficient for all moments of the exit time of Brownian motion
from comb domains to be infinite.

Kampa-alueiden Hardyn luku

Tiivistelmä. Olkoon Hp (D) yksikkökiekolla D määriteltyjen holomorfisten funktioiden Har-
dyn avaruus, jonka eksponentti on p > 0. Jos D 6= C on yhdesti yhtenäinen alue, ja f on Riemannin
kuvaus kiekolta D alueelle D, niin Hansenin määrittelemä alueen D Hardyn luku on niiden ekspo-
nenttien p pienin yläraja, joilla f ∈ Hp (D). Kampa-alueet käsittävät yhdesti yhtenäisten alueiden
paljon tutkitun alaluokan. Niiden yleinen muoto on taso, josta on poistettu ääretön määrä pysty-
suoria säteitä. Tässä työssä tutkimme eräiden kampa-alueiden Hardyn lukua kvasihyperbolisen
etäisyyden avulla ja löydämme riittävän ja välttämättömän ehdon sille, että näiden alueiden Har-
dyn luku on ääretön. Tämän ehdon avulla johdamme useita tuloksia, jotka osoittavat, kuinka
säteiden keskinäiset etäisyydet ja jakauma vaikuttavat Hardyn luvun äärellisyyteen. Burkholderin
klassisen tuloksen perusteella ehtomme on myös riittävä ja välttämätön sille, että Brownin liikkeen
kampa-alueesta poistumisajan kaikki momentit ovat äärettömiä.

1. Introduction

A classical problem in geometric function theory is to find geometric conditions
for a holomorphic function on the unit disk to belong in Hardy spaces (see e.g.
[1, 11, 12, 14, 17, 20, 19]). In this paper we study this problem in the case of
conformal mappings from the unit disk onto a comb domain. The Hardy space with
exponent p > 0 [8, p. 1–2] is denoted by Hp (D) and is defined to be the set of all
holomorphic functions, f , on the unit disk D that satisfy the condition

sup
0<r<1

ˆ 2π

0

|f(reiθ)|p dθ < +∞.

The fact that a function f belongs to some Hp (D) imposes a restriction on its growth
and this restriction is stronger as p increases. That is, if p > q then Hp(D) ⊂ Hq(D).
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In [11] Hansen studied the problem of determining the numbers p for which
f ∈ Hp (D) by studying f (D). For this purpose he introduced a number which he
called the Hardy number of a region. Since we study comb domains, we only state
the definition in the case of simply connected domains. Let D 6= C be a simply
connected domain and f be a Riemann mapping from D onto D. The Hardy number
of D, or equivalently of f , is defined by

h(D) = sup {p > 0: f ∈ Hp (D)} .

We note that this definition is independent of the choice of the Riemann mapping
onto D. It is known that every conformal mapping on D belongs to Hp (D) for all
p ∈ (0, 1/2) [8, p. 50]. This implies that h (D) lies in [1/2,+∞].

There is no general method for computing the Hardy number but there are some
ways to estimate it for certain types of domains. In [11] Hansen gave a lower bound
for the Hardy number of an arbitrary region and improved this bound for simply
connected domains. Moreover, he determined the exact value of the Hardy number
of starlike [11] and spiral-like regions [12]. In [21] Poggi-Corradini studied the Hardy
number of Kœnigs mappings. He also proved [20] for a certain class of functions,
which give a geometric model for the self-mappings of D, that the Hardy number is
equal to infinity if and only if the image region does not contain a twisted sector.
Furthermore, in [9] and [17] Essén, and Kim and Sugawa, respectively, gave a de-
scription of the Hardy number of a plane domain in terms of harmonic measure. In
[15] the current author gave a formula for the Hardy number of a simply connected
domain in terms of hyperbolic distance. Finally, Burkholder [7] studied the Hardy
number of a domain in relation with the exit time of Brownian motion (see also [5]).
More precisely, if D is a simply connected domain, then we define the number h̃(D)
to be the supremum of all p > 0 for which the p-th moment of the exit time of
Brownian motion is finite. Then Burkholder proved in [7] that

(1.1) h̃(D) = h(D)/2.

