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Multiplicity and concentration of solutions to a
fractional p-Laplace problem with exponential growth

NGUYEN VAN THIN

Abstract. In this paper, we study the Schrédinger equation involving the %—fractional Lapla-
cian:

eN(=A)y u+ V@)l "2u= f(u) inRY,

where € is a positive parameter, N = ps, s € (0,1). The nonlinear function f has exponential

growth and the potential function V is a continuous function satisfying some suitable conditions.
Our problem lacks compactness. By using the Ljusternik—Schnirelmann theory, we obtain the
existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the

parameter.

Eksponentiaalisesti kasvavan murtoasteisen p-Laplacen
ongelman ratkaisuiden monilukuisuus ja kasautuminen

N

Tiivistelmd. Téssé tyossd tutkimme seuraavaa —--murtoasteisen Laplacen operaattorin sisil-

tdvad Schrodingerin yhtaloa
EN(—A)fV/Su + V(x)|u|%_2u = f(u) avaruudessa RY,

missé € on positilvinen parametri, N = ps ja s € (0,1). Epélineaarinen funktio f kasvaa ek-
sponentiaalisesti, ja potentiaali V' on sopivat ehdot toteuttava jatkuva funktio. Té&ltd ongelmalta
puuttuu kompaktisuusominaisuuksia. Ljusternikin—Schnirelmannin teorian avulla osoitamme pie-
nilla parametriarvoilla epétriviaalien ei-negatiivisten ratkaisujen olemassaolon, monilukuisuuden ja

kasautumisen.

1. Introduction and main results

In this paper, we first study the existence and concentration of nontrivial non-

negative solutions for the fractional %—Laplace Schrodinger equation

(L.1) N (=D su(z) + V(@)ul* Pu= f(u) inRY, (P.)

where ¢ is small positive parameter, 0 < s < 1,2 < p < 400, N = ps, the potential V'
is bounded below by 1 > 0, the nonlinearity f has exponential critical growth, and
(=A)s is the fractional p-Laplace operator which may be defined along a function
¢ € C°(RY) (up to a normalization constant) as

AV olz) = 2 lim (@) — pI"*(p(z) — #(y))
(=A%) 251—>o+ RN\ B. (z) |z — y| NP !

Y

for x € RY, where B.(x) is a ball with center z and radius ¢.
In order to study the problem (1.1), we need some assumptions on V and f as
follows:
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(V) V:RY — R is a continuous function satisfying
Voo =liminf V(z) > Vy = inf V(z) >0,
|z| =00 zeRN
where V,, < oo or V, = oco. This kind of a hypothesis was introduced by
Rabinowitz in [34].
(f1) The nonlinearity f € C*(R) satisfies f(t) = 0 for all t € (—o0, 0], f(t) > 0 for
all ¢ > 0 and there exist constants ag € (0, @), by, by > 0 such that for any
t eR,
/()] < by [tP2 4 o[t~ Doy, (ot M),
where @y ;(y) = e¥ — Zgif %,jp = min{j € N: j > p} and «, is given in
the Lemma 1.
(f2) There exists p > & such that

Pt~ uF(t) > 0
for all t € R, where F(t) = [] f(7)dr.

() |
t
t—0t 752
(f1) There exists v; > 0 large enough such that F'(t) > ~|¢t|* for all ¢ > 0.

(f5) t{,(_t)l is a strictly increasing function of ¢ > 0.

=0.

Remark 1. (i) From the condition (f3), we have

t F(t

lim fN< ) = lim EV)

t—0+ ¢ 1 =0t ¢

(ii) The condition (f5) implies that the function %f(t)t — F(t) is an increasing
function of ¢ > 0. Indeed, we have

1 LWt = (p=1)f(t)
(Gron-r) - HE=E=I0.

for all ¢ > 0 due to the condition (f5).

(iii) The condition (f5) leads to that f(¢) > 0 for all ¢ > 0. Indeed, we have

t{,(_t)l > limy o+ tj;(—_t)l =0 for all ¢ > 0. Then f(¢) > 0 for all ¢ > 0.

(iv) We have that f ()¢ is an increasing function on (0, 400). From the condition

(f5), we have
)t f(t2)ts

t t

= 0.

for all 0 < ¢; < t3. Then

t p
[t < (t_z) f(t)t < f(t2)ta.
1
We get the claim.

In 2019, Miyagaki and Pucci [28] have studied the nonlocal Kirchhoff problem
with critical Trudinger—Moser nonlinearity

M / () — u(y) PH(z — y) dz dy + / V(@) [uf? de)(Lcu + V(z)u) = P(z) f(u)

in R, where H satisfies the two following conditions:
(hy) mH € LYRY), where m(z) = min{|z|?, 1};
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(hy) there exists ko > 0 such that H(z) > ko|z|™2 for any x € RV \ {0}.
The Kirchhoff function M: [0, +00) — [0,400) is continuous and satisfies the
conditions:
(M7) For any 7 > 0, there exists £ = k(1) such that M(t) > « for all t > 7.
(M) There exists §# > 1 such that tM(t) < OM(t) for all t € [0, +00), where
M(t) = [y M(r)dr.
(M3) The function O M(t) — tM(t) in nondecreasing on [0, +00).
The nonlinear function f satisfies the subcritical exponential growth or critical
exponential growth, V' and P satisfy some following conditions:

(i) The potentials V' and P are continuous and strictly positive in R;
(ii) If {A,} is a sequence of Borel sets of R, with |A,,| < R for all n € N and some

R > 0, then
lim P(z)dx =0, uniformly with respect to n € N,
=20 J A,NBS(0)
where B¢(0) is the complement of the closed interval B, = [—r,7].
(iii) The potential P is in L*(R) and there exists Cy > 0 such that V(x) > Cp
for all z € R.

In the work of Miyagaki and Pucci, the potential is bounded from below by a
positive constant. In order to study their problem, they need the nonlinear function
with the form P(z)f(u), where P and V satisfy the conditions (i) to (iii). With
these conditions, they get the compact embedding from the solution space E into the
Lebesgue space with weight LL(RY), ¢ € (2, +00).

This paper was motivated by some work that have appeared very recently on the
fractional p-Laplace Schrodinger equation with the form

(1.2) e’ (—=A)u(r) + V(@) |ulP2u= f(u) inRY, N > ps,

[8, 10, 7, 14, 9] and the work of Miyagaki and Pucci [28]. When p = 2, the equation
(1.2) becomes a fractional Schrédinger equation of the type

(1.3) ¥ (=AY u+V(z)u= f(u) inRY,

which has been widely investigated in the last decade [3, 4, 5, 22, 37, 23, 36, 26, 35|
and references therein. The study of (1.3) is strongly motivated by the search of
standing waves solutions for the heat fractional Schrodinger equation
0

(14) e = (CAYU+ (V@) + B~ f() for (n,1) €RY xR,
whose solutions have the form (z,¢) = u(z)e =", where E is a constant. The
equation (1.4) is a fundamental equation of the fractional Quantum Mechanics.

When s — 1, the equation (1.2) becomes

(1.5) —eNAnu+V(@)|u/N?u = f(u) in RY,

which arises in applications when ¢ = 1, such as image processing, non-Newtonian
fluids and pseudo-plastic fluids. We refer the reader to [11, 13| for more details. In
[34] Rabinowitz used variational methods to prove the existence of positive solutions
to (1.5) for ¢ sufficiently small by assuming condition (V) and p = 2. Later Wang
[40] showed that these solutions concentrate at global minimum points of V(z) as
e — 0. Denote M = {z € RY: V(x) =V} and

Ms = {x € RY: dist(z, M) <} for 6 > 0.



606 Nguyen Van Thin

Using Lusternik—Schnirelmann category, Alves and Figueiredo [2| showed that prob-
lem (1.5) has at least cat (M) positive solutions for small e when f € C'(R) satisfies
the following conditions:
(c1) f(t) =0 for all t € (—o0,0] and f has critical growth at both +o0o0 and —oo,
that is there exists o > 0 such that

TG
[s]| =400 ea‘5|N/(N71)

lim /(s)

|s| =400 ea‘3|N/(N71)

(cg) limg o ‘JC‘;SS_)L = 0 and there exists C > 0 such that

|s
[f'(5)] < Cexp(ans™1)

=0 for o > ay

and

= oo for all o < .

for all s > 0, where ay = ijlv/(N_l) and wy is the (N — 1)-dimensional
measure of the (N — 1)-sphere.

(c3) There exist constants p > N and u > 0 large enough such that f(s) > usP™*
for all s > 0.

(c4) There exists C; > 0 and o > N such that

f'(s)s = (N =1)f(s) = Crs”

for all s > 0.
(¢5) There exists # > N such that

0<0F(s) :H/OSf(t)dt < sf(s)

for all s > 0.
(¢6) The function S’jv(f)l is strictly increasing in (0, +00).

For more results about existence of solution to the problem (1.5), we refer the
reader to [2] and references therein.

When s = % and N = 1, Alves, Do O and Miyagaki [1] studied the concentration
of solutions to the problem (1.1) with the following assumptions:

(V)" V is bounded function and locally Holder continuous and there exists V5 > 0
such that
(i) V(z) >V for all z € RY,
(ii) There exists a bounded interval A C R such that

Vo = uﬁf/\(:p) < win V(z).

(f1) f: R — R"isa C! function with f(¢) =0if ¢t <O0.
(f2)" f(t) = o(t) near original.

