
Annales Fennici Mathematici
Volumen 47, 2022, 603–639

Multiplicity and concentration of solutions to a
fractional p-Laplace problem with exponential growth

Nguyen Van Thin

Abstract. In this paper, we study the Schrödinger equation involving the N
s -fractional Lapla-

cian:

εN (−∆)sN/su+ V (x)|u|
N

s
−2u = f(u) in R

N ,

where ε is a positive parameter, N = ps, s ∈ (0, 1). The nonlinear function f has exponential

growth and the potential function V is a continuous function satisfying some suitable conditions.

Our problem lacks compactness. By using the Ljusternik–Schnirelmann theory, we obtain the

existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the

parameter.

Eksponentiaalisesti kasvavan murtoasteisen p-Laplacen

ongelman ratkaisuiden monilukuisuus ja kasautuminen

Tiivistelmä. Tässä työssä tutkimme seuraavaa N
s -murtoasteisen Laplacen operaattorin sisäl-

tävää Schrödingerin yhtälöä

εN (−∆)sN/su+ V (x)|u|
N

s
−2u = f(u) avaruudessa R

N ,

missä ε on positiivinen parametri, N = ps ja s ∈ (0, 1). Epälineaarinen funktio f kasvaa ek-

sponentiaalisesti, ja potentiaali V on sopivat ehdot toteuttava jatkuva funktio. Tältä ongelmalta

puuttuu kompaktisuusominaisuuksia. Ljusternikin–Schnirelmannin teorian avulla osoitamme pie-

nillä parametriarvoilla epätriviaalien ei-negatiivisten ratkaisujen olemassaolon, monilukuisuuden ja

kasautumisen.

1. Introduction and main results

In this paper, we first study the existence and concentration of nontrivial non-
negative solutions for the fractional N

s
-Laplace Schrödinger equation

εN(−∆)sN/su(x) + V (x)|u|
N
s
−2u = f(u) in R

N , (Pε)(1.1)

where ε is small positive parameter, 0 < s < 1, 2 ≤ p < +∞, N = ps, the potential V
is bounded below by V0 > 0, the nonlinearity f has exponential critical growth, and
(−∆)sp is the fractional p-Laplace operator which may be defined along a function
ϕ ∈ C∞

0 (RN) (up to a normalization constant) as

(−∆)spϕ(x) = 2 lim
ε→0+

ˆ

RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
dy

for x ∈ R
N , where Bε(x) is a ball with center x and radius ε.

In order to study the problem (1.1), we need some assumptions on V and f as
follows:
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(V) V : RN → R is a continuous function satisfying

V∞ = lim inf
|x|→∞

V (x) > V0 = inf
x∈RN

V (x) > 0,

where V∞ < ∞ or V∞ = ∞. This kind of a hypothesis was introduced by
Rabinowitz in [34].

(f1) The nonlinearity f ∈ C1(R) satisfies f(t) = 0 for all t ∈ (−∞, 0], f(t) > 0 for
all t > 0 and there exist constants α0 ∈ (0, α∗), b1, b2 > 0 such that for any
t ∈ R,

|f ′(t)| ≤ b1|t|
p−2 + b2|t|

p−2ΦN,s(α0|t|
N/(N−s)),

where ΦN,s(y) = ey −
∑jp−2

i=0
yj

j!
, jp = min{j ∈ N : j ≥ p} and α∗ is given in

the Lemma 1.
(f2) There exists µ > N

s
such that

f(t)t− µF (t) ≥ 0

for all t ∈ R, where F (t) =
´ τ

0
f(τ)dτ.

(f3)

lim
t→0+

f ′(t)

t
N
s
−2

= 0.

(f4) There exists γ1 > 0 large enough such that F (t) ≥ γ1|t|µ for all t ≥ 0.

(f5)
f(t)
tp−1 is a strictly increasing function of t ≥ 0.

Remark 1. (i) From the condition (f3), we have

lim
t→0+

f(t)

t
N
s
−1

= lim
t→0+

F (t)

t
N
s

= 0.

(ii) The condition (f5) implies that the function 1
p
f(t)t − F (t) is an increasing

function of t ≥ 0. Indeed, we have
(

1

p
f(t)t− F (t)

)′

t

=
f ′(t)t− (p− 1)f(t)

p
> 0

for all t > 0 due to the condition (f5).
(iii) The condition (f5) leads to that f(t) > 0 for all t > 0. Indeed, we have

f(t)
tp−1 > limt→0+

f(t)
tp−1 = 0 for all t > 0. Then f(t) > 0 for all t > 0.

(iv) We have that f(t)t is an increasing function on (0,+∞). From the condition
(f5), we have

f(t1)t1
tp1

<
f(t2)t2
tp2

for all 0 < t1 < t2. Then

f(t1)t1 <

(

t2
t1

)p

f(t1)t1 < f(t2)t2.

We get the claim.

In 2019, Miyagaki and Pucci [28] have studied the nonlocal Kirchhoff problem
with critical Trudinger–Moser nonlinearity

−M(

¨

R2N

|u(x)− u(y)|2H(x− y) dx dy +

ˆ

R

V (x)|u|2 dx)(LKu+ V (x)u) = P (x)f(u)

in R, where H satisfies the two following conditions:
(h1) mH ∈ L1(RN), where m(x) = min{|x|2, 1};
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(h2) there exists k0 > 0 such that H(x) ≥ k0|x|
−2 for any x ∈ R

N \ {0}.
The Kirchhoff function M : [0,+∞) → [0,+∞) is continuous and satisfies the

conditions:
(M1) For any τ > 0, there exists κ = κ(τ) such that M(t) ≥ κ for all t ≥ τ .
(M2) There exists θ ≥ 1 such that tM(t) ≤ θM(t) for all t ∈ [0,+∞), where

M(t) =
´ t

0
M(τ) dτ .

(M3) The function θM(t)− tM(t) in nondecreasing on [0,+∞).

The nonlinear function f satisfies the subcritical exponential growth or critical
exponential growth, V and P satisfy some following conditions:

(i) The potentials V and P are continuous and strictly positive in R;
(ii) If {An} is a sequence of Borel sets of R, with |An| ≤ R for all n ∈ N and some

R > 0, then

lim
r→∞

ˆ

An∩Bc
r(0)

P (x) dx = 0, uniformly with respect to n ∈ N,

where Bc
r(0) is the complement of the closed interval Br = [−r, r].

(iii) The potential P is in L∞(R) and there exists C0 > 0 such that V (x) ≥ C0

for all x ∈ R.

In the work of Miyagaki and Pucci, the potential is bounded from below by a
positive constant. In order to study their problem, they need the nonlinear function
with the form P (x)f(u), where P and V satisfy the conditions (i) to (iii). With
these conditions, they get the compact embedding from the solution space E into the
Lebesgue space with weight Lq

P (R
N), q ∈ (2,+∞).

This paper was motivated by some work that have appeared very recently on the
fractional p-Laplace Schrödinger equation with the form

εps(−∆)spu(x) + V (x)|u|p−2u = f(u) in R
N , N > ps,(1.2)

[8, 10, 7, 14, 9] and the work of Miyagaki and Pucci [28]. When p = 2, the equation
(1.2) becomes a fractional Schrödinger equation of the type

ε2s(−∆)su+ V (x)u = f(u) in R
N ,(1.3)

which has been widely investigated in the last decade [3, 4, 5, 22, 37, 23, 36, 26, 35]
and references therein. The study of (1.3) is strongly motivated by the search of
standing waves solutions for the heat fractional Schrödinger equation

iε
∂ψ

∂t
= (−∆)sψ + (V (x) + E)ψ − f(ψ) for (x, t) ∈ R

N × R,(1.4)

whose solutions have the form ψ(x, t) = u(x)e−
iEt
ε , where E is a constant. The

equation (1.4) is a fundamental equation of the fractional Quantum Mechanics.
When s→ 1, the equation (1.2) becomes

−εN∆Nu+ V (x)|u|N−2u = f(u) in R
N ,(1.5)

which arises in applications when ε = 1, such as image processing, non-Newtonian
fluids and pseudo-plastic fluids. We refer the reader to [11, 13] for more details. In
[34] Rabinowitz used variational methods to prove the existence of positive solutions
to (1.5) for ε sufficiently small by assuming condition (V) and p = 2. Later Wang
[40] showed that these solutions concentrate at global minimum points of V (x) as
ε→ 0. Denote M = {x ∈ R

N : V (x) = V0} and

Mδ = {x ∈ R
N : dist(x,M) ≤ δ} for δ > 0.
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Using Lusternik–Schnirelmann category, Alves and Figueiredo [2] showed that prob-
lem (1.5) has at least catMδ

(M) positive solutions for small ε when f ∈ C1(R) satisfies
the following conditions:

(c1) f(t) = 0 for all t ∈ (−∞, 0] and f has critical growth at both +∞ and −∞,
that is there exists α0 > 0 such that

lim
|s|→+∞

f(s)

eα|s|N/(N−1)
= 0 for α > α0

and

lim
|s|→+∞

f(s)

eα|s|N/(N−1)
= ∞ for all α < α0.

(c2) lims→0
|f ′(s)|
|s|N−2 = 0 and there exists C > 0 such that

|f ′(s)| ≤ Cexp(αNs
N/(N−1))

for all s ≥ 0, where αN = Nw
1/(N−1)
N and wN is the (N − 1)-dimensional

measure of the (N − 1)-sphere.
(c3) There exist constants p > N and µ > 0 large enough such that f(s) ≥ µsp−1

for all s ≥ 0.
(c4) There exists C1 > 0 and σ ≥ N such that

f ′(s)s− (N − 1)f(s) ≥ C1s
σ

for all s ≥ 0.
(c5) There exists θ > N such that

0 < θF (s) = θ

ˆ s

0

f(t)dt ≤ sf(s)

for all s > 0.
(c6) The function f(s)

sN−1 is strictly increasing in (0,+∞).

For more results about existence of solution to the problem (1.5), we refer the
reader to [2] and references therein.

When s = 1
2

and N = 1, Alves, Do Ó and Miyagaki [1] studied the concentration
of solutions to the problem (1.1) with the following assumptions:
(V )′ V is bounded function and locally Hölder continuous and there exists V0 > 0

such that
(i) V (x) ≥ V0 for all x ∈ R

N ,
(ii) There exists a bounded interval Λ ⊂ R such that

V0 ≡ inf
Λ

Λ(x) < min
∂Λ

V (x).

(f1)
′ f : R → R

+ is a C1 function with f(t) = 0 if t ≤ 0.
(f2)

′ f(t) = o(t) near original.
(f3)

′ f(t)
t

is an increasing function in R
+.

(f4)
′ There exist a constant p > 2 and a suitable constant Cp > 0 such that

f(t) ≥ Cpt
p−1 for all t > 0.

For more results on Trundinger–Moser inequality and its applications, we refer the
readers to [16, 17, 18, 15, 24, 31, 39, 42, 27, 43, 20, 19].

Before starting our results, we recall some useful notations. Suppose that N = ps
in our paper. The fractional Sobolev space W s,p is defined by

W s,p(RN) := {u ∈ Lp(RN ) : [u]s,p <∞},
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where [u]s,p denotes the Gagliardo seminorm, that is

[u]s,p =

(
¨

R2N

|u(x)− u(y)|p

|x− y|2N
dx dy

)1/p

.

W s,p(RN) is a uniformly convex Banach space (similar to [32]) with norm

‖u‖ =
(

‖u‖p
Lp(RN )

+ [u]ps,p

)1/p

.

Given η > 0, another norm on W s,p(RN) is given by

‖u‖η =
(

η‖u‖p
Lp(RN )

+ [u]ps,p

)1/p

.

Then ‖ · ‖ and ‖ · ‖η are two equivalent norms on W s,p(RN). For each ε > 0, let Wε

denote the completion of C∞
0 (RN), with respect to the norm

‖u‖Wε =
(

[u]ps,p + ‖u‖pp,V,ε

)1/p

, ‖u‖pp,V,ε =

ˆ

RN

V (εx)|u(x)|p dx.

Then Wε is a uniformly convex Banach space (similar to [32, Lemma 10]), and then
Wε is a reflexive space. By the condition (V) and [29, Theorem 6.9], we have that
the embedding from Wε into Lν(RN) is continuous for any ν ∈ [N

s
,+∞). Then there

exists a best constant Sν,ε > 0 for all ν ∈ [N
s
,+∞):

Sν,ε = inf
u 6=0,u∈Wε

‖u‖Wε

‖u‖Lν(RN )

.

This implies

‖u‖Lν(RN ) ≤ S−1
ν,ε‖u‖Wε for all u ∈ Wε.(1.6)

By [29, Theorem 6.9], we have that the embedding from W s,N/s(RN) into Lν(RN)
is continuous for any ν ∈ [N

s
,+∞), and there exists a best constant Aν,η > 0 for all

ν ∈ [N
s
,+∞) as follows:

Aν,η = inf
u 6=0,u∈W s,N/s(RN )

‖u‖η
‖u‖Lν(RN )

.

