Boundary points of angular type form a set of zero harmonic measure

Stephen J. Gardiner and Tomas Sjödin

Abstract

This note addresses a problem of Dvoretzky concerning the harmonic measure of the set of boundary points of a domain in Euclidean space that are of angular type.

Randpunkter av vinkeltyp utgör en mängd med harmoniskt mått noll

Sammanfattning. Denna korta artikel behandlar ett problem av Dvoretzky angående det harmoniska måttet hos mängden av randpunkter till ett område i ett Euklidiskt rum som är av vinkeltyp.

1. Introduction

Let D be a domain in the complex plane \mathbb{C}. A boundary point z_{0} of D is called angular if there exists $\varepsilon>0$ such that each component of the open set $\{z \in$ $\left.D:\left|z-z_{0}\right|<\varepsilon\right\}$ which has z_{0} as a boundary point is contained in an angle of vertex z_{0} and aperture less than π. The set $A(D)$ of all angular boundary points of D may have positive 1-dimensional measure, as can be seen if we form a domain D_{0} by deleting from the upper half-plane a "comb" of vertical unit line segments standing on a closed nowhere dense subset E of the real axis that has positive length. Indeed, we can replicate this construction at lower scales, as follows. For each interval (a, b) of $\mathbb{R} \backslash E$ we can remove from D_{0} a comb of horizontal line segments L of length $(b-a) / 3$ with left endpoints on the line segment ($a, a+i$), then remove another comb of vertical line segments ending at one of the line segments L, and so on.

Nevertheless, Dvoretzky remarked that a non-trivial argument based on Brownian paths may be used to show that $A(D)$ always has zero harmonic measure for D. In Problem 7.15 of [5], published originally in 1974 and restated recently in [6], he asked for a more direct proof of this result, and whether:
(i) such a result holds when angles less than π are replaced by more general approach regions;
(ii) a corresponding result holds in higher dimensions.

We provide below a self-contained argument that establishes the result for angular boundary points of plane domains and that, in combination with results of Dahlberg [4] and Burdzy and Williams [2], readily yields an extension to more general approach regions in all dimensions.

A typical point x of $\mathbb{R}^{N}(N \geq 2)$ will be denoted by $\left(x^{\prime}, x_{N}\right)$, where $x^{\prime} \in \mathbb{R}^{N-1}$ and $x_{N} \in \mathbb{R}$. The open ball in \mathbb{R}^{N} of centre x and radius r will be denoted by $B_{N}(x, r)$, and we write $B_{N}=B_{N}(0,1)$. For each $\kappa>0$ let Φ_{κ} denote the collection

[^0]of all functions $\phi: \bar{B}_{N-1} \rightarrow \mathbb{R}$ such that $\phi\left(0^{\prime}\right)=0$,
$$
\left|\phi\left(x^{\prime}\right)-\phi\left(y^{\prime}\right)\right| \leq \kappa\left\|x^{\prime}-y^{\prime}\right\| \quad \text { for all } x^{\prime}, y^{\prime} \in \bar{B}_{N-1}
$$
and
\[

$$
\begin{equation*}
\int_{B_{N-1}} \frac{\phi^{-}\left(x^{\prime}\right)}{\left\|x^{\prime}\right\|^{N}} d t<\infty, \quad \int_{B_{N-1}} \frac{\phi^{+}\left(x^{\prime}\right)}{\left\|x^{\prime}\right\|^{N}} d t=\infty \tag{1}
\end{equation*}
$$

\]

where $\phi^{+}=\max \{\phi, 0\}$ and $\phi^{-}=\max \{-\phi, 0\}$. Further, let

$$
V_{\phi}=\left\{\left(x^{\prime}, x_{N}\right) \in B_{N}: x_{N}>\phi\left(x^{\prime}\right)\right\} \quad\left(\phi \in \Phi_{\kappa}, \kappa>0\right) .
$$

Let Ω be a domain in \mathbb{R}^{N}. We say that a boundary point x_{0} of Ω is of angular type if there exist $\kappa>0$ and $\varepsilon \in(0,1]$ such that each component of the open set $\Omega \cap B_{N}\left(x_{0}, \varepsilon\right)$ which has x_{0} as a boundary point is contained in $T\left(V_{\phi}\right)$ for some $\phi \in \Phi_{\kappa}$ and some isometry T that maps 0 to x_{0}. The set of all boundary points of Ω that are of angular type is denoted by $A T(\Omega)$. When $N=2$ any angular boundary point is clearly of angular type. In the result below we assume that Ω has non-polar complement when $N=2$ in order for harmonic measure to exist.

Theorem 1. If $\Omega \subset \mathbb{R}^{N}$ is a domain, then the set $A T(\Omega)$ has zero harmonic measure for Ω.

2. Proof of Theorem 1

The significance of the collection Φ_{κ} for this problem lies in the following result. It was proved originally by Burdzy and Williams [2] using probabilistic methods. Carroll [3] subsequently provided an alternative analytic argument.