Comb domains furnish an interesting class of simply connected domains and
thus they have been studied from various points of view. For example, they have
been studied in relation with the angular derivative (see [13], [16] and references
therein), the harmonic measure [3] and the semigroups of holomorphic functions [4].
Moreover, in [6] Boudabra and Markowsky studied the moments of the exit time of
planar Brownian motion from comb domains.

Let {xn}n∈Z be a strictly increasing sequence of real numbers such that x0 = 0
and

inf
n∈Z

(xn − xn−1) > 0.

Also, let {cn}n∈Z be a sequence of positive numbers such that for some constants
m,M > 0,

m ≤ cn ≤M

for every n ∈ Z. We consider comb domains of the form (see Figure 1)

D = C\
⋃
n∈Z

{xn + iy : |y| ≥ cn}.
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Figure 1. Comb domain.

Since we want to find conditions for the Hardy number of such comb domains
to be equal to infinity, we can simplify the problem in the following way. First, we
observe that if

Dm = C\
⋃
n∈Z

{xn + iy : |y| ≥ m} and DM = C\
⋃
n∈Z

{xn + iy : |y| ≥M},

then Dm ⊆ D ⊆ DM and hence h(DM) ≤ h(D) ≤ h(Dm) (see [11]). Moreover, since
the Hardy number is invariant under affine mappings (see [11]), we have h(Dm) =
h(DM) = h(D). Therefore, it suffices to study comb domains of the form

Dc = C\
⋃
n∈Z

{xn + iy : |y| ≥ c},

where c > 0. However, we can do more simplifications. We observe that if

D+
c = D ∩ {z : Rez > −x1} and D−c = D ∩ {z : Rez < −x−1} ,

then h(Dc) = +∞ if and only if h(D+
c ) = +∞ and h(D−c ) = +∞. This follows

from Proposition 8 in [6] and (1.1). Furthermore, h(D−c ) = h(−D−c ). Therefore, it
suffices to study the Hardy number of comb domains of the form D+

c . Finally, since
the Hardy number is invariant under affine mappings, without loss of generality, we
suppose that c = 1 and the infimum of the differences xn − xn−1 is greater than 1.
So, henceforth we consider comb domains C of the form

C = {z : Rez > −x1} \
⋃

n∈N∪{0}

{xn + iy : |y| ≥ 1} ,(1.2)

where x0 = 0 and {xn}n∈N is a strictly increasing sequence of positive numbers such
that

lim
n→+∞

xn = +∞ and inf
n∈N

(xn − xn−1) > 1.

First, we establish a necessary and sufficient condition for h(C) to be equal to
infinity by studying the Euclidean distances between the rays. For every n ∈ N, we
denote these distances by

αn = xn − xn−1.
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Theorem 1.1. Let C be a comb domain of the form (1.2). Then h(C) = +∞ if
and only if

lim
n→+∞

n∑
i=1

logαi

log xn
= +∞ or, equivalently, lim

n→+∞

n∑
i=1

logαi

log
n∑
i=1

αi

= +∞.

An immediate consequence is that if the sequence αn is bounded then h(C) =
+∞. So, we actually study the case of αn being unbounded. By applying Theorem 1.1
we can examine how the mutual distances and the distribution of the rays affect the
finiteness of the Hardy number. First, we consider the case of αn growing at a
subexponential rate and prove that h(C) is always equal to infinity.

Theorem 1.2. If

lim
n→+∞

logαn
n

= 0,

then h(C) = +∞.

This result is stronger than the corollary of the main theorem of Boudabra and
Markowsky in [6], where they approach the problem by studying the moments of the
exit time of the Brownian motion. In fact, their main theorem implies that if αn
grows at most polynomially in n then the Hardy number is infinite. However, it does
not cover all subexponential sequences. For the proof of Theorem 1.2 see Section 4.

Next, we explain why the assumption in Theorem 1.2 cannot be relaxed. The-
orem 1.2 covers all the cases when αn grows at a subexponential rate, even those
in which the sequence αn oscillates very rapidly. For example, one can take αn = 2
when n is odd and αn = np when n is even and p > 0.