(f3) @ is an increasing function in R*.
(f1)

f(t) > CptP™t forallt > 0.
For more results on Trundinger—-Moser inequality and its applications, we refer the
readers to [16, 17, 18, 15, 24, 31, 39, 42, 27, 43, 20, 19].
Before starting our results, we recall some useful notations. Suppose that N = ps
in our paper. The fractional Sobolev space W*? is defined by

WHP(RY) := {u € LP(RY): [u],, < 0o},
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where [u]s, denotes the Gagliardo seminorm, that is

Ju(z) = u(y)|” /e
dx d .
’p<ﬁQ m—PN e

WeP(RY) is a uniformly convex Banach space (similar to [32]) with norm

» 1/p
el = (Il oy + ul2,)

Given 7 > 0, another norm on W*P(R") is given by

1/p
e L A 0

Then || - || and || - ||, are two equivalent norms on W#?(RY). For each £ > 0, let W,
denote the completion of Cg°(RY), with respect to the norm

1/p
lullw. = ([, + el ) mwwzég%mewx

Then W, is a uniformly convex Banach space (similar to [32, Lemma 10]), and then
W, is a reflexive space. By the condition (V) and [29, Theorem 6.9], we have that
the embedding from W, into L”(R") is continuous for any v € [&, +00). Then there
exists a best constant S,. > 0 for all v € [&, +-00):

o = ol
s u#0,ueW, ||u||LV(RN)

This implies
(1.6) Jull o @ny < S, 2ullw,  for all u € W,

By [29, Theorem 6.9], we have that the embedding from W*"/$(RV) into L"(RY)
is continuous for any v € [%, +00), and there exists a best constant A,, > 0 for all
€ [, +00) as follows:

P Jul,

u0,ueW=N/s(RN) HU”LV(RN)'
This implies
(1.7) ||| vy < A;}?Hu”n for all u € WN/*(RM).

We denote by catg(A) the category of A with respect to B, namely the least
integer k such that A C A U---U Ay, where A; (i =1,...,k) is closed and contrac-
tiblein B. We set catp(0)) = 0 and catp(A) = +o0 if there is no integer with the above
property. We refer the reader to [41] for more details on Ljusternik—Schnirelmann
theory. Now, we state the main result in this paper.

Theorem 2. Let (V) and (f1)—(f5) hold. Then for any § > 0, there exists 5 > 0
such that problem (P.) has at least caty, (M) nontrivial nonnegative weak solutions
for any 0 < € < g45. Moreover, if u. denotes one of these solutions and 7). is its global
maximum, then

lim V(n.) =W.

e—07t
Remark 3. Comparing Theorem 2 with Theorem 1.1 [2], we do not need the
condition of the form (c¢4). Therefore, when s — 17, we get an improvement on the
result of Alves and Figueiredo [2].
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Remark 4. We use the Nehari manifold, variational method, concentration com-
pactness principle and Ljusternik—Schnirelmann theory to prove the main result.
There are some difficulties in proving our theorem. The first difficulty is that the
nonlinearity f has exponential critical growth. The second is that since N = ps, we
lack the fractional Sobolev embedding. Comparing our work with the work of Alves
and Figueiredo [2], we meet several new difficulties in employing the methods to deal
with our problem due to the nonlocal property of equation (1.1). We recommend
the readers Lemma 4, Lemma 8, Lemma 10 and Lemma 12, and more results in our
paper for this comment. Comparing our work with the work of Miyagaki and Pucci
[28], we only have a continuous embedding since our nonlinear function does not
contain the function P as in (i) to (iii). Hence, the method of Miyagaki and Pucci
[28] is not enough to solve our problem.

The paper is organized as follows. In Section 2, we study the autonomous as-
sociated problem. In Section 3, we study the auxiliary problem. We prove the
Palais-Smale condition for the energy functional and provide some tools which are
useful to establish a multiplicity result. This allows us to show that the auxiliary
problem has multiple solutions. In Section 4, we prove the existence of ground state
solutions to the auxiliary problem. Finally, in Section 5, we complete the paper with
the proof of Theorem 2.

2. Autonomous problem
In this section, we study the autonomous problem associated to (1.1):
s N_ .
(2.1) (=A)Nysu + nlul u= f(u) inRY, (P)

where 77 > 0 is a constant.
We denote by J,: WeN/s(RN) — R the corresponding energy functional for
problem (2.1)

) = Sl = [ Fwde.

From the condition (f3), there exist 7 > 0 and § > 0 such that for all [¢t| < J, we
have

(2.2) /()] < 7t 52

Moreover, from the conditions (f;) and that f’ is a continuous function, for each
q> %, we can find a constant C' = C(q,0) > 0 such that

(2.3) /()] < Ol 2@ s (ot M)
for all |¢| > §. Combining (2.2) and (2.3), we get
(2.4) F@®) < 7lH* 72+ ClE* 2 (a1 )

for all ¢ > 0. Then we obtain

(2.5) ) < / F(s)|ds <t

and

N
ST O D (a [NV ))

t
(2.6) FOI< [ 156)ds < 7l ¥+l (el ¥' )
0

for all t > 0.
In order to prove the result in this section, we need the following result:
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Lemma 1. [43] Let s € (0,1) and sp = N. Then for every 0 < a < a, < o} y,
the following inequality holds:

sup / Dy s (afu| NN =)) d < +o0,
uEWP(RN), lullys,p vy <1 JRY
where @ (t) = e' — 5252 E—J,, Jp = min{j € N: j > p}. Moreover, for a > o} y,
sup / Dy (a|u| NN )Y do = +oo0.
uEWP(RN), lullys,p ey <1 JRY
Remark 5. From Lemma 1, if we use the norm || - ||, on W*/$(RY), then we
have

(max{1,n}) " 2lully < [lullwss@y) < (min{Lg}) "7 |ul,.

We get

- / O o (afuN' V) dar < oo
ueWsP(RN),|[ully <(min{1n})s/N J RN

forall0 < a < a, < agN-

Using Lemma 1 and noticing that C§°(RY) is a dense subspace of W*P(RY), we
see that J,, is well defined on W*»/¢(RY). Furthermore, we have

<dues= [ 1M w2 (ule) —u@)(el) ~ W) |

R2V |z —y[?Y

+77/ |u|g_2ucpd:p—/ fu)pdz.
RN RN

Lemma 2. Suppose that (f1) and (f3) hold. Then there exist positive constants
to, po such that J,(u) > po for all w € WN/*(RN), with ||ul|ye.n/s@ry = to-

Proof. From (2.6), for some ¢ > &, we have
[F@)] < Tl + Clt]" @ s (aolt ™)

for all t € R. Then we get

S N/s
Iw) =l = [ Fuda
(2.7) > Syl —T/ |u|N/de—c/ 1 x4 (a0 |u /) d.
N n RN RN ’

Using Hélder’s inequality, we have

1/t
(2.8) / |ul 1@ o (o)) da < (/ (CI)Ns(Oéo‘U‘N/(Nfs)))t dl’) [wll? o gy
RN ’ RN RY)

where ¢t > 1,¢ > 1 such that % + L = 1. By Lemma 2.3 [25], for any b > ¢, there

v
exists a constant C'(b) > 0 such that

(2.9) (@< (o ul V=)' < C(b) Dy o (barg|uN V=)
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on RY. Denoting @ = min{1,n}, we get

/ (@5 (arou[ M=) < C’(b)/ O« (barg|ul Y N) da
RN

RN

@10) = 0(0) [ bVl o N | d

When |[|ul|, is small enough and b near ¢, we have
(2.11) baob_s/(N_S)HanN/(N_s) < B < .

By Remark 5, (2.10) and (2.11), there exists a constant D > 0 such that

1/t
(/ (¢N7S(a0|u|N/(N_S)))tdx) < D.
RN

Since the embedding from W y/s(RY) — L4 (RY) is continuous, we get

(2.12) / a1 (v N ) dr < DAL [t < +oo.
]RN

at’sn
From (1.7), we have
(2.13) [wl /s @y < A]_V}s,nHuHU for all u € W*N*(RMV).
Hence, combining (2.7), (2.12) and (2.13), we obtain

S s _N/s s _
Jy(u) 2 lully” = A uly” — CDAGE lulls

N/sm qt’,
S S —N/s — _%
(2.14) = ully"*[ (5 = TAn) = CDAZ Jlulli |.
We see that = — TA;V]/\Z , > 0 for 7 small enough. Let
h(t) = % — AT DA 1 1> 0,

We now prove that there exists small ¢y > 0 satisfying h(to) > 3 (& — TA;,]/\L/ f]) We

see that h is continuous on [0, 400) and lim,_,o+ h(t) = & — A Then there

N/sm:
exists to such that h(t) > & — TAij/\i/ * — g forall 0 <t <t and t is small enough

n

such that ||ul|, = t, satisfies (2.11). If we choose g1 = 3(£ — TA;[]/\Z;), we have
L/s —N/s
h(t) = 5 <N - TAN/S?])
for all 0 <t <ty. Especially,
1 S —N/s
(2.15) hlto) = 5 (% — 74N -
From (2.14) and (2.15), for |ju||, = ty, we have
N/s
14 S —N/s
Ip(u) > OT : (N - TAN/S{?’]) = po. O

Lemma 3. Suppose that (f;) holds. Then there exists a function v € C§°(RY)
with ||v||,, > to, such that J,(v) < 0, where t; > 0 is the number given in Lemma 2.
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Proof. For all u € Cg°(RY) with |lul|,, = 1, from (/f;) and all ¢ > 0, we obtain
StN/S . StN/S .
few) = Sl = [Pty de < Sl ot [ Juta) .
By (1.7), for all v € [¥, 11), we have

L
Ay,+te A, +e

0<

< lull gy < Aggllully = A, < +oo,

where € > 0. Since pu > %, tN/s has growth smaller than t* as t — 400, then we
have J,(tu) — —oo as t — +oo. Taking v = pyu, p1 >ty > 0 large enough, we have
Jy(v) <0, |[v]], > to. O

From Lemma 2, Lemma 3 and a version of Mountain Pass Theorem without the
Palais-Smale condition, we get a sequence {u,} C W*/$(RY) such that

Jy(un) = ¢, and  Jy(un) = 0 asn — oo,
where the level ¢, is characterized by

¢y = Inf max Jn(7(1))

and I = {y € C([0, 1], W*N/$(RN)): 4(0) = 0, J,(v(1)) < 0}.
Lemma 4. Let {u,} be (PS)., sequence for J,. Then
(i) there exists a constant C.,, such that py < ¢, < C,,,
(ii) u, — u weakly in W*N/3(RN) and Jy(u) = 0.
Proof. We choose a function w € W*N/¢(RV)\ {0} such that ||w]|pug~y) =1 and
|lw|l;, = A,s- This means
lwlly - ]l
=A,,= :
el W Y v P

Then, from Ayy,, < — el e get [l sy < A]’V}Sn. We see that

”w”LN/s(RN)

¢y < max J, (tw) < max{ﬂﬂwﬂ N — e Iw(fﬁ)l“dﬂf}
T="Tz0 = >0 N K RN
N/s,N/s
B sAunt 4
(2.16) - I?Z%X{ 2 nt }

N/s
Set g(t) = SA##V/S — m1t* on [0, 4+00). We easily get
g(t) < 9(971) = 071

N/s\ S/ (us—N)
9 _ A/vaé
"o :
Tip

on [0, +00), where

Computing directly, we get

N/(us—N)
Allls 1
(2.17) = | L (i——) AN/,
Y1k N o op) "
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We see that lim,, _, .60, = 0 gives lim, . g(f,,) = 0. Therefore, the Moun-
tain Pass level c¢ is small enough when v, is large enough, which will be used later.
Combine Lemma 2 and (2.16), we get py < ¢, < C,,.

