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Fast approximation of the affinity dimension for
dominated affine iterated function systems

Ian D. Morris

Abstract. In 1988 Falconer introduced a formula which predicts the value of the Hausdorff

dimension of the attractor of an affine iterated function system. The value given by this formula—

sometimes referred to as the affinity dimension—is known to agree with the Hausdorff dimension

both generically and in an increasing range of explicit cases. It is however a nontrivial problem

to estimate the numerical value of the affinity dimension for specific iterated function systems. In

this article we substantially extend an earlier result of Pollicott and Vytnova on the computation of

the affinity dimension. Pollicott and Vytnova’s work applies to planar invertible affine contractions

with positive linear parts under several additional conditions which among other things constrain

the affinity dimension to be between 0 and 1. We extend this result by passing from planar self-affine

sets to self-affine sets in arbitrary dimensions, relaxing the positivity hypothesis to a domination

condition, and removing all other constraints including that on the range of values of the affinity

dimension. We provide explicit examples of two- and three-dimensional affine iterated function

systems for which the affinity dimension can be calculated to more than 30 decimal places.

Dominoitujen affiinien iteroitujen funktiosysteemien

affiinisuusulottuvuuden nopea arvioiminen

Tiivistelmä. Vuonna 1988 Falconer esitteli kaavan, joka ennustaa affiinin iteroidun funktio-

systeemin kiintojoukon Hausdorffin ulottuvuuden. Tämän kaavan antaman arvo – jota toisinaan

kutsutaan affiinisuusulottuvuudeksi – tiedetään yhtä suureksi Hausdorffin ulottuvuuden kanssa sekä

geneerisesti että kasvavassa joukossa suoria esimerkkejä. On kuitenkin epätriviaali ongelma arvioida

affiinin ulottuvuuden numeerista arvoa määrätyille iteroiduille funktiosysteemeille. Tässä työssä

laajennamme oleellisesti Pollicottin ja Vytnovan aiempaa affiinisuusulottuvuuden laskentaa koske-

vaa tulosta. Pollicottin ja Vytnovan työ soveltuu tason kääntyviin affiineihin kutistuksiin, joiden

lineaariset osat ovat positiivisia, kun lisäksi oletetaan useita muita ehtoja, jotka mm. rajoittavat

affiinin ulottuvuuden nollan ja yhden välille. Laajennamme tätä tulosta siirtymällä tasosta yleisen

ulottuvuuden itseaffiineihin joukkoihin, lieventämällä positiivisuusoletusta dominointiehdoksi sekä

luopumalla kaikista muista rajoitteista – erityisesti affiinin ulottuvuuden arvojoukkoa rajoittavasta

ehdosta. Esitämme suoria esimerkkejä kaksi- ja kolmiulotteisista affiineista iteroiduista funktiosys-

teemeistä, joiden affiini ulottuvuus voidaan laskea yli 30 desimaalin tarkkuudella.

1. Introduction

1.1. Background and context. If T1, . . . , TN : Rd → Rd are contractions it
is well-known that there exists a unique nonempty compact set X ⊂ Rd such that
X =

⋃N
i=1 TiX. In this case (T1, . . . , TN) is called an iterated function system and the

setX its attractor. When each transformation Ti is a similitude with contraction ratio
ri ∈ (0, 1) and the distinct images TiX∩TjX do not overlap too strongly it is classical
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that the box dimension and Hausdorff dimension of the attractor are both equal to the
unique real number s > 0 such that

∑N
i=1 r

s
i = 1 (see for example [19, Theorem 9.3]

or the original article [31]). In the case where each Ti is instead an affine map Tix =
Aix+vi the Hausdorff dimension and box dimension of the attractorX—which in this
context we call a self-affine set—are more challenging to calculate. The problem of
determining the Hausdorff dimension of such sets, even implicitly, has been an active
topic of research since the 1980s and has received particularly intense research interest
within the last decade (see for example the classic articles [10, 16, 17, 18, 30, 45] and
more recent contributions such as [4, 5, 13, 14, 21, 23, 24, 39, 50]). In the landmark
article [17] Falconer defined an implicit formula which is known to give the correct
value for the Hausdorff dimension of a wide variety of self-affine sets. The subject of
this article is the numerical estimation of the value predicted by Falconer’s formula.

In order to define Falconer’s formula we require a few preliminary definitions.
Let Md(R) denote the set of all real d × d matrices. If A ∈ Md(R) we recall that
the singular values of A are defined to be the square roots of the eigenvalues of the
positive semidefinite matrix A⊤A. We denote the singular values of A ∈ Md(R) by
σ1(A), . . . , σd(A) in decreasing order of absolute value. For each A ∈ Md(R) and
s ≥ 0 let us define

ϕs(A) :=

{

σ1(A) · · ·σ⌊s⌋(A)σ⌈s⌉(A)s−⌊s⌋ if 0 ≤ s ≤ d,

| detA| sd if s ≥ d.

It was shown in [17] that for each s ≥ 0 we have ϕs(AB) ≤ ϕs(A)ϕs(B) for all
A,B ∈Md(R). The affinity dimension of the iterated function system Tix := Aix =
vi, where 1 ≤ i ≤ N , is then defined to be the quantity

dimaff(T1, . . . , TN) := inf

{

s > 0:

∞
∑

n=1

N
∑

i1,...,in=1

ϕs(Ai1 · · ·Ain) <∞
}

.

Since dimaff(T1, . . . , TN) depends only on A1, . . . , AN and not on the additive part of
the transformations Ti we will also denote it by dimaff(A1, . . . , AN ). If the matrices
A1, . . . , AN are assumed to be invertible and contracting with respect to some norm
on Rd then the affinity dimension is the unique s > 0 such that the quantity

P (A1, . . . , AN ; s) := lim
n→∞

1

n
log

N
∑

i1,...,in=1

ϕs(Ai1 · · ·Ain)

is equal to zero.
Let ‖ · ‖ denote the Euclidean norm on Rd. It was shown in [17] that when

max1≤i≤N ‖Ai‖ < 1 the affinity dimension dimaff(A1, . . . , AN ) is well-defined and
is an upper bound for the box dimension of the attractor. (This argument may
easily be adapted to the case where max1≤i≤N |||Ai||| < 1 in the operator norm in-
duced by some norm |||·||| on Rd.) It was additionally shown that when matrices
A1, . . . , AN satisfying max1≤i≤N ‖Ai‖ < 1

3
are fixed, then for Lebesgue-a.e. choice

of (v1, . . . , vN) ∈ (Rd)N the attractor of the affine transformations T1, . . . , TN given
by Tix := Aix + vi has Hausdorff dimension equal to min{d, dimaff(A1, . . . , AN)}.
Subsequent research focused on providing explicit examples for which the Hausdorff
dimension of the attractor equals the affinity dimension of the defining iterated func-
tion system, with explicit special cases being given in articles such as [21, 24, 30, 50].
Recently, Bárány, Hochman and Rapaport have shown that the Hausdorff dimension
of a planar self-affine set is always equal to the affinity dimension of the defining
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iterated function system as long as the matrices Ai are invertible, the affine transfor-
mations satisfy the strong open set condition, and the matrices | detAi|−1/2Ai neither
belong to a compact subgroup of GL2(R) nor preserve a finite subset of RP1. At the
present time, however, results on higher-dimensional self-affine sets additional to that
of Falconer are essentially unavailable.

Despite its prominent rôle in the dimension theory of self-affine sets, the prop-
erties of the affinity dimension itself have been investigated only very recently. In
the 2014 article [23] Feng and Shmerkin showed for the first time that the affinity
dimension dimaff(A1, . . . , AN) depends continuously on the entries of the matrices
A1, . . . , AN , and in [46] it was shown that the affinity dimension is computable in
principle in the sense that for any given ε > 0 we may algorithmically compute an
explicit approximation to dimaff(A1, . . . , AN) which is guaranteed to be accurate to
within the prescribed error ε and which requires only finitely many arithmetical oper-
ations to calculate. However, the method of [46] does not result in an algorithm which
is fast enough to be useful in practical computations. Further general properties of
the affinity dimension were investigated in [13, 38].

At the present time there are very few practical techniques available for the
computation of the affinity dimension. In the article [48] the author gave a simple
closed-form expression for the affinity dimension in the very special case where the
matrices Ai are generalised permutation matrices, that is, matrices having exactly one
nonzero entry in every row and column. Closed-form expressions are also available in
the case of diagonal and upper-triangular matrices [22, 38]. To the best of the author’s
knowledge there so far exists only one result in the literature which is powerful enough
to be able to estimate the affinity dimension for a nonempty open set of examples in a
practicable time frame. The following result was proved by Pollicott and Vytnova in
[56]. Here and throughout this article ρ(A) denotes the spectral radius of the matrix
or linear operator A.

Theorem 1. Let A1, . . . , AN be 2 × 2 matrices which satisfy the following con-
ditions:

(i) We have σ1(Ai)
2 < σ2(Ai) < 1 for all i = 1, . . . , N .

(ii) If Q2 is defined to be the open second quadrant {(x, y) ∈ R2 : x < 0 < y},
then the sets A−1

1 Q2, . . . , A
−1
N Q2 are subsets of Q2 and have pairwise disjoint

closures in Q2.
(iii) All entries of the matrices Ai are strictly positive1.

For each n ≥ 1 and s ∈ C define

tn(s) =
N
∑

i1,...,in=1

ρ(Ai1 · · ·Ain)
2+s

ρ(Ai1 · · ·Ain)
2 − detAi1 · · ·Ain

,

an(s) :=
n
∑

k=1

(−1)k

k!

∑

(n1,...,nk)∈Nk

∑k
i=1 ni=n

k
∏

i=1

tni
(s)

ni

and a0(s) := 1, and for each n ≥ 1 let sn ∈ R denote the smallest positive real number
s such that

∑n
i=0 ai(s) = 0. Then dimaff(A1, . . . , AN) ∈ (0, 1), sn is well-defined for

1This hypothesis is invoked in Pollicott and Vytnova’s section 3 but is not explicitly stated in their
introduction. It does not follow automatically from the other hypotheses unless the determinants
are assumed positive.
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all sufficiently large n, and there exists γ > 0 such that

|dimaff(A1, . . . , AN)− sn| = O
(

exp(−γn2)
)

.

Remark. The quantity an(s) may be alternatively characterised as

(−1)n

n!
det



















t1(s) n− 1 0 · · · 0 0
t2(s) t1(s) n− 2 · · · 0 0

t3(s) t2(s) t1(s)
. . . 0 0

...
...

...
. . .

. . .
...

tn−1(s) tn−2(s) tn−3(s) · · · t1(s) 1
tn(s) tn−1(s) tn−2(s) · · · t2(s) t1(s)



















,

and we will prefer this format in our exposition.
The methods underlying the proof of Theorem 1 will be described in more

detail in the following section. We remark that condition (i) above implies that
the matrices are invertible, and the combination of the three conditions implies
0 < dimaff(A1, . . . , AN) < 1 (see [30] for details).

In fact the only condition which is really essential to Pollicott and Vytnova’s
argument is that the matrix entries are positive, although in cases where we have
dimaff(A1, . . . , AN) ∈ (1, 2) the formula for tn(s) must be replaced with

tn(s) :=
N
∑

i1,...,in=1

ρ(Ai1 · · ·Ain)
4−s| detAi1 · · ·Ain|s−1

ρ(Ai1 · · ·Ain)
2 − detAi1 · · ·Ain

.

In this article we aim to prove as comprehensive as possible an extension of The-
orem 1. In particular, as well as removing hypotheses (i)–(ii) from Theorem 1 we
will establish a version of that theorem which is valid for affine iterated function
systems in dimensions higher than two, in which dimaff(A1, . . . , AN) may take any
value in the range (0, d), and in which the hypothesis of positivity is weakened to
one of domination. In order to state our results in full we will require a number of
definitions, which relate to multilinear algebra, to positivity and to domination.