If the sequence αn is of exponential type, i.e. αn = ecn for every n ∈ N, and hence
there are no sharp oscillations, then Theorem 1.1 implies that the Hardy number is
equal to infinity. However, if we allow wild oscillations and suppose that αn ≤ en,
then the Hardy number might be finite. Actually, we construct such an example in
Theorem 1.4. Therefore, in order to obtain a general result in case αn ≤ en, we need
to suppose that there are no wild oscillations. By imposing that

lim
n→+∞

αn = +∞

and thus preventing sharp oscillations of αn, we prove that h(C) = +∞. In fact, a
more general result is true.

Theorem 1.3. Let {bn}n∈N be an increasing sequence of positive numbers such
that inf

n>1
(bn − bn−1) > 0. Let αn ≤ ebn for every n ∈ N. If

lim
n→+∞

logαn
bn − bn−1

= +∞,

then h(C) = +∞.

An interesting case, as we already remarked, is when bn = n.

Corollary 1.1. Let αn ≤ en for every n ∈ N. If

lim
n→+∞

αn = +∞,

then h(C) = +∞.
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Next, we prove that the assumption in Theorem 1.3 is sharp. In other words, if
there are wild oscillations of αn, then the Hardy number might be finite.

Theorem 1.4. Let {bn} be as Theorem 1.3. There is a comb domain C such
that αn ≤ ebn for every n ∈ N,

lim inf
n→+∞

logαn
bn − bn−1

< +∞

and h(C) < +∞.

Theorem 1.3 covers a variety of cases such as αn being comparable to enp for
some p > 0, αn being comparable to een

k

for some k < 1 and αn being comparable to
ee

n/ logn . However, it does not apply if αn is comparable to een . In this case, despite
the fact that there are no wild oscillations of αn, Theorem 1.1 implies that h(C) is
finite.

Theorem 1.5. If αn is comparable to een for every n ∈ N, then h(C) < +∞.

Therefore, the Hardy number of C might be finite when the sequence αn oscillates
very quickly or if it goes to infinity rapidly enough like αn being comparable to een .

Remark 1.1. Note that by (1.1) all the results above concerning the Hardy
number provide us with information about the finiteness of the moments of the exit
time of Brownian motion from comb domains. In fact, h̃(D) is equal to infinity if
and only if h(D) is equal to infinity.

Remark 1.2. By Corollary 1.1 the Riemann mapping from D onto the comb
domain C with xn = en belongs to every Hp(D) space. However, it does not belong
to BMOA (see [22]). So, it is an example which ensures that

BMOA (
⋂
p>0

Hp(D).

In Section 2, we introduce some preliminaries such as notions and results in
hyperbolic geometry and their connection with the Hardy number. In Section 3, we
prove Theorem 1.1 and applying this, in Section 4, we prove all the other theorems
stated above.

2. Preliminary results

2.1. Hyperbolic distance. The hyperbolic distance between two points z, w
in the unit disk D (see [2, p. 11-28]) is defined by

dD (z, w) = log
1 +

∣∣ z−w
1−zw̄

∣∣
1−

∣∣ z−w
1−zw̄

∣∣ .
It can also be defined on any simply connected domain D 6= C in the following
way: If f is a Riemann mapping of D onto D and z, w ∈ D, then dD (z, w) =
dD (f

−1 (z) , f−1 (w)). Also, for a set E ⊂ D, we define dD (z, E) = inf{dD (z, w) :
w ∈ E}.

2.2. Quasi-hyperbolic distance. Let D 6= C be a simply connected domain.
The hyperbolic distance between z1, z2 ∈ D can be estimated by the quasi-hyperbolic
distance which is defined by

δD (z1, z2) = inf
γ:z1→z2

ˆ
γ

|dz|
d (z, ∂D)

,
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where the infimum ranges over all the paths γ connecting z1 to z2 in D and d (z, ∂D)
denotes the Euclidean distance of z from ∂D. It is known [2, p. 33–36] that

(2.1)
1

2
δD ≤ dD ≤ 2δD.

2.3. Hardy number and hyperbolic distance. In [15] the current author
proves that the Hardy number of a simply connected domain can be found with the
aid of hyperbolic distance in the following way.

Theorem 2.1. Let D be a simply connected domain containing the origin. If
Fr = D ∩ {|z| = r} for r > 0, then

h (D) = lim inf
r→+∞

dD (0, Fr)

log r
.

2.4. The Stolz–Cesaro theorem. Next, we state a generalized form of the
Stolz–Cesaro theorem which we apply in Section 4. For the proof see [18] and [10,
p. 263–266].