Note that {u,} is a (PS) sequence with level ¢, € R in W*¥/$(R¥). This means
(2.18) Jy(up) = ¢, and  sup [{J)(un), p)| — 0

llelln=1

as n — 0o. We show that the sequence {u,} is bounded in W*"/*(RV). From (2.18),
we have

<J,’,(un),#>:0n(1) and  J, () = ¢, + on(1)

[l

when n large enough. This implies
1
(2.19) () — ;(Jé(un% Un) = 4 0n(1) + on (1|t

where p is a parameter in the condition (f3). We have

Jy(ttn) — %<J,;<un>,un>

=l = [ Pt = <[l = [ 7l de]

S 1
= (3= 2l [ ) = (o) de

Therefore, we have

1 S 1 s
(2.20) Ty(ty) — ;<J,’,(un),un> > (N - ;) laally”-
Combining (2.19) and (2.20), we get
s 1 s
From (2.21), we conclude that the sequence {u,} is bounded in W*"/¢(R™). Since
1
i) = ). ) = €
as n — 00, then
C
(2.22) limsup [Ju, ||/ < " <
n—00 N u N

Going if necessary to a subsequence, for any q > E, we have
(RY)

u, — u in RY outside a set with measure zero.

U, — u weakly in WN$(RN), u, — u in L]

loc

Using the Trudinger—-Moser inequality, Vitali’s theorem and by arguments as in [12,
Lemma 5|, we can prove that J;(u) = 0. For convenience of the readers, we give a
detailed proof here. We need to prove that (J;(u),¢) = 0 for all ¢ € WeN/s(RN),
First we show that

(2.23) fluy)pdr — . fluw)pdz

RN
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for all ¢ € W*N/$(RN). From (2.5) for ¢ = &, we have

/ | wn) o] da
RN

(2.24)
<t [ eldo b [ funl ol YY)l do
RN RN

for some constants by > 0,b > 0. Using Holder’s inequality, we get
- -1
(2.25) [ TPl o < el sy < +09
due to the boundedness of sequence {u,} in W*"/$(R") and the continuity of the

embedding of W*N/*(RY) into LY/*(R"N). Using Hélder’s inequality for ¢ > g =p,
¢ > 5, ¢ > 1 near 1, noting that ¢t o+ =1, we deduce

[Tl ol Do d
R

1/gx ) 1/¢ 1/q
< ( [t 7+(p—1) d:p) (/ (@N,S(a0|un|N/(N_s)))q d:p) ( |<p|qu)
RN RN RN

1/q
220) = ( [ (@xalaolu SN o)l el

By [25, Lemma 2.3|, choosing ¢ > ¢’ > 1, ¢ near ¢/, there exists a constant C'(¢) > 0
such that

(227) (@0l V=) < C(e) g carlu V)
for all u € W*N/5(RN). By (2.17) and (2.22), we see that
N/(us—N)
Ay s 1 1
2.28 lim sup |u, ||N/* < [ =L (_ — _) AN/s =
(2.28) n%opH Iy _<71u N oop) TR

Combining (2.28) and (2.11), we have

(2.29) c.apd V) sup ||un||nN/(N_S) < o

when v > vy, where ~, satisfies

AN/S (us—]\sf])\EN—s)
(2.30) cogp ¥/ W= | T Af%(N’s) < .
Yol ’

Then, applying Remark 5, we deduce
sup/ Dy (caplun| NN )) da
n RN
(2.31) = sup/ @st(caob_s/(N_S)||Un||£,v/(N_S)(DS/NU/Huan)N/(N_S)) dr < +00.
n RN

From (2.26) and (2.31), we get

(2.32) / |un|p_1(I>N78(a0|un|N/(N_S))|<p| dr < +o0o.
RN
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Combining (2.25) and (2.32), we obtain

(2.33) /RN |f(un)p| de < 400,

ie. f(un)p € LYRY) for all n. Then there exists a constant x > 0 such that
|f(un)p| < & for all n € N. For any € > 0, there exists 0 = £ such that for all
measurable sets F C RY such that |E| < §, we have

/E\f(un)wl dr < K|E| <.

This means that {f(u,)e} is equi-integrable. Clearly, f(u,)p — f(u)e almost ev-
erywhere on RY. Since ¢ € W*™/5(RY) and W*"/3(R") is continuously embedded
into LI(RN) (¢ > &), then |l¢|l oy < A bll@lly < +00. Then there exists R > 0
such that

(2.34) / lp|¥* de < €N and / lp|?dx < 1.
RN\BR(0) RN\BR(0)

By arguments as (2.25), (2.26), (2.31) and combining with (2.34), we only integrate
on R\ Bg(0) and get

/f Flun)gl de < rec,
RN\BR (0)

where k, is a suitable constant. Therefore, all conditions of Vitali’s theorem are
satisfied and (2.23) is proved. Similarly, we have

(2.35) / [, %2un<pd:c—>/ lu
RN RN

as n — o0o. Finally, we prove that

[ lenle) ) —npl) = 010D o,

|z — y[2V

%’2u<p dx

oy o [ MO M) ) o,

|z —y[*N
Using Holder’s inequality, we see that

/ [4n () = un )2 (1n(2) = un () (P(2) = WD)
R2N \x — y|2N

|t () — (1) N/ (X -1/(/s)
< (/RQN PRy dxdy)

_ (/ (@) = oIV dy) 1/(N/3)

rev |z =y
N_y
(2.37) < Junllyllelly < 4o0.

Hence
Jun () — un () P2 (un () — ua(y))(2(2) — 2(y))
o=y
for all n, and there exists a constant K > 0 such that
[n () — un()["*(un() — un())(P(2) =) | _ 1
|z —y*N B

c Ll (RQN)
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for all (z,y) € R?*Y outside a set with measure zero. For any € > 0, there exists
d = £ such that for all measurable sets E C R*" such that |E| < 6, we have

j/ | () — () P2 (un () — un(y))(2(2) — ©(y))

|z — y |2V
Hence { ‘“"(x)—“n(y)l””(Iun(xl)ivu”(y))(w(x)—sO(y))
z—y

’dxdy§K|E| <e.

} is equi-integrable on R?V. Clearly,

|tn () = un(Y) [P~ (un () — un(y)) (@(2) = ©(y))
|z —y[>N

[u(z) — u(y)["~*(ulx) — uly))(p(r) — ©(y))

|z —y*N

—

almost everywhere on R?. Since ¢ € W*N/$(RY), then there exists R > 0 such that

_ N/s
R2N\ B (0) |z —y|

where Bgr(0) is a ball in R*" with center 0 and radius R. By arguments as (2.37)
and as only integrating on R*Y \ Bx(0), {u,} is a bounded sequence in W*"/5(RN),
there exists a suitable constant /K, > 0 such that

[ L) el nole) = 10D o,
R2N\BR(0)

|z —y*

_ N/s (HE-1)/(N/s)
<(f,  moomt,,)
R2N\BR(0) |z —y|

_ N/s 1/(N/s)
. (/ () _QO(;yA)[| dx dy) < K.e.
R2N\ By (0) |z -y

Therefore all conditions of Vitali’s theorem hold and we get (2.36). Combining (2.18),

(2.23), (2.35) and (2.36), we get (Jy(u),p) = 0 for all p € WeN/s(RN). Hence,

J,’Z(u) =0 on (W*N5(RN))* which is a dual space of W*N/s(RY). O
The following result is the version of Lions’s result:

Lemma 5. [12]| If {u,} is a bounded sequence in W*™/*(RN) and

lim sup / | (2)|V/* dx = 0
Br(y)

n—oo yERN

for some R > 0, then u, — 0 strongly in LY(R") for all ¢ € (£, +00).

Lemma 6. [12] Let {u,} be a sequence in W*N/*(RN) converging weakly to 0
N=s) o Bos/N=3)
0

< ———, where ¢ > 1 is a suitable constant and

with limsup,,_,__ [|u,||>/¢
assume that (fy) holds and lim; o+ I8 — 0. If there exists R > 0 such that

5 =
ts 1

liminf,, o sup,cgn fBR(y) |, |N/* dw = 0, it follows that

f(up)u, — 0 and / F(u,) — 0.
RN RN

Proposition 1. [12]| Assume that the conditions (fi)—(fs) are satisfied. Then
problem (2.1) admits a nontrivial nonnegative weak solution.
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3. The auxiliary problem

Using the change of variable x +— ez, the problem (P.) is equivalent to the
following problem

(2.38) (=A)u+ V(ex)|ulP"2u = f(u). (PY)
Definition 6. We say that u € W is a weak solution of problem (2.38) if
N_
|u(z) — u(y)] = *(u(z) — uy))(e(x) = #y))
dx dy
|z —y[?¥
R2N

+ /RN V(ex)|u(z)

for any ¢ € W-..