Theorem A. Let $\phi \in \Phi_{\kappa}$ for some $\kappa>0$ and let $\varepsilon \in(0,1]$. If h is a positive harmonic function on $V_{\phi} \cap B_{N}(0, \varepsilon)$ that continuously vanishes on $\partial V_{\phi} \cap B_{N}(0, \varepsilon)$, then $h\left(0^{\prime}, \delta\right) / \delta \rightarrow 0$ as $\delta \rightarrow 0+$.

We will also need the following straightforward lemma about harmonic measure.
Lemma 2. Suppose that Ω is a domain, W is an open set, and L is compactly contained in $\partial \Omega \cap W$. Then L has zero harmonic measure for Ω if it has zero harmonic measure for each component U of $\Omega \cap W$.

Proof of Lemma. Let H_{g}^{ω} denote the (PWB) solution to the Dirichlet problem on an open set ω with Borel boundary data g. If we define $f=H_{\chi_{L}}^{\Omega}$ on $\Omega \cap \partial W$ and $f=\chi_{L}$ on $\partial \Omega \cap \bar{W}$, then $H_{f}^{\Omega \cap W}=H_{\chi_{L}}^{\Omega}$ on $\Omega \cap W$ by Theorem 6.3.6 of [1]. Since $H_{f}^{\Omega \cap W}=H_{f}^{U}$ in any component U of $\Omega \cap W$, it follows from our hypothesis that $H_{f}^{\Omega \cap W}=H_{f \chi \Omega}^{\Omega \cap W}$, and so $H_{\chi_{L}}^{\Omega}$ continuously vanishes at each regular boundary point of Ω. Hence $H_{\chi_{L}}^{\Omega} \equiv 0$, as required.

Proof of Theorem 1. For each $m \in \mathbb{N}$ we define the set
$A_{m}=\left\{x_{0} \in \partial \Omega\right.$: each component of $\Omega \cap B_{N}\left(x_{0}, m^{-1}\right)$ that has x_{0} as a boundary point is contained in $T\left(V_{\phi}\right)$ for some ϕ in Φ_{m} and some isometry T that maps 0 to $\left.x_{0}\right\}$.

The sequence $\left(A_{m}\right)$ is increasing and

$$
\begin{equation*}
\bigcup_{m} A_{m}=A T(\Omega) \tag{2}
\end{equation*}
$$

We now fix $m \in \mathbb{N}$, choose $\underline{y}_{0} \in \partial \Omega$, and then choose a component U of $\Omega \cap$ $B_{N}\left(y_{0},(2 m)^{-1}\right)$ such that $\bar{U} \cap \bar{B}_{N}\left(y_{0},(4 m)^{-1}\right) \neq \emptyset$, if such a component exists. Let

$$
\begin{equation*}
E=A_{m} \cap \partial U \cap \bar{B}_{N}\left(y_{0},(4 m)^{-1}\right) . \tag{3}
\end{equation*}
$$

Claim. The set E has zero harmonic measure for U.
Proof of Claim. We need only consider the case where E is non-empty. For each $y \in E$ we have

$$
U \subset \Omega \cap B_{N}\left(y_{0},(2 m)^{-1}\right) \subset \Omega \cap B_{N}\left(y, m^{-1}\right)
$$

so there is a component U_{y} of $\Omega \cap B_{N}\left(y, m^{-1}\right)$ that contains U. Since $y \in A_{m} \cap \partial U_{y}$, we can choose $\phi_{y} \in \Phi_{m}$ and an isometry T_{y} such that $T_{y}(0)=y$ and $U_{y} \subset T_{y}\left(V_{\phi_{y}}\right)$. It follows that

$$
U \subset \bigcap_{y \in E} T_{y}\left(V_{\phi_{y}}\right) .
$$

Now let K denote the cap of centre $\left(0^{\prime}, 1\right)$ and half-angle $\left(\tan ^{-1} m^{-1}\right) / 2$ in the sphere ∂B_{N}. We define

$$
E_{K}=\left\{y \in E: T_{y}\left(0^{\prime}, 1\right)-y \in K\right\}
$$

and

$$
V=B_{N}\left(y_{0},(2 m)^{-1}\right) \cap\left(\bigcap_{y \in E_{K}} T_{y}\left(V_{\phi_{y}}\right)\right)
$$

Clearly $U \subset V$. Since cones of half-angle $\tan ^{-1} m^{-1}$ and vertical axis lie above and below each point on the graph of any function ϕ in Φ_{m}, cones of half-angle $\left(\tan ^{-1} \mathrm{~m}^{-1}\right) / 2$ and vertical axis must sit above and below each point of the set

$$
B_{N}\left(y_{0},(2 m)^{-1}\right) \cap T_{y}\left(\partial V_{\phi_{y}}\right) \quad\left(y \in E_{K}\right)
$$

Thus each of the above sets is contained in the graph of a Lipschitz function defined on $B_{N-1}\left(y_{0}^{\prime},(2 m)^{-1}\right)$ with Lipschitz constant bounded by $\cot \left(\left(\tan ^{-1} m^{-1}\right) / 2\right)$, and the same must therefore also be true of $\partial V \cap B_{N}\left(y_{0},(2 m)^{-1}\right)$. Also, $E_{K} \subset \partial U \cap \partial V$.