Theorem 2.2. Let {bn}n∈N be a sequence of positive numbers such that
∑+∞

n=1 bn
= +∞. For any real sequence {an}n∈N, it is true that

lim sup
n→+∞

a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

≤ lim sup
n→+∞

an
bn

and

lim inf
n→+∞

a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

≥ lim inf
n→+∞

an
bn
.

3. A necessary and sufficient condition

In this section we give a necessary and sufficient condition for the Hardy number
to be equal to infinity. First, we prove two auxiliary lemmas which give an upper
and a lower estimate for h(C).

Lemma 3.1. Let C be a comb domain of the form described in Section 1. If
K = 4 log((1 +

√
5)/2), then

h(C) ≤ lim inf
n→+∞

4
n∑
i=1

logαi

log xn
+

nK

log xn
+ 4

 .

Proof. Let r > 0. There exists a number n ∈ N such that xn−1 < r ≤ xn. Due to
the symmetry of C with respect to the real axis and the uniqueness of the hyperbolic
geodesic in simply connected domains, the hyperbolic geodesic between 0 and r in C
is the line segment [0, r]. Therefore, we have

(3.1) dC(0, r) = dC(0, xn−1) + dC(xn−1, r)
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(see [2, p. 14]). Applying (2.1) and letting mi−1 denote the midpoint of the interval
[xi−1, xi] for every i ∈ N, we infer that

dC (0, xn−1) ≤ 2δC (0, xn−1) = 2

ˆ xn−1

0

dx

d (x, ∂C)
= 2

n−1∑
i=1

ˆ xi

xi−1

dx

d (x, ∂C)

= 4
n−1∑
i=1

ˆ mi−1

xi−1

dx

d (x, ∂C)
= 4

n−1∑
i=1

ˆ mi−1

xi−1

dx√
1 + (x− xi−1)

2

= 4
n−1∑
i=1

arcsinh (mi−1 − xi−1) = 4
n−1∑
i=1

arcsinh

(
xi − xi−1

2

)

= 4
n−1∑
i=1

log

(
αi
2

+

√(αi
2

)2

+ 1

)
.(3.2)

Recall that the domain C has the property that inf
n∈N

αn > 1, which implies that, for
every i ∈ N,

αi
2
>

1

2
.

Therefore, √(αi
2

)2

+ 1 =

√(αi
2

)2

+ 4

(
1

2

)2

≤ αi
2

√
5

and hence

log

(
αi
2

+

√(αi
2

)2

+ 1

)
≤ log

(αi
2

(
1 +
√
5
))

= logαi +
K

4
,(3.3)

where K = 4 log((1 +
√
5)/2). Combining (3.2) with (3.3), we deduce that

(3.4) dC (0, xn−1) ≤ 4
n−1∑
i=1

logαi + (n− 1)K.

Now, in order to find an upper estimate for dC(xn−1, r), we consider the following
cases.

Case 1: If r ∈
(
xn−1,

xn−1+xn
2

]
, then

dC(xn−1, r) ≤ 2δC(xn−1, r) = 2

ˆ r

xn−1

dx√
1 + (x− xn−1)2

= 2arcsinh (r − xn−1) ≤ 2 arcsinh r.

Case 2: If r ∈
(
xn−1+xn

2
, xn
]
, then

dC(xn−1, r) ≤ dC(xn−1, xn) ≤ 2δC(xn−1, xn) = 2

ˆ xn

xn−1

dx

d(x, ∂C)

= 4

ˆ xn−1+xn
2

xn−1

dx√
1 + (x− xn−1)2

= 4arcsinh

(
xn − xn−1

2

)
≤ 4 arcsinh r.

Therefore, it follows that in both cases,

(3.5) dC(xn−1, r) ≤ 4 arcsinh r.
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Recall that r > xn−1. So, by (3.1), (3.4) and (3.5) we derive that

dC(0, r)

log r
≤

4
n−1∑
i=1

logαi

log xn−1

+
(n− 1)K

log xn−1

+
4arcsinh r

log r
.