%’2u(:v)g0(x) de = o fu(@))p(z) dx

In order to study the equation (2.38), we consider the energy functional I.: W, —

R given by
1
L) = S ulf, - / F(u) de.
P © RN

By the condition (f;), I. is well defined on W., I. € C?*(W.,R) and its critical
points are weak solutions of problem (2.38). Associated to I., we consider the Nehari
manifold N, given by

Nz = {u e W\ {0} : (I(u),u) = 0},

where

(I'(u), ) = /Rw [u(z) — uly)P~*(u(z) — u(y))(p(@) = o)) a

|z — y| Vs

+/ V(ex)ulP~?up dx — / f(u)pdx
RN RN
for any u, p € W..

Proposition 2. There exists r, > 0 such that

lullw. > 7. >0 forallu € N..

Proof. We easily get the inequality
(2.39) ey < min{1, Vol ™7 lulw..
Then from Lemma 1 and (2.39), we have
(2.40) sup / Dy (afu| NN de < +oo

weWe,||lullw, <(min{1,Vp})s/N JRN

for all 0 < a < a, < af 5. From the condition (f1) and (f3), for any . > 0 and
q > & there exists Cy., > 0 such that
(2.41) [F(O] < et + Cye [t 1@, (ot )

for all ¢ > 0. Using inequality (2.40) and by arguments as Lemma 2, there exists a
constant C(q, e.) such that

—N/s

N/s
(2.42) . flujudr < eS8y, /vl /

we T C(g ) [[ully,

for some ¢ > & and all u € AN. and ||lully. is small enough. Assume that by

contradiction, there exists a sequence {u,} C N such that |lu,|w. — 0 as n — oc.
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Hence (2.42) holds for u = u,, when n is large enough. From the definition of N, we
get

N/s
WS4 Clg,e0) [l

N/s —N/s
ol = [ Flun)unde < 20557

Divide both sides of above inequality by ||u, ||%8 and take n — oo, we get a contradic-
tion when ¢, is small enough. Therefore, there exists . > 0 such that ||ul|w. > r. >0

for all u € N.. O
Lemma 7. The functional I. satisfies the following conditions:

(i) There exists a > 0, p > 0 such that I.(u) > « for all u € W, with [|ul
(ii) There exists e € W, with ||e|lw. > p such that I.(e) < 0.

We = p-

Proof. Lemma 7 is proved similarly to Lemma 2 and Lemma 3 using the inequal-
ity (2.40). We omit the details. O

From Lemma 7 and a version of Mountain Pass Theorem, there exists a (PS)..
sequence {u,} C W,, that is,

I.(u,) = c. and Ié(un) — 0,

where

_— inf I(y(t
ce = inf max (v(1))

and I' = {y € C([0,1], W) 4(0) = 0, I.(v(1)) < 0}.
The following result is proved in [12] but the original idea comes from [34].
Proposition 3. We have c. = inf,ew,\(0) Sups>g Ic(tu) = infyen. Io(u).
Lemma 8. Let {u,} be a bounded sequence in W, satisfying

s/(N—s
N/(N—s) gy )

lim sup fun |, NI

where 0, = min{l,Vs}, ¢ > 1 is a suitable constant and assume that (f,) and
(f3) hold. Up to a subsequence, we may suppose that u, — u weakly in W, and
un(z) — u(x) everywhere in RY. Then it follows that

(1) limy—oo fon |[F(vn +u) — F(v,) — F(u)| dz = 0, where v, = u, — u.

(ii) For any r > 1 such that (£ — 1) > & we have

lim |f (v, +u) — f(v,) — f(u)|]"dx = 0.

n—oo RN

Proof. From the condition (f;), we have

(243) FO] < bt~ + boft Dy (g [t ),
(2.44) |F (0] < DuEN® + bo|t|P Dy o (gt N V=),
(2.45) (O] < bilt]™* + bt Do (ot

for all t € R and some constants b; > 0, b, > 0. We begin remarking that

(2.46) F(v, +u) — F(v,) = f(vn, + tu)u, where t € [0,1].
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Combining (2.43) and (2.46), we get
|F (v, +u) — F(vy,)|
< by [vg + tul 5 ] 4 bofv + tul 5 u @ (ao|vn + tulN )

< by >N ) + ba )= |l @ ( ([va] + [u]) NN )
< 251y ( =7 )uf

(247)  +ba(joa] + |u|>%—1|u|<1>N,s<ao<|vn| + [ul) N/ V=),

Now, we prove

(2.48) |F (v, +u) — F(v,)| € LY(RY).

By the Brezis-Lieb Lemma, we have

[n = wlf5

w. = llunl w. T on(1) < lunlliy, + 0n(1)

w. — llul
as n — o0o. Thus,

B (N=s)/
i —ullP S S
lim sup ||un u” < sup ||U7L||W < <2N/(Ns)ca0) 0s

n—00 neN

Therefore, there exists ng such that

8. (N—s)/
(2.49) 5;1}1)0 |tn — ullfy, < (m) 0..
By Fatou’s lemma, we have
- By =)/
(2.50) ul[fy, < llyllr_l)glfHuan < (m) 0.

Using Holder’s inequality, we get

(2.51) /]R

and for t > %,t' > 1,t.(p — 1) > p such that -+ 3 + t/ =1, we get

F N ul e < ol @ 1l s (RY).

/RN(|U"| + |u|)p_1|u|‘b1v,s(0zo(|vn| + |u|)N/(N—S)) dx

1/t
252) < o+l ey ([ (@il ) o)
Then by [25, Lemma 2.3|, for any ¢ > t/, there exists a constant C'(¢) > 0 such that
253)  (@xlanllon] + [u)O)" < O (caplun] + fu) VN)

on RY. Noting that 9, = min{1, V}, we get

/RN (P, (an(va] + |u|)N/(Nfs)))t < C’(c)/ D5 (bag([vn] + [u)NN=9) da

RN
N/(N s)

(2.54) :C(c)/ ¢>N,s<caob S/ N=9)|||v,] +
RN

Unl + |uf
N | )d:c.
o] + ful fw. [/ V=)
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When ¢ is near ', combining (2.49) and (2.50), we have
(2.55) cagd N9 |v,, < B < iy
by (2.40), (2.54) and (2.55), there exists a constant D > 0 such that

(2.56) ( [ @xfaalo] + ul) ¥ -9))" dx) " ep

Since the embedding sequence from W, — W/$(RV) — LI(RV) is continuous for
all g € [¥, +00), we get

(2.57) < D2”_15{,§||UIIWE(||vn||Lt*<p ogeny Il gry) < Foo.

N/(N—s)
We

Combining (2.49), (2.51) and (2.57), we get the claim (2.48). By arguments as
in [39, Lemma 7|, for any u € W, and a > 0, we have

(2.58) / Dy (a|ulY V) dr < +oo.
RN

Using Holder’s inequality for ¢ > & and ¢ > 1 such that 1 + § =1, (2.58), and [25,
Lemma 2.3|, it is easy to get

1t
N/s _s ’
[ IF@1 < bl + ey [ (@laalu )y )
(2.59) < +00.

From (2.48) and (2.59), we obtain |F (v, +u) — F(v,) — F(u)| € L*(RY) for all n large
enough. Then there exists a constant £ > 0 such that |F (v, +u) — F(v,) — F(u)| <k
on RY outside a set with measure zero. From wu,(z) — u(z) almost everywhere on
RY, we see that

(2.60) F(o,+u)—F(v,) — F(u) =0 asn— oo

outside a set with measure zero. For any € > 0, there exists 6 = £ > 0 such that for
all U ¢ RY with |U| < §, we have

(2.61) /U F(un 4+ 1) — F(un) — F(u)|dz < k|U] = ¢

for all n large enough. Since u € LV/*(RY), u € LY(RY) and the embedding from
W. — L3(RY) is continuous for all ¢ > £, then there exists R > 0 such that

(2.62) / julV* dx < e and / |ulP dz < e
RN\BR(0) RN\BR(0)

Combining (2.47), (2.51), (2.52), (2.56) and (2.59), only integrating on RY \ Bgr(0)
gives a constant k, > 0 such that

(2.63) /R o P ) = Plan) — Pl < e

Combining (2.60), (2.61) and (2.63) and using Vitali’s theorem, we get (i).
For any € > 0, from the conditions (f;) and (f3), there exists C'(¢) > 0 such that

FOI < elt] ¥ + Cle) e D (el YN,
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We have

[f (on 4 u) = fon) = F(u)|" < 37([f (on + w)|" + [ f(a)|" + [f(@)]").
Then statement (ii) is proved similarly as (i). We omit the details. O

Lemma 9. Let {u,} C W, be a (PS), sequence for I. such that u,, — 0 weakly in
W, verifying limsup,, _, ., HunH%(Nfs) < G/
Then we have either:

(i) u, — 0 in W, or

(i) there exists a sequence {y,} C RY and constants R > 0,3 > 0 such that

v where ¢ > 1 is a suitable constant.

liminf/ ||V dx > B > 0.
"% J Br(yn)

Proof. Suppose that (ii) does not occur. First from the condition (fs), any
(PS)4 sequence of I. must be bounded in W.. Then by arguments as in Lemma 5,
we have u, — 0 in LY(RY) for ¢ € (£, +00). By arguments as in Lemma 6, from
the conditions (f;) and (f3), we have lim,_, fRN f(up)updr = 0. Recalling that
< Il(u,),u, >— 0 as n — oo, then we get u, — 0 strongly in W.. The proof of
Lemma 9 is complete. O

Lemma 10. Suppose that V,, < 4+o00. Let {v,} C W, be a (PS)y sequence
converging weakly to 0 satisfying limsup,,_, . ||v| ]V\(,/ (N=s) < %, where ¢ > 1
is a suitable constant. If v, /# 0 in W_, then d > ¢y, , where ¢y, is the maximum

level of energy function associated to the problem (Py._).