Let $z_{0} \in U$ and $G_{V}\left(z_{0}, \cdot\right)$ denote the Green function for V with pole at z_{0}. It follows from Theorem A and Harnack's inequalities that

$$
\frac{G_{V}\left(z_{0},\left(x^{\prime}, x_{N}+\delta\right)\right)}{\delta} \rightarrow 0 \quad\left(\delta \rightarrow 0+,\left(x^{\prime}, x_{N}\right) \in E_{K}\right)
$$

Thus, at any point of E_{K} where the normal derivative of $G_{V}\left(z_{0}, \cdot\right)$ with respect to ∂V exists, this derivative must be 0 . It follows from Theorem 3 of Dahlberg [4] that E_{K} has zero harmonic measure for V. Since $U \subset V$, the set E_{K} also has zero harmonic measure for U. Using a change of axes we can apply the same reasoning with K replaced by any other spherical cap J of half-angle $\left(\tan ^{-1} m^{-1}\right) / 2$. Since we can write E as a finite union of sets of the form E_{J}, and we know that each of these sets has zero harmonic measure for U, the claim is now proved.

We have established the above claim for any component U of the open set $\Omega \cap$ $B_{N}\left(y_{0},(2 m)^{-1}\right)$ which satisfies $\bar{U} \cap \bar{B}_{N}\left(y_{0},(4 m)^{-1}\right) \neq \emptyset$. On the other hand, the set E in (3) trivially has zero harmonic measure for U when U is a component of $\Omega \cap B_{N}\left(y_{0},(2 m)^{-1}\right)$ such that $\bar{U} \cap \bar{B}_{N}\left(y_{0},(4 m)^{-1}\right)=\emptyset$. Hence, by applying Lemma 2 with $W=B_{N}\left(y_{0},(2 m)^{-1}\right)$, we see that the set $A_{m} \cap B_{N}\left(y_{0},(4 m)^{-1}\right)$ has zero harmonic measure for Ω. Since y_{0} was an arbitrary point of $\partial \Omega$, it follows that A_{m} has zero harmonic measure for Ω. Finally, the result follows from (2) on considering arbitrarily large values of m.

Remark. If $N=2$ and we merely wish to show that the set of angular points $A(\Omega)$ has zero harmonic measure for Ω, then we do not need to appeal to Theorem A or the above result of Dahlberg. For, in this case, we only consider functions $\phi:[-1,1] \rightarrow \mathbb{R}$ of the form $\phi(t)=\alpha|t|(\alpha>0)$. Using the notation in the proof above, the set $\partial V \cap B_{N}\left(y_{0},(2 m)^{-1}\right)$ is then the graph of a convex function ψ, the one-sided derivatives of which satisfy $\psi_{-}^{\prime}<\psi_{+}^{\prime}$ at each point of E_{K}. It follows that E_{K} is countable, and so certainly has zero harmonic measure (for any domain).

References

[1] Armitage, D. H., and S. J. Gardiner: Classical potential theory. - Springer, London, 2001.
[2] Burdzy, K., and R. J. Williams: On Brownian excursions in Lipschitz domains. I. Local path properties. - Trans. Amer. Math. Soc. 298, 1986, 289-306.
[3] Carroll, T. F.: Boundary behaviour of positive harmonic functions on Lipschitz domains. Ann. Acad. Sci. Fenn. Math. 27, 2002, 231-236.
[4] Dahlberg, B. E. J.: Estimates of harmonic measure. - Arch. Rational Mech. Anal. 65, 1977, 275-288.
[5] Hayman, W. K.: Research problems in function theory. - In: Proceedings of the Symposium on Complex Analysis (edited by J. Clunie and W. K. Hayman), London Math. Soc. Lecture Note Series 12, Cambridge Univ. Press, London, 1974, 143-180.
[6] Hayman, W. K., and E. F. Lingham: Research problems in function theory. - Problem Books in Mathematics, Springer, Cham, 2019.

Received 21 April 2021 • Accepted 30 July 2021 • Published online 13 April 2022

Stephen J. Gardiner
University College Dublin
School of Mathematics and Statistics
Dublin 4, Ireland
stephen.gardiner@ucd.ie

Tomas Sjödin
Linköping University
Department of Mathematics
581 83, Linköping, Sweden
tomas.sjodin@liu.se

[^0]: https://doi.org/10.54330/afm. 116146
 2020 Mathematics Subject Classification: Primary 31B05.
 Key words: Harmonic measure.
 (c) 2022 The Finnish Mathematical Society