This implies

‖u‖Lν(RN ) ≤ A−1
ν,η‖u‖η for all u ∈ W s,N/s(RN ).(1.7)

We denote by catB(A) the category of A with respect to B, namely the least
integer k such that A ⊂ A1 ∪ · · · ∪Ak, where Ai (i = 1, . . . , k) is closed and contrac-
tible inB. We set catB(∅) = 0 and catB(A) = +∞ if there is no integer with the above
property. We refer the reader to [41] for more details on Ljusternik–Schnirelmann
theory. Now, we state the main result in this paper.

Theorem 2. Let (V) and (f1)–(f5) hold. Then for any δ > 0, there exists εδ > 0
such that problem (Pε) has at least catMδ

(M) nontrivial nonnegative weak solutions
for any 0 < ε < εδ. Moreover, if uε denotes one of these solutions and ηε is its global
maximum, then

lim
ε→0+

V (ηε) = V0.

Remark 3. Comparing Theorem 2 with Theorem 1.1 [2], we do not need the
condition of the form (c4). Therefore, when s → 1−, we get an improvement on the
result of Alves and Figueiredo [2].
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Remark 4. We use the Nehari manifold, variational method, concentration com-
pactness principle and Ljusternik–Schnirelmann theory to prove the main result.
There are some difficulties in proving our theorem. The first difficulty is that the
nonlinearity f has exponential critical growth. The second is that since N = ps, we
lack the fractional Sobolev embedding. Comparing our work with the work of Alves
and Figueiredo [2], we meet several new difficulties in employing the methods to deal
with our problem due to the nonlocal property of equation (1.1). We recommend
the readers Lemma 4, Lemma 8, Lemma 10 and Lemma 12, and more results in our
paper for this comment. Comparing our work with the work of Miyagaki and Pucci
[28], we only have a continuous embedding since our nonlinear function does not
contain the function P as in (i) to (iii). Hence, the method of Miyagaki and Pucci
[28] is not enough to solve our problem.

The paper is organized as follows. In Section 2, we study the autonomous as-
sociated problem. In Section 3, we study the auxiliary problem. We prove the
Palais–Smale condition for the energy functional and provide some tools which are
useful to establish a multiplicity result. This allows us to show that the auxiliary
problem has multiple solutions. In Section 4, we prove the existence of ground state
solutions to the auxiliary problem. Finally, in Section 5, we complete the paper with
the proof of Theorem 2.

2. Autonomous problem

In this section, we study the autonomous problem associated to (1.1):

(−∆)sN/su+ η|u|
N
s
−2u = f(u) in R

N , (Pη)(2.1)

where η > 0 is a constant.
We denote by Jη : W

s,N/s(RN) → R the corresponding energy functional for
problem (2.1)

Jη(u) =
1

p
‖u‖pη −

ˆ

RN

F (u) dx.

From the condition (f3), there exist τ > 0 and δ > 0 such that for all |t| ≤ δ, we
have

|f ′(t)| ≤ τ |t|
N
s
−2.(2.2)

Moreover, from the conditions (f1) and that f ′ is a continuous function, for each
q ≥ N

s
, we can find a constant C = C(q, δ) > 0 such that

|f ′(t)| ≤ C|t|q−2ΦN,s(α0|t|
N/(N−s))(2.3)

for all |t| ≥ δ. Combining (2.2) and (2.3), we get

|f ′(t)| ≤ τ |t|
N
s
−2 + C|t|q−2ΦN,s(α0|t|

N/(N−s))(2.4)

for all t ≥ 0. Then we obtain

|f(t)| ≤

ˆ t

0

|f ′(s)| ds ≤ τ |t|
N
s
−1 + C|t|q−1ΦN,s(α0|t|

N/(N−s))(2.5)

and

|F (t)| ≤

ˆ t

0

|f(s)| ds ≤ τ |t|
N
s + C|t|qΦN,s(α0|t|

N/(N−s))(2.6)

for all t ≥ 0.
In order to prove the result in this section, we need the following result:



Multiplicity and concentration of solutions to a fractional p-Laplace problem. . . 609

Lemma 1. [43] Let s ∈ (0, 1) and sp = N . Then for every 0 ≤ α < α∗ ≤ α∗
s,N ,

the following inequality holds:

sup
u∈W s,p(RN ),‖u‖

Ws,p(RN )
≤1

ˆ

RN

ΦN,s(α|u|
N/(N−s)) dx < +∞,

where ΦN,s(t) = et −
∑jp−2

i=0
tj

j!
, jp = min{j ∈ N : j ≥ p}. Moreover, for α > α∗

s,N ,

sup
u∈W s,p(RN ),‖u‖

Ws,p(RN )
≤1

ˆ

RN

ΦN,s(α|u|
N/(N−s)) dx = +∞.

Remark 5. From Lemma 1, if we use the norm ‖ · ‖η on W s,N/s(RN), then we
have

(max{1, η})−1/p‖u‖η ≤ ‖u‖W s,p(RN ) ≤ (min{1, η})−1/p‖u‖η.

We get

sup
u∈W s,p(RN ),‖u‖η≤(min{1,η})s/N

ˆ

RN

ΦN,s(α|u|
N/(N−s)) dx < +∞

for all 0 ≤ α < α∗ ≤ α∗
s,N .

Using Lemma 1 and noticing that C∞
0 (RN) is a dense subspace of W s,p(RN), we

see that Jη is well defined on W s,N/s(RN). Furthermore, we have

< J
′

η(u), ϕ > =

ˆ

R2N

|u(x)− u(y)|
N
s
−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2N
dx dy

+ η

ˆ

RN

|u|
N
s
−2uϕ dx−

ˆ

RN

f(u)ϕdx.

Lemma 2. Suppose that (f1) and (f3) hold. Then there exist positive constants
t0, ρ0 such that Jη(u) ≥ ρ0 for all u ∈ W s,N/s(RN), with ‖u‖W s,N/s(RN ) = t0.

Proof. From (2.6), for some q > N
s
, we have

|F (t)| ≤ τ |t|N/s + C|t|qΦN,s(α0|t|
N/(N−s))

for all t ∈ R. Then we get

Jη(u) =
s

N
‖u‖N/s

η −

ˆ

RN

F (u) dx

≥
s

N
‖u‖N/s

η − τ

ˆ

RN

|u|N/s dx− C

ˆ

RN

|u|qΦN,s(α0|u|
N/(N−s)) dx.(2.7)

Using Hölder’s inequality, we have

ˆ

RN

|u|qΦN,s(α0|u|
N/(N−s)) dx ≤

(
ˆ

RN

(

ΦN,s(α0|u|
N/(N−s))

)t
dx

)1/t

‖u‖q
Lqt′(RN )

,(2.8)

where t > 1, t′ > 1 such that 1
t
+ 1

t′
= 1. By Lemma 2.3 [25], for any b > t, there

exists a constant C(b) > 0 such that

(

ΦN,s(α0|u|
N/(N−s))

)t
≤ C(b)ΦN,s(bα0|u|

N/(N−s))(2.9)
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on R
N . Denoting d = min{1, η}, we get

ˆ

RN

(

ΦN,s(α0|u|
N/(N−s))

)t
≤ C(b)

ˆ

RN

ΦN,s(bα0|u|
N/(N−s)) dx

= C(b)

ˆ

RN

ΦN,s(bα0d
−s/(N−s)‖u‖N/(N−s)

η |ds/Nu/‖u‖η|
N/(N−s)) dx.(2.10)

When ‖u‖η is small enough and b near t, we have

bα0d
−s/(N−s)‖u‖N/(N−s)

η ≤ β∗ < α∗.(2.11)

By Remark 5, (2.10) and (2.11), there exists a constant D > 0 such that
(
ˆ

RN

(

ΦN,s(α0|u|
N/(N−s))

)t
dx

)1/t

≤ D.

Since the embedding from Ws,N/s(R
N) → Lqt′(RN ) is continuous, we get

ˆ

RN

|u|qΦN,s(α0|u|
N/(N−s)) dx ≤ DA−q

qt′,η‖u‖
q
η < +∞.(2.12)

From (1.7), we have

‖u‖LN/s(RN ≤ A−1
N/s,η‖u‖η for all u ∈ W s,N/s(RN ).(2.13)

Hence, combining (2.7), (2.12) and (2.13), we obtain

Jη(u) ≥
s

N
‖u‖N/s

η − τA
−N/s
N/s,η‖u‖

N/s
η − CDA−q

qt′,η‖u‖
q
η

= ‖u‖N/s
η

[( s

N
− τA

−N/s
N/s,η

)

− CDA−q
qt′,η‖u‖

q−N
s

η

]

.(2.14)

We see that s
N
− τA

−N/s
N/s,η > 0 for τ small enough. Let

h(t) =
s

N
− τA

−N/s
N/s,η − CDA−q

qt′,ηt
q−N

s , t ≥ 0.

We now prove that there exists small t0 > 0 satisfying h(t0) ≥ 1
2
( s
N
− τA

−N/s
N/s,η). We

see that h is continuous on [0,+∞) and limt→0+ h(t) = s
N

− τA
−N/s
N/s,η. Then there

exists t0 such that h(t) ≥ s
N
− τA

−N/s
N/s,η − ε1 for all 0 ≤ t ≤ t0 and t0 is small enough

such that ‖u‖η = t0 satisfies (2.11). If we choose ε1 = 1
2
( s
N
− τA

−N/s
N/s,η), we have

h(t) ≥
1

2

( s

N
− τA

−N/s
N/s,η

)

for all 0 ≤ t ≤ t0. Especially,

h(t0) ≥
1

2

( s

N
− τA

−N/s
N/s,η

)

.(2.15)

From (2.14) and (2.15), for ‖u‖η = t0, we have

Jη(u) ≥
t
N/s
0

2
·
( s

N
− τA

−N/s
N/s,η

)

= ρ0. �

Lemma 3. Suppose that (f4) holds. Then there exists a function v ∈ C∞
0 (RN)

with ‖v‖η > t0, such that Jη(v) < 0, where t0 > 0 is the number given in Lemma 2.
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Proof. For all u ∈ C∞
0 (RN) with ‖u‖η = 1, from (f4) and all t > 0, we obtain

Jη(tu) =
stN/s

N
‖u‖N/s

η −

ˆ

RN

F (tu) dx ≤
stN/s

N
‖u‖N/s

η − γ1t
µ

ˆ

RN

|u(x)|µ dx.

By (1.7), for all ν ∈ [N
s
, µ), we have

0 <
1

Aν,η + ε
=

‖u‖η
Aν,η + ε

≤ ‖u‖Lν(RN ) ≤ A−1
ν,η‖u‖η = A−1

ν,η < +∞,

where ε > 0. Since µ > N
s
, tN/s has growth smaller than tµ as t → +∞, then we

have Jη(tu) → −∞ as t → +∞. Taking v = ρ1u, ρ1 > t0 > 0 large enough, we have
Jη(v) < 0, ‖v‖η > t0. �

From Lemma 2, Lemma 3 and a version of Mountain Pass Theorem without the
Palais–Smale condition, we get a sequence {un} ⊂W s,N/s(RN) such that

Jη(un) → cη and J ′
η(un) → 0 as n→ ∞,

where the level cη is characterized by

cη = inf
γ∈Γ

max
t∈[0,1]

Jη(γ(t))

and Γ = {γ ∈ C([0, 1],W s,N/s(RN)) : γ(0) = 0, Jη(γ(1)) < 0}.

Lemma 4. Let {un} be (PS)cη sequence for Jη. Then

(i) there exists a constant Cγ1 such that ρ0 ≤ cη ≤ Cγ1 ,
(ii) un → u weakly in W s,N/s(RN) and J ′

η(u) = 0.

Proof. We choose a function w ∈ W s,N/s(RN) \ {0} such that ‖w‖Lµ(RN ) = 1 and
‖w‖η = Aµ,η. This means

‖w‖η
‖w‖Lµ(RN )

= Aµ,η = inf
u∈W s,N/s(RN ),u 6=0

‖u‖η
‖u‖Lµ(RN )

.

Then, from AN/s,η ≤
‖w‖η

‖w‖
LN/s(RN )

, we get ‖w‖LN/s(RN ) ≤ A−1
N/s,η. We see that

cη ≤ max
t≥0

Jη(tw) ≤ max
t≥0

{stN/s|

N
‖w‖η

N/s − γ1t
µ

ˆ

RN

|w(x)|µ dx
}

= max
t≥0

{sA
N/s
µ,η tN/s

N
− γ1t

µ
}

.(2.16)

Set g(t) = sA
N/s
µ,η

N
tN/s − γ1t

µ on [0,+∞). We easily get

g(t) ≤ g(θγ1) = Cγ1

on [0,+∞), where

θγ1 =

(

A
N/s
µ,η

γ1µ

)s/(µs−N)

.