Proof. Let (t,) C (0,+00) be a sequence such that (¢,v,) C Ny, . We start by
showing the following claim.

Claim 1. The sequence {t,} satisfies limsup,, ., t, < 1. Indeed, suppose that
the above claim does not hold. Then there exist § > 0 and a subsequence still denoted
by (t,) such that

(2.64) t,>1+6 foralln e N.

By the condition (f3), {v,} is bounded sequence in W,, and then < Il(v,),v, >=
on(1) as n — oo. This means that

o= [ fde +0,(1)

Moreover, recalling that (t,v,) C Ny, we get

twma:/meme
]RN

The above equalities imply that

(2.65) /R ) [M - f(vn)vn} _ /R Ve = VeIl o+ 0,(1).

[n]

th
Given any £ > 0, from the condition (V'), there exists R = R(¢) > 0 such that
(2.66) V(ex) > Voo — & for any |z| > R.

Since {v,} is a bounded sequence in W, and the embedding from W, — L™/(RY)
is continuous, then there exists C' > 0 such [jv,|[ v/s@yy < C. From v, — 0 in
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LN/5(Bg(0)), V is a continuous function and (2.66), there exists a suitable constant
C, > 0 such that

/R Voo = Vel do

(2.67) = / Voo — V(ex)]|v,|P dz + / Voo = V(ex)]|v,|P dx < CLE.
Br(0) RN\BR(0)

Because v, /4 0 in W,, by Lemma 9, there exist a sequence {y,} C RY and R, > 0,
B > 0 such that

(2.68) / lun| N/ dz > 8 > 0.
BR*(yn)

Note that {v,} is a (PS)4 sequence of I.. We denote v, () = min{v,(x),0} and
v () = max{v,(x),0}. Since {v,} is bounded in W,, then {v; } is also bounded in
W,, and we have < I/(v,),v,, >— 0 as n — co. We see that

(i = [, o) ) ) te) = 150

(2.69) —i—/ V(ex)|va P 2v,0;, da:—/ f(vp)v,, d.
RN RN

We denote QF = supp(v;)), Q. = supp(v;,), 2, = supp(v,). Then we get

n

[ 1) = ) ) 050D

|z — y|2N

/ (v (@) — vt (y) + (v, () — v, (y) P2
(QF UQ; UQS ) x (3 D, UQS) |z — y[2N
X (v, (2) = vy (y) + v, (2) = v, () (v, (2) = v, (y)) da dy

+ — - p—1y—
_ / o @) = e P W)
QF xQp

|z —y?¥
- _ gt p—1y—
[ e,y
Qn xQit |z -y
v (@) — v (y)[P / v, (y)P
+/ z z dx dy + — " — dx dy
Qn xQ |z —y[2V Qe x Q7 |z —y|>N
v, (@)
2.70 +/ —————dzxdy,
(2.70) o xqe [T — y|NHes

where Q¢ = RY \ Q for some set Q C RY. Note that Q= QF UQ¢ and

vy () — v, ()] / vy () — v, ()]
" . dz dy = " . dx dy
/R?N E Q5 xQn |z —yPN

- o= P - o P
N R - U Py gy T B
Q7 x5 Q5 xQn

|z — y|2Y |z — y|2N
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—(7Y — o= (a))|P —(2Y — o= ()P
B R
O x Qi Qn x b

|z —y?Y |z —y?Y
v, (2) — v, ()P vy () — v, (W)
+/ & - dz dy + & = dz dy
QX |z —y[*Y QF xQy |z —y[*Y
v, () — v, ()1
+/ " . dz dy.
Qc xQy |z — y[2N

Hence, we get
- — p - — p
[P, [ 0,
R2N Qn xQp

|z —y|?N |z —y[?N
o, (2)]” / v, (@)[”
+ ———drdy + — _dxd
/Q;XQTJ{ |$ - y‘QN Y Q, xXQp© ‘SL’ - y|2N Y
v ()17 v ()17
(2.71) +/ ————dx dy + — = dx dy.
Qf xQn |z —y|>N Qe X0y |z —y|?V
We have
+ — v p—1ly,— - P
N / v () — v, (y)QIN va(y) dy— / v, (y)ZIN iz dy
QF xQ; |z — ot <o 1T — Y
o (z —
(J1 = 2= = Do, (v
(2.72) =1/, PRy dx dy > 0.
Qi xQy -
Similary, we can get
- — Tt p—1,— - P
o) - [ @HOPaE el
Qn Q3 |z =y R 1]

From (2.70) to (2.73), we deduce
[ )= )= 5 =)

|z — y[2V

|z —y*
Combining (2.69) and (2.73) and noting that f(¢) = 0 for t € (—o0, 0], we get

lv

WE—>O

nl
as n — oo or equivalent v, — 0 in W.. Note that W, is continuously embedded into
W N/s(RN), then v, — 0 in W*N/5(RY). We denote T, (x) = v,(z +y,). Since ||.||v;
is invariant under the translations, we get

HEM%=ﬂWM%fEWAQﬂ:éNV@@hMPZH%!

Then {v,} is a bounded sequence in W*"/*(RY). Up to a subsequence, we may
assume that there exists 7 € W*N/$(RV) such that 7, — ¥ weakly in W*"/5(RV)
and U, (z) — v(x) on RY. By arguments as above and Fatou’s lemma, we get

p
We:

177 |lv, < liminf ||7,, ||y, <liminf ||v, ||w. = 0.
n—oo n—o0
Then ¥ = v+, From (2.68) and v,, — ¥ in L™/*(Bg,(0)), we deduce fBR ©) [o|N*dx >

3/2 > 0. Therefore, there exists a subset  C Bpg,(0) C RY such that |Q] > 0 and
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v(z) > a > 0 for all z € 2, where a > 0 is a suitable constant. Since v, — ©
on L(Bpg,(0)) for all ¢ € [¥,+00), we can assume T,(z) — T(z) on Q and then
Tp(x) > § > 0 for all z € Q and n large enough. From (2.65) and (2.67), we obtain
[(1;7_1) - f(vn)vn] dr = [(1;7_1) - f(vn>vn] dx
supp(ﬂ;t) tn RN tn
tn n n
(2.75) _ / LU0 e de < Cut
RN 14

for any £ > 0. Using the condition (f5), Fatou’s lemma, (2.64), (2.75) and f(t) =
for all t € (—o0, 0], we get

fO+oppw [ f(A+8) [,
O</Q[ (1+ o)1 — f(0)7] dx—/ﬂ[«l_i_é)@)pq - @p—l]v dx
R B L (C R A L5 N O [ B AN
Shmmf/g[( — o dx < i f/[( ot d

n—00 (]_ + 5)671)1)_1 ,Up 1 n—00 tnﬁn)P—l @%71

— lim inf / [Mj)v” — f(@,)T,] dz < liminf / [Mj)v” — f(w.)T,] dx
n—oo Ja tzr)z =00 Jsupp(wih) tzr)z

<O

for any ¢ > 0 and n large enough. This is a contradiction. Then Claim 1 is proved.
Now, we will consider the following cases:

Case 1. limsup,_,.t, = 1. Then there exists a subsequence, still denoted
by t, such that ¢, — 1. Recalling that I.(v,) — d as n — oo, and noting that
Jv. (tnvn) > cv.,, we have

d+o0,(1) = I.(v,) = I(v,) — Jv (tavn) + Jv (tnvn)
(276) > [€<Un) — Jvoo (tnvn) +cy, .
Let us compute
1—1P 1

Py IVACORTAINZE

(2.77) + /RN(F(tnvn) — F(v,))dx.

Using the condition (V), (2.66), v, — 0 in L"/*(Bg(0)), t, — 1 and
Vier) =8V = (Viex) = Vo) + (1 = t8)Voo > =6+ (1 = t2)V,,  for all x| > R,

I (v,) — Jv(tyv,) =

we get

/ (V(ex) — Vo) |vn|? da
]RN

= / (V(ex) — 2 V) |v,|P da + / (V(ex) — t2Vy)|vn|P dx
BRr(0) RN\BRr(0)
> (Vo —tPVy) / |vn|P dx — & |, |P dx
BRr(0) RN\BR(0)

(2.78) V(1 - ﬂ,;)/ P dz > o0, (1) — £C7,
RN\Bg(0)
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where C* is a suitable constant. Since {v,} is a bounded sequence in W, then
. (1=t)
2. 1 & b o=0.
( 79) nl~>nolo p [vn]&p O
From the condition limsup,, ||vn||%(N_S) < %ZN?S), by arguments in Lemma 8
and noting that ®y 4(¢) is an increasing function on [0, +00), it is easy to get

(2.80) lim (F(tpvn) — F(vy))dx = 0.

n—oo RN

Combining (2.76)—-(2.80), we obtain
d+o0,(1) > ey, — C*€+ 0,(1).
Taking the limit in the above inequality, we get d > cy__.

Case 2. limsup,_,. t, = tp < 1. There exists a subsequence, still denoted by
{tn} such that t,, — ¢, (< 1) and then ¢, < 1 for all n € N. We see that

1, 1

(2.81) d+o0,(1) = I.(v,) — —(I(vp),vn) = / (—f(vn)vn - F(vn)) dzx.
p RN \P

Noting that t,v, € Ny, by the condition (f5) and (2.81), we get

1,
- J tnvn ) tnvn
p< Voo (fn¥n), tnn)

_ /R ) (% F(bvn) ot — F(tnvn)) da
< /RN (lf@n)vn _ F(vn)) dz = d+ on(1).

p
Taking the limit of the above inequality as n — oo, we get d > ¢y, . U

Cv < JVOo (tnvn) = JVOO (tnvn)

Lemma 11. Let u, be a (PS), for I. satisfying

N/(N=s) 3,05/ V=)

limsup Jlun [ < S

where ¢ > 1 is a suitable constant. Assume that ¢ < ¢y, when V,, < 0o or ¢ € R if
Voo = +00. Then {u,} has a convergent subsequence in W..