This in conjunction with Theorem 2.1 gives

h(C) ≤ lim inf
r→+∞

dC(0, r)

log r
≤ lim inf

n→+∞

4
n∑
i=1

logαi

log xn
+

nK

log xn
+ 4


and the proof is complete. �

Lemma 3.2. Let C be a comb domain of the form described in Section 1. Then

h(C) ≥ lim inf
n→+∞

n∑
i=1

logαi

log xn
− 1.

Proof. If Fr = C ∩ {|z| = r}, by Theorem 2.1 we have

h(C) = lim inf
r→+∞

dC(0, Fr)

log r
= lim

n→+∞

dC(0, Frn)

log rn
,

where {rn} is an increasing sequence of positive numbers. The hyperbolic dis-
tance dC(0, Frn) is attained on some component of Frn lying in the vertical strip
{z : xin < Rez < xin+1}, where {xin} is a subsequence of {xn}. If we denote this
component by F xin

rn then

h(C) = lim
n→+∞

dC(0, F
xin
rn )

log rn
.(3.6)

Since C is symmetric with respect to the real axis, without loss of generality, we
suppose that F xin

rn lies on the upper half-plane or intersects the positive real axis (see
Figure 2). If h(C) = +∞, the result is trivial. Hence, we suppose that h(C) < +∞
and take the following cases.

Figure 2. The component F xin
rn .
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Case 1: For infinitely many n, F xin
rn is the component of Frn containing rn. By

passing to a subsequence we assume that this is the case for all n. The hyperbolic
geodesic between 0 and F xin

rn passes from some point uin of the line segment {xin+iy :
−1 < y < 1}. If mj−1 denotes the midpoint of the interval [xj−1, xj], then we have

dC
(
0, F xin

rn

)
≥ dC (0, uin) ≥

1

2
δC (0, uin) ≥

1

2

ˆ xin

0

dx

d (x, ∂C)

=
1

2

in∑
j=1

ˆ xj

xj−1

dx

d (x, ∂C)
=

in∑
j=1

ˆ mj−1

xj−1

dx√
1 + (x− xj−1)

2

=
in∑
j=1

arcsinh

(
xj − xj−1

2

)
=

in∑
j=1

log

(
αj
2

+

√(αj
2

)2

+ 1

)

≥
in∑
j=1

logαj.(3.7)

Since xin < rn < xin+1, by (3.7) and (3.6) it follows that

h(C) ≥ lim inf
n→+∞

in∑
j=1

logαj

log xin+1

= lim inf
n→+∞


in+1∑
j=1

logαj

log xin+1

− logαin+1

log xin+1



≥ lim inf
n→+∞

in+1∑
j=1

logαj

log xin+1

− 1 ≥ lim inf
n→+∞

n∑
j=1

logαj

log xn
− 1.(3.8)

Case 2: For infinitely many n, F xin
rn is not the component of Frn containing rn.

By passing to a subsequence we suppose that this is the case for all n. First, suppose
that for k = 2/(3 h(C)),

xin+1 ≤ k
rn

log rn
(3.9)

for infinitely many n. The hyperbolic geodesic between 0 and F xin
rn passes from some

point vin of the line segment (xin + i, xin+1+ i) and some point zin of the line segment(
xin + i

√
r2
n − x2

in+1, xin+1 + i
√
r2
n − x2

in+1

)
. Thus, we have

dC(0, F
xin
rn ) ≥ dC(vin , zin) ≥

1

2
δC(vin , zin) ≥

1

2

ˆ √r2n−x2in+1

1

dx

d(x, ∂C)

=

√
r2
n − x2

in+1 − 1

xin+1 − xin
≥

√
r2
n − x2

in+1 − 1

xin+1

≥ 1

k

log rn
rn

√r2
n − k2

(
rn

log rn

)2

− 1

 ,

where we applied (3.9). This in combination with (3.6) implies that

h(C) ≥ 1

k
lim inf
n→+∞

√
r2
n − k2

(
rn

log rn

)2

− 1

rn
=

1

k
=

3

2
h(C),
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which is a contradiction. Therefore,

xin+1 > k
rn

log rn
(3.10)

for all but finitely many n. So, working as in Case 1, we have

dC(0, F
xin
rn ) ≥

in∑
j=1

logαj.