1.2. Multilinear algebra. In extending Theorem 1 one of our concerns will be
to allow matrices of arbitrary dimension. Whereas in two dimensions the function
ϕs(A) admits the simple characterisation

ϕs(A) =

{

‖A‖s if 0 ≤ s ≤ 1,

| detA|s−1‖A‖2−s if 1 ≤ s ≤ 2,

when s > 1 and d > 2 the analogous formula involves exterior powers of the matrix
A. In order to study the singular value function ϕs in dimensions higher than two
we therefore need to recall some concepts and notation from multilinear algebra.

Recall that when 1 ≤ k ≤ d the real vector space ∧kRd is the vector space
spanned by the formal expressions {v1 ∧ v2 ∧ · · · ∧ vk : v1, . . . vk ∈ Rd} subject to the
identifications

λ(v1 ∧ v2 ∧ · · · ∧ vk) = (λv1) ∧ v2 ∧ · · · ∧ vk,
(u1 ∧ v2 ∧ · · · ∧ vk) + (v1 ∧ v2 ∧ · · · ∧ vk) = (u1 + v1) ∧ v2 ∧ · · · ∧ vk,

v1 ∧ v2 ∧ · · · ∧ vk = (−1)sign(π)vπ(1) ∧ vπ(2) ∧ · · · vπ(k)
for all v1, . . . , vk, u1 ∈ Rd, λ ∈ R and permutations π : {1, . . . , k} → {1, . . . , k}.
The vector space ∧kRd is

(

d
k

)

-dimensional and if v1, . . . , vd is any basis for Rd, then
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{vi1 ∧ · · · ∧ vik : 1 ≤ i1 < i2 < · · · < ik ≤ d} is a basis for ∧kRd. The
(

d
k

)

-dimensional

vector space ∧kCd may be constructed analogously.
The space ∧kRd inherits an inner product 〈·, ·〉∧kRd from the standard inner prod-

uct 〈·, ·〉 on Rd which satisfies

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉∧kRd = det
(

[〈ui, vj〉]ki,j=1

)

.

If A ∈Md(R) then we may define a linear map A∧k : ∧kRd → ∧kRd by A∧k(v1∧· · ·∧
vk) = Av1 ∧ · · · ∧ Avk. If v1, . . . , vd is a basis for Cd consisting of eigenvectors and
generalised eigenvectors for A then the vectors vi1∧· · ·∧vik form a basis for ∧kCd and
it is not hard to see that if λ1, . . . , λd are the eigenvalues of A then the eigenvalues
of A∧k are precisely the

(

d
k

)

different products λi1 · · ·λik with 1 ≤ i1 < · · · < ik ≤ d.

It is clear from the definition of the inner product on ∧kRd that (A∧k)⊤ = (A⊤)∧k.
Combining these observations we may easily see that

∥

∥A∧k∥
∥

∧kRd = ρ
(

(

A⊤A
)∧k
)

1
2
= σ1(A) · · ·σk(A)

for all A ∈ Md(R). By convention we also define ∧0Rd = R and A∧0 = 1. It follows
easily that we may write

ϕs(A) =
∥

∥A∧⌊s⌋∥
∥

1+s−⌊s⌋ ∥
∥A∧⌈s⌉∥

∥

⌈s⌉−s

for all A ∈Md(R) and s ∈ [0, d].

1.3. Positivity and domination. As well as increasing the dimension of the
matrices to be considered in our extension of Theorem 1 we would like to weaken as
much as possible the hypothesis that the matrices have positive entries. To this end
we introduce the following definition:

Definition 1.1. Let A ⊂ Md(R) be nonempty. We say that (K1, . . . ,Km) is a
multicone for A if the following properties hold:

(i) Each Kj is a closed, convex subset of Rd with nonempty interior such that
λKj ⊆ Kj for every non-negative real number λ.

(ii) There exists a unit vector w ∈ Rd such that 〈u, w〉 > 0 for all nonzero vectors
u ∈ ⋃m

j=1Kj. In particular Kj ∩ −Kj = {0} for all j = 1, . . . , m.

(iii) For every A ∈ A and j ∈ {1, . . . , m} there exists ℓ = ℓ(j, A) ∈ {1, . . . , m}
such that A(Kj \ {0}) ⊂ (IntKℓ) ∪ (− IntKℓ).

(iv) For all distinct j1, j2 ∈ {1, . . . , m} we have Kj1 ∩ Kj2 = {0}.
When (ii) holds we say that w is a transverse-defining vector for (K1, . . . ,Km) since
the hyperplane normal to w is transverse to

⋃m
j=1Kj . If a multicone for A exists then

we say that A is multipositive.

We shall say that a set A ⊂ Md(R) is k-multipositive if the set {A∧k : A ∈ A}
is multipositive. By abuse of notation we shall say that a tuple of matrices is k-
multipositive if and only if the corresponding set is. We observe that a tuple of d×d
matrices with all entries positive is multipositive since we may take m = 1 and K1

to be the closed positive orthant in Rd. It follows that every tuple of d× d matrices
is 0-multipositive. We also observe that every tuple of d × d invertible matrices is
d-multipositive.

In generalising Theorem 1 we will adopt the hypothesis that (A1, . . . , AN) is k-
multipositive for certain integers k depending on dimaff(A1, . . . , AN). In the invertible
case this hypothesis may be related to the concept of domination as follows. If



650 Ian D. Morris

1 ≤ k < d then a tuple of invertible matrices (A1, . . . , AN) ∈ GLd(R)
N is called

k-dominated if there exist C, γ > 0 such that

σk+1(Ai1 · · ·Ain) ≤ Ce−γnσk(Ain · · ·Ai1)

for all i1, . . . , in ∈ {1, . . . , n} and n ≥ 1. By convention we will say that every
(A1, . . . , AN) ∈ GLd(R)

N is both 0- and d-dominated. It is not difficult to show using
the observations made in the previous subsection that (A1, . . . , AN) is k-dominated if
and only if (A∧k

1 , . . . , A∧k
N ) is 1-dominated. Various characterisations of domination—

in terms of invariant splittings, singular values, contraction on projective spaces and
contraction on Grassmannians—were explored by Bochi, Gourmelon, Barnsley and
Vince in [12, 9]. In particular it was shown in [12] that a compact set of invertible
matrices is 1-dominated if and only if it satisfies a slightly weakened form of multi-
positivity in which the criteria of Definition 1.1 all hold except that the sets Kj are
not assumed to be convex. By repeating iteratively the operations of replacing each
set Kj with its convex hull (which may introduce overlaps) and uniting overlapping
sets Kj (which may introduce non-convexity but reduces the number of sets Kj to be
considered) one may prove the following result by inductive descent on the number
of sets Kj :

Proposition 1.2. [9] Let A ⊂Md(R) be compact, and suppose that every A ∈ A

is invertible. Then A is 1-dominated if and only if it is multipositive.

An obvious consequence of this proposition is that for every k = 0, . . . , d every
compact set of invertible matrices A ⊂ Md(R) is k-dominated if and only if it is
k-multipositive.

1.4. The main theorem. In order to state our main theorem we require just
a few more items of notation. For each N ≥ 1 let us define

Σ∗
N :=

∞
⋃

n=1

{1, . . . , N}n.

If i = (ik)
n
k=1 ∈ Σ∗

N we write |i| = n and refer to |i| as the length of i. If i, j ∈ Σ∗
N

we let ij ∈ Σ∗
N denote the sequence of length |i| + |j| obtained by running first

through the symbols of i and then through those of j in the obvious fashion. Clearly
Σ∗

N is a semigroup with respect to the operation (i, j) 7→ ij. If A1, . . . , AN ∈Md(R)
and i = (ik)

n
k=1 ∈ Σ∗

N then we write Ai := Ain · · ·Ai1 . We observe that AiAj = Aji

for all i, j ∈ Σ∗
N .

If B is a linear transformation of a finite-dimensional real vector space we let
λ1(B), . . . , λd(B) denote the eigenvalues of B listed with repetition according to
multiplicity and listed in decreasing order of absolute value. While this notation a

priori introduces ambiguities when distinct eigenvalues of the same modulus exist,
we will see that this consideration does not affect the statements of our results.

We may now present the following generalisation of Pollicott and Vytnova’s result:

Theorem 2. Let d,N ≥ 2, let (A1, . . . , AN) ∈ Md(R)
N and let 0 ≤ k < d.

Suppose that (A1, . . . , AN) is both k-multipositive and (k + 1)-multipositive. For
each integer n ≥ 1 and s ∈ R define

tn(s) :=
∑

|i|=n

λ1
(

A∧k
i

)(dk)−1
λ1

(

A
∧(k+1)
i

)( d
k+1)−1

ρ
(

A∧k
i

)k+1−s
ρ
(

A
∧(k+1)
i

)s−k

p′
A∧k

i

(

λ1
(

A∧k
i

))

p′
A

∧(k+1)
i

(

λ1

(

A
∧(k+1)
i

))
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where p′B(x0) denotes the first derivative of the characteristic polynomial pB(x) :=
det(xI − B) evaluated at the point x0. Define also

an(s) :=
(−1)n

n!
det



















t1(s) n− 1 0 · · · 0 0
t2(s) t1(s) n− 2 · · · 0 0

t3(s) t2(s) t1(s)
. . . 0 0

...
...

...
. . .

. . .
...

tn−1(s) tn−2(s) tn−3(s) · · · t1(s) 1
tn(s) tn−1(s) tn−2(s) · · · t2(s) t1(s)



















for all n ≥ 1, and a0(s) := 1. For each s ∈ [k, k + 1] let rn(s) denote the smallest
positive real root of the polynomial pn,s(x) :=

∑n
i=0 an(s)x

i. Then there exists n0 ∈ N

such that rn(s) is well-defined for all s ∈ [k, k + 1] and n ≥ n0, and we have
∣

∣

∣

∣

eP (A1,...,AN ;s) − 1

rn(s)

∣

∣

∣

∣

≤ K exp (−γnα)

for some constants K, γ > 0 not depending on s ∈ [k, k + 1], where

α :=

(

d+1
k+1

)

− 1
(

d+1
k+1

)

− 2
> 1.

Suppose additionally that there is a norm |||·||| on Rd such that max1≤i≤N |||Ai||| < 1,
and that dimaff(A1, . . . , AN) ∈ (k, k+1). Then for all sufficiently large n the function
s 7→ 1/rn(s) is strictly decreasing and convex on [k, k + 1] and there exists a unique
sn ∈ [k, k + 1] such that rn(sn) = 1. There exist constants K ′, γ′ > 0 depending on
A1, . . . , AN such that for all such n we have

|dimaff(A1, . . . , AN)− sn| ≤ K ′ exp (−γ′nα) .

Since every matrix tuple is 0-multipositive, in the case k = 0 the hypothesis
of Theorem 2 reduces to the requirement that dimaff(A1, . . . , AN) is 1-multipositive
and dimaff(A1, . . . , AN) ∈ (0, 1). Since B∧0 is the identity map on R the expressions
involving A∧k

i reduce to 1 in the case k = 0, resulting in the formula

tn(s) :=
∑

|i|=n

λ1 (Ai)
d−1 ρ (Ai)

s

p′Ai
(λ1 (Ai))

.

In particular when d = 2, k = 0 and the matrices Ai have positive entries we may
recover the conclusion of Theorem 1. Similarly, since every tuple in GLd(R)

N is

d-multipositive and B∧d = detB, the expressions involving A
∧(k+1)
i simplify when

k = d− 1 yielding

tn(s) :=
∑

|i|=n

λ1

(

A
∧(d−1)
i

)d−1

ρ
(

A
∧(d−1)
i

)d−s

| detAi|s+1−d

p′
A

∧(d−1)
i

(

λ1

(

A
∧(d−1)
i

)) .

and the hypotheses are reduced to the requirement that (A1, . . . , AN) is (d − 1)-
multipositive and dimaff(A1, . . . , AN) ∈ (d − 1, d). We remark that hypotheses of
domination and positivity analogous to those in Theorem 2 have been a feature of
numerous recent works on affine iterated function systems such as [6, 7, 8, 20, 21] as
well as the older article [30].