Proof. First, we consider the case V,, < 400. From the condition (fs), we see
that {u,} is a bounded sequence in W.. Then, up to a subsequence, we may assume
that

(2.82) u, — u weakly in W,
(2.83) un, = uwin LL (RY) for any ¢ € [¥, +-00),
(2.84) U, — u a.e. in RY.

By arguments as in Lemma 4, we have I/(u) = 0. Set v, = u, — u. Using the
Brezis-Lieb Lemma and Lemma 8, we get

lunllsy, Nl

L(v,) = - —/RN F(uy) dx+/ F(u)dz + 0,(1)

p p RN
= I.(uy) — I.(u) 4+ 0,(1)
(2.85) =c—I.(u) + 0,(1) :=d + 0,(1).




Multiplicity and concentration of solutions to a fractional p-Laplace problem. . . 625

By [8, Lemma 2.6], we have

(2.86) /RQN |A(uy,) — A(vy) — A(w)|P de dy = 0,(1),

where p/ = -2

Pt is the conjugate exponent of p and

[v(z) — o) (v(z) — v(y))
Av) == v
[z —y|¥
for all v € W.. Noting that V' is a bounded function, then by [8, Lemma 3.3], we can
see that

(2.87) / V() [on]P~20n — [tnP~2un + [uP~2u” dz = on(1).
RN

Hence, using Hoélder’s inequality, for any ¢ € W., we have

(L (vn) = L(un) + L(u), )]

Ee
7

< ([, 1Atw) - Alen) — A de )" (oL,

e
==

+ (/ V(ex)||valP 20 — |tn|P~u, + |u|p72u\p' da:)
]RN

([ veeateras)

1

@89+ ([ 1) = ) + 1@ o) el

Since the embeddings W, < W*P(RY) < LP(RY) are continuous, then from (2.86)—
(2.88) and Lemma 8, we deduce I_(v,) — 0 in W*. By the condition (f;), we have

(289)  L(u) = L(u) - %u;(u),m _ /R ) B Fluyu— F(u)] dz > 0.
Combining (2.85) and (2.89), we obtain
d<c<ey,

which together Lemma 10 gives v,, — 0 in W.. That is u,, — u strongly in W..

Next, we consider the case Voo = +00. Then V is a coercive function on R:
V(ex) — +oo as |z| — +oo for each € > 0. Therefore meas({z € RY: V(ex) < c}) <
+oo for any ¢ > 0. By arguments as in [39, Lemma 5|, we have that the embedding
from W, < LI(RY) is compact for any ¢ € [&,+00). Then v, — 0 in LI(RY) for
any q € [%, +00). From the condition (f;) and by arguments as in Lemma 8, we
easily get

(2.90) lim f(vp)v, dx = 0.
n—o0 RN
Furthermore, using Vitali’s theorem and by arguments as in Lemma 8, we deduce

(2.91) lim |f (up)upn — f(vp)vn — f(u)u|dx = 0.

n—o0 RN

Combining (2.90), (2.91) and the fact that (I (u),u) = 0, we get

lim [an oy, = [l
n—oo

This implies that u,, — « in W. due to the Brezis-Lieb Lemma. 0
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Lemma 12. Let {u,} be a (PS). sequence for I. restricted to N with

o B,/ WN=9)
(2.92) lim sup [[u, ||/ ™ ) BT

n—00 CQg

)

where ¢ > 1 is a suitable constant. Assume that ¢ < ¢y, when V, < 0o or ¢ € R if
Vo = +00. Then {u,} has a convergent subsequence in W-..

Proof. Let {u,} be a (PS), sequence of I, restricted to AN, that is,
I(u,) = ¢, (In.) —0 asn— +oo.

Noting that (I(u,),u,) = 0 and using the condition (f;), we have that {u,} is a
bounded sequence in W.. From Proposition 2, we have

(2.93) tnlw. > 72 > 0.

Then up to a subsequence, we can assume that

(2.94) m ||ug|lw. =1, 7« <1< sup|ju,||w. < +o0
n—o0 n

and
U, — u weaklyin W,

loc

u, = win LE (RY) for any ¢ € [, +00),

u, — u a.e. in RY,

Since {u,} C N, then we have

|z —y?N RN

First we consider the case V,, = +00. Then up to a subsequence, we assume that
u, — w strongly in LI(RY) for all ¢ € [&, +00). By the assumption (2.92), (2.4) for
q= % and using Vitali’s theorem as in Lemma 8, we get

lim fup)up, dx = f(u)udz and
RN

n—oo RN

(2.95) lim I (up)u? dv = f(u)u? dx.
RN

n—oo RN

Combining (2.94) and (2.95), we obtain

(2.96) 0<l= /RN f(u)udz :/{ oo, fwH)u™ dz.

Since f(t) > 0 for all ¢t > 0, then (2.96) implies that u* Z 0. Conversely, we get [ =0
which is a contradiction. By the method of Lagrange multipliers, there exists a real
sequence {A,} C R such that

(2.97) I;(un) = AnK;(un) + o0,(1),
where K.: W. — R is given by

K.(u) = (I.(u),u) = /Rw dedy+ /RQN V(ex)|ulP de — /RN f(u)udz.

|z —y|2V
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Consequently, we have

/

Up(x) — un(y)|P
(K_(up),up) = p/ | (|x) y|2]\<,y)‘ dzx dy +p/ V(ex)|u,|? dz
R2N -

~ |, f(un)u, do — . f(up)u? dx
= [ (=), = £ (w)ed) da
(2.98) o @ DS = ) )

From Remark 1 (ii), we have f'(t)t — (p — 1)f(¢t) > 0 for all ¢ > 0, then
(p — V) f(uw)ut — f(ut)(uf)? < 0 for all n. The equality (2.98) implies that

sup,crv (K. (Un), un) < 0. If sup,cpv (K. (u,), u,) = 0. Then up to a subsequence,
we suppose that lim,, e (K. (uy), u,) = 0. Then from (2.95) and (2.98), it holds

[ (0= Df = Fw)dz o

Thus we get
(2.99) / ((p— Dyt — b)) do = 0.
{z€RN : u(z)>0}

Using again Remark 1 (ii), we have
(2.100) (p— ) f(wHut = f'(uHut® <0

for all z € Q = {z € R": u(z) > 0}. Hence, we get a contradiction from (2.99) and
(2.100).

Next we investigate the case V,, < 4+o00. If u # 0, then there exists ¢t € (0, +00)
such that tu € Ny,. This means that

(2.101) P ully, = /RN f(tu)(tu) d.

By the property of Ny, there exists r > 0 such that ||u||y, > 0, then (2.101) implies
u™ # 0 and there exists g9 > 0 such that u(z) > g9 > 0 on Q C RY with |Q] > 0.
From (2.98), we have

/ U () — up(y)|P /
K (), u,) = — dx dy — 1% Pd
(K (un), un) p/w P vdy=p | (ex)|un|” dz

[ fluundz+ [ f () de
RN RN

(2102) = [ ()i = = D)) da
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By arguments as in the first case, we can assume that lim,, . (K ;(un), u,) = 0. Using
Fatou’s lemma and (2.102), we get

0 > liminf /R )~ (= 1) f () d

n—oo

> [ (e - = 1w ds
- / (i — (p— 1) f(w)u) de
{zeRN : u(x)>0}

(2.103) > /Q(f’(u)u2 —(p—1)f(w)u)dz >0

due to the condition (f5). This is a contradiction.

Finally if v = 0, then (2.93) implies that uw, /4 0 in W.. By arguments as
in Lemma 9, we can show that there exists a sequence {y,} C RY and constants
R > 0,5 > 0 such that

n—o0

(2.104) liminf/ | |N* dx > 8 > 0.
Br(yn)

We denote v,(z) = up,(z + y,). Since the norm in W*™/*(RY) and the integrals are
invariant under translations, we have ||v,||v; = ||un|lvy < ||tn]lw.. Therefore {v,} is
a bounded sequence in W*N/$(RY). Then up to a subsequence, we have

v, — v weakly in WN/(RN),

v, — v in L (RY) for any ¢ € [, +00),

v, — v a.e. in RV,

From (2.104), we obtain v # 0. We see that
K)o} = [ (£ )i = (0= Df(un)u,) da
(2.105) = [ (£ = = D))

Now, we repeat the method as in case u Z 0 and get a contradiction.

In conclusion, we get sup,,cy < K. (up), u, >< 0, and (2.97) implies A, = 0, (1)
as n — oo. Therefore, {u,} is a (P.S). sequence of /. and Lemma 12 is obtained from
Lemma 11. UJ

Corollary 1. The critical points of I, on N are critical points of I. in W-.

Proof. The key idea is to show < K. (u),u >< 0 for all w € N.. This follows by
using similar arguments as in Lemma 12. We refer the readers to [21, Proposition 2.1]
for a proof of this kind of a lemma. O

4. Existence of a ground state solution

In this section, we prove the existence of a ground state solution for problem
(PY). That is a critical point u. of I. satisfying I.(u.) = c.. We consider the energy
function

v (1) :]13 (/RN% +/RNV0|u|pdx) —/RN Flu) da
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of problem (Py;,). We recall that cy, is the minimax level related to Jy, and Ny, is
the Nehari manifold related to Jy,, given by

Ny, = {u e WeN/s(RN)\ {0} : Ju(z) = u(y)" +/RNVO|u|pdx = /RNf(u)u dx} .

R2N ‘55 - y|2N
Now we state the main result of this section:

Theorem 7. Assume that (f1)—(f5) and (V) hold. Then there exists € > 0 such
that (P*) has a ground state solution for all 0 < ¢ < E.

Proof. We will prove that there exists € > 0 such that ¢. < ¢y, for all € € (0,2).
Since ¢y, < ¢y, when V,, < 400, Lemma 11 implies that I. satisfies the (PS)..
condition. Further, combining that result with Lemma 7, I. has a critical point at

level c.. Next, without the loss of generality, we assume that V' (0) = V5.
Let ¢ € C°(RY,[0,1]) be such that ¢ =1 on B;(0) and ¢ = 0 on RY \ By(0).