Computing directly, we get

Cγ1 = g(θγ1) = θN/s
γ1

[

sA
N/s
µ,η

N
− γ1θ

µs−N
s

γ1

]

=

(

A
N/s
µ,η

γ1µ

)N/(µs−N)
(

s

N
−

1

µ

)

AN/s
µ,η .(2.17)
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We see that limγ1→+∞ θγ1 = 0 gives limγ1→+∞ g(θγ1) = 0. Therefore, the Moun-
tain Pass level c is small enough when γ1 is large enough, which will be used later.
Combine Lemma 2 and (2.16), we get ρ0 ≤ cη ≤ Cγ1 .

Note that {un} is a (PS) sequence with level cη ∈ R in W s,N/s(RN). This means

Jη(un) → cη and sup
‖ϕ‖η=1

|〈J ′
η(un), ϕ〉| → 0(2.18)

as n→ ∞. We show that the sequence {un} is bounded in W s,N/s(RN). From (2.18),
we have

〈

J ′
η(un),

un
‖un‖η

〉

= on(1) and Jη(un) = cη + on(1)

when n large enough. This implies

Jη(un)−
1

µ
〈J ′

η(un), un〉 = cη + on(1) + on(1)‖un‖η,(2.19)

where µ is a parameter in the condition (f2). We have

Jη(un)−
1

µ
〈J ′

η(un), un〉

=
s

N
‖un‖

N/s
η −

ˆ

RN

F (un) dx−
1

µ

[

‖un‖
N/s
η −

ˆ

RN

f(un)un dx
]

=

(

s

N
−

1

µ

)

‖un‖
N/s
η +

1

µ

ˆ

RN

f(un)un − µF (un) dx.

Therefore, we have

Jη(un)−
1

µ
〈J ′

η(un), un〉 ≥
( s

N
−

1

µ

)

‖un‖
N/s
η .(2.20)

Combining (2.19) and (2.20), we get
( s

N
−

1

µ

)

‖un‖
N/s
η ≤ cη + on(1) + on(1)‖un‖η.(2.21)

From (2.21), we conclude that the sequence {un} is bounded in W s,N/s(RN). Since

Jη(un)−
1

µ
〈J ′

η(un), un〉 → cη

as n→ ∞, then

lim sup
n→∞

‖un‖
N/s
η ≤

cη
s
N
− 1

µ

≤
Cγ1

s
N
− 1

µ

.(2.22)

Going if necessary to a subsequence, for any q ≥ N
s
, we have

un → u weakly in W s,N/s(RN), un → u in Lq
loc(R

N)

un → u in R
N outside a set with measure zero.

Using the Trudinger–Moser inequality, Vitali’s theorem and by arguments as in [12,
Lemma 5], we can prove that J ′

η(u) = 0. For convenience of the readers, we give a
detailed proof here. We need to prove that 〈J ′

η(u), ϕ〉 = 0 for all ϕ ∈ W s,N/s(RN).
First we show that

ˆ

RN

f(un)ϕdx→

ˆ

RN

f(u)ϕdx(2.23)
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for all ϕ ∈ W s,N/s(RN). From (2.5) for q = N
s
, we have

ˆ

RN

|f(un)ϕ| dx

≤ b1

ˆ

RN

|un|
p−1|ϕ| dx+ b2

ˆ

RN

|un|
p−1ΦN,s(α0|un|

N/(N−s)))|ϕ| dx

(2.24)

for some constants b1 > 0, b2 > 0. Using Hölder’s inequality, we get
ˆ

RN

|un|
p−1|ϕ| dx ≤ ‖un‖

p−1
Lp(RN )

‖ϕ‖Lp(RN ) < +∞(2.25)

due to the boundedness of sequence {un} in W s,N/s(RN) and the continuity of the
embedding of W s,N/s(RN) into LN/s(RN ). Using Hölder’s inequality for q ≥ N

s
= p,

q∗ ≥
p

p−1
, q

′

> 1 near 1, noting that 1
q
+ 1

q′
+ 1

q∗
= 1, we deduce

ˆ

RN

|un|
p−1ΦN,s(α0|un|

N/(N−s))|ϕ| dx

≤

(
ˆ

RN

|un|
q∗(p−1) dx

)1/q∗(ˆ

RN

(ΦN,s(α0|un|
N/(N−s)))q

′

dx

)1/q′(ˆ

RN

|ϕ|q dx

)1/q

=

(
ˆ

RN

(ΦN,s(α0|un|
N/(N−s)))q

′

dx

)1/q′

‖un‖
p−1

Lq∗(p−1)(RN )
‖ϕ‖Lq(RN ).(2.26)

By [25, Lemma 2.3], choosing c > q′ > 1, c near q′, there exists a constant C(c) > 0
such that

(ΦN,s(α0|u|
N/(N−s)))q

′

≤ C(c)ΦN,s(cα0|u|
N/(N−s))(2.27)

for all u ∈ W s,N/s(RN). By (2.17) and (2.22), we see that

lim sup
n→∞

‖un‖
N/s
η ≤

(

A
N/s
µ,η

γ1µ

)N/(µs−N)
(

s

N
−

1

µ

)

AN/s
µ,η

1
s
N
− 1

µ

.(2.28)

Combining (2.28) and (2.11), we have

c.α0d
−s/(N−s) sup

n
‖un‖

N/(N−s)
η < α∗(2.29)

when γ1 ≥ γ0, where γ0 satisfies

cα0d
−s/(N−s)

(

A
N/s
µ,η

γ0µ

)
sN

(µs−N)(N−s)

AN/(N−s)
µ,η < α∗.(2.30)

Then, applying Remark 5, we deduce

sup
n

ˆ

RN

ΦN,s(cα0|un|
N/(N−s)) dx

= sup
n

ˆ

RN

ΦN,s(cα0d
−s/(N−s)‖un‖

N/(N−s)
η (ds/Nu/‖un‖η)

N/(N−s)) dx < +∞.(2.31)

From (2.26) and (2.31), we get
ˆ

RN

|un|
p−1ΦN,s(α0|un|

N/(N−s))|ϕ| dx < +∞.(2.32)
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Combining (2.25) and (2.32), we obtain
ˆ

RN

|f(un)ϕ| dx < +∞,(2.33)

i.e. f(un)ϕ ∈ L1(RN) for all n. Then there exists a constant κ > 0 such that
|f(un)ϕ| ≤ κ for all n ∈ N. For any ε > 0, there exists δ = ε

κ
such that for all

measurable sets E ⊂ R
N such that |E| < δ, we have

ˆ

E

|f(un)ϕ| dx ≤ κ|E| < ε.

This means that {f(un)ϕ} is equi-integrable. Clearly, f(un)ϕ → f(u)ϕ almost ev-
erywhere on R

N . Since ϕ ∈ W s,N/s(RN) and W s,N/s(RN) is continuously embedded
into Lq(RN ) (q ≥ N

s
), then ‖ϕ‖Lq(RN ) ≤ A−1

q,η‖ϕ‖η < +∞. Then there exists R > 0
such that

ˆ

RN\BR(0)

|ϕ|N/s dx < εN/s and
ˆ

RN\BR(0)

|ϕ|q dx < εq.(2.34)

By arguments as (2.25), (2.26), (2.31) and combining with (2.34), we only integrate
on R

N \BR(0) and get
ˆ

RN\BR(0)

|f(un)ϕ| dx ≤ κ∗ε,

where κ∗ is a suitable constant. Therefore, all conditions of Vitali’s theorem are
satisfied and (2.23) is proved. Similarly, we have

ˆ

RN

|un|
N
s
−2unϕdx→

ˆ

RN

|u|
N
s
−2uϕ dx(2.35)

as n→ ∞. Finally, we prove that
ˆ

R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|2N
dx dy

→

ˆ

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2N
dx dy.(2.36)

Using Hölder’s inequality, we see that
ˆ

R2N

∣

∣

∣

∣

|un(x)− un(y)|p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|2N

∣

∣

∣

∣

dx dy

≤

(
ˆ

R2N

|un(x)− un(y)|N/s

|x− y|2N
dx dy

)(N
s
−1)/(N/s)

·

(
ˆ

R2N

|ϕ(x)− ϕ(y)|N/s

|x− y|2N
dx dy

)1/(N/s)

≤ ‖un‖
N
s
−1

η ‖ϕ‖η < +∞.(2.37)

Hence
|un(x)− un(y)|

p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|2N
∈ L1(R2N )

for all n, and there exists a constant K > 0 such that
∣

∣

∣

∣

|un(x)− un(y)|p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|2N

∣

∣

∣

∣

≤ K
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for all (x, y) ∈ R
2N outside a set with measure zero. For any ε > 0, there exists

δ = ε
K

such that for all measurable sets E ⊂ R
2N such that |E| < δ, we have

ˆ

E

∣

∣

∣

∣

|un(x)− un(y)|p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|2N

∣

∣

∣

∣

dx dy ≤ K|E| < ε.

Hence
{

|un(x)−un(y)|p−2(un(x)−un(y))(ϕ(x)−ϕ(y))
|x−y|2N

}

is equi-integrable on R
2N . Clearly,

|un(x)− un(y)|
p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|2N

→
|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2N

almost everywhere on R
2N . Since ϕ ∈ W s,N/s(RN), then there exists R > 0 such that
ˆ

R2N\BR(0)

|ϕ(x)− ϕ(y)|N/s

|x− y|2N
dx dy < εN/s,

where BR(0) is a ball in R
2N with center 0 and radius R. By arguments as (2.37)

and as only integrating on R
2N \ BR(0), {un} is a bounded sequence in W s,N/s(RN),

there exists a suitable constant K∗ > 0 such that
ˆ

R2N\BR(0)

|un(x)− un(y)|p−2(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|2N
dx dy

≤

(
ˆ

R2N \BR(0)

|un(x)− un(y)|
N/s

|x− y|2N
dx dy

)(N
s
−1)/(N/s)

·

(
ˆ

R2N\BR(0)

|ϕ(x)− ϕ(y)|N/s

|x− y|2N
dx dy

)1/(N/s)

< K∗ε.

Therefore all conditions of Vitali’s theorem hold and we get (2.36). Combining (2.18),
(2.23), (2.35) and (2.36), we get 〈J ′

η(u), ϕ〉 = 0 for all ϕ ∈ W s,N/s(RN). Hence,
J ′
η(u) = 0 on (W s,N/s(RN))∗ which is a dual space of W s,N/s(RN). �

The following result is the version of Lions’s result:

Lemma 5. [12] If {un} is a bounded sequence in W s,N/s(RN) and

lim
n→∞

sup
y∈RN

ˆ

BR(y)

|un(x)|
N/s dx = 0

for some R > 0, then un → 0 strongly in Lq(RN) for all q ∈ (N
s
,+∞).

Lemma 6. [12] Let {un} be a sequence in W s,N/s(RN ) converging weakly to 0

with lim supn→∞ ‖un‖
N/(N−s)
η ≤ β∗d

s/(N−s)

cα0
, where c > 1 is a suitable constant and

assume that (f1) holds and limt→0+
f(t)

t
N
s −1

= 0. If there exists R > 0 such that

lim infn→∞ supy∈RN

´

BR(y)
|un|N/s dx = 0, it follows that

ˆ

RN

f(un)un → 0 and

ˆ

RN

F (un) → 0.

Proposition 1. [12] Assume that the conditions (f1)–(f5) are satisfied. Then
problem (2.1) admits a nontrivial nonnegative weak solution.
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3. The auxiliary problem

Using the change of variable x 7→ εx, the problem (Pε) is equivalent to the
following problem

(−∆)spu+ V (εx)|u|p−2u = f(u). (P ∗
ε )(2.38)

Definition 6. We say that u ∈ Wε is a weak solution of problem (2.38) if
¨

R2N

|u(x)− u(y)|
N
s
−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2N
dx dy

+

ˆ

RN

V (εx)|u(x)|
N
s
−2u(x)ϕ(x) dx =

ˆ

RN

f(u(x))ϕ(x) dx

for any ϕ ∈ Wε.

In order to study the equation (2.38), we consider the energy functional Iε : Wε →
R given by

Iε(u) =
1

p
‖u‖pWε

−

ˆ

RN

F (u) dx.

By the condition (f1), Iε is well defined on Wε, Iε ∈ C2(Wε,R) and its critical
points are weak solutions of problem (2.38). Associated to Iε, we consider the Nehari
manifold Nε given by

Nε = {u ∈ Wε \ {0} : 〈I
′
ε(u), u〉 = 0},

where

〈I ′ε(u), ϕ〉 =

ˆ

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy

+

ˆ

RN

V (εx)|u|p−2uϕ dx−

ˆ

RN

f(u)ϕdx

for any u, ϕ ∈ Wε.