If it is known that the tuple (A∧k
1 , . . . , A∧k

N ) preserves a single cone in ∧kRd and

similarly (A
∧(k+1)
1 , . . . , A

∧(k+1)
N ) preserves a single cone in ∧k+1Rd then the condition



652 Ian D. Morris

dimaff(A1, . . . , AN) ∈ (k, k + 1) may be easily checked. A theorem of Protasov [58]
implies that if B1, . . . , BN preserve a cone then

lim
n→∞

(

N
∑

i1,...,in=1

‖Bi1 · · ·Bin‖
)

1
n

= ρ

(

N
∑

i=1

Bi

)

,

and so in this case

lim
n→∞

(

N
∑

i1,...,in=1

ϕk (Ai1 · · ·Ain)

)
1
n

= ρ

(

N
∑

i=1

A∧k
i

)

,

lim
n→∞

(

N
∑

i1,...,in=1

ϕk+1 (Ai1 · · ·Ain)

)
1
n

= ρ

(

N
∑

i=1

A
∧(k+1)
i

)

using the identity ϕℓ(B) = ‖B∧ℓ‖ for ℓ = 0, . . . , d. It follows that in this situation
Theorem 2 is applicable if

ρ

(

N
∑

i=1

A
∧(k+1)
i

)

< 1 < ρ

(

N
∑

i=1

A∧k
i

)

.

An example of this situation is presented in §7 below.
In the situation where (A1, . . . , AN) fails to be both k- and (k+ 1)-multipositive

we believe it to be unlikely that any analogue of Theorem 2 can be proved. The
precise role of the multipositive hypothesis is discussed in more detail in the following
section, and in the final section §8.

2. Overview of the method and statement of the main technical theorem

The method underlying Theorem 2 is, like Theorem 1, based on Fredholm deter-
minants of transfer operators, and in broad terms resembles many other arguments
of this type such as [33, 34, 36, 51, 54, 56, 57]. Both in order to give a sense of the
organisation of this article and to indicate those complications present in the proof of
Theorem 2 which do not occur in the context of Theorem 1 let us briefly describe this
strategy. For simplicity we will specialise our description to the situation in which the
transfer operators act on a Hilbert space, although this is not a strict requirement.

We recall that an operator L on an infinite-dimensional Hilbert space is called
trace-class if the sequence of approximation numbers

sn(L ) := inf {‖L − F‖ : rank F < n}
is summable; we observe in particular that such an operator is compact (being a
limit in the norm topology of a sequence of finite-rank operators) and cannot be
invertible. We also observe that clearly sn(L

ℓ) ≤ ‖L ℓ−1‖sn(L ) for every n, ℓ ≥ 1
and consequently every power of a trace-class operator is also trace-class. The notion
of trace-class operator is reviewed in detail for the reader’s convenience in §4. Suppose
then that H is a separable complex Hilbert space and L : H → H a trace-class
linear operator, and let (λℓ)

∞
ℓ=1 be the sequence of nonzero eigenvalues of L listed

with repetition according to their algebraic multiplicity. (If only M < ∞ nonzero
eigenvalues exist then define λℓ = 0 for ℓ > M .) It is a classical fact that the function
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z 7→ det(I − zL ) which may be defined2 by

det(I − zL ) :=

M
∏

ℓ=1

(1− zλℓ)

is an entire function from C to C, and moreover one may show that in the power
series det(I − zL ) =

∑∞
n=0 aℓz

ℓ the coefficients are given by a0 = 1 and

aℓ =
(−1)ℓ

ℓ!
det



















trL ℓ− 1 0 · · · 0 0
trL 2 trL ℓ− 2 · · · 0 0

trL 3 trL 2 trL
. . . 0 0

...
...

...
. . .

. . .
...

trL ℓ−1 trL ℓ−2 trL ℓ−3 · · · trL 1
trL ℓ trL ℓ−1 trL ℓ−2 · · · trL 2 trL



















for ℓ ≥ 1. If we write

∞
∑

ℓ=0

aℓz
ℓ = det(I − zL ) =

M
∏

ℓ=1

(1− zλℓ)

then by equating coefficients of zn we find (at least informally) that also

(1) an = (−1)n
∑

i1<i2<···<in

λi1 · · ·λin .

for each n ≥ 1. Suppose now that we wished to calculate the spectral radius ρ(L ),
knowing the values of the traces L ℓ for ℓ = 1, . . . , n, say, and knowing also that the
spectral radius is an eigenvalue of L . The roots of det(I − zL ) are precisely the
reciprocals of the eigenvalues of L and therefore ρ(L )−1 is the smallest positive root
of
∑∞

ℓ=0 aℓz
ℓ. In particular, the smallest positive root of

∑n
ℓ=0 aℓz

ℓ should be a good
approximation to ρ(L )−1 as long as

∑∞
ℓ=n+1 |aℓ| is small. But if we are able to show

that the eigenvalues (λn) decay exponentially (or even just stretched-exponentially)
in n, then the expression (1) implies a super-exponential decay estimate for the
coefficients an. Such an estimate will hold in particular if the approximation numbers
of L decay stretched-exponentially. In such a situation we may therefore reasonably
hope that the approximation procedure just outlined provides an estimate which
becomes super-exponentially more accurate as n increases.

In order to implement this line of reasoning we need therefore to construct,
for each s ∈ [k, k + 1], a trace-class operator Ls on a Hilbert space H such that
eP (A1,...,AN ;s) is an eigenvalue of Ls and is equal to the spectral radius of Ls, such
that Ls is trace-class, such that the sequence of approximation numbers of Ls de-
cays rapidly to zero, and such that the sequence of traces trL n

s is easy to compute.
Once such a family of operators has been constructed the result follows by relatively
straightforward manipulations which, while they do not correspond precisely to any
prior work, share a degree of familial resemblance with calculations occurring in
numerous earlier articles such as [3, 32, 33, 34, 35, 36, 37, 40, 52, 53, 54, 55, 56, 57].

If V is a finite-dimensional real vector space let PV denote the real projective
space of lines through the origin in V . Intuitively, in order to construct an operator

2The Fredholm determinant is more usually defined first by its power series and shown later to
equal the infinite product given here, see e.g. [62]; we adopt this characterisation for simplicity of
presentation and because of its more direct connection with the problems being studied.
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Ls with spectral radius eP (A1,...,AN ;s), we might consider an operator acting on some
space of continuous functions P (∧kRd)× P (∧k+1Rd) → C defined by

(Lsf) (u, v) =

N
∑

i=1

(
∥

∥A∧k
i u
∥

∥

‖u‖

)k+1−s




∥

∥

∥
A

∧(k+1)
i v

∥

∥

∥

‖v‖





s−k

f
(

A∧k
i u,A

∧(k+1)
i v

)

where for v ∈ V the notation v represents the one-dimensional subspace spanned by
the vector v. Since we would then have

(L n
s f) (u, v) =

∑

|i|=n

(
∥

∥A∧k
i u
∥

∥

‖u‖

)k+1−s




∥

∥

∥
A

∧(k+1)
i v

∥

∥

∥

‖v‖





s−k

f
(

A∧k
i u,A

∧(k+1)
i v

)

for each n ≥ 1 we might then reasonably expect that

lim
n→∞

‖L n
s ‖

1
n = lim

n→∞





∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−s
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s−k





1
n

= lim
n→∞





∑

|i|=n

ϕs(Ai)





1
n

so that eP (A1,...,AN ;s) is equal to the spectral radius of Ls. Indeed, such operators were
successfully constructed by Guivarc’h and Le Page on spaces of Hölder continuous
functions P (∧kRd)× P (∧k+1Rd) → C in the article [29].

However, notwithstanding the (rather minor) additional complications posed by
the fact that the spaces defined above are not Hilbert, there is no reason to believe
that Ls acting on such a space should have a summable sequence of approxima-
tion numbers sn(Ls). Indeed, Ls as constructed is equal to a sum of weighted
composition operators f 7→ g · f ◦ T where T is an invertible transformation of
P (∧k

R
d)×P (∧k+1

R
d) and g is nowhere zero. Such an operator might reasonably be

expected to be invertible, and there is certainly no reason to believe that Ls should
be trace-class.

The problem is thus to define Ls approximately as above in such a way that it is
a sum of trace-class, non-invertible operators. It is here that the hypothesis of k- and
(k+1)-multipositivity becomes relevant: this hypothesis implies that for ℓ = k, k+1
the matrices A∧ℓ

1 , . . . , A
∧ℓ
N map a finite union of patches of P (∧ℓRd) strictly inside

itself. By taking H to be a suitable Hilbert space of functions defined only on the
patches, composition with the projective action of the matrices should then induce
an operator which is non-invertible and hopefully trace-class. It transpires that
composition operators on spaces of holomorphic functions are reliably trace-class
subject to moderate geometrical conditions, and as such our strategy will involve
passing to a space of holomorphic functions defined on complex extensions of the
patches in real projective space. Once we have verified that such an extension can
be constructed in such a way that the operator Ls is well-defined on the patches we
may proceed to prove Theorem 2 along the lines outlined above.

In the two-dimensional context of Theorem 1 the construction of these complex
patches is very straightforward. Since Theorem 1 is restricted to affine transforma-
tions whose linear parts contract the positive cone in R2, it is sufficient to consider
the projective action of those linear maps on the interval {(x, 1 − x) : x ∈ [0, 1]},
which is an action by linear fractional transformations. A finite collection of linear
fractional transformations each of which maps an interval strictly inside itself can
easily be shown to also map a corresponding complex disc inside itself, and this
complex disc can be used as the domain of the holomorphic functions on which the
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operator Ls acts. In higher dimensions and using multicones instead of cones, the
corresponding problem is to understand (in place of one-dimensional intervals) a
family of (d − 1)-dimensional sections of cones in Rd – in effect, a finite collection
of arbitrary (d− 1)-dimensional convex bodies – and a collection of linear fractional
transformations between them, and to contrive a system of extensions of those con-
vex bodies into Cd−1 which is also preserved by the same family of linear fractional
transformations. This much more involved procedure is undertaken in §3 and lays
the foundation for following technical theorem which is obtained subsequently:

Theorem 3. Let d,N ≥ 2 and let (A1, . . . , AN) ∈Md(R)
N be both k-multipositive

and (k + 1)-multipositive, where 0 ≤ k < d. Then there exist a separable complex
Hilbert space H and a family of bounded linear operators Ls : H → H defined for
all s ∈ C with the following properties:

(i) There exist C, κ, γ > 0 such that for all s ∈ C and n ≥ 1 we have sn(L ) ≤
C exp

(

κ|s| − γnβ
)

, where

β :=
1

(

d+1
k+1

)

− 2
∈ (0, 1].

In particular each Ls is trace-class.
(ii) For every s ∈ C and n ≥ 1 we have

trL
n
s =

∑

|i|=n

λ1
(

A∧k
i

)(dk)−1
λ1

(

A
∧(k+1)
i

)( d
k+1)−1

ρ
(

A∧k
i

)k+1−s
ρ
(

A
∧(k+1)
i

)s−k

p′
A∧k

i

(

λ1
(

A∧k
i

))

p′
A

∧(k+1)
i

(

λ1

(

A
∧(k+1)
i

))

where pB(x) := det(xI − B) denotes the characteristic polynomial of B and
p′B(x0) its derivative evaluated at x0.

(iii) For every s ∈ R the spectral radius of Ls is equal to

lim
n→∞

1

n
log
∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−s
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s−k

.

In particular the above limit exists for all s ∈ R, and for every s ∈ [k, k + 1]
the spectral radius of Ls is equal to eP (A1,...,AN ;s). For all s ∈ R the spectral
radius of Ls is a simple eigenvalue of Ls and there are no other eigenvalues
of the same modulus.

Theorem 3 is a special case of a slightly more general result, Theorem 11, which
will be proved later. Theorem 11 is also applied in the sequel article [49] to the
estimation of a related invariant of tuples of matrices.

The remainder of this article is structured as follows. In §3 we undertake the
construction of the complex extensions of the patches in real projective space. We
then review in §4 the properties of trace-class operators which will be needed in this
article and extend a standard result from this context in view of the fact that we will
be working with spaces of holomorphic functions defined on a non-connected region.
We then proceed in §5 to establish the properties of the operator Ls and deduce
Theorem 3. In §6 we derive Theorem 2 from Theorem 3 above. Some examples of
the application of Theorem 2 are presented in §7. In §8 we consider the problem of
calculating the affinity dimension in situations where the hypotheses of Theorem 2
do not apply.
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We remark that sections 6–8 depend only on the statement of Theorem 3 and
the material presented in sections 1 and 2 and as such may be read independently of
sections 3–5 in which the proof of Theorem 3 is prepared for and presented.