For each 7 > 0, let us define v, (7) = ¢(¥)w(x), where w is a ground state solution of
the problem (Py;) given in Proposition 1. For each v,, there exists t., > 0 such that

t- v € N, and we have

ter v (@) — v (y) | 2,
. < I.(t., v, :—’/ d:pder—’/ Viex)|v,(x)|P dx
(o) === [ B = [ Vo)

—/ F(t.,v.) dx.
RN

For any u € N, we have
Jully, = [ Fuwuds
RN

Then we get

1 1
(3.1) L(uw)|n. = —=||u|lf : —/ F(u)dx = / (—f(u)u - F(u)) dzr > 0.

p RN RN \P
From (3.1), we see that the sequence {t.,} must be bounded as ¢ — 0T for each
r > 0. Indeed, if t., — +o0 as e — 07 for fixed r, then using the condition (fy), we
have

tz‘;vr p M 2
Ie(teﬂ’vr) > ?HUTH A '71te,r||vr||Lu(RN) — —0Q,

which is a contradiction with (3.1). Thus, we can assume that ¢., — ¢, as ¢ — 0.
Since v, has compact support, then we get

tP N — . (y)? tP
limsupc. < —7"/ [vr(2) = or(y) dx dy + —7"/
R2N p

e—0+ p |l —y|*N R
= JVo (trvr>
via Vitali’'s theorem or Lebesgue’s dominated convergence theorem. Noting that

v, w € Ny, and v, — w in W*NV/$(RV) as r — 400 (see [8, Lemma 2.2|) and using
Remark 1 (IV), we can prove that ¢, — 1 as t — co. Then we get

Volve|P dx — / F(t,v,) dx
N RN

limsupe. < lim Jy, (t,0,) = Jy, (w) = ¢y,
e—0t r—=+oo

By arguments as in Lemma 4, we get cy, < C,,. Thus, if we choose v; large enough
as in (2.30) for d, instead of ?,, and C,, < ¢y, if Voo < +o00, then for any (PS5)..
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sequence (u,) for I, we get

—s) < 6*0*8/(]\7_8)

. N/(N
thUpHUnHWE ~ m

n—oo

Now, the result of this theorem comes from Lemma 11. O]

5. Multiplicity of solutions to (P.)

In this section, we show the existence of multiple weak solutions and study the
behavior of their maximum points related with the set M. The main result of this
section is equivalent to Theorem 2 and it is stated as follows:

Theorem 8. Assume that (f1)—(f;) and (V) hold. Then for any § > 0, there
exists e5 > 0 such that (P.) has at least caty, (M) nontrival nonnegative solutions,
for any 0 < € < 5. Moreover, if u. denotes one of these solutions and z. is its global
maximum, then

lim V(ez:) = Vb

e—0t

Proof. Let 6 > 0 be a fixed and w be a ground state solution of problem (Py).
It means that Jy, (w) = cy, and Jy, (w) = 0. Let n be a smooth nonincreasing cut-off
function in [0, +00) such that n(s) = 1if 0 < s < £ and n(s) = 0if s > 6. For any

y € M, we denote
ExT — Y
oy =z = ) (1)

and ®.: M — N which is defined by ®.(y) = t.1).,, where t. > 0 satisfies
T?E%X Ls(twe,y) = [zs(tewe,y)-

From the construction, ®.(y) has compact support for any y € M.

Lemma 13. The function ®. satisfies the following limit
lim I.(®.(y)) = ¢y, uniformly iny € M.
e—0t

Proof. Suppose that the statement of Lemma 13 does not hold. Then there exists
9o >0, {y,} € M and €, — 0 such that

(4.1) Iz, (e, (yn)) — vl = do-
By Lemma 2.2 [8], we have

(4.2) lim [, y, |
n—00

Since < I (te,¥epyn)s tenWenyn >= 0, using the change of variable z =

w., = lwll, -

Enf—Un we get

Htawamynngvsn - /]RN f(t€¢6n7yn)ten¢emyn dx
(4.3) = /RN ften(lenz)w(2))te,n(lenz])w(2) dz.

Now we prove that ., — 1. First we show that {.,, — t9 < +o0o. Conversely if
te,, — +oo, from (4.3) we have

(4.4) el > / fltw@)wl)

p—1
|2]< 52 te

2en n
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From the condition (fs) and (f4), we have f(t) > ~u|t|*~! for all ¢ > 0. Combining
that property and (4.4), we deduce

te _
z|<

te

”’lpgnyyn ’

as n — oo. This is a contradiction with (4.2). Therefore, up to a subsequence, we
may assume that t., — to > 0asn — oo. If ty =0, from ¢, 9., ,. € N.,, by Lemma
2, there exists r, > 0 such that for n large enough, we have

”ten We, >r, > 0.

This is contradiction since ., — 0 and [|¢c,, 4, [lw., — [[w|lwy, > 0 as n — co. Now
we prove that ¢y = 1. From (4.3), using Lebesgue Dominated Convergence Theorem,
we have

ftow)w
WVO tp T oop—1

Note that w € Ny, then Remark 1 1mphes to = 1. Still using Lebesgue Dominated
Convergence Theorem or Vitali’s theorem, we get

lim F(t., yo(x)) de = / F(w)dz.
n—oo RN RN
Hence, we obtain

| _—
i L, (@, (40)) = lim | == e,

n—o0 n—o0

5[/'571 _/ F<t€n,l/}€n7yn) d'x
RN

oo,

- /RN F(w)de = Jyy(w) = ey,

which contradicts with (4.1). O
For any 6 > 0, let p = p(d) > 0 be such that Ms C B,(0). Let x: RN — RY be

define as
() = {i; NG
o i lz| > p.
Next, we define the barycenter map 3.: N. — R¥ given by
Jan Xx(e2)|u(z) [P dx
Bs(u) fRN |u|p dx

Lemma 14. The functional ®. satisfies the following limit

(4.5) 1iI£l+ Be(Pe(y)) =y uniformly iny € M.
e—

Proof. Lemma 14 is proved similarly as [8, Lemma 3.13]. For convenience, we
prove it here. Suppose that the statement of Lemma 14 does not hold. Then there
exists &g > 0, {y,} C M and &, — 0 such that

EnT—Yn

From the definition of ®. (y,), f.,, ¥ and using the change of variable z = B
we have

Jex [X(enz 4 yn) = yulln(lenz)w ()| d=.

Ben (P, (yn)) = yn + f]RN In(lenz])w(2)|P dz
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Since {y,} C M C B,(0), we get
Tim |53z, (e, (Yn)) = yn| = 0
via Lebesgue Dominated Convergence Theorem, which contradicts with (4.6). O

Lemma 15. Let ¢, — 0% and {u,} C N, be such that I., (u,) — cy,. Then
there exists {§,} C RY such that the translation sequence v,(r) = u,(z + ¥p)
has a subsequence which converges in W*™/¢(RN). Moreover, up to a subsequence,

{yn}: Yn = EYn —y € M.
Proof. Since < I_ (uy),u, >= 0 and I, (u,) — cv,, then we have

I, () = L., () — %<f;n<un>,un>

s 1 1 s 1
— (5= 2l + 2 [ (o= Pl o= (5= 2) s,
c s/N
Thus, there exists a constant C' = (i‘f)l ) such that limsup,,_, ||un|lw., < C.
N pn

Since W, is continuously embedded into W*™/*(RY) and (2.39), we get {u,} is
a bounded sequence in W*™*(RY). Now, we show that there exist a sequence
{7} € RN and constants 7 > 0, 3 > 0 such that

n— o0

(4.7) liminf/ [un| N/ dx > B > 0.
Br(§in)
Indeed, if (4.7) is false, then for any r > 0, we have

lim sup / | N* dz = 0.
Br(y)

n—oo yERN

By Lemma 5, we have u, — 0 strongly in L/(R") for any ¢ € (¥, +o0). If we take
~1 large enough, by the method of Lemma 4, we get

NN 8 i/(N—S)
tim sup [lun [/ < B2
n—00 CQxp

9

for a suitable constant ¢ > 1 and near 1. Applying Lemma 6, we deduce

lim f(up)u, dx = 0.

n—oo [pN
Combining this result and u, € N;,, we obtain |u,|w., — 0 as n — oo. It is
a contradiction with Proposition 2. Therefore, (4.7) holds. Let us define v, :=
Un (T + ¥p). Since the || - ||y, is invariant under translations, then {v,} is a bounded
sequence in W*N/5(RY). Thus up to a subsequence, we can assume that there exists
v € WN3(RN) such that v, — v weakly in W*N/3(RV) and v,(z) — v(x) a.e. in
RY and v, — v in L{_(RY) for any ¢ € [¥, +00). From this result and (4.7), we get
v # 0. Let ¢, > 0 such that w, = t,v, € Ny, and we set y,, := £,9,. Thus, using
the change of the variable z = © + §,,, V(e,(x + 9,)) > Vo and the invariance under
translations, we can see that

1 1
cvy < Jy (wy) < ﬁ[wn]’;p + = /N V(enx + yn)|wy|P do — / F(w,) dx
R

p RN
= [sn<tnun) S [€n<un) S Cv, + On<1>
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Then we get Jy, (w,) — cy,. Since {w, } C Ny,, using the condition (f2), there exists
a constant K > 0 such that ||w,|y, < K for all n. We have v, 4 0 strongly in
WeN/s(RN). Indeed, if v, — 0 in W*N/$(RY), then v, — 0 weakly in W*/5(RN),
which contradicts with v, — v # 0 weakly in W*V/$(RV). Hence, there exists o > 0
such that ||v,[[y; > a > 0 for all n. Consequently, we have

thar < [tnvnllve = llwnllv, < K,

which yields ¢, < % for all n € N. Therefore, up to a subsequence, we can assume
that t, — tg > 0. We prove that ¢, > 0. If {; = 0, then w,, — 0 strongly in
W N/s(RN), which implies that Jy,(w,) — 0. It contradicts with ¢, > 0. Up to
a subsequence, we suppose that w, — w = tov # 0 weakly in W*V/*(RV) and
wy(z) — w(z) a.e. on RY. By arguments as in Lemma 4, we can get Jy, (w) = 0.
Now we prove