By this and (3.6), it follows that

h(C) ≥ lim inf
n→+∞

in∑
j=1

logαj

log rn
= lim inf

n→+∞


in∑
j=1

logαj

log xin+1

log xin+1

log rn



≥ lim inf
n→+∞


in∑
j=1

logαj

log xin+1

log k + log rn − log(log rn)

log rn



= lim inf
n→+∞

in∑
j=1

logαj

log xin+1

≥ lim inf
n→+∞

n∑
j=1

logαj

log xn
− 1,

where we applied (3.10) and (3.8). Consequently, in any case we obtain the desired
result. �

Next, we prove our main theorem.

Proof of Theorem 1.1. Suppose that h(C) = +∞. If

lim inf
n→+∞

n

log xn
< +∞,

then by Lemma 3.1 we deduce that

lim
n→+∞

n∑
i=1

logαi

log xn
= +∞.

Now, suppose that
lim inf
n→+∞

n

log xn
= +∞.

Recall that inf
n∈N

αn = l > 1. So, we have

n∑
i=1

logαi

log xn
>

n

log xn
log l

and thus

lim
n→+∞

n∑
i=1

logαi

log xn
= +∞

in both cases. The other direction is direct by Lemma 3.2. �
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4. Consequent results

In this section we prove several results derived by Theorem 1.1. They are all
stated in Section 1. First, we show that if the sequence αn grows at a subexponential
rate, then the Hardy number is equal to infinity.

Proof of Theorem 1.2. Let An = max
1≤j≤n

αj. First, we prove that our assumption

implies that

lim
n→+∞

logAn
n

= 0.

Suppose, on the contrary, that it is false. Then there are a constant δ > 0 and a
subsequence {Akn}n∈N of {An}

n∈N
such that, for every n ∈ N,

logAkn
kn

≥ δ.

For every n ∈ N there is an mn ∈ N such that Akn = αmn and 1 ≤ mn ≤ kn.
Case 1: If there is a constant K > 0 such that mn ≤ K for every n ∈ N, then

0 ≤ logAkn
kn

=
logαmn

kn
≤

max
1≤i≤K

logαi

kn
.

So, taking limits as n→ +∞, we derive that

lim
n→+∞

logAkn
kn

= 0,

which is a contradiction.
Case 2: Ifmn → +∞, then there is a subsequence {mln}n∈N such thatmln → +∞

and mln is strictly increasing with respect to n. Thus,

δ ≤
logAkln
kln

=
logαmln

kln
=

logαmln

mln

mln

kln
≤

logαmln

mln

.

Taking limits as n→ +∞, we infer that δ ≤ 0, which is a contradiction. Therefore,

(4.1) lim
n→+∞

logAn
n

= 0.

Recall that infαn = l > 1. Since αn ≤ An for every n ∈ N and {An}
n∈N

is an
increasing sequence, we have

n∑
i=1

logαi

log
n∑
i=1

αi

≥ n log l

log
n∑
i=1

Ai

≥ n log l

log n+ logAn
=

log l
logn
n

+ logAn

n

.

Taking limits as n→ +∞, by (4.1) we deduce that

lim
n→+∞

n∑
i=1

logαi

log
n∑
i=1

αi

= +∞.

Thus, Theorem 1.1 implies that h(C) = +∞. �



598 Christina Karafyllia

The following corollary of Theorem 1.2 is the corollary of Theorem 4 in [6, p. 3].
Let {xn}n∈Z be an increasing sequence of distinct real numbers without accumulation
point in R and {cn}n∈Z be an associated sequence of positive numbers, and let

D = C\
⋃
n∈Z

{xn + iy : |y| ≥ cn}.

Corollary 4.1. Let αn = xn − xn−1. Suppose that inf
n∈Z

αn > 0 and {cn}n∈Z is
bounded. If

+∞∑
j=1

(max
|n|≤j

α2
n)θ

j < +∞

for every θ ∈ (0, 1), then h̃(D) = +∞.

Proof. By assumption, there is a constant c > 0 such that cn ≤ c for every n ∈ Z.
Thus,

D ⊆ C\
⋃
n∈Z

{xn + iy : |y| ≥ c} := Dc

and h(D) ≥ h(Dc). By this and (1.1), it suffices to prove that h(Dc) = +∞ or,
equivalently, h(D−c ) = h(D+

c ) = +∞ (see Section 1). Without loss of generality, we
suppose that c = 1 and inf αn > 1. We have

+∞∑
j=1

α2
jθ
j ≤

+∞∑
j=1

(max
|n|≤j

α2
n)θ

j < +∞

for every θ ∈ (0, 1). This implies that, for every θ ∈ (0, 1),

lim
n→+∞

α2
nθ

n = 0

and hence for every θ ∈ (0, 1) there is an n0(θ) ∈ N such that for n ≥ n0,

αnθ
n/2 < 1

or, equivalently,
logαn
n

<
1

2
log

1

θ
.