3. Complex domains for linear semigroups acting on a multicone

Our first task in proving Theorem 2 is to translate the matter from the context of
linear maps between real cones to the context of holomorphic maps between complex
domains. We will prove the following:

Theorem 4. Let d ≥ 1 and let (K1, . . . ,Km), (K′
1, . . . ,K′

m) be multicones in R
d,

both with transverse-defining vector w ∈ Rd, such that K′
j \ {0} ⊂ IntKj for each

j = 1, . . . , m. Define

A :=

{

A ∈Md(R) : A

(

m
⋃

j=1

Kj

)

⊆
m
⋃

j=1

(

K′
j ∪ −K′

j

)

}

and let A∗ denote the set of all nonzero elements of A. We observe that A is a
semigroup. Then there exists a subset Ω of the complex hyperplane {z ∈ C

d : 〈z, w〉 =
1} such that the following properties are satisfied by A∗ and Ω:

(i) There is a constant τ > 0 such that ‖A1A2‖ ≥ τ‖A1‖·‖A2‖ for every A1, A2 ∈
A. In particular A∗ is a subsemigroup of A.

(ii) The set Ω is open and bounded and is symmetric with respect to complex
conjugation. Every connected component of Ω intersects Rdi. The closures of
the connected components of Ω are disjoint.

(iii) There exists C > 0 such that

C−1‖A‖ ≤ |ℜ(〈Az, w〉)| ≤ |〈Az, w〉| ≤ C‖A‖
for all A ∈ A and z ∈ Ω.

(iv) Every A ∈ A∗ induces a well-defined holomorphic transformation φA : Ω → Ω
defined by φA(z) := 〈Az, w〉−1Az. The set

⋃

A∈A∗

φA(Ω)

is a compact subset of Ω.
(v) There exist a metric d on Ω which is bi-Lipschitz equivalent to the standard

metric and a constant θ ∈ (0, 1) such that d(φA(z1), φA(z2)) ≤ θd(z1, z2) for
every A ∈ A∗.

(vi) Let A ∈ A∗. Then the largest eigenvalue λ1(A) of A is algebraically simple,
is real, is strictly larger in modulus than all of the other eigenvalues of A,
and has a corresponding eigenvector zA ∈ Ω ∩ R

d which is the unique fixed
point of φA : Ω → Ω. The eigenvalues of the derivative DzAφA are precisely
the numbers λj(A)/λ1(A) for j = 2, . . . , d, and in particular

det(I −DzAφA) =
p′A(λ1(A))

λ1(A)d−1
6= 0

where pA(x) := det(xI − A) denotes the characteristic polynomial of A and
p′A its first derivative.

Theorem 4 is trivial in the case d = 1 and for the remainder of this section we shall
ignore this case, assuming at all times that d ≥ 2. (When d = 1 the determinant in
(4) above will be interpreted as being equal to 1.) Here and throughout the remainder
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of this article we use the notation z∗ to denote the complex conjugate of z ∈ C and
reserve the notation z for the one-dimensional subspace spanned by z.

Using the machinery of complex cones and gauges (see [15, 60]) it is possible to
obtain Theorem 4 by extending each real cone Kj to a complex cone

KC

j := {λ((u+ v) + i(u− v)) : λ ∈ C and u, v ∈ Kj}
and considering the projective action on a slice through the complex extension of the
union of the cones K1, . . . ,Km,

Ω :=

{

z ∈ C
d : z ∈

m
⋃

j=1

IntKC

j and 〈z, w〉 = 1

}

.

This procedure has the advantage of explicitness and may be a useful direction of
research in the event that effective versions of Theorem 2 are sought. It is on the other
hand somewhat laborious to implement, and since our interest is only in establishing
the correctness of the formulas in Theorem 2 and giving a super-exponential bound
for the error term, we pursue a simpler but less explicit construction along the lines
of [2, §2].

3.1. The action on the real multicone. We begin by establishing some
preliminary results concerning the action of A on the real cones K1, . . . ,Km and
proceed to prove Theorem 4 in the following subsection.

Lemma 3.1. Let d ≥ 1 and let (K1, . . . ,Km), (K′
1, . . . ,K′

m) be multicones in Rd,
both with transverse-defining vector w ∈ R

d, such that K′
j \ {0} ⊆ IntKj for each

j = 1, . . . , m. Define

A :=

{

A ∈Md(R) : A

(

m
⋃

j=1

Kj

)

⊆
m
⋃

j=1

(

K′
j ∪ −K′

j

)

}

and observe that A is a semigroup. Then there exists τ ∈ (0, 1] such that:

(i) For every u ∈ ⋃m
j=1Kj we have τ‖u‖ ≤ 〈u, w〉 ≤ ‖u‖.

(ii) For every A ∈ A and u ∈ ⋃m
j=1K′

j we have ‖Au‖ ≥ τ‖A‖ · ‖u‖.
(iii) For every A1, A2 ∈ A we have ‖A1A2‖ ≥ τ‖A1‖ · ‖A2‖. In particular the set

of all nonzero elements of A is a subsemigroup of A.

Proof. We will allow the constant τ > 0 to be different in each of (i),(ii) and (iii),
which obviously suffices. To prove (i) it is sufficient, by homogeneity, to consider
only those cases in which ‖u‖ = 1. The function u 7→ 〈u, w〉 is obviously continuous
on the set of all u ∈ ⋃m

j=1Kj such that ‖u‖ = 1 and is positive everywhere on this
set by the definition of a multicone. Since this set is compact this function attains
its minimum, so this minimum is positive; call it τ . We have 0 < τ ≤ 〈u, w〉 ≤ 1 for
all u ∈ ⋃m

j=1Kj with ‖u‖ = 1 and the result follows.

By homogeneity in A and u it is sufficient to prove (ii) in the case ‖A‖ = ‖u‖ = 1.
By a similar compactness argument it suffices to show that Au may not be zero when
A ∈ A, u ∈ ⋃m

j=1K′
j and ‖A‖ = ‖u‖ = 1. For a contradiction suppose that we may

find such A and u satisfying Au = 0. Since A 6= 0 there exists a unit vector v such
that Av 6= 0. Since u is a nonzero element of some K′

j it is an interior point of the
corresponding cone Kj and therefore there exists ǫ > 0 such that u + ǫv and u − ǫv
both belong to Kj . But this implies that A(u + ǫv) = ǫAv and A(u − ǫv) = −ǫAv
are both nonzero elements of AKj. Since AKj ⊆ Ki ∪−Ki for some i we deduce that
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Av ∈ (Ki∩−Ki)\{0} contradicting the definition of a multicone. The result follows.
To deduce (iii) we observe that for any unit vector u ∈ ⋃m

j=1K′
j we have

‖A1A2‖ ≥ ‖A1A2u‖ ≥ τ‖A1‖ · ‖A2u‖ ≥ τ 2‖A1‖ · ‖A2‖ · ‖u‖ = τ 2‖A1‖ · ‖A2‖
by repeated application of (ii). �

The following Perron–Frobenius result does not follow in a completely direct
manner from standard statements of the Perron–Frobenius theorem for cones since
it is possible for A(Ki \ {0}) to include the zero vector, preventing the direct use of
off-the-shelf results.

Lemma 3.2. Let d, w, (K1, . . . ,Km), (K′
1, . . . ,K′

m) and A∗ be as in the statement
of Theorem 4. Suppose that A ∈ A∗ satisfies AKi ⊆ K′

i for some i ∈ {1, . . . , m}.
Then ρ(A) is an algebraically simple eigenvalue of A with corresponding eigenvector
in K′

i and all other eigenvalues of A are of strictly smaller absolute value.

Proof. Choose a cone K′′
i such that K′′

i \ {0} ⊂ IntKi and K′
i \ {0} ⊆ IntK′′

i . We
observe that the single matrix A, the one-element multicone (Ki) and the one-element
multicone (K′′

i ) together satisfy the hypotheses of Lemma 3.1, and by part (ii) of that
lemma it follows that Av is not the zero vector for any nonzero v ∈ K′′

i . In particular
A(K′′

i \ {0}) ⊆ K′
i \ {0} ⊆ IntK′′

i and standard versions of the Perron–Frobenius
Theorem such as [11, Theorem 1.3.26] may be applied to the action of A on K′′

i . The
result follows. �

Proposition 3.3. Let d, w, (K1, . . . ,Km), (K′
1, . . . ,K′

m) and A∗ be as in the
statement of Theorem 4. Then there exist C > 0 and θ ∈ (0, 1) such that for all
j = 1, . . . , m and n ≥ 1, for all nonzero v1, v2 ∈ K′

j ,

sup
A1,...,An∈A∗

∥

∥

∥

∥

A1 · · ·Anv1
〈A1 · · ·Anv1, w〉

− A1 · · ·Anv1
〈A1 · · ·Anv1, w〉

∥

∥

∥

∥

≤ Cθn‖v1 − v2‖.

Proof. For every nonzero v ∈ Rd let v denote the one-dimensional subspace of Rd

spanned by v, and let Kj/ ∼ denote the set of one-dimensional subspaces spanned
by an element of IntKj . For each j = 1, . . . , m define

α(v1, v2) := sup {λ ≥ 0: v2 − λv1 ∈ Kj}
and

β(v1, v2) := inf {λ ≥ 0: λv1 − v2 ∈ Kj}
for all v1, v2 ∈ IntKj; then the formula

dKj
(v1, v2) := log

β(v1, v2)

α(v1, v2)

defines a metric on Kj/ ∼ called the Hilbert projective metric. It follows from
Lemma 3.1(i) that the set of all v ∈ ⋃m

j=1Kj such that 〈v, w〉 = 1 is bounded. By

compactness it follows that there exists ε ∈ (0, 1] such that for every j = 1, . . . , m,
if v ∈ K′

j with 〈v, w〉 = 1 then the open Euclidean ε-ball centred at v is a subset
of Kj. We deduce that if v1, v2 ∈ K′

j with 〈v1, w〉 = 〈v2, w〉 = 1 then since ‖v1‖,
‖v2‖ ≤ τ−1 by Lemma 3.1(i) we have α(v1, v2) ≥ ετ and β(v1, v2) ≤ ε−1τ−1, and
hence the quantity

∆ := max
1≤j≤m

sup
v1,v2∈K′

j

v1,v2 6=0

dKj
(v1, v2)



Fast approximation of the affinity dimension for dominated affine iterated function systems 659

is finite. In particular if v1, v2 ∈ Kj \ {0} for some j ∈ {1, . . . , m}, and A ∈ A
∗,

then dKi
(Av1, Av2) ≤ ∆ where i is the unique integer such that AKj ⊆ Ki ∪ −Ki. It

follows by e.g. [42, Theorem 1.1] that if A ∈ A∗, v1, v2 ∈ Kj/ ∼ and AKj ⊆ Ki ∪−Ki

then we have dKi
(Av1, Av2) ≤ θdKj

(v1, v2) where θ := tanh(∆/4) ∈ (0, 1).
We claim that there exists C1 > 0 such that if v1, v2 ∈ K′

j with 〈v1, w〉 = 〈v2, w〉 =
1 then

C−1
1 ‖v1 − v2‖ ≤

(

edKj
(v1,v2) − 1

)

≤ C1‖v1 − v2‖.
Indeed, given such vectors v1, v2 ∈ K′

j with v1 6= v2 let α := α(v1, v2) and β :=
β(v1, v2). Since Kj is closed the supremum in the definition of α is attained, and
therefore we have v2 − αv1 ∈ Kj. Similarly we have βv1 − v2 ∈ Kj. From the
maximality of α and the minimality of β it follows that v2 − αv1 and βv1 − v2 are
boundary points of Kj . Since 〈v1−v2, w〉 = 0 and v1−v2 6= 0 neither v1−v2 nor v2−v1
can belong to Kj , so neither α nor β may equal 1 and we deduce that α < 1 < β.