Proposition 2. There exists r∗ > 0 such that

‖u‖Wε ≥ r∗ > 0 for all u ∈ Nε.

Proof. We easily get the inequality

‖u‖W s,p(RN ) ≤ min{1, V0}
−1/p‖u‖Wε.(2.39)

Then from Lemma 1 and (2.39), we have

sup
u∈Wε,‖u‖Wε≤(min{1,V0})s/N

ˆ

RN

ΦN,s(α|u|
N/(N−s)) dx < +∞(2.40)

for all 0 ≤ α < α∗ ≤ α∗
s,N . From the condition (f1) and (f3), for any ε∗ > 0 and

q > N
s
, there exists Cq,ε∗ > 0 such that

|f(t)t| ≤ ε∗|t|
N/s + Cq,ε∗|t|

qΦN,s(α0|t|
N/(N−s))(2.41)

for all t ≥ 0. Using inequality (2.40) and by arguments as Lemma 2, there exists a
constant C(q, ε∗) such that

ˆ

RN

f(u)u dx ≤ ε∗S
−N/s
N/s,ε‖u‖

N/s
Wε

+ C(q, ε∗)‖u‖
q
Wε

(2.42)

for some q > N
s

and all u ∈ Nε and ‖u‖Wε is small enough. Assume that by
contradiction, there exists a sequence {un} ⊂ Nε such that ‖un‖Wε → 0 as n → ∞.
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Hence (2.42) holds for u = un when n is large enough. From the definition of Nε, we
get

‖un‖
N/s
Wε

=

ˆ

RN

f(un)un dx ≤ ε∗S
−N/s
N/s,ε‖un‖

N/s
Wε

+ C(q, ε∗)‖un‖
q
Wε
.

Divide both sides of above inequality by ‖un‖
N/s
Wε

and take n→ ∞, we get a contradic-
tion when ε∗ is small enough. Therefore, there exists r∗ > 0 such that ‖u‖Wε ≥ r∗ > 0
for all u ∈ Nε. �

Lemma 7. The functional Iε satisfies the following conditions:

(i) There exists α > 0, ρ > 0 such that Iε(u) ≥ α for all u ∈ Wε with ‖u‖Wε = ρ.
(ii) There exists e ∈ Wε with ‖e‖Wε > ρ such that Iε(e) < 0.

Proof. Lemma 7 is proved similarly to Lemma 2 and Lemma 3 using the inequal-
ity (2.40). We omit the details. �

From Lemma 7 and a version of Mountain Pass Theorem, there exists a (PS)cε
sequence {un} ⊂Wε, that is,

Iε(un) → cε and I
′

ε(un) → 0,

where

cε = inf
γ∈Γ

max
t∈[0,1]

Iε(γ(t))

and Γ = {γ ∈ C([0, 1],Wε) : γ(0) = 0, Iε(γ(1)) < 0}.
The following result is proved in [12] but the original idea comes from [34].

Proposition 3. We have cε = infu∈Wε\{0} supt≥0 Iε(tu) = infu∈Nε Iε(u).

Lemma 8. Let {un} be a bounded sequence in Wε satisfying

lim sup
n→∞

‖un‖
N/(N−s)
Wε

<
β∗d

s/(N−s)
∗

2N/(N−s)cα0
,

where d∗ = min{1, V0}, c > 1 is a suitable constant and assume that (f1) and
(f3) hold. Up to a subsequence, we may suppose that un → u weakly in Wε and
un(x) → u(x) everywhere in R

N . Then it follows that

(i) limn→∞

´

RN |F (vn + u)− F (vn)− F (u)| dx = 0, where vn = un − u.

(ii) For any r > 1 such that r(N
s
− 1) ≥ N

s
, we have

lim
n→∞

ˆ

RN

|f(vn + u)− f(vn)− f(u)|r dx = 0.

Proof. From the condition (f1), we have

|f(t)| ≤ b1|t|
p−1 + b2|t|

p−1ΦN,s(α0|t|
N/(N−s)),(2.43)

|f(t)t| ≤ b1|t|
N/s + b2|t|

pΦN,s(α0|t|
N/(N−s)),(2.44)

|F (t)| ≤ b1|t|
N/s + b2|t|

pΦN,s(α0|t|
N/(N−s))(2.45)

for all t ∈ R and some constants b1 > 0, b2 > 0. We begin remarking that

F (vn + u)− F (vn) = f(vn + tu)u, where t ∈ [0, 1].(2.46)
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Combining (2.43) and (2.46), we get

|F (vn + u)− F (vn)|

≤ b1|vn + tu|
N
s
−1|u|+ b2|vn + tu|

N
s
−1|u|ΦN,s(α0|vn + tu|N/(N−s))

≤ b1(|vn|+ |u|)
N
s
−1|u|+ b2(|vn|+ |u|)

N
s
−1|u|ΦN,s(α0(|vn|+ |u|)N/(N−s))

≤ 2
N
s
−1b1(|vn|

N
s
−1 + |u|

N
s
−1)|u|

+ b2(|vn|+ |u|)
N
s
−1|u|ΦN,s(α0(|vn|+ |u|)N/(N−s)).(2.47)

Now, we prove

|F (vn + u)− F (vn)| ∈ L1(RN).(2.48)

By the Brezis–Lieb Lemma, we have

‖un − u‖pWε
= ‖un‖

p
Wε

− ‖u‖pWε
+ on(1) ≤ ‖un‖

p
Wε

+ on(1)

as n→ ∞. Thus,

lim sup
n→∞

‖un − u‖pWε
≤ sup

n∈N
‖un‖

p
Wε

<

(

β∗
2N/(N−s)cα0

)(N−s)/s

d∗.

Therefore, there exists n0 such that

sup
n≥n0

‖un − u‖pWε
<

(

β∗
2N/(N−s)cα0

)(N−s)/s

d∗.(2.49)

By Fatou’s lemma, we have

‖u‖pWε
≤ lim inf

n→∞
‖un‖

p <

(

β∗
2N/(N−s)cα0

)(N−s)/s

d∗.(2.50)

Using Hölder’s inequality, we get
ˆ

RN

|vn|
N
s
−1|u| dx ≤ ‖vn‖

N
s
−1

LN/s(RN )
‖u‖LN/s(RN).(2.51)

and for t > N
s
, t′ > 1, t∗(p− 1) ≥ p such that 1

t∗
+ 1

t
+ 1

t′
= 1, we get

ˆ

RN

(|vn|+ |u|)p−1|u|ΦN,s(α0(|vn|+ |u|)N/(N−s)) dx

≤ ‖|vn|+|u|‖p−1

Lt∗(p−1)(RN )
‖u‖Lt(RN )

(
ˆ

RN

(ΦN,s(α0(|vn|+|u|)N/(N−s)))t
′

dx

)1/t′

.(2.52)

Then by [25, Lemma 2.3], for any c > t′, there exists a constant C(c) > 0 such that
(

ΦN,s(α0(|vn|+ |u|)N/(N−s))
)t′

≤ C(c)ΦN,s(cα0(|vn|+ |u|)N/(N−s))(2.53)

on R
N . Noting that d∗ = min{1, V0}, we get

ˆ

RN

(

ΦN,s(α0(|vn|+ |u|)N/(N−s))
)t

≤ C(c)

ˆ

RN

ΦN,s(bα0(|vn|+ |u|)N/(N−s)) dx

= C(c)

ˆ

RN

ΦN,s

(

cα0d
−s/(N−s)
∗ ‖|vn|+ |u|‖N/(N−s)

Wε
(2.54)

· ds/N∗

|vn|+ |u|

‖|vn|+ |u|‖Wε|
N/(N−s)

)

dx.
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When c is near t′, combining (2.49) and (2.50), we have

cα0d
−s/(N−s)
∗ ‖|vn|+ |u|‖N/(N−s)

Wε
≤ β∗ < α∗,(2.55)

by (2.40), (2.54) and (2.55), there exists a constant D > 0 such that
(
ˆ

RN

(

ΦN,s(α0(|vn|+ |u|)N/(N−s))
)t′

dx

)1/t′

≤ D.(2.56)

Since the embedding sequence from Wε → W s,N/s(RN) → Lq(RN) is continuous for
all q ∈ [N

s
,+∞), we get
ˆ

RN

(|vn|+ |u|)p−1|u|ΦN,s(α0(|vn|+ |u|)N/(N−s)) dx

≤ D2p−1S−1
t,ε ‖u‖Wε(‖vn‖

p−1

Lt∗(p−1)(RN )
+ ‖u‖p−1

Lt∗(p−1)(RN )
) < +∞.(2.57)

Combining (2.49), (2.51) and (2.57), we get the claim (2.48). By arguments as
in [39, Lemma 7], for any u ∈ Wε and α > 0, we have

ˆ

RN

ΦN,s(α|u|
N/(N−s)) dx < +∞.(2.58)

Using Hölder’s inequality for t > N
s

and t′ > 1 such that 1
t
+ 1

t′
= 1, (2.58), and [25,

Lemma 2.3], it is easy to get
ˆ

RN

|F (u)| dx ≤ b1‖u‖
N/s

LN/s(RN )
+ b2‖u‖

p
Lpt(RN )

(
ˆ

RN

(ΦN,s(α0|u|
N/(N−s)))t

′

dx

)1/t′

< +∞.(2.59)

From (2.48) and (2.59), we obtain |F (vn+u)−F (vn)−F (u)| ∈ L1(RN) for all n large
enough. Then there exists a constant κ > 0 such that |F (vn+u)−F (vn)−F (u)| ≤ κ
on R

N outside a set with measure zero. From un(x) → u(x) almost everywhere on
R

N , we see that

F (vn + u)− F (vn)− F (u) → 0 as n→ ∞(2.60)

outside a set with measure zero. For any ε > 0, there exists δ = ε
κ
> 0 such that for

all U ⊂ R
N with |U | < δ, we have

ˆ

U

|F (vn + u)− F (vn)− F (u)| dx ≤ κ|U | = ε(2.61)

for all n large enough. Since u ∈ LN/s(RN), u ∈ Lt(RN) and the embedding from
Wε → Lq(RN ) is continuous for all q ≥ N

s
, then there exists R > 0 such that

ˆ

RN\BR(0)

|u|N/s dx < εp and
ˆ

RN\BR(0)

|u|pt dx < εpt.(2.62)

Combining (2.47), (2.51), (2.52), (2.56) and (2.59), only integrating on R
N \ BR(0)

gives a constant κ∗ > 0 such that
ˆ

RN\BR(0)

|F (vn + u)− F (vn)− F (u)| dx ≤ κ∗ε.(2.63)

Combining (2.60), (2.61) and (2.63) and using Vitali’s theorem, we get (i).
For any ε > 0, from the conditions (f1) and (f3), there exists C(ε) > 0 such that

|f(t)| ≤ ε|t|
N
s
−1 + C(ε)|t|p−1ΦN,s(α0|t|

N/(N−s)).
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We have

|f(vn + u)− f(vn)− f(u)|r ≤ 3r(|f(vn + u)|r + |f(vn)|
r + |f(u)|r).

Then statement (ii) is proved similarly as (i). We omit the details. �

Lemma 9. Let {un} ⊂Wε be a (PS)d sequence for Iε such that un → 0 weakly in

Wε verifying lim supn→∞ ‖un‖
N/(N−s)
Wε

≤ β∗d
s/(N−s)

cα0
, where c > 1 is a suitable constant.

Then we have either:

(i) un → 0 in Wε or
(ii) there exists a sequence {yn} ⊂ R

N and constants R > 0, β > 0 such that

lim inf
n→∞

ˆ

BR(yn)

|un|
N/s dx ≥ β > 0.

Proof. Suppose that (ii) does not occur. First from the condition (f2), any
(PS)d sequence of Iε must be bounded in Wε. Then by arguments as in Lemma 5,
we have un → 0 in Lq(RN) for q ∈ (N

s
,+∞). By arguments as in Lemma 6, from

the conditions (f1) and (f3), we have limn→∞

´

RN f(un)undx = 0. Recalling that
< I ′ε(un), un >→ 0 as n → ∞, then we get un → 0 strongly in Wε. The proof of
Lemma 9 is complete. �

Lemma 10. Suppose that V∞ < +∞. Let {vn} ⊂ Wε be a (PS)d sequence

converging weakly to 0 satisfying lim supn→∞ ‖vn‖
N/(N−s)
Wε

≤ β∗d∗
s/(N−s)

cα0
, where c > 1

is a suitable constant. If vn 6→ 0 in Wε, then d ≥ cV∞
, where cV∞

is the maximum
level of energy function associated to the problem (PV∞

).