Set ε = (1/2) log(1/θ). So, for every ε > 0 there is an n0(ε) ∈ N such that for n ≥ n0,

logαn
n

< ε.

By Theorem 1.2, we deduce that h(D+
c ) = +∞. Working with αn for n < 0 in the

same way as above, we infer that h(D−c ) = +∞ and thus, it follows that h(Dc) =
+∞. �

Next, we prove Theorem 1.3 which implies that if the sequence logαn grows at a
subexponential rate and there are no wild oscillations of αn, then the Hardy number
is equal to infinity.

Proof of Theorem 1.3. Since {bn}n∈N is an increasing sequence, we have

log
n∑
i=1

αi ≤ log
n∑
i=1

ebi ≤ log
(
nebn

)
= log n+ bn.(4.2)
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By assumption, inf
n>1

(bn − bn−1) = r > 0. This implies that

(4.3) bn =
n∑
i=2

(bi − bi−1) + b1 ≥ (n− 1)r + b1.

So, for every n ∈ N, we have

0 ≤ log n

bn
≤ log n

(n− 1)r + b1

and thus
lim

n→+∞

log n

bn
= 0.

By this and (4.2), we obtain the following estimates

lim inf
n→+∞

n∑
i=1

logαi

log
n∑
i=1

αi

≥ lim inf
n→+∞


n∑
i=1

logαi

bn

bn
log n+ bn

 = lim inf
n→+∞

n∑
i=1

logαi

b1 +
n∑
i=2

(bi − bi−1)

≥ lim inf
n→+∞

logαn
bn − bn−1

= +∞.

In the last inequality we applied Theorem 2.2. Therefore, Theorem 1.1 implies that
h(C) = +∞. �

Next, we prove that the condition of Theorem 1.3 is sharp.

Proof of Theorem 1.4. Fix a c > 1 and let {bkm}m∈N be a subsequence of
{bm}m∈N such that

(4.4) bkm ≥
m−1∑
i=1

bki

for every m ≥ 2. Moreover, we observe that (4.3) implies that
km
bkm
≤ 1

r
+
r − b1

rbkm
.(4.5)

We consider a comb domain with

αn =

{
c, n /∈ {km : m ∈ N}
ebkm , n = km for some m ∈ N .

Applying (4.4) and (4.5), we have the following estimates

Ikm :=

km∑
i=1

logαi

log
km∑
i=1

αi

=

(km −m) log c+
m∑
i=1

bki

log

(
(km −m)c+

m∑
i=1

ebki

)
≤ km log c+ 2bkm

bkm
≤
(
1

r
+
r − b1

rbkm

)
log c+ 2.

This implies that

lim inf
n→+∞

n∑
i=1

logαi

log
n∑
i=1

αi

≤ lim inf
m→+∞

Ikm ≤ 2 +
1

r
log c
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and hence by Theorem 1.1 we derive that h(C) < +∞. Finally, it follows that

lim inf
n→+∞

logαn
bn − bn−1

≤ lim inf
m→+∞

logαkm+1

bkm+1 − bkm
≤ log c

r
< +∞

and the proof is complete. �

Finally, we prove that if αn is comparable to een , then the Hardy number is finite.

Proof of Theorem 1.5. By assumption there are constants c1, c2 > 0 such that,
for every n ∈ N,

c1e
en ≤ αn ≤ c2e

en .

So, it follows that

lim inf
n→+∞

n∑
i=1

logαi

log
n∑
i=1

αi

≤ lim inf
n→+∞

n∑
i=1

logαi

logαn
≤ lim inf

n→+∞

n log c2 +
n∑
i=1

ei

log c1 + en

=
e

e− 1
lim inf
n→+∞

en

log c1 + en
=

e

e− 1
< +∞.

By Theorem 1.1 we deduce that h(C) < +∞. �
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