To obtain the first of the two claimed inequalities we observe that βv1 − v2 and
(1−α)v1 belong to Kj, where we have used 0 < α < 1. Hence (β−α+1)v1−v2 ∈ Kj .
If τ > 0 is as given by Lemma 3.1(i) then we have

τ‖v1 − v2‖ ≤ τ‖(β − α + 1)v1 − v2‖+ τ‖(β − α)v1‖
≤ |〈(β − α+ 1)v1 − v2, w〉|+ (β − α)|〈v1, w〉|

≤ 2(β − α) < 2

(

β

α
− 1

)

= 2
(

edKj
(v1,v2) − 1

)

where we have again used 0 < α < 1 in the final line. This yields the first inequality.
To obtain the second inequality define u1 :=

1
β−1

(βv1 − v2) and u2 :=
1

1−α
(v2 − αv1).

We observe that both u1 and u2 belong to the boundary of Kj, which implies ‖u1 −
v1‖, ‖u2 − v2‖ ≥ ετ by the definition of ε and the bound ‖v1‖, ‖v2‖ ≤ τ−1. We now
observe that

edKj
(v1,v2) =

β

α
=

‖u1 − v2‖ · ‖u2 − v1‖
‖u1 − v1‖ · ‖u2 − v2‖

≤
(‖u1 − v1‖+ ‖v1 − v2‖

‖u1 − v1‖

)(‖u2 − v2‖+ ‖v2 − v1‖
‖u2 − v2‖

)

≤
(

1 + ε−1τ−1‖v1 − v2‖
)2

and therefore

edKj
(v1,v2) − 1 ≤

(

2

ετ
+

1

ε2τ 2
‖v1 − v2‖

)

‖v1 − v2‖ ≤
(

4

ε2τ 3

)

‖v1 − v2‖

where we have again used ‖v1‖,‖v2‖ ≤ τ−1. The claim follows.
We may now prove the proposition. Given n ≥ 1, nonzero v1, v2 ∈ K′

j and
A1, . . . , An ∈ A∗, let i ∈ {1, . . . , m} be the integer such that An · · ·A1Kj ⊆ Ki∪−Ki.
We have

∥

∥

∥

∥

An · · ·A1v1
〈An · · ·A1v1, w〉

− An · · ·A1v2
〈An · · ·A1v2, w〉

∥

∥

∥

∥

≤ C1

(

edKi
(An···A1v1,An···A1v2) − 1

)

≤ C1

(

eθ
ndKj

(v1,v2) − 1
)

≤ C2
1θ

n‖v1 − v2‖
and the proposition is proved. �
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While Proposition 3.3 will provide us with a vital contraction estimate for maps
between specific cones Kj, in order to apply it we will need the following combinatorial
lemma which allows us to reduce the action of a specific matrix product on the
multicone to that on a single cone:

Lemma 3.4. Let d, w, (K1, . . . ,Km), (K′
1, . . . ,K′

m) and A∗ be as in the statement
of Theorem 4. Let k ≥ 2m − m − 1. Then for every A1, . . . , Ak ∈ A∗ there exists
i ∈ {1, . . . , m} such that

Ak · · ·A1

(

m
⋃

j=1

Kj

)

⊆ Ki ∪ −Ki.

Proof. It is clearly sufficient to consider the case k = 2m − m − 1 only. Let
I0 := {1, . . . , m} and for each n = 1, . . . , 2m −m − 1 let In denote the intersection
of all sets I ⊆ {1, . . . , n} such that

(2) An · · ·A1

(

m
⋃

j=1

Kj

)

⊆
⋃

i∈I
(Ki ∪ −Ki)

where the union over an empty set of indices i is understood to be {0}. We observe
that I = In itself satisfies (2). By Lemma 3.1(iii) the product A2m−m−1 · · ·A1 is not
the zero matrix and therefore In is nonempty. We observe that the cardinality of In

is non-increasing as a function of n.
We wish to prove that I2m−m−1 has cardinality 1, so for a contradiction let us

suppose that its cardinality is at least 2. This implies that every preceding In also
has cardinality at least 2, and also that m ≥ 2. Since the number of subsets of
{1, . . . , m} with cardinality at least 2 is 2m−m−1, by the pigeonhole principle there
exist integers n1, n2 with 0 ≤ n1 < n2 ≤ 2m−m−1 such that In1 = In2 . The matrix
B := An2 · · ·An1+1 therefore takes each cone Ki such that i ∈ In1 to a nontrivial
subset of some cone Kj such that j ∈ In1 , inducing a permutation on the elements
of In1 = In2 . It follows that the matrix B#In1 induces the identity permutation on
In1: for every i ∈ In1 we have B#In1Ki ⊆ (Ki ∪ −Ki). Hence B2#In1Ki ⊆ K′

i for
every i ∈ In1. By Lemma 3.2, for every i ∈ In1 the matrix B2#In1 has a simple
positive leading eigenvalue with a one-dimensional eigenspace which intersects Ki

nontrivially: but since #In1 ≥ 2 and distinct cones Ki do not intersect this implies
that the leading eigenvalue is not simple, which is a contradiction. �

3.2. Proof of Theorem 4. Throughout the proof we fix d, A, (K1, . . . ,Km),
(K′

1, . . . ,K′
m) and w as in the statement of the theorem. Part (i) of Theorem 4 follows

directly from Lemma 3.1 so we concentrate on parts (ii) to (vi).
Define H := {z ∈ Cd : 〈z, w〉 = 1} and let Kj := K′

j ∩ H for each j = 1, . . . , m.
Each Kj is closed by definition and is bounded as a consequence of Lemma 3.1(i).
For each n ≥ 1 define

A
∗
n := {A1 · · ·An : A1, . . . , An ∈ A

∗} .
Define a function M : H → [0,+∞) by

M(z) := inf {|〈Az, w〉| : A ∈ A and ‖A‖ = 1} .
Clearly M(z) is well-defined and

M(z) = inf
{

‖A‖−1|〈Az, w〉| : A ∈ A
∗} .
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We observe that M is 1-Lipschitz continuous: given z1, z2 ∈ U and A ∈ A with
‖A‖ = 1 we have

|〈Az2, w〉| ≥ |〈Az1, w〉| − |〈A(z1 − z2), w〉| ≥M(z1)− ‖z1 − z2‖

and taking the infimum over A and rearranging easily yields M(z1) − M(z2) ≤
‖z1 − z2‖. The result follows by symmetry. The set U := {z ∈ H : M(z) 6= 0} is
consequently open. We have

⋃m
j=1Kj ⊆ U by Lemma 3.1(i) and (ii) and in particu-

lar U is nonempty.
We now claim that if A ∈ A∗ and z ∈ U then necessarily 〈Az, w〉−1Az ∈ U . If

this is not the case for some A and z then by compactness there exists B ∈ A∗ with
‖B‖ = 1 such that 〈B(〈Az, w〉−1Az), w〉 = 0, but then necessarily 〈BAz, w〉 = 0
which contradicts z ∈ U since obviously BA ∈ A∗ by the semigroup property of
A∗. The claim is proved. We deduce that for every nonzero A ∈ A the formula
φA(z) := 〈Az, w〉−1Az gives rise to a well-defined holomorphic function φA : U → U .
We observe that φA ◦φB = φAB for all A,B ∈ A∗ and that φtA = φA for all real t > 0
and all A ∈ A

∗.
Let τ > 0 be as given by Lemma 3.1 and observe that

sup

{

‖z‖ : z ∈
m
⋃

j=1

Kj

}

≤ τ−1

by Lemma 3.1(i) and

inf

{

‖A‖−1|ℜ(〈Az, w〉)| : z ∈
m
⋃

j=1

Kj and A ∈ A
∗

}

≥ τ 2

by Lemma 3.1(i) and (ii). For each j = 1, . . . , m define

Uj :=

{

z ∈ U : inf
ω∈Kj

‖z − ω‖ < ǫ

}

where ǫ > 0 is chosen small enough that the following properties hold: the sets
Uj have pairwise disjoint closures; |ℜ(〈Az, w〉)| ≥ τ2

2
‖A‖ and ‖z‖ ≤ 2τ−1 for all

z ∈ ⋃m
j=1Uj and all A ∈ A; and

(3) (256τ−10 + 4τ−4)ǫ <
1

4
.

The second condition is possible since the function z 7→ inf{‖A‖−1|ℜ(〈Az, w〉)| : A ∈
A∗} is 1-Lipschitz continuous for the same reasons as M . Each Kj is convex as a
consequence of the definition of a multicone, so each Uj is convex also.

Now let C1, θ1 be the constants given by Proposition 3.3 and let n1 ≥ 1 be large
enough that C1θ

n1
1 < 1

4
. We claim that for every A ∈ A∗

n1
the map φA satisfies

‖DzφA‖ ≤ 1
2

for all z ∈ ⋃m
j=1Uj . Fix A ∈ A∗

n1
and observe that ‖DωφA‖ ≤ C1θ

n1
1 < 1

4

for all ω ∈ ⋃m
j=1Kj by Proposition 3.3.

By simple direct calculation, for all v ∈ Cd such that 〈v, w〉 = 0 and all z ∈ U
we have

(DzφA)(v) = 〈Az, w〉−2 (〈Az, w〉Av − 〈Av, w〉Az) .



662 Ian D. Morris

It follows that if z1, z2 ∈ Uj , then

(Dz1φA −Dz2φA)(v)

= 〈Az1, w〉−2〈Az2, w〉−2
(

〈Az2, w〉2 − 〈Az1, w〉2
)

(〈Az1, w〉Av − 〈Av, w〉Az1)
+ 〈Az2, w〉−2 (〈A(z1 − z2), w〉Av − 〈Av, w〉A(z1 − z2))

for all v in the tangent space {v ∈ C
d : 〈z, w〉 = 0}. Since |〈Az, w〉|−2 ≤ 4τ−4‖A‖−2

for all z ∈ Uj by the definition of Uj , this yields the estimate

‖Dz1φA −Dz2φA‖ ≤ (16τ−8(‖z1‖+ ‖z2‖)(2‖z1‖) + 4τ−4)‖z1 − z2‖
≤ (256τ−10 + 4τ−4)‖z1 − z2‖

where we have used the bound ‖z‖ ≤ 2τ−1 which applies to all z ∈ Uj. In particular
if z ∈ Uj is arbitrary and ω ∈ Kj is chosen such that ‖z−ω‖ < ǫ, taking z1 := z and
z2 := ω and applying (3) together with ‖DωφA‖ < 1

4
yields ‖DzφA‖ < 1

2
. We conclude

that max1≤j≤m supz∈Uj
‖DzφA‖ ≤ 1

2
. Since each Uj is convex it follows by the mean

value inequality that for every A ∈ A∗
n1

and j = 1, . . . , m the map φA : Uj → U is
1
2
-Lipschitz continuous with respect to the Euclidean metric. (We observe that this

does not imply 1
2
-Lipschitz continuity on

⋃m
j=1Uj .) It follows that for every k ≥ 1

and A ∈ A∗
kn1

the map φA is 1
2k

-Lipschitz on each Uj , which will be used later.
We next observe that for every A ∈ A

∗ and z1, z2 ∈ U there holds the Lipschitz
continuity estimate

(4) ‖φA(z1)− φA(z2)‖ ≤M(z1)
−1M(z2)

−1min{‖z1‖, ‖z2‖}‖z1 − z2‖.
Clearly it is sufficient to prove this in the case ‖A‖ = 1. In this case we observe that

‖φA(z1)− φA(z2)‖ = |〈Az1, w〉〈Az2, w〉|−1 ‖〈Az2, w〉Az1 − 〈Az1, w〉Az2‖
≤M(z1)

−1M(z2)
−1 ‖〈Az2, w〉Az1 − 〈Az1, w〉Az2‖

=M(z1)
−1M(z2)

−1 ‖〈Az2, w〉A(z1 − z2) + 〈A(z2 − z1), w〉Az2‖
≤M(z1)

−1M(z2)
−1‖z2‖ · ‖z1 − z2‖,

and performing the same calculation with z1 and z2 interchanged obviously yields
(4). As a consequence we have

(5) ‖φA(z1)− φA(z2)‖ ≤ C2‖z1 − z2‖
for every z1, z2 ∈ ⋃m

j=1Uj and A ∈ A∗ where C2 := 8τ−5, using the inequalities

M(z) ≥ τ 2/2 and ‖z‖ ≤ 2τ−1 which follow from the definition of the sets Uj .
Let n2 ≥ 2m − m − 1 be an integer such that for every A ∈ A∗ the map φA|Uj

is 1-Lipschitz continuous for every j = 1, . . . , m. (Note that every sufficiently large
multiple of n1 has this property.) Fix k large enough that C22

−k ≤ 1
2

and define a
metric d on U by

d(z1, z2) :=

kn1+n2−1
∑

n=0

2
n

kn1+n2 sup
A∈A∗

n

‖φA(z1)− φA(z2)‖

where the summand corresponding to n = 0 is understood as ‖z1 − z2‖. It follows
from (4) that d(z1, z2) is well-defined for all z1, z2 ∈ U and its property of being a
metric is obvious. For z1, z2 ∈

⋃m
j=1 Uj we additionally have

‖z1 − z2‖ ≤ d(z1, z2) ≤
(

C2

2
1

kn1+n2 − 1

)

‖z1 − z2‖
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by applying (5) and summing the geometric series, so d is bi-Lipschitz equivalent to
the Euclidean distance when considered as a metric on

⋃m
j=1Uj . We observe that since

every A ∈ A∗ is real, the metric d is symmetric with respect to complex conjugation:
d(z1, z2) = d(z∗1 , z

∗
2) for all z1, z2 ∈ U .