(43) T 17, = [l

Using Brezis-Lieb’s lemma and (4.8), we obtain w, — w strongly in W*~/s(RV).
By Fatou’s lemma, we have

(49) [, < limin e, 7,

Assume by contradiction that

[[wl[[;, < Tim sup [|wn|[y;.
n—oo

Note that

vy + 0n(1) = Ty (1) — iu’% (1), )

~ (2= D) bty + [ [y = Plun)] o

Using the condition (fs), and Fatou’s lemma, we get

1 1 1
> (= — =) lim w2+ lim inf — fwp)wy, — F(w,)| d
cyy > (p M) im sup ||w, ||y, im in /RN Lf(w Jw (w )} x

> (5-1) ot + [ s - rw)]| o
= Ja0) = g ), ) = iy () = e,

which is a contradiction. Then

(4.10) lwllv, = lim sup ffun |-

Combining (4.9) and (4.10), we get (4.8). Since t,, — to as n — oo, then v, — v in
WeN/s asn — co. Now we prove that {4, } has a subsequence such that y,, — y € M.
Indeed, if {y,} is not bounded, there exists a subsequence, still denoted by {y,},
such that |y,| — +oo. First, we consider the case V,, = oo. Using the fact that
{u,} C N, and a change of variable z = z + §,,, we can see that

/ V(en® + yn)|val? do < [v,]8, + / V(enr + yn)|vn|P dx
2| <Rey! ’ RN

=l = [ Stwaunde = [ s
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Apply Fatou’s lemma and Lebesgue Dominated Convergence Theorem or Vitali’s
theorem and v, — v in W"/*(RV), we deduce that

n—oo n—oo

+o00 = lim inf/ V(en + yn)|vn|? doz < lim inf/ V(enx + yn)|val? dz
o] <Rent RN

< lim f(vp)v, dx = f(v)vder < 400,
RN

n—oo RN

which gives a contradiction. Next, we consider the case V,, < 4+00. From the fact
that w, — w strongly in W*"¢(RY) and the condition (V), using the change of
variable z = x + ¥,,, we have

Cyy = JVo (w) < Jvoo (U))

1
< liminf [— ([wn]i’,p +/ V(en® + yn)|wn|P dx) —/ F(w,) dx]
RN RN

n—0o0 p
b 124
= lim inf [—"[un]i,’p + —"/ V(en2)|un|P dz — / F(t,uy,) dz]
nmoo [P TP Jry RN
(4.11) = liminf I (t,u,) <liminf I, (u,) = cy,
n—o0 n—o0

which is absurd. Then {y,} must be a bounded sequence. Up to a subsequence, we
can assume that y, — y. If y € M, then Vj < V(y). By an argument as in (4.11),
we get a contradiction. Hence y € M. 0

Let Rt — R be a positive function such that h(e) — 0 as e — 0" and let
N. ={ueN.: I.(u) < ey, + h(e)}.
By Lemma 14, we have h(e) = |I.(®-(y)) — cv,| — 0 as e — 07. Hence .(y) € N
and N, # () for any € > 0. Moreover, we have the following result:
Lemma 16. For any § > 0, it holds that
lim sup dist(B:(u), Ms) = 0.

+ -
e—0 uENg

Proof. Lemma 16 is proved similarly as [8, Lemma 3.14]. For convenience, we
prove it here. Let €, — 0 as n — oo. By the definition of supremum, there exists
{u,} C N, such that

sup inf |5, (u) —yl = inf |5 (un) —y[+on(1).

uGNsn yEM6
Therefore, it suffices that there exists {y,} C My such that
(4.12) Tim |5z, (un) = yn| = 0.

Noting that {u,} C M., C AN.,, we deduce that
vy < € < e (un) < oy + h(en),
which leads to I., (u,) — cy,. By Lemma 15, there exists a sequence {7, } C R" such
that y, = €,9, € M; for all n large enough. We have
o JanlX(Enz +yn) = ynllunl(z + §n) d2
Jan [ual?(z + ) dz
Since u,(z + §,) converges strongly in W*N/*(R¥) and e,z + 3, — y € M, we can

get B, (un) = yn + 0,(1) via Lebesgue Dominated Convergence Theorem. Therefore
(4.12) holds. O

ﬁsn (un) = Yn
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Lemma 17. Assume that (V) and (f;)—(f;) hold and let v, be a nontrivial
nonnegative solution of the following problem

(4.13) (=A% + Va(@)oa| =20, = f(v,) inRY,

where V,,(x) = V(e x + €,0,) and e,3, — y € M. If {v,} is a bounded sequence in
W N/s(RNY verifying

5 0,5/ (N=s)
lim sup ||, [y * ) < gt T
n—o0 COZQ

Y

where ¢ > 1 is a suitable constant and v, — v strongly in W*N/*(RY), then v, €
L>(RY) and there exists C' > 0 such that ||v, || &~y < C for alln € N. Furthermore
lim v,(z) =0 uniformly in n.
|z| =400

Proof. For any L > 0 and § > 1, let us to consider the function ~(t) =
t(min{¢, L})?®~1 and

Y(tn) = 11.5(0n) = vt} € We v = min{u, L}
Set
|t|p t ’ 1
At) = and T'(t)= [ (v (t))rdr.
p 0
Then we have [§|
(4.14) A(a —b)(y(a) —~(b)) > [T(a) = T(b)[P  for any a,b € R.

From (4.14), we get

T (va()) = T(wa(y)))?
(415) < Jua(@) — va (@) P2 (0al@) — va (@) ((0ath 8 ) (@) — (0,85 ) (y)).

Therefore, taking v(v,) = vnv]]i(ﬁ Y as a test function in (4.13) and combining with

(4.15), we have

D)2, + [ V(@) |ua [P} d
RN

/ [0 () =0 ()P 2 (0 (2) = 00 (1)) (b8 ™) (@) = (025D (1))

=P~

(4.16) +/ Vo )\vn\pvp(ﬁ d:v—/ f(vn) vnng Yz,

RN
Using (4.14), we have vnvf,;l > |TI'(vy,)]. Since I'(v,) > 5%% ~1and the embedding
from W*Ns(RV) — LN (RY) (N* > &) is continuous, then there exists a suitable
constant S, > 0 such that

1
(4.17) 1T () 155 2 = SellT () ] n gvy = = = Sellon v 1 e vy

From the condition (f) and (f3), for any € > 0, there exist C'(¢) > 0 such that
(O] < <ltP™ + CHP~ B (o]t V)
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for all t € R. Then we obtain

1 _
Sl ey + [ Vil da
(4.18) < 5/ v 1P d:c—l—C(e)/ Dy 5 (|, |V )|vnvL P da.
RN ’ RN
Choose 0 < € < V;/2, then (4.18) implies
1

6 S ||v7len ||LN*(RN)

<C(e) (/RN<¢st<ao|vn|N/<N-S>>>q' dl‘)q (/ vt Iq”d‘”)q

Using the Trudinger-Moser inequality in W*N/5(RY) with ¢ >> % such that N** =
qp < N*, ¢" > 1 and ¢ near 1, then there exists a constant D > 0 such that
||vnan ||LN* (RN) < Dﬁpanan ||Lqp (RN)"
Letting L — +o0 in the above inequality, we deduce
11

(4.19) [0n]|Lves < D?8 G5 |[vg || vess @y
Now, we set 8 = N** > 1. Then B2N** = BN* and (4.19) holds with 3 replaced by
(2. Therefore, we obtain

1 2 a2

[vn =2 < DPs? 357 anHLN**zaQ(RN) = D B3 ||up | x=s gy
(4.20) < DF G5 oy | e .
Iterating this process as in (4.20), we can infer that for any positive integer m,
m 1 m i

(4.21) [on | paveam < D=1 557 BEZ | v vy,
Taking the limit in (4.21) as m — oo, we get

|vn]| oo@ry < C

oo L oo P
for all n, where C' = D> e 3= qup, |V || pvers gy < 400, O

Now, we give the proof of Theorem 8. We fix ¢ > 0 small enough. Then by
Lemma 13 and Lemma 16, we have that . o ®, is homotopic to the inclusion map
id: M — Mjs. Then we get

cat g (N2) > cata, (M).

Since the functional I, satisfies the (PS). condition for ¢ € (cy,cy, + h(€)), then
by Lusternik—Schnirelmann theory of critical points, see Willem [41], I. has at least
cat g, (M) critical points on AM.. By Corollary 1, I. has at least caty (M) critical
points in W..

Let u., is a solution of problem (P ). Then v,(z) = u., (x + ,) is a solution
of the equation (4.13). Moreover, up to a subsequence, we may assume that v, — v
strongly in W*Y/$(R™) and y,, = €,9, — y € M. Next, we prove that there exists
d > 0 such that ||v,||pe@y) > 0 for all n large enough. Indeed, by Lemma 15 (see
(4.7)), we have

(4.92) o<’ </ [on V% diz < | B (0) [l poeqaemy
-(0)
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for all n large enough. Here, we choose § = g Since v, — v strongly in W*N/s(RN),
then we have lim|g|—00 vn(2) = 0 uniformly in n € N. We denote by p, the global
maximum of v,,. Then by Lemma 17 and (4.22), there exists R > 0 such that |p,| < R
for all n € N. Therefore, the maximum point of u., is given by z., = p, + ¥, and
EnZe, — Yy € M. By the continuity of V', we get V(e,z.,) = V(y) = Vo as n — oc.
If w. is a nontrivial nonnegative solution of problem (P*), then w.(z) = u.(z/¢)
is a nontrivial nonnegative solution of (P.). Thus the maximum points 7. and z. of
w. and u,. respectively, satisfy n. = ez.. We deduce
lim V(n.) = lim V(e,z.,) = V. O
e—0t n—00
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