Proof. Let (tn) ⊂ (0,+∞) be a sequence such that (tnvn) ⊂ NV∞
. We start by

showing the following claim.

Claim 1. The sequence {tn} satisfies lim supn→∞ tn ≤ 1. Indeed, suppose that
the above claim does not hold. Then there exist δ > 0 and a subsequence still denoted
by (tn) such that

tn ≥ 1 + δ for all n ∈ N.(2.64)

By the condition (f2), {vn} is bounded sequence in Wε, and then < I ′ε(vn), vn >=
on(1) as n→ ∞. This means that

‖vn‖
p
Wε

=

ˆ

RN

f(vn)vn dx+ on(1).

Moreover, recalling that (tnvn) ⊂ NV∞
, we get

tpn‖vn‖
p
V∞

=

ˆ

RN

f(tnvn)tnvn dx.

The above equalities imply that
ˆ

RN

[

f(tnvn)vn

tp−1
n

− f(vn)vn

]

=

ˆ

RN

[V∞ − V (εx)]|vn|
p dx+ on(1).(2.65)

Given any ξ > 0, from the condition (V ), there exists R = R(ε) > 0 such that

V (εx) ≥ V∞ − ξ for any |x| ≥ R.(2.66)

Since {vn} is a bounded sequence in Wε and the embedding from Wε → LN/s(RN)
is continuous, then there exists C > 0 such ‖vn‖LN/s(RN ) ≤ C. From vn → 0 in
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LN/s(BR(0)), V is a continuous function and (2.66), there exists a suitable constant
C∗ > 0 such that

ˆ

RN

[V∞ − V (εx)]|vn|
p dx

=

ˆ

BR(0)

[V∞ − V (εx)]|vn|
p dx+

ˆ

RN\BR(0)

[V∞ − V (εx)]|vn|
p dx ≤ C∗ξ.(2.67)

Because vn 6→ 0 in Wε, by Lemma 9, there exist a sequence {yn} ⊂ R
N and R∗ > 0,

β > 0 such that
ˆ

BR∗
(yn)

|vn|
N/s dx ≥ β > 0.(2.68)

Note that {vn} is a (PS)d sequence of Iε. We denote v−n (x) = min{vn(x), 0} and
v+n (x) = max{vn(x), 0}. Since {vn} is bounded in Wε, then {v−n } is also bounded in
Wε, and we have < I ′ε(vn), v

−
n >→ 0 as n→ ∞. We see that

〈I ′ε(vn), v
−
n 〉 =

ˆ

R2N

|vn(x)− vn(y)|p−2(vn(x)− vn(y))(v
−
n (x)− v−n (y))

|x− y|2N

+

ˆ

RN

V (εx)|vn|
p−2vnv

−
n dx−

ˆ

RN

f(vn)v
−
n dx.(2.69)

We denote Ω+
n = supp(v+n ), Ω

−
n = supp(v−n ),Ωn = supp(vn). Then we get

ˆ

R2N

|vn(x)− vn(y)|
p−2(vn(x)− vn(y))(v

−
n (x)− v−n (y))

|x− y|2N
dx dy

=

ˆ

(Ω+
n∪Ω−

n∪Ωc
n)×(Ω+

n∪Ω−

n∪Ωc
n)

|(v+n (x)− v+n (y) + (v−n (x)− v−n (y)|
p−2

|x− y|2N

× (v+n (x)− v+n (y) + v−n (x)− v−n (y))(v
−
n (x)− v−n (y)) dx dy

= −

ˆ

Ω+
n×Ω−

n

|v+n (x)− v−n (y)|
p−1v−n (y)

|x− y|2N
dx dy

−

ˆ

Ω−

n×Ω+
n

|v−n (x)− v+n (y)|
p−1v−n (x)

|x− y|2N
dx dy

+

ˆ

Ω−

n ×Ω−

n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy +

ˆ

Ωc
n×Ω−

n

|v−n (y)|
p

|x− y|2N
dx dy

+

ˆ

Ω−

n ×Ωc
n

|v−n (x)|

|x− y|N+ps
dx dy,(2.70)

where Ωc = R
N \ Ω for some set Ω ⊂ R

N . Note that Ω−
n
c
= Ω+

n ∪ Ωc
n and

ˆ

R2N

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy =

ˆ

Ω−

n×Ω−

n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy

+

ˆ

Ω−

n×Ω−

n
c

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy +

ˆ

Ω−

n
c
×Ω−

n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy
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=

ˆ

Ω−

n×Ω−

n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy +

ˆ

Ω−

n×Ω+
n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy

+

ˆ

Ω−

n×Ωn
c

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy +

ˆ

Ω+
n×Ω−

n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy

+

ˆ

Ωc
n×Ω−

n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy.

Hence, we get
ˆ

R2N

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy =

ˆ

Ω−

n×Ω−

n

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy

+

ˆ

Ω−

n×Ω+
n

|v−n (x)|
p

|x− y|2N
dx dy +

ˆ

Ω−

n×Ωn
c

|v−n (x)|
p

|x− y|2N
dx dy

+

ˆ

Ω+
n×Ω−

n

|v−n (y)|
p

|x− y|2N
dx dy +

ˆ

Ωc
n×Ω−

n

|v−n (y)|
p

|x− y|2N
dx dy.(2.71)

We have

−

ˆ

Ω+
n×Ω−

n

|v+n (x)− v−n (y)|
p−1v−n (y)

|x− y|2N
dx dy −

ˆ

Ω+
n×Ω−

n

|v−n (y)|
p

|x− y|2N
dx dy

=

ˆ

Ω+
n×Ω−

n

(|1− v+n (x)

v−n (y)
|p − 1)|v−n (y)|

p

|x− y|2N
dx dy > 0.(2.72)

Similary, we can get

−

ˆ

Ω−

n×Ω+
n

|v−n (x)− v+n (y)|
p−1v−n (x)

|x− y|2N
dx dy −

ˆ

Ω−

n×Ω+
n

|v−n (x)|
p

|x− y|2N
dx dy > 0.(2.73)

From (2.70) to (2.73), we deduce
ˆ

R2N

|vn(x)− vn(y)|
p−2(vn(x)− vn(y))(v

−
n (x)− v−n (y))

|x− y|2N
dx dy

≥

ˆ

R2N

|v−n (x)− v−n (y)|
p

|x− y|2N
dx dy.(2.74)

Combining (2.69) and (2.73) and noting that f(t) = 0 for t ∈ (−∞, 0], we get

‖v−n ‖Wε → 0

as n→ ∞ or equivalent v−n → 0 in Wε. Note that Wε is continuously embedded into
W s,N/s(RN), then v−n → 0 in W s,N/s(RN). We denote vn(x) = vn(x+yn). Since ‖.‖V0

is invariant under the translations, we get

‖vn‖
p
V0

= ‖vn‖
p
V0

≤ [vn]
p
s,p +

ˆ

RN

V (εx)|vn|
p = ‖vn‖

p
Wε
.

Then {vn} is a bounded sequence in W s,N/s(RN). Up to a subsequence, we may
assume that there exists v ∈ W s,N/s(RN) such that vn → v weakly in W s,N/s(RN)
and vn(x) → v(x) on R

N . By arguments as above and Fatou’s lemma, we get

‖v−‖V0 ≤ lim inf
n→∞

‖v−n ‖V0 ≤ lim inf
n→∞

‖v−n ‖Wε = 0.

Then v = v+. From (2.68) and vn → v in LN/s(BR∗
(0)), we deduce

´

BR∗
(0)

|v|N/sdx ≥

β/2 > 0. Therefore, there exists a subset Ω ⊂ BR∗
(0) ⊂ R

N such that |Ω| > 0 and



Multiplicity and concentration of solutions to a fractional p-Laplace problem. . . 623

v(x) > a > 0 for all x ∈ Ω, where a > 0 is a suitable constant. Since vn → v
on Lq(BR∗

(0)) for all q ∈ [N
s
,+∞), we can assume vn(x) → v(x) on Ω and then

vn(x) >
a
2
> 0 for all x ∈ Ω and n large enough. From (2.65) and (2.67), we obtain

ˆ

supp(v+n )

[
f(tnvn)vn

tp−1
n

− f(vn)vn] dx =

ˆ

RN

[
f(tnvn)vn

tp−1
n

− f(vn)vn] dx

=

ˆ

RN

[
f(tnvn)vn

tp−1
n

− f(vn)vn] dx ≤ C∗ξ(2.75)

for any ξ > 0. Using the condition (f5), Fatou’s lemma, (2.64), (2.75) and f(t) = 0
for all t ∈ (−∞, 0], we get

0 <

ˆ

Ω

[
f((1 + δ)v)v

(1 + δ)p−1
− f(v)v] dx =

ˆ

Ω

[
f((1 + δ)v)

((1 + δ)v)p−1
−
f(v)

vp−1 ]v
p dx

≤ lim inf
n→∞

ˆ

Ω

[
f((1 + δ)vn)

((1 + δ)vn)p−1
−
f(vn)

vp−1
n

]vpn dx ≤ lim inf
n→∞

ˆ

Ω

[
f(tnvn)

(tnvn)p−1
−
f(vn)

vp−1
n

]vpn dx

= lim inf
n→∞

ˆ

Ω

[
f(tnvn)vn

tp−1
n

− f(vn)vn] dx ≤ lim inf
n→∞

ˆ

supp(v+n )

[
f(tnvn)vn

tp−1
n

− f(vn)vn] dx

≤ C∗ξ

for any ξ > 0 and n large enough. This is a contradiction. Then Claim 1 is proved.
Now, we will consider the following cases:

Case 1. lim supn→∞ tn = 1. Then there exists a subsequence, still denoted
by tn such that tn → 1. Recalling that Iε(vn) → d as n → ∞, and noting that
JV∞

(tnvn) ≥ cV∞
, we have

d+ on(1) = Iε(vn) = Iε(vn)− JV∞
(tnvn) + JV∞

(tnvn)

≥ Iε(vn)− JV∞
(tnvn) + cV∞

.(2.76)

Let us compute

Iε(vn)− JV∞
(tnvn) =

1− tpn
p

[vn]
p
s,p +

1

p

ˆ

RN

(V (εx)− tpnV∞)|vn|
p dx

+

ˆ

RN

(F (tnvn)− F (vn)) dx.(2.77)

Using the condition (V ), (2.66), vn → 0 in LN/s(BR(0)), tn → 1 and

V (εx)− tpnV∞ = (V (εx)− V∞) + (1− tpn)V∞ ≥ −ξ + (1− tpn)V∞ for all |x| ≥ R,

we get
ˆ

RN

(V (εx)− tpnV∞)|vn|
p dx

=

ˆ

BR(0)

(V (εx)− tpnV∞)|vn|
p dx+

ˆ

RN\BR(0)

(V (εx)− tpnV∞)|vn|
p dx

≥ (V0 − tpnV∞)

ˆ

BR(0)

|vn|
p dx− ξ

ˆ

RN\BR(0)

|vn|
p dx

+ V∞(1− tpn)

ˆ

RN\BR(0)

|vn|
p dx ≥ on(1)− ξC∗,(2.78)
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where C∗ is a suitable constant. Since {vn} is a bounded sequence in Wε, then

lim
n→∞

(1− tpn)

p
[vn]

p
s,p = 0.(2.79)

From the condition lim supn→∞ ‖vn‖
N/(N−s)
Wε

≤ β∗d∗
s/(N−s)

cα0
, by arguments in Lemma 8

and noting that ΦN,s(t) is an increasing function on [0,+∞), it is easy to get

lim
n→∞

ˆ

RN

(F (tnvn)− F (vn))dx = 0.(2.80)

Combining (2.76)–(2.80), we obtain

d+ on(1) ≥ cV∞
− C∗ξ + on(1).

Taking the limit in the above inequality, we get d ≥ cV∞
.

Case 2. lim supn→∞ tn = t0 < 1. There exists a subsequence, still denoted by
{tn} such that tn → t0 (< 1) and then tn < 1 for all n ∈ N. We see that

d+ on(1) = Iε(vn)−
1

p
〈I

′

ε(vn), vn〉 =

ˆ

RN

(

1

p
f(vn)vn − F (vn)

)

dx.(2.81)

Noting that tnvn ∈ NV∞
, by the condition (f5) and (2.81), we get

cV∞
≤ JV∞

(tnvn) = JV∞
(tnvn)−

1

p
〈J

′

V∞
(tnvn), tnvn〉

=

ˆ

RN

(

1

p
f(tnvn)tnvn − F (tnvn)

)

dx

≤

ˆ

RN

(

1

p
f(vn)vn − F (vn)

)

dx = d+ on(1).