We claim that for every z1, z2 ∈
⋃m

j=1 Uj and B ∈ A∗ we have

(6) d(φB(z1), φB(z2)) ≤ 2
− 1

kn1+n2 d(z1, z2).

To see this let z1, z2 ∈
⋃m

j=1Uj and B ∈ A∗. We have

d(φB(z1), φB(z2)) =

kn1+n2−1
∑

n=0

2
n

kn1+n2 sup
A∈A∗

n

‖φA(φB(z1))− φA(φB(z2))‖

≤
kn1+n2
∑

n=1

2
n−1

kn1+n2 sup
A∈A∗

n

‖φA(z)− φA(ω)‖

= 2
− 1

kn1+n2

kn1+n2−1
∑

n=1

2
n

kn1+n2 sup
A∈A∗

n

‖φA(z1)− φA(z2)‖

+ 2
kn1+n2−1
kn1+n2 sup

A∈A∗
kn1+n2

‖φA(z1)− φA(z2)‖.

To prove the claimed inequality it therefore suffices to show that

‖φA(z1)− φA(z2)‖ ≤ 1

2
‖z1 − z2‖

for all A ∈ A∗
kn1+n2

, since then the final term above is bounded by 2
− 1

kn1+n2 ‖z1 − z2‖
and simple rearrangement yields (6). Now, if A ∈ A

∗
kn1+n2

let us write A = A1A2

where A1 ∈ A∗
kn1

andA2 ∈ A∗
n2

. By Lemma 3.4 there exists i such that A2(
⋃m

j=1Kj) ⊆
Ki ∪ −Ki, and this clearly implies A2(

⋃m
j=1K′

j) ⊆ K′
i ∪ −K′

i. Hence φA2(
⋃m

j=1Kj) ⊆
Ki. Choose j1, j2 such that z1 ∈ Uj1 and z2 ∈ Uj2 and choose ω1 ∈ Kj1 and ω2 ∈ Kj2

such that ‖z1 − ω1‖ < ǫ and ‖z2 − ω2‖ < ǫ. We have φA2(ω1), φA2(ω2) ∈ Ki,
‖φA2(z1) − φA2(ω1)‖ < ǫ by the 1-Lipschitz continuity of φA2 restricted to Uj1, and
likewise ‖φA2(z2)− φA2(ω2)‖ < ǫ. Thus φA2(z1) and φA2(z2) are both elements of Ui

and they satisfy ‖φA2(z1) − φA2(z2)‖ ≤ C2‖z1 − z2‖ by (5). But φA1 is 1
2k

-Lipschitz
when restricted to Ui, so

‖φA1(φA2(z1))− φA1(φA2(z2))‖ ≤ 2−k‖φA2(z1)− φA2(z2)‖

≤ C22
−k‖z1 − z2‖ ≤ 1

2
‖z1 − z2‖

and the claim follows.
For each j = 1, . . . , m define Ωj to be the unique connected component of the set

(7)

{

z ∈ U : inf
ω∈Kj

d(z, ω) < ǫ

}

which intersects Kj . Obviously we have Kj ⊂ Ωj . Since ‖z1 − z2‖ ≤ d(z1, z2) for
all z1, z2 ∈ U we also have Ωj ⊆ Uj for each j = 1, . . . , m. Define Ω :=

⋃m
j=1Ωj

and observe that z ∈ Ω if and only if z∗ ∈ Ω by the fact that
⋃m

j=1Kj ⊂ Rd and
the fact that d is conjugation-symmetric. Since every Uj is bounded, so is every Ωj

and therefore so is Ω. The connected components of Ω are precisely the sets Ωj and
these have disjoint closures since this is true of the sets Uj which contain them. Each
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Ωj contains the corresponding set Kj ⊂ R
d and in particular intersects R

d. This
completes the proof of (4). We have

τ 2

2
‖A‖ ≤ |ℜ(〈Az, w〉)| ≤ |〈Az, w〉| ≤ 2τ−1‖A‖

for all z ∈ Ω and A ∈ A as a consequence of the definition of U1, . . . , Um, and this
completes the proof of (4). Since for every A ∈ A

∗ the function φA maps
⋃m

j=1Kj to

a subset of itself, and φA contracts distances between points in
⋃m

j=1Uj with respect

to d by a factor of θ2 := 2−1/(kn1+n2), it follows that

⋃

A∈A∗

φA(Ω) ⊆
{

z ∈ U : inf
ω∈

⋃m
j=1 Kj

d(z, ω) ≤ θ2ǫ

}

which is a compact subset of the set defined in (7). Each φA(Ωj) is a connected
subset of the set defined above and intersects one of the sets Ki, hence it is a subset
of the set defined in (7) and intersects Ki, hence is a subset of the corresponding set

Ωi, hence is a subset of Ω. We conclude that
⋃

A∈A∗ φA(Ω) is a compact subset of Ω.
This completes the proof of (4) and (4).

It remains only to prove (4). Fix A ∈ A∗. Since An2 ∈ A∗
n2

the matrix An2

maps
⋃m

j=1Kj into (Ki ∪ −Ki) for some i ∈ {1, . . . , m} and in particular A2n2 maps

Ki into K′
i. It follows by Lemma 3.2 that A2n2 has an algebraically simple leading

eigenvalue which is real and positive, has corresponding eigenvector vA in K′
i and is

the unique eigenvalue with maximal modulus. Hence A has an algebraically simple
leading eigenvalue λ1(A) which is real (but may be negative), is the unique eigenvalue
of maximal modulus, and satisfies AvA = λ1(A)vA. Defining zA := 〈vA, w〉−1vA we
have zA ∈ Ki ⊂ Ω ∩ Rd. Obviously φAzA = zA and 〈AzA, w〉 = λ1(A). By (4) there
can be no other fixed points for φA in Ω.

Let us now calculate the eigenvalues of the derivative DzAφA. Let u1, . . . , ud ∈ Cd

be a Jordan basis for A with basis elements listed in descending order of the absolute
value of the corresponding eigenvalue, and with u1 = zA. Since |λ1(A)| > |λ2(A)| we
have Au1 = λ1(A)u1 and Au2 = λ2(A)u2. For each j ∈ {3, . . . , d}, let δj ∈ {0, 1}
such that Auj = λj(A)uj + δjuj−1.

For every v in the tangent space {v ∈ Cd : 〈v, w〉 = 0} to Ω at zA we have

(DzAφA) v := lim
ε→0

1

ε

(

A(u1 + εv)

〈A(u1 + εv), w〉 −
Au1

〈Au1, w〉

)

=
〈Au1, w〉 · Av − 〈Av, w〉 · Au1

〈Au1, w〉〈Au1, w〉
=

1

λ1(A)
(Av − 〈Av, w〉u1) .

Clearly the vectors vj := uj − 〈uj, w〉u1, where j runs from 2 to d, form a basis of
the tangent space {z ∈ Cd : 〈z, w〉 = 0}. We have

(DzAφA) v2 =
1

λ1(A)
(Av2 − 〈Av2, w〉u1)

=
1

λ1(A)
(λ2(A)u2 − λ1(A)〈u2, w〉u1 − λ2(A)〈u2, w〉u1 + λ1(A)〈u2, w〉u1)

=
1

λ1(A)
(λ2(A)u2 − λ2(A)〈u2, w〉u1) =

λ2(A)

λ1(A)
v2,
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and for j = 3, . . . , d we similarly have

(DzAφA) vj =
1

λ1(A)
(Avj − 〈Avj , w〉u1)

=
1

λ1(A)

(

λj(A)uj + δjuj−1 − λ1(A)〈uj, w〉u1

− λj(A)〈uj, w〉u1 − δj〈uj−1, w〉u1 + λ1(A)〈uj, w〉u1
)

=
1

λ1(A)
(λj(A)uj − λj(A)〈uj, w〉u1 + δjuj−1 − δj〈uj−1, w〉u1)

=
λj(A)

λ1(A)
vj +

δj
λ1(A)

vj−1.

It follows that with respect to the basis v2, . . . , vd the matrix of DzAφA is upper
triangular with the values λj(A)/λ1(A) along the diagonal. In particular its eigen-
values are precisely the numbers λj(A)/λ1(A) for j = 2, . . . , d as claimed. Since

pA(x) = det(xI − A) =
∏d

j=1(x− λj(A)) we have

p′A(x) =

d
∑

ℓ=1

∏

1≤j≤d
j 6=ℓ

(x− λj(A))

and therefore

p′A(λ1(A))

λ1(A)d−1
=

∏d
j=2(λ1(A)− λj(A))

λ1(A)d−1
=

d
∏

j=2

(

1− λj(A)

λ1(A)

)

= det(I −DzAφA).

Since 1 − λj(A)/λ1(A) is nonzero for all j = 2, . . . , d this quantity is nonzero. This
completes the proof of (4) and hence of the theorem.

4. Operator-theoretic preliminaries

In this section we collect some preliminary results which will underpin the con-
struction of the operators Ls defined in Theorem 3.

4.1. Bergman spaces. If Ω ⊂ Ck is open and nonempty the Bergman space
A2(Ω) is defined to be the set of all holomorphic functions f : Ω → C such that the
integral

´

Ω
|f(z)|2 dV (z) is finite, where V denotes 2k-dimensional Lebesgue measure

on Ck ≃ R2k. The space A2(Ω) is a Hilbert space when equipped with the inner
product 〈f, g〉A2(Ω) :=

´

Ω
f(z)g(z)∗ dV (z). In particular it is a closed subspace of the

Hilbert space L2(Ω) and is therefore separable. We note the following elementary
estimate:

Lemma 4.1. Let Ω ⊆ Ck be a nonempty open set and let K ⊆ Ω be compact.
Then there exists CK > 0 depending on K such that supz∈K |f(z)| ≤ CK‖f‖A2(Ω) for
every f ∈ A2(Ω).

Proof. Choose ε > 0 small enough that for every z ∈ K the open ball Bε(z0) is
a subset of Ω. By harmonicity we have

|f(z0)|2 =
∣

∣

∣

∣

1

V (Bε(z0))

ˆ

Bε(z0)

f(z)2 dV (z)

∣

∣

∣

∣

≤ 1

V (Bε(z0))

ˆ

Ω

|f(z)|2 dV (z) = 1

V (Bε(z0))
‖f‖2A(Ω) =

k!

πkεk
‖f‖2A(Ω)
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for all f ∈ A2(Ω) and z0 ∈ K. �

We observe in particular that for every z ∈ Ω the evaluation map f 7→ f(z) is a
continuous linear functional A2(Ω) → C.

In practice we will be interested in the case where Ω is a bounded open subset of
an affine subspace of Cd rather than of Cd itself. Clearly the results of this section
will apply equally well in that context with k being equal to the dimension of the
affine subspace of Cd of which Ω is an open subset.

4.2. Trace-class operators. We define the singular values or approximation

numbers sn(L) of a bounded linear operator L : H → H acting on a separable complex
Hilbert space H to be the quantities

sn(L) := inf {‖L − F‖ : F : H → H is bounded with rank at most n− 1} ,
where n ranges over the positive integers. If L is compact then the values sn(L)2
coincide with the sequence of eigenvalues of the self-adjoint operator L∗L (see e.g.
[27, Theorem IV.2.5]). If L satisfies

∑∞
n=1 sn(L) < ∞ then L is called trace-class.

Any trace-class operator is obviously the limit in the operator norm of a sequence of
finite-rank operators and in particular is compact. It follows easily from the definition
of sn that if L1 and L2 are bounded operators then sn(L1L2) and sn(L2L1) are both
bounded by ‖L1‖sn(L2) for every n ≥ 1, and in particular the composition of a trace-
class operator with a bounded operator is trace-class. In particular every power of a
trace-class operator is trace-class.

The fundamental properties of the trace are summarised in the following result
which combines several statements from [62, §3]:

Theorem 5. Let L be a trace-class operator acting on a complex separable
Hilbert space H and let (λn)

M
n=1 be a complete enumeration of the nonzero eigenvalues

of L, listed with repetition according to algebraic multiplicity, where M ∈ N ∪
{0,+∞}. Then for every orthonormal basis (en)

∞
n=1 of H we have

(8)

∞
∑

n=1

〈Len, en〉 =
M
∑

n=1

λn

with both series being absolutely convergent. The common value of (8) is defined to
be the trace of L and is denoted trL.

It is clear from the definition that s2n−1(L1 + L2) ≤ sn(L1) + sn(L2) for every
pair of bounded linear operators L1,L2 : H → H and every n ≥ 1. It follows easily
that if L1, . . . ,Lk are trace-class operators on H then any finite linear combination
∑k

i=1 aiLi is also trace-class and satisfies

tr
k
∑

i=1

aiLi =
k
∑

i=1

ai trLi

as a consequence of (8).
The following result also combines several statements from [62, §3], with the

exception of the determinant formula for an which may be found instead in, for
example, [61, Theorem 6.8] or [27, Theorem IV.5.2].

Theorem 6. Let L be a trace-class operator on a separable complex Hilbert
space H and let (λn)

∞
n=1 be an enumeration of the nonzero eigenvalues of L, repeated

according to algebraic multiplicity. (If only M < ∞ nonzero eigenvalues exist, then
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we define λn := 0 for all n > M .) For every n ≥ 1 define

an := (−1)n
∑

i1<···<in

λi1(L) · · ·λin(L)

and define also a0 := 1. Then the function

det(I − zL) :=
∞
∑

n=0

anz
n

is well-defined and entire, and is equal to the absolutely convergent infinite prod-
uct

∏∞
n=1(1 − zλn). The zeros of z 7→ det(I − zL) are precisely the reciprocals of

the nonzero eigenvalues of L and the order of each zero is equal to the algebraic
multiplicity of the corresponding eigenvalue. The coefficients an satisfy

an =
(−1)n

n!
det



















trL n− 1 0 · · · 0 0
trL2 trL n− 2 · · · 0 0

trL3 trL2 trL . . . 0 0
...

...
...

. . .
. . .

...
trLn−1 trLn−2 trLn−3 · · · trL 1
trLn trLn−1 trLn−2 · · · trL2 trL



















,

and

|an| ≤
∑

i1<···<in

si1(L) · · · sin(L)

for all n ≥ 1.

4.3. Weighted composition operators on Bergman spaces. It has long
been known that composition operators on Bergman spaces, and on other Banach
spaces of holomorphic functions, are trace-class under mild conditions (see e.g. [28]).
Historically most results in this context have assumed the set Ω ⊂ Ck to be bounded
and connected but in this article we will need to work with sets having multiple
connected components. We will use the notation Ω0 ⋐ Ω to mean that the closed set
Ω0 is a compact subset of the open set Ω.

The following result is a special case of [1, Theorem 5.9].

Theorem 7. Let Ω ⊆ Ck be a nonempty open set and let Ω0 ⋐ Ω be nonempty.
Suppose that φ1, . . . , φm : Ω → Ω0 are holomorphic and ψ1, . . . , ψm : Ω → C are
holomorphic and bounded. Then the operator L : A2(Ω) → A2(Ω) given by

(Lf) (z) :=
m
∑

j=1

ψj(z)f(φj(z))

is a well-defined bounded linear operator on A2(Ω), and there exist C, γ > 0 depend-
ing only on Ω and Ω0 such that

sn(L) ≤ C

(

m
∑

j=1

sup
z∈Ω

|ψj(z)|
)

exp
(

−γn 1
k

)

for every n ≥ 1. In particular L is trace class.

In this article we will need to calculate explicitly the traces of a family of op-
erators. The following result is a minor variation on a type of result appearing in
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work of Ruelle ([59, Lemma 1]), Mayer ([43, §III] and remark following [44, Corol-
lary 7.11]), Fried ([25, Lemma 5]) and other authors. The result may be proved easily
by following the second, third and fourth paragraphs of the proof of [2, Theorem 4.2].

Theorem 8. Let Ω ⊂ Ck be a bounded, connected, nonempty open set and
suppose that φ : Ω → Ω is a holomorphic function such that φ(Ω) ⋐ Ω. Let ψ : Ω →
C be holomorphic and bounded. Then φ has a unique fixed point z0 ∈ Ω, the
eigenvalues of the derivative Dz0φ are all strictly less than 1 in modulus, and the
operator L : A2(Ω) → A2(Ω) defined by (Lf)(z) := ψ(z)f(φ(z)) is trace-class and
has trace equal to ψ(z0)/ det(I −Dz0φ).

Since we will in general need to study operators on Bergman spaces A2(Ω) for
which Ω is not connected, we prove the following simple extension of Theorem 8
which does not seem to have been previously stated elsewhere:

Theorem 9. Let Ω ⊆ Ck be a bounded nonempty open set and suppose that
φ : Ω → Ω is a holomorphic function such that φ(Ω) ⋐ Ω. Let ψ : Ω → C be
holomorphic and bounded. Then the set of fixed points Fixφ := {z ∈ Ω: φ(z) = z}
is either finite or empty, and each connected component of Ω contains at most one
fixed point of φ. At each fixed point z ∈ Fixφ the eigenvalues of the derivative Dzφ
are all strictly less than 1 in modulus. The operator L : A2(Ω) → A2(Ω) defined by
(Lf)(z) := ψ(z)f(φ(z)) is trace-class and satisfies

(9) trL =
∑

z∈Fixφ

ψ(z)

det(I −Dzφ)
.

Additionally, if Ω is connected, then Fixφ is a singleton.

Proof. The number of connected components of Ω is at most countably infinite
since otherwise the separability of C

k would be contradicted. Let (Ωm)
M
m=1 be an

enumeration of the connected components of Ω where M ∈ N ∪ {∞}. For each m,
by connectedness and continuity we have either φ(Ωm) ⋐ Ωm or φ(Ωm)∩Ωm = ∅. In
the former case there is a unique fixed point of φ in Ωm and the derivative of φ at
the fixed point has all eigenvalues strictly less than 1 in modulus by Theorem 8. In
the latter case there is obviously no fixed point in Ωm. It follows in particular that if
m = 1 then Fixφ is a singleton as required. Moreover we observe that Fixφ consists
entirely of isolated points, is closed, and is compact since it is contained in φ(Ω); it
is therefore finite or empty, as required.

The operator L meets the hypotheses of Theorem 7 and hence is trace-class, so it
remains to calculate its trace. For each integer m such that 1 ≤ m ≤ M let (fm,n)

∞
n=1

be an orthonormal basis for A2(Ωm). Extend each fm,n to a function f̃m,n : Ω → C by

defining f̃m,n(z) := fm,n(z) when z ∈ Ωm and f̃m,n(z) := 0 otherwise. Clearly (f̃m,n)
is an orthonormal basis for A2(Ω), so by Theorem 5 we have

trL =
M
∑

m=1

∞
∑

n=1

〈Lf̃m,n, f̃m,n〉A2(Ω) =
M
∑

m=1

∞
∑

n=1

ˆ

Ω

ψ(z)f̃m,n(φ(z))f̃m,n(z)
∗ dV (z)(10)

=

M
∑

m=1

∞
∑

n=1

ˆ

Ωm

ψ(z)f̃m,n(φ(z))f̃m,n(z)
∗ dV (z)

using the fact that each f̃n,m is supported on Ωm, and these series are absolutely
convergent.
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Let us evaluate the final term of (10) by considering the contribution of each
m. For m such that φ(Ωm) ∩ Ωm = ∅ the integrand is clearly identically zero for
every n ≥ 1 and the contribution of that m to the total is zero. On the other
hand for each m such that φ(Ωm) ⋐ Ωm let us define Lm : A2(Ωm) → A2(Ωm) by
(Lmf)(z) := ψ(z)f(φ(z)). By Theorem 8 there is a unique fixed point zm of φ in Ωm,
the operator Lm is trace-class and

ψ(zm)

det(I −Dzmφ)
= trLm =

∞
∑

n=1

〈Lmfm,n, fm,n〉A2(Ωm)

=
∞
∑

n=1

ˆ

Ωm

ψ(z)fm,n(φ(z))fm,n(z)
∗ dV (z)

=
∞
∑

n=1

ˆ

Ωm

ψ(z)f̃m,n(φ(z))f̃m,n(z)
∗ dV (z).

We have shown that for all m
∞
∑

n=1

ˆ

Ωm

ψ(z)f̃m,n(φ(z))f̃m,n(z)
∗ dV (z) =

∑

z∈Ωm∩Fixφ

ψ(z)

det(I −Dzφ)

and combining this with (10) yields (9). �

4.4. An operator Perron–Frobenius theorem. The last general functional-
analytic result which we will require is the following:

Theorem 10. (Krasnoselskĭı) Let X be a real Banach space and C ⊆ X a subset
such that:

(i) C is closed and convex and satisfies λC = C for all real λ > 0,
(ii) C ∩ −C = {0},
(iii) The interior of C is nonempty.

Suppose that L : X → X is a compact linear operator which is strongly positive:
for every nonzero x ∈ C there exists n ≥ 1 such that Lnx ∈ Int C. Then ρ(L) is
nonzero and is a simple eigenvalue of L whose corresponding eigenspace intersects
Int C. Moreover there exist no other eigenvalues of L with modulus ρ(L).

Proof. The strong positivity of the operator permits the application of [41, The-
orem 2.5] which implies that there exists an eigenvector in the cone C with positive
real eigenvalue λ; by strong positivity this eigenvector must belong to Int C. In the
terminology of [41, §2.1.1] the strong positivity of the operator L implies that L is
u0-positive for every u0 ∈ Int C, so [41, Theorem 2.10] may be applied to show that
the eigenvalue λ is simple and [41, Theorem 2.13] shows that it is maximal in absolute
value (hence equal to ρ(L)) and that no other eigenvalues of the same absolute value
exist. �

5. Proof of Theorem 3

We will follow [13] in analysing the singular value function

ϕs(Ai) =
∥

∥

∥
A

∧⌊s⌋
i

∥

∥

∥

1+⌊s⌋−s ∥
∥

∥
A

∧⌈s⌉
i

∥

∥

∥

s−⌊s⌋

by treating it as a product of the form
∏ℓ

j=1 ‖A
(j)
i ‖tj where (A

(1)
1 , . . . , A

(1)
N ), . . . ,

(A
(ℓ)
1 , . . . , A

(ℓ)
N ) are a priori unrelated tuples of matrices with respective dimensions
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d1, . . . , dℓ ≥ 1, essentially ignoring the fact that the two tuples (A
∧⌊s⌋
1 , . . . , A

∧⌊s⌋
N ) and

(A
∧⌈s⌉
1 , . . . , A

∧⌈s⌉
N ) are related by the property of being exterior powers of the same

tuple. Besides the established utility of this approach in [13, 47], we suspect that
other results of a similar character such as [23, 29] could in principle be rewritten in
these terms.