Taking the limit of the above inequality as n→ ∞, we get d ≥ cV∞
. �

Lemma 11. Let un be a (PS)c for Iε satisfying

lim sup
n→∞

‖un‖
N/(N−s)
Wε

≤
β∗d∗

s/(N−s)

2N/(N−s)cα0
,

where c > 1 is a suitable constant. Assume that c < cV∞
when V∞ < ∞ or c ∈ R if

V∞ = +∞. Then {un} has a convergent subsequence in Wε.

Proof. First, we consider the case V∞ < +∞. From the condition (f2), we see
that {un} is a bounded sequence in Wε. Then, up to a subsequence, we may assume
that

un → u weakly in Wε,(2.82)

un → u in Lq
loc(R

N ) for any q ∈ [N
s
,+∞),(2.83)

un → u a.e. in R
N .(2.84)

By arguments as in Lemma 4, we have I ′ε(u) = 0. Set vn = un − u. Using the
Brezis–Lieb Lemma and Lemma 8, we get

Iε(vn) =
‖un‖

p
Wε

p
−

‖u‖pWε

p
−

ˆ

RN

F (un) dx+

ˆ

RN

F (u) dx+ on(1)

= Iε(un)− Iε(u) + on(1)

= c− Iε(u) + on(1) := d+ on(1).(2.85)
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By [8, Lemma 2.6], we have
ˆ

R2N

|A(un)−A(vn)−A(u)|p
′

dx dy = on(1),(2.86)

where p′ = p
p−1

is the conjugate exponent of p and

A(v) :=
|v(x)− v(y)|p−2(v(x)− v(y))

|x− y|
2N
p′

for all v ∈ Wε. Noting that V is a bounded function, then by [8, Lemma 3.3], we can
see that

ˆ

RN

V (εx)‖vn|
p−2vn − |un|

p−2un + |u|p−2u|p
′

dx = on(1).(2.87)

Hence, using Hölder’s inequality, for any ϕ ∈ Wε, we have

|〈I
′

ε(vn)− I
′

ε(un) + I
′

ε(u), ϕ〉|

≤

(
ˆ

R2N

|A(un)−A(vn)−A(u)|p
′

dx dy

)
1

p
′

[ϕ]ps,p

+

(
ˆ

RN

V (εx)‖vn|
p−2vn − |un|

p−2un + |u|p−2u|p
′

dx

)
1
p′
(
ˆ

RN

V (εx)|ϕ|p dx

)
1
p

+

(
ˆ

RN

|f(vn)− f(un) + f(u)|p
′

dx

)
1
p′

‖ϕ‖Lp(RN ).(2.88)

Since the embeddings Wε →֒ W s,p(RN ) →֒ Lp(RN) are continuous, then from (2.86)–
(2.88) and Lemma 8, we deduce I

′

ε(vn) → 0 in W ∗
ε . By the condition (f2), we have

Iε(u) = Iε(u)−
1

p
〈I

′

ε(u), u〉 =

ˆ

RN

[

1

p
f(u)u− F (u)

]

dx ≥ 0.(2.89)

Combining (2.85) and (2.89), we obtain

d ≤ c < cV∞

which together Lemma 10 gives vn → 0 in Wε. That is un → u strongly in Wε.
Next, we consider the case V∞ = +∞. Then V is a coercive function on R

N :
V (εx) → +∞ as |x| → +∞ for each ε > 0. Therefore meas({x ∈ R

N : V (εx) ≤ c}) <
+∞ for any c > 0. By arguments as in [39, Lemma 5], we have that the embedding
from Wε →֒ Lq(RN) is compact for any q ∈ [N

s
,+∞). Then vn → 0 in Lq(RN) for

any q ∈ [N
s
,+∞). From the condition (f1) and by arguments as in Lemma 8, we

easily get

lim
n→∞

ˆ

RN

f(vn)vn dx = 0.(2.90)

Furthermore, using Vitali’s theorem and by arguments as in Lemma 8, we deduce

lim
n→∞

ˆ

RN

|f(un)un − f(vn)vn − f(u)u| dx = 0.(2.91)

Combining (2.90), (2.91) and the fact that 〈I
′

ε(u), u〉 = 0, we get

lim
n→∞

‖un‖Wε = ‖u‖Wε.

This implies that un → u in Wε due to the Brezis–Lieb Lemma. �
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Lemma 12. Let {un} be a (PS)c sequence for Iε restricted to Nε with

lim sup
n→∞

‖un‖
N/(N−s)
Wε

≤
β∗d∗

s/(N−s)

cα0

,(2.92)

where c > 1 is a suitable constant. Assume that c < cV∞
when V∞ < ∞ or c ∈ R if

V∞ = +∞. Then {un} has a convergent subsequence in Wε.

Proof. Let {un} be a (PS)c sequence of Iε restricted to Nε, that is,

Iε(un) → c, (Iε|Nε)
′ → 0 as n→ +∞.

Noting that 〈I
′

ε(un), un〉 = 0 and using the condition (f2), we have that {un} is a
bounded sequence in Wε. From Proposition 2, we have

‖un‖Wε ≥ r∗ > 0.(2.93)

Then up to a subsequence, we can assume that

lim
n→∞

‖un‖Wε = l, r∗ ≤ l ≤ sup
n

‖un‖Wε < +∞(2.94)

and

un → u weaklyin Wε,

un → u in Lq
loc(R

N ) for any q ∈ [N
s
,+∞),

un → u a.e. in R
N .

Since {un} ⊂ Nε, then we have
ˆ

R2N

|un(x)− un(y)|
p

|x− y|2N
dx dy +

ˆ

RN

V (εx)|un|
p dx =

ˆ

RN

f(un)un dx.

First we consider the case V∞ = +∞. Then up to a subsequence, we assume that
un → u strongly in Lq(RN) for all q ∈ [N

s
,+∞). By the assumption (2.92), (2.4) for

q = N
s

and using Vitali’s theorem as in Lemma 8, we get

lim
n→∞

ˆ

RN

f(un)un dx =

ˆ

RN

f(u)u dx and

lim
n→∞

ˆ

RN

f ′(un)u
2
n dx =

ˆ

RN

f ′(u)u2 dx.(2.95)

Combining (2.94) and (2.95), we obtain

0 < l =

ˆ

RN

f(u)u dx =

ˆ

{x∈RN : u(x)>0}

f(u+)u+ dx.(2.96)

Since f(t) > 0 for all t > 0, then (2.96) implies that u+ 6≡ 0. Conversely, we get l = 0
which is a contradiction. By the method of Lagrange multipliers, there exists a real
sequence {λn} ⊂ R such that

I
′

ε(un) = λnK
′

ε(un) + on(1),(2.97)

where Kε : Wε → R is given by

Kε(u) = 〈I
′

ε(u), u〉 =

ˆ

R2N

|u(x)− u(y)|p

|x− y|2N
dx dy +

ˆ

R2N

V (εx)|u|p dx−

ˆ

RN

f(u)u dx.
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Consequently, we have

〈K
′

ε(un), un〉 = p

ˆ

R2N

|un(x)− un(y)|
p

|x− y|2N
dx dy + p

ˆ

RN

V (εx)|un|
p dx

−

ˆ

RN

f(un)un dx−

ˆ

RN

f ′(un)u
2
n dx

=

ˆ

RN

((p− 1)f(un)un − f ′(un)u
2
n) dx

=

ˆ

{x∈RN : un(x)>0}

((p− 1)f(u+n )u
+
n − f ′(u+n )(u

+
n )

2) dx.(2.98)

From Remark 1 (ii), we have f ′(t)t − (p − 1)f(t) > 0 for all t > 0, then
(p − 1)f(u+n )u

+
n − f ′(u+n )(u

+
n )

2 < 0 for all n. The equality (2.98) implies that
supn∈RN 〈K

′

ε(un), un〉 ≤ 0. If supn∈RN 〈K
′

ε(un), un〉 = 0. Then up to a subsequence,
we suppose that limn→∞〈K

′

ε(un), un〉 = 0. Then from (2.95) and (2.98), it holds

ˆ

RN

((p− 1)f(u)u− f ′(u)u2) dx = 0.

Thus we get

ˆ

{x∈RN : u(x)>0}

((p− 1)f(u+)u+ − f ′(u+)u+
2
) dx = 0.(2.99)

Using again Remark 1 (ii), we have

(p− 1)f(u+)u+ − f ′(u+)u+
2
< 0(2.100)

for all x ∈ Ω = {x ∈ R
N : u(x) > 0}. Hence, we get a contradiction from (2.99) and

(2.100).
Next we investigate the case V∞ < +∞. If u 6≡ 0, then there exists t ∈ (0,+∞)

such that tu ∈ NV0 . This means that

tp‖u‖pV0
=

ˆ

RN

f(tu)(tu) dx.(2.101)

By the property of NV0, there exists r > 0 such that ‖u‖V0 > 0, then (2.101) implies
u+ 6≡ 0 and there exists ε0 > 0 such that u(x) ≥ ε0 > 0 on Ω ⊂ R

N with |Ω| > 0.
From (2.98), we have

−〈K
′

ε(un), un〉 = −p

ˆ

R2N

|un(x)− un(y)|p

|x− y|2N
dx dy − p

ˆ

RN

V (εx)|un|
p dx

+

ˆ

RN

f(un)un dx+

ˆ

RN

f ′(un)u
2
n dx

=

ˆ

RN

(f ′(un)u
2
n − (p− 1)f(un)un) dx(2.102)
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By arguments as in the first case, we can assume that limn→∞〈K
′

ε(un), un〉 = 0. Using
Fatou’s lemma and (2.102), we get

0 ≥ lim inf
n→∞

ˆ

RN

(f ′(un)u
2
n − (p− 1)f(un)un) dx

≥

ˆ

RN

(f ′(u)u2 − (p− 1)f(u)u) dx

=

ˆ

{x∈RN : u(x)>0}

(f ′(u)u2 − (p− 1)f(u)u) dx

≥

ˆ

Ω

(f ′(u)u2 − (p− 1)f(u)u) dx > 0(2.103)

due to the condition (f5). This is a contradiction.
Finally if u ≡ 0, then (2.93) implies that un 6→ 0 in Wε. By arguments as

in Lemma 9, we can show that there exists a sequence {yn} ⊂ R
N and constants

R > 0, β > 0 such that

lim inf
n→∞

ˆ

BR(yn)

|un|
N/s dx ≥ β > 0.(2.104)

We denote vn(x) = un(x + yn). Since the norm in W s,N/s(RN) and the integrals are
invariant under translations, we have ‖vn‖V0 = ‖un‖V0 ≤ ‖un‖Wε. Therefore {vn} is
a bounded sequence in W s,N/s(RN). Then up to a subsequence, we have

vn → v weakly in W s,N/s(RN),

vn → v in Lq
loc(R

N) for any q ∈ [N
s
,+∞),

vn → v a.e. in R
N .

From (2.104), we obtain v 6≡ 0. We see that

−〈K
′

ε(un), un〉 =

ˆ

RN

(f ′(un)u
2
n − (p− 1)f(un)un) dx

=

ˆ

RN

(f ′(vn)v
2
n − (p− 1)f(vn)vn) dx.(2.105)

Now, we repeat the method as in case u 6≡ 0 and get a contradiction.
In conclusion, we get supn∈N < K

′

ε(un), un >< 0, and (2.97) implies λn = on(1)
as n→ ∞. Therefore, {un} is a (PS)c sequence of Iε and Lemma 12 is obtained from
Lemma 11. �

Corollary 1. The critical points of Iε on Nε are critical points of Iε in Wε.

Proof. The key idea is to show < Kε(u), u >< 0 for all u ∈ Nε. This follows by
using similar arguments as in Lemma 12. We refer the readers to [21, Proposition 2.1]
for a proof of this kind of a lemma. �

4. Existence of a ground state solution

In this section, we prove the existence of a ground state solution for problem
(P ∗

ε ). That is a critical point uε of Iε satisfying Iε(uε) = cε. We consider the energy
function

JV0(u) =
1

p

(
ˆ

R2N

|u(x)− u(y)|p

|x− y|2N
+

ˆ

RN

V0|u|
p dx

)

−

ˆ

RN

F (u) dx
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of problem (PV0). We recall that cV0 is the minimax level related to JV0 and NV0 is
the Nehari manifold related to JV0 , given by

NV0 =

{

u ∈ W s,N/s(RN) \ {0} :

ˆ

R2N

|u(x)− u(y)|p

|x− y|2N
+

ˆ

RN

V0|u|
p dx =

ˆ

RN

f(u)u dx

}

.

Now we state the main result of this section:

Theorem 7. Assume that (f1)–(f5) and (V) hold. Then there exists ε > 0 such
that (P ∗

ε ) has a ground state solution for all 0 < ε < ε.

Proof. We will prove that there exists ε > 0 such that cε < cV0 for all ε ∈ (0, ε).
Since cV0 < cV∞

when V∞ < +∞, Lemma 11 implies that Iε satisfies the (PS)cε
condition. Further, combining that result with Lemma 7, Iε has a critical point at
level cε. Next, without the loss of generality, we assume that V (0) = V0.

Let φ ∈ C∞
0 (RN , [0, 1]) be such that φ ≡ 1 on B1(0) and φ ≡ 0 on R

N \ B2(0).
For each r > 0, let us define vr(x) = φ(x

r
)w(x), where w is a ground state solution of

the problem (PV0) given in Proposition 1. For each vr, there exists tε,r > 0 such that
tε,rvr ∈ Nε, and we have

cε ≤ Iε(tε,rvr) =
tpε,r
p

ˆ

R2N

|vr(x)− vr(y)|p

|x− y|2N
dx dy +

tpε,r
p

ˆ

RN

V (εx)|vr(x)|
p dx

−

ˆ

RN

F (tε,rvr) dx.

For any u ∈ Nε, we have

‖u‖pWε
=

ˆ

RN

f(u)u dx.

Then we get

Iε(u)|Nε =
1

p
‖u‖pWε

−

ˆ

RN

F (u) dx =

ˆ

RN

(

1

p
f(u)u− F (u)

)

dx ≥ 0.(3.1)

From (3.1), we see that the sequence {tε,r} must be bounded as ε → 0+ for each
r > 0. Indeed, if tε,r → +∞ as ε→ 0+ for fixed r, then using the condition (f4), we
have

Iε(tε,rvr) ≥
tpε,r
p
‖vr‖

p
Wε

− γ1t
µ
ε,r‖vr‖

µ
Lµ(RN )

→ −∞,

which is a contradiction with (3.1). Thus, we can assume that tε,r → tr as ε → 0+.
Since vr has compact support, then we get

lim sup
ε→0+

cε ≤
tpr
p

ˆ

R2N

|vr(x)− vr(y)|p

|x− y|2N
dx dy +

tpr
p

ˆ

RN

V0|vr|
p dx−

ˆ

RN

F (trvr) dx

= JV0(trvr)

via Vitali’s theorem or Lebesgue’s dominated convergence theorem. Noting that
trvr, w ∈ NV0 and vr → w in W s,N/s(RN) as r → +∞ (see [8, Lemma 2.2]) and using
Remark 1 (IV), we can prove that tr → 1 as t→ ∞. Then we get

lim sup
ε→0+

cε ≤ lim
r→+∞

JV0(trvr) = JV0(w) = cV0.

By arguments as in Lemma 4, we get cV0 ≤ Cγ1 . Thus, if we choose γ1 large enough
as in (2.30) for d∗ instead of d∗, and Cγ1 < cV∞

if V∞ < +∞, then for any (PS)cε
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sequence (un) for Iε, we get

lim sup
n→∞

‖un‖
N/(N−s)
Wε

≤
β∗d∗

s/(N−s)

2N/(N−s)cα0

.

Now, the result of this theorem comes from Lemma 11. �

5. Multiplicity of solutions to (P ∗

ε
)

In this section, we show the existence of multiple weak solutions and study the
behavior of their maximum points related with the set M . The main result of this
section is equivalent to Theorem 2 and it is stated as follows:

Theorem 8. Assume that (f1)–(f5) and (V) hold. Then for any δ > 0, there
exists εδ > 0 such that (P ∗

ε ) has at least catMδ
(M) nontrival nonnegative solutions,

for any 0 < ε < εδ. Moreover, if uε denotes one of these solutions and zε is its global
maximum, then

lim
ε→0+

V (εzε) = V0.

Proof. Let δ > 0 be a fixed and w be a ground state solution of problem (PV0).
It means that JV0(w) = cV0 and J

′

V0
(w) = 0. Let η be a smooth nonincreasing cut-off

function in [0,+∞) such that η(s) = 1 if 0 ≤ s ≤ δ
2

and η(s) = 0 if s ≥ δ. For any
y ∈ M , we denote

ψε,y = η(|εx− y|)w

(

εx− y

ε

)

and Φε : M → Nε which is defined by Φε(y) = tεψε,y, where tε > 0 satisfies

max
t≥0

Iε(tψε,y) = Iε(tεψε,y).

From the construction, Φε(y) has compact support for any y ∈M .

Lemma 13. The function Φε satisfies the following limit

lim
ε→0+

Iε(Φε(y)) = cV0 uniformly in y ∈M.

Proof. Suppose that the statement of Lemma 13 does not hold. Then there exists
δ0 > 0, {yn} ⊂M and εn → 0 such that

|Iεn(Φεn(yn))− cV0 | ≥ δ0.(4.1)

By Lemma 2.2 [8], we have

lim
n→∞

‖ψεn,yn‖
p
Wεn

= ‖w‖pWV0
.(4.2)

Since < I
′

εn(tεnψεn,yn), tεnψεn,yn >= 0, using the change of variable z = εnx−yn
εn

we get

‖tεψεn,yn‖
p
Wεn

=

ˆ

RN

f(tεψεn,yn)tεnψεn,yn dx

=

ˆ

RN

f(tεnη(|εnz|)w(z))tεnη(|εnz|)w(z) dz.(4.3)

Now we prove that tεn → 1. First we show that tεn → t0 < +∞. Conversely if
tεn → +∞, from (4.3) we have

‖ψεn,yn‖
p
Wεn

≥

ˆ

|z|≤ δ
2εn

f(tεnw(z))w(z)

tp−1
εn

dz.(4.4)
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From the condition (f2) and (f4), we have f(t) ≥ γ1µ|t|
µ−1 for all t ≥ 0. Combining

that property and (4.4), we deduce

‖ψεn,yn‖
p
Wεn

≥

ˆ

|z|≤ δ
2εn

f(tεnw(z))w(z)

tp−1
εn

dz ≥ γ1µt
µ−p
εn

ˆ

|z|< δ
2εn

wµ dx→ +∞

as n → ∞. This is a contradiction with (4.2). Therefore, up to a subsequence, we
may assume that tεn → t0 ≥ 0 as n→ ∞. If t0 = 0, from tεnψεn,yn ∈ Nεn, by Lemma
2, there exists r∗ > 0 such that for n large enough, we have

‖tεnψεn,yn‖Wεn
≥ r∗ > 0.

This is contradiction since tεn → 0 and ‖ψεn,yn‖Wεn
→ ‖w‖WV0

> 0 as n → ∞. Now
we prove that t0 = 1. From (4.3), using Lebesgue Dominated Convergence Theorem,
we have

‖w‖pWV0
=

ˆ

RN

f(t0w)w

tp−1
0

dx.

Note that w ∈ NV0, then Remark 1 implies t0 = 1. Still using Lebesgue Dominated
Convergence Theorem or Vitali’s theorem, we get

lim
n→∞

ˆ

RN

F (tεψεn,yn(x)) dx =

ˆ

RN

F (w) dx.

Hence, we obtain

lim
n→∞

Iεn(Φεn(yn)) = lim
n→∞

[tpεn
p
‖ψεn,yn‖

p
Wεn

−

ˆ

RN

F (tεnψεn,yn) dx
]

=
‖w‖pWV0

p
−

ˆ

RN

F (w) dx = JV0(w) = cV0

which contradicts with (4.1). �

For any δ > 0, let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Let χ : RN → R
N be

define as

χ(x) =

{

x if |x| < ρ,
ρx
|x|

if |x| ≥ ρ.

Next, we define the barycenter map βε : Nε → R
N given by

βε(u) =

´

RN χ(εx)|u(x)|
p dx

´

RN |u|p dx
.

Lemma 14. The functional Φε satisfies the following limit

lim
ε→0+

βε(Φε(y)) = y uniformly in y ∈M.(4.5)

Proof. Lemma 14 is proved similarly as [8, Lemma 3.13]. For convenience, we
prove it here. Suppose that the statement of Lemma 14 does not hold. Then there
exists δ0 > 0, {yn} ⊂M and εn → 0 such that

|βεn(Φεn(yn))− yn| ≥ δ0.(4.6)

From the definition of Φεn(yn), βεn, ψ and using the change of variable z = εnx−yn
εn

,
we have

βεn(Φεn(yn)) = yn +

´

RN [χ(εnz + yn)− yn]|η(|εnz|)w(z)|p dz
´

RN |η(|εnz|)w(z)|p dz
.
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Since {yn} ⊂M ⊂ Bρ(0), we get

lim
n→∞

|βεn(Φεn(yn))− yn| = 0

via Lebesgue Dominated Convergence Theorem, which contradicts with (4.6). �

Lemma 15. Let εn → 0+ and {un} ⊂ Nεn be such that Iεn(un) → cV0 . Then
there exists {ỹn} ⊂ R

N such that the translation sequence vn(x) = un(x + ỹn)
has a subsequence which converges in W s,N/s(RN). Moreover, up to a subsequence,
{yn} : yn = εỹn → y ∈M .

Proof. Since < I
′

εn(un), un >= 0 and Iεn(un) → cV0 , then we have

Iεn(un) = Iεn(un)−
1

µ
〈I

′

εn(un), un〉

=

(

s

N
−

1

µ

)

‖un‖
p
Wεn

+
1

µ

ˆ

RN

(f(un)un − F (un)) dx ≥

(

s

N
−

1

µ

)

‖un‖
p
Wεn

.

Thus, there exists a constant C =
(

cV0
s
N
− 1

µ

)s/N

such that lim supn→∞ ‖un‖Wεn
≤ C.

Since Wεn is continuously embedded into W s,N/s(RN) and (2.39), we get {un} is
a bounded sequence in W s,N/s(RN). Now, we show that there exist a sequence
{ỹn} ⊂ R

N and constants r > 0, β > 0 such that

lim inf
n→∞

ˆ

Br(ỹn)

|un|
N/s dx ≥ β > 0.(4.7)

Indeed, if (4.7) is false, then for any r > 0, we have

lim
n→∞

sup
y∈RN

ˆ

Br(y)

|un|
N/s dx = 0.

By Lemma 5, we have un → 0 strongly in Lq(RN) for any q ∈ (N
s
,+∞). If we take

γ1 large enough, by the method of Lemma 4, we get

lim sup
n→∞

‖un‖
N/(N−s)
V0

≤
β∗d

s/(N−s)
∗

cα0
,

for a suitable constant c > 1 and near 1. Applying Lemma 6, we deduce

lim
n→∞

ˆ

RN

f(un)un dx = 0.

Combining this result and un ∈ Nεn, we obtain ‖un‖Wεn
→ 0 as n → ∞. It is

a contradiction with Proposition 2. Therefore, (4.7) holds. Let us define vn :=
un(x+ ỹn). Since the ‖ · ‖V0 is invariant under translations, then {vn} is a bounded
sequence in W s,N/s(RN). Thus up to a subsequence, we can assume that there exists
v ∈ W s,N/s(RN) such that vn → v weakly in W s,N/s(RN) and vn(x) → v(x) a.e. in
R

N and vn → v in Lq
loc(R

N) for any q ∈ [N
s
,+∞). From this result and (4.7), we get

v 6≡ 0. Let tn > 0 such that wn = tnvn ∈ NV0 and we set yn := εnỹn. Thus, using
the change of the variable z = x+ ỹn, V (εn(x+ ỹn)) ≥ V0 and the invariance under
translations, we can see that

cV0 ≤ JV0(wn) ≤
1

p
[wn]

p
s,p +

1

p

ˆ

RN

V (εnx+ yn)|wn|
p dx−

ˆ

RN

F (wn) dx

= Iεn(tnun) ≤ Iεn(un) ≤ cV0 + on(1).
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Then we get JV0(wn) → cV0. Since {wn} ⊂ NV0 , using the condition (f2), there exists
a constant K > 0 such that ‖wn‖V0 ≤ K for all n. We have vn 6→ 0 strongly in
W s,N/s(RN). Indeed, if vn → 0 in W s,N/s(RN), then vn → 0 weakly in W s,N/s(RN),
which contradicts with vn → v 6≡ 0 weakly in W s,N/s(RN). Hence, there exists α > 0
such that ‖vn‖V0 ≥ α > 0 for all n. Consequently, we have

tnα ≤ ‖tnvn‖V0 = ‖wn‖V0 ≤ K,

which yields tn ≤ K
α

for all n ∈ N. Therefore, up to a subsequence, we can assume
that tn → t0 ≥ 0. We prove that t0 > 0. If t0 = 0, then wn → 0 strongly in
W s,N/s(RN), which implies that JV0(wn) → 0. It contradicts with cV0 > 0. Up to
a subsequence, we suppose that wn → w := t0v 6≡ 0 weakly in W s,N/s(RN) and
wn(x) → w(x) a.e. on R

N . By arguments as in Lemma 4, we can get J
′

V0
(w) = 0.

Now we prove

lim
n→∞

‖wn‖
p
V0

= ‖w‖pV0
.(4.8)

Using Brezis–Lieb’s lemma and (4.8), we obtain wn → w strongly in W s,N/s(RN).
By Fatou’s lemma, we have

‖w‖pV0
≤ lim inf

n→∞
‖wn‖

p.
V0

(4.9)

Assume by contradiction that

‖w‖pV0
< lim sup

n→∞
‖wn‖

p
V0
.

Note that

cV0 + on(1) = JV0(wn)−
1

µ
〈J

′

V0
(wn), wn〉

=

(

1

p
−

1

µ

)

‖wn‖
p
V0

+

ˆ

RN

[

1

µ
f(wn)wn − F (wn)

]

dx.

Using the condition (f2), and Fatou’s lemma, we get

cV0 ≥

(

1

p
−

1

µ

)

lim sup
n→∞

‖wn‖
p
V0

+ lim inf
n→∞

ˆ

RN

[

1

µ
f(wn)wn − F (wn)

]

dx

>

(

1

p
−

1

µ

)

‖w‖pV0
+

ˆ

RN

[

1

µ
f(w)w − F (w)

]

dx

= JV0(w)−
1

µ
〈J

′

V0
(w), w〉 = JV0(w) ≥ cV0,

which is a contradiction. Then

‖w‖pV0
≥ lim sup

n→∞
‖wn‖

p
V0
.(4.10)

Combining (4.9) and (4.10), we get (4.8). Since tn → t0 as n → ∞, then vn → v in
W s,N/s as n→ ∞. Now we prove that {yn} has a subsequence such that yn → y ∈M .
Indeed, if {yn} is not bounded, there exists a subsequence, still denoted by {yn},
such that |yn| → +∞. First, we consider the case V∞ = ∞. Using the fact that
{un} ⊂ Nεn and a change of variable z = x+ ỹn, we can see that
ˆ

|x|≤Rε−1
n

V (εnx+ yn)|vn|
p dx ≤ [vn]

p
s,p +

ˆ

RN

V (εnx+ yn)|vn|
p dx

= ‖un‖
p
Wεn

=

ˆ

RN

f(un)un dx =

ˆ

RN

f(vn)vn dx.
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Apply Fatou’s lemma and Lebesgue Dominated Convergence Theorem or Vitali’s
theorem and vn → v in W s,N/s(RN), we deduce that

+∞ = lim inf
n→∞

ˆ

|x|≤Rε−1
n

V (εnx+ yn)|vn|
p dx ≤ lim inf

n→∞

ˆ

RN

V (εnx+ yn)|vn|
p dx

≤ lim
n→∞

ˆ

RN

f(vn)vn dx =

ˆ

RN

f(v)v dx < +∞,

which gives a contradiction. Next, we consider the case V∞ < +∞. From the fact
that wn → w strongly in W s,N/s(RN) and the condition (V ), using the change of
variable z = x+ ỹn, we have

cV0 = JV0(w) < JV∞
(w)

≤ lim inf
n→∞

[

1

p

(

[wn]
p
s,p +

ˆ

RN

V (εnx+ yn)|wn|
p dx

)

−

ˆ

RN

F (wn) dx

]

= lim inf
n→∞

[

tpn
p
[un]

p
s,p +

tpn
p

ˆ

RN

V (εnz)|un|
p dz −

ˆ

RN

F (tnun) dz

]

= lim inf
n→∞

Iεn(tnun) ≤ lim inf
n→∞

Iεn(un) = cV0 ,(4.11)

which is absurd. Then {yn} must be a bounded sequence. Up to a subsequence, we
can assume that yn → y. If y 6∈ M , then V0 < V (y). By an argument as in (4.11),
we get a contradiction. Hence y ∈M. �

Let R+ → R
+ be a positive function such that h(ε) → 0 as ε→ 0+ and let

Ñε = {u ∈ Nε : Iε(u) ≤ cV0 + h(ε)}.

By Lemma 14, we have h(ε) = |Iε(Φε(y))− cV0 | → 0 as ε → 0+. Hence Φε(y) ∈ Nε

and Ñε 6= ∅ for any ε > 0. Moreover, we have the following result:

Lemma 16. For any δ > 0, it holds that

lim
ε→0+

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Lemma 16 is proved similarly as [8, Lemma 3.14]. For convenience, we
prove it here. Let εn → 0 as n → ∞. By the definition of supremum, there exists
{un} ⊂ Ñεn such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn(u)− y| = inf
y∈Mδ

|βεn(un)− y|+ on(1).

Therefore, it suffices that there exists {yn} ⊂Mδ such that

lim
n→∞

|βεn(un)− yn| = 0.(4.12)

Noting that {un} ⊂ Ñεn ⊂ Nεn, we deduce that

cV0 ≤ cεn ≤ Iεn(un) ≤ cV0 + h(εn),

which leads to Iεn(un) → cV0 . By Lemma 15, there exists a sequence {ỹn} ⊂ R
N such

that yn = εnỹn ∈Mδ for all n large enough. We have

βεn(un) = yn +

´

RN [χ(εnz + yn)− yn]|un|p(z + ỹn) dz
´

RN |un|p(z + ỹn) dz
.

Since un(x + ỹn) converges strongly in W s,N/s(RN) and εnz + yn → y ∈ M , we can
get βεn(un) = yn + on(1) via Lebesgue Dominated Convergence Theorem. Therefore
(4.12) holds. �
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Lemma 17. Assume that (V) and (f1)–(f5) hold and let vn be a nontrivial
nonnegative solution of the following problem

(−∆)sN/svn + Vn(x)|vn|
N
s
−2vn = f(vn) in R

N ,(4.13)

where Vn(x) = V (εnx+ εnỹn) and εnỹn → y ∈ M . If {vn} is a bounded sequence in
W s,N/s(RN) verifying

lim sup
n→∞

‖vn‖
N/(N−s)
V0

≤
β∗d∗

s/(N−s)

cα0
,

where c > 1 is a suitable constant and vn → v strongly in W s,N/s(RN), then vn ∈
L∞(RN) and there exists C > 0 such that ‖vn‖L∞(RN ) ≤ C for all n ∈ N. Furthermore

lim
|x|→+∞

vn(x) = 0 uniformly in n.

Proof. For any L > 0 and β > 1, let us to consider the function γ(t) =
t(min{t, L})p(β−1) and

γ(vn) = γL,β(vn) = vnv
p(β−1)
L,n ∈ Wε, vL,n = min{vn, L}.

Set

Λ(t) =
|t|p

p
and Γ(t) =

ˆ t

0

(γ
′

(t))
1
p dτ.

Then we have [8]

Λ
′

(a− b)(γ(a)− γ(b)) ≥ |Γ(a)− Γ(b)|p for any a, b ∈ R.(4.14)

From (4.14), we get

|Γ(vn(x))− Γ(vn(y))|
p

≤ |vn(x)− vn(y)|
p−2(vn(x)− vn(y))((vnv

p(β−1)
L,n )(x)− (vnv

p(β−1)
L,n )(y)).(4.15)

Therefore, taking γ(vn) = vnv
p(β−1)
L,n as a test function in (4.13) and combining with

(4.15), we have

[Γ(vn)]
p
s,p +

ˆ

RN

Vn(x)|vn|
pv

p(β−1)
L,n dx

≤

ˆ

R2N

|vn(x)−vn(y)|p−2(vn(x)−vn(y))((vnv
p(β−1)
L,n )(x)−(vnv

p(β−1)
L,n )(y))

|x− y|2N
dx dy

+

ˆ

RN

Vn(x)|vn|
pv

p(β−1)
L,n dx =

ˆ

RN

f(vn)vnv
p(β−1)
L,n dx.(4.16)

Using (4.14), we have vnv
β−1
L,n ≥ |Γ(vn)|. Since Γ(vn) ≥

1
β
vnv

β−1
L,n and the embedding

from W s,N/s(RN) → LN∗

(RN) (N∗ > N
s
) is continuous, then there exists a suitable

constant S∗ > 0 such that

‖Γ(vn)‖
p
V0/2

≥ S∗‖Γ(vn)‖
p

LN∗ (RN )
≥

1

βp
S∗‖vnv

β−1
L,n ‖p

LN∗(RN )
.(4.17)

From the condition (f1) and (f3), for any ε > 0, there exist C(ε) > 0 such that

|f(t)| ≤ ε|t|p−1 + C(ε)|t|p−1ΦN,s(α0|t|
N/(N−s))
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for all t ∈ R. Then we obtain
1

βp
S∗‖vnv

β−1
L,n ‖p

LN∗(RN )
+

ˆ

RN

Vn(x)|vn|
pv

p(β−1)
L,n dx

≤ ε

ˆ

RN

|vnv
β−1
L,n |p dx+ C(ε)

ˆ

RN

ΦN,s(α0|vn|
N/(N−s))|vnv

β−1
L,n |p dx.(4.18)

Choose 0 < ε < V0/2, then (4.18) implies

1

βp
S∗‖vnv

β−1
L,n ‖p

LN∗ (RN )

≤ C(ε)

(
ˆ

RN

(ΦN,s(α0|vn|
N/(N−s)))q

′

dx

)
1
q′
(
ˆ

RN

|vnv
β−1
L,n |qp dx

)
1
q

.

Using the Trudinger–Moser inequality in W s,N/s(RN) with q >> N
s

such that N∗∗ =
qp < N∗, q′ > 1 and q′ near 1, then there exists a constant D > 0 such that

‖vnv
β−1
L,n ‖p

LN∗(RN )
≤ Dβp‖vnv

β−1
L,n ‖p

Lqp(RN )
.

Letting L→ +∞ in the above inequality, we deduce

‖vn‖LN∗β ≤ D
1
pβ β

1
β ‖vn‖LN∗∗β(RN ).(4.19)

Now, we set β = N∗

N∗∗
> 1. Then β2N∗∗ = βN∗ and (4.19) holds with β replaced by

β2. Therefore, we obtain

‖vn‖LN∗β2 ≤ D
1

pβ2 β
2
β2 ‖vn‖LN∗∗β2(RN ) = D

1
pβ2 β

2
β2 ‖vn‖LN∗β(RN )

≤ D
1
p
( 1
β
+ 1

β2 )β
1
β
+ 2

β2 ‖vn‖LN∗∗β(RN ).(4.20)

Iterating this process as in (4.20), we can infer that for any positive integer m,

‖vn‖LN∗βm ≤ D
∑m

j=1
1

pβj β
∑m

j=1 jβ
−j

‖vn‖LN∗∗β(RN ).(4.21)

Taking the limit in (4.21) as m→ ∞, we get

‖vn‖L∞(RN ) ≤ C

for all n, where C = D
∑

∞

j=1
1

pβj β
∑

∞

j=1 jβ
−j

supn∈N ‖vn‖LN∗∗β(RN ) < +∞. �

Now, we give the proof of Theorem 8. We fix ε > 0 small enough. Then by
Lemma 13 and Lemma 16, we have that βε ◦ Φε is homotopic to the inclusion map
id : M →Mδ. Then we get

catÑε
(Ñε) ≥ catMδ

(M).

Since the functional Iε satisfies the (PS)c condition for c ∈ (cV0 , cV0 + h(ε)), then
by Lusternik–Schnirelmann theory of critical points, see Willem [41], Iε has at least
catMδ

(M) critical points on Nε. By Corollary 1, Iε has at least catMδ
(M) critical

points in Wε.
Let uεn is a solution of problem (Pεn). Then vn(x) = uεn(x + ỹn) is a solution

of the equation (4.13). Moreover, up to a subsequence, we may assume that vn → v
strongly in W s,N/s(RN) and yn = εnỹn → y ∈ M . Next, we prove that there exists
δ > 0 such that ‖vn‖L∞(RN ) ≥ δ for all n large enough. Indeed, by Lemma 15 (see
(4.7)), we have

0 <
β

2
≤

ˆ

Br(0)

|vn|
N/s dx ≤ |Br(0)‖vn‖L∞(RN )(4.22)
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for all n large enough. Here, we choose δ = β
2
. Since vn → v strongly in W s,N/s(RN),

then we have lim|x|→∞ vn(x) = 0 uniformly in n ∈ N. We denote by pn the global
maximum of vn. Then by Lemma 17 and (4.22), there exists R > 0 such that |pn| ≤ R
for all n ∈ N. Therefore, the maximum point of uεn is given by zεn = pn + ỹn and
εnzεn → y ∈M . By the continuity of V , we get V (εnzεn) → V (y) = V0 as n→ ∞.

If uε is a nontrivial nonnegative solution of problem (P ∗
ε ), then wε(x) = uε(x/ε)

is a nontrivial nonnegative solution of (Pε). Thus the maximum points ηε and zε of
wε and uε respectively, satisfy ηε = εzε. We deduce

lim
ε→0+

V (ηε) = lim
n→∞

V (εnzεn) = V0. �
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