Theorem 3 is a special case of the following more general statement which is also
applied in [49]:

Theorem 11. Let ℓ ≥ 1 and t = (t1, . . . , tℓ) ∈ Cℓ, for j = 1, . . . , ℓ let mj, dj ≥ 1,

let (A
(j)
1 , . . . , A

(j)
N ) ∈Mdj (R), and let (K(j)

1 , . . . ,K(j)
mj) be a multicone with transverse-

defining vector wj ∈ Rdj . Suppose that not every dj is equal to 1. Then there exists

a bounded open subset Ω of the
∑ℓ

j=1(dj − 1)-dimensional affine space

(11)

{

z =
ℓ
⊕

j=1

zj ∈
ℓ
⊕

j=1

C
dj : 〈zj , wj〉 = 1 for all j = 1, . . . , ℓ

}

such that the operator

(Ltf)

(

ℓ
⊕

j=1

zj

)

:=
N
∑

i=1

ℓ
∏

j=1

(

〈A(j)
i zj , wj〉

signℜ(〈A(j)
i zj , wj〉)

)tj

f

(

ℓ
⊕

j=1

〈A(j)
i zj, wj〉−1A

(j)
i zj

)

is a well-defined bounded linear operator on A2(Ω) and:

(i) There exist constants C, κ, γ > 0 such that the approximation numbers sn(Lt)
satisfy sn(Lt) ≤ C exp(κ‖t‖ − γn1/(d1+···+dℓ−ℓ)) for every n ≥ 1 and t =
(t1, . . . , tℓ) ∈ Cℓ.

(ii) For each n ≥ 1 the trace of the operator L n
t is equal to

(12)
∑

|i|=n

ℓ
∏

j=1

λ1

(

A
(j)
i

)dj−1

ρ
(

A
(j)
i

)tj

p′
A

(j)
i

(

λ1

(

A
(j)
i

))

where pB(x) := det(xI − B) denotes the characteristic polynomial of B ∈
Md(R) and p′B(x0) its derivative evaluated at x0.

(iii) If t ∈ Rℓ, then

(13) ρ(Lt) = lim
n→∞





∑

|i|=n

m
∏

j=1

∥

∥

∥
A

(j)
i

∥

∥

∥

tj





1
n

and in particular this limit exists. Furthermore in this case ρ(Lt) is a simple
eigenvalue of Lt, and Lt has no other eigenvalues with modulus equal to
ρ(Lt).

Proof of Theorem 11. Fix i ∈ {1, . . . , ℓ}. Since (A
(i)
1 , . . . , A

(i)
N ) strictly preserves

the multicone (K(i)
1 , . . . ,K(i)

mi) with transverse-defining vector wi we may choose a

multicone (K̂(i)
1 , . . . , K̂(i)

1 ) with the same transverse-defining vector such that K̂(i)
j \

{0} ⊆ IntK(i)
j for each j = 1, . . . , mi and such that A

(i)
k (
⋃mi

j=1K
(i)
j ) ⊆ ⋃mi

j=1(K̂
(i)
j ∪

−K̂(i)
j ) for every k = 1, . . . , N . Let

A(i) :=

{

A ∈Mdi(R) : A

(

m
⋃

j=1

K(i)
j

)

⊆
m
⋃

j=1

(

K̂(i)
j ∪ −K̂(i)

j

)

}
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and let A
∗
(i) denote the set of all nonzero elements of A(i). By Theorem 4 A

∗
(i) is a

semigroup. Since obviously A
(i)
1 , . . . , A

(i)
N ∈ A∗

(i) we have A
(i)
i ∈ A∗

(i) for every i ∈ Σ∗
N .

Theorem 4 implies that there exists a bounded open set Ωi ⊂ {zi ∈ C
di : 〈zi, wi〉 =

1} such that for every i ∈ Σ∗
N the map φ

(i)
i : Ωi → Ωi defined by φ

(i)
i (z) :=〈A(i)

i zi, wi〉−1

·A(i)
i zi is well-defined. For each i ∈ Σ∗

N we have ℜ(〈A(i)
i z, wi〉) 6= 0 for all zi ∈ Ωi by

Theorem 4(4), so for each i ∈ Σ∗
N the function zi 7→ signℜ(〈A(i)

i zi, wi〉) ∈ {±1} is
well-defined and is constant on every connected component of Ωi. In particular it is
a holomorphic function on Ωi. For each i ∈ Σ∗

N define

ψ
(i)
i,t(zi) :=

(

〈A(i)
i zi, wi〉

signℜ(〈A(i)
i zi, wi〉)

)ti

:= exp

(

ti log

(

〈A(i)
i zi, wi〉

signℜ(〈A(i)
i zi, wi〉)

))

.

Since 〈A(i)
i zi, wi〉/ signℜ(〈A(i)

i zi, wi〉) has positive real part for all zi ∈ Ωi its logarithm
is a well-defined holomorphic function of zi ∈ Ωi and has imaginary part confined to
the range (−π

2
, π
2
) throughout Ωi.

For all zi ∈ Ωi and i ∈ Σ∗
N we have

(14)

∣

∣

∣

∣

∣

ℜ
(

log

(

〈A(i)
i zi, wi〉

signℜ(〈A(i)
i zi, wi〉)

))

− log
∥

∥

∥
A

(i)
i

∥

∥

∥

∣

∣

∣

∣

∣

≤ logC1

for some constant C1 > 1 using Theorem 4(4), where C1 may be chosen independent
of i ∈ {1, . . . , m} by taking the maximum of its possible values as i varies. Hence

ℜ
(

ti log

(

〈A(i)
i zi, wi〉

signℜ(〈A(i)
i zi, wi〉)

))

= ℜ(ti)ℜ
(

log

(

〈A(i)
i zi, wi〉

signℜ(〈A(i)
i zi, wi〉)

))

− ℑ(ti)ℑ
(

log

(

〈A(i)
i zi, wi〉

signℜ(〈A(i)
i zi, wi〉)

))

≤ ℜ(ti) log
∥

∥

∥
A

(i)
i

∥

∥

∥
+ |ℜ(ti)| logC1 +

π

2
|ℑ(ti)|

for all zi ∈ Ωi and i ∈ Σ∗
N and therefore

sup
zi∈Ωi

∣

∣

∣
ψ

(i)
i,t(zi)

∣

∣

∣
≤
(

C1e
π/2
)|ti|

∥

∥

∥
A

(i)
i

∥

∥

∥

ℜ(ti)

for all i ∈ Σ∗
N .

Now define Ω := Ω1 × · · · × Ωℓ. We observe that each Ωi is a bounded, open
subset of the hyperplane

{

zi ∈ C
di : 〈zi, wi〉 = 1

}

which is symmetric with respect to
complex conjugation and therefore Ω also has these properties as a subset of the affine
space defined in (11). For each i ∈ Σ∗

N define a holomorphic function φi : Ω → Ω by

φi (z1, . . . , zℓ) :=
(

φ
(1)
i (z1), . . . , φ

(ℓ)
i (zℓ)

)

in accordance with the statement of the theorem. As a consequence of Theorem 4(4)
the set

⋃

i∈Σ∗
N

φi(Ω) =
⋃

i∈Σ∗
N

φ
(1)
i (Ω1)× · · · × φ

(ℓ)
i (Ωℓ)

is a compact subset of Ω. For each i ∈ Σ∗
N define also ψi,t : Ω → C by

ψi,t(z1, . . . , zℓ) :=

ℓ
∏

i=1

ψ
(i)
i,t(zi)
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and observe that

(15) sup
z∈Ω

|ψi,t(z)| ≤ C
‖t‖
2

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ℜ(ti)

for all i ∈ Σ∗
N and t ∈ Cℓ, where C2 := (C1e

π/2)
√
ℓ. In particular

(16)

N
∑

j=1

sup
z∈Ω

|ψj,t(z)| ≤ C
‖t‖
2

N
∑

j=1

ℓ
∏

i=1

∥

∥

∥
A

(i)
j

∥

∥

∥

ℜ(ti)

≤ NC
‖t‖
3 ,

say, for every t ∈ Cℓ.
We may now define the operator Lt by

(Ltf) (z) :=

N
∑

j=1

ψj,t(z)f(φj(z))

for all f ∈ A2(Ω) and z ∈ Ω in accordance with the statement of the theorem. By
Theorem 7 it follows that each Lt is a well-defined bounded linear operator acting
on A2(Ω) and that there exist C4, γ > 0 such that for all t ∈ Cℓ we have

sn (Lt) ≤ C4

(

N
∑

j=1

sup
z∈Ω

|ψj,t(z)|
)

exp
(

−γn1/(
∑ℓ

i=1(di−1))
)

≤ C4N exp
(

κ‖t‖ − γn1/
∑ℓ

i=1(di−1))
)

as a consequence of (16), where κ := logC3. We have proved (i).
It follows from (i) that Lt is a trace-class operator. For each i ∈ Σ∗

N and t ∈ Cℓ

let us define an auxiliary operator Li,t by

(Li,tf) (z) := ψi,t(z)f(φi(z)).

Theorem 7 shows in the same manner as before that each Li,t is a well-defined
trace-class operator on A2(Ω). The reader may easily verify the equations

ψji,t(z) = ψi,t(φj(z))ψj,t(z), φji(z) = φi(φj(z))

and therefore Lji,t = Li,tLj,t for all i, j ∈ Σ∗
N and t ∈ Cℓ. It follows by a simple

inductive argument that L n
t =

∑

|i|=n Li,t for every n ≥ 1 and t ∈ C
ℓ, so in

particular

(17) trLt = tr
∑

|i|=n

Li,t =
∑

|i|=n

trLi,t

for every n ≥ 1 and t ∈ Cℓ by the linearity of the trace.
Let us now compute trLi,t for fixed i ∈ Σ∗

N and t ∈ C
ℓ. By Theorem 4(4)

each φ
(i)
i has a unique fixed point z

(i)
i ∈ Ωi and it follows directly that zi :=

(z
(1)
i , . . . , z

(ℓ)
i ) ∈ Ω is the unique fixed point of φi in Ω. Since 〈A(i)

i z
(i)
i , wi〉 = λ1(A

(i)
i )

for each i = 1, . . . , ℓ it follows easily that ψi,t(zi) =
∏ℓ

i=1 ψ
(i)
i,t(z

(i)
i ) =

∏ℓ
i=1 ρ(A

(i)
i )ti .

By Theorem 4(4) the derivative D
z
(i)
i

φ
(i)
i of φ

(i)
i at z

(i)
i satisfies

det
(

I −D
z
(i)
i

φ
(i)
i

)

=
p′
A

(i)
i

(

λ1

(

A
(i)
i

))

λ1

(

A
(i)
i

)di−1
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where both sides of this expression are interpreted as 1 if di = 1, and since clearly

Dziφi = D
z
(1)
i

φ
(1)
i ⊕ · · · ⊕D

z
(ℓ)
i

φ
(ℓ)
i we easily obtain

det (I −Dziφi) =

ℓ
∏

i=1

det
(

I −D
z
(i)
i

φ
(i)
i

)

=

ℓ
∏

i=1

p′
A

(i)
i

(

λ1

(

A
(i)
i

))

λ1

(

A
(i)
i

)di−1
.

It follows by Theorem 9 that

(18) trLi,t =

ℓ
∏

i=1

λ1

(

A
(i)
i

)di−1

ρ
(

A
(i)
i

)ti

p′
A

(i)
i

(

λ1

(

A
(i)
i

))

for every t = (t1, . . . , tℓ) ∈ Cℓ and every i ∈ Σ∗
N , and combining (17) with (18) yields

(12) which completes the proof of (ii).
The proof of (iii) requires some preparatory steps. For the remainder of the

proof we fix t = (t1, . . . , tℓ) ∈ Rℓ. We begin with the existence of the limit in (13).

By Theorem 4(4) there exists τ ∈ (0, 1] such that τ‖A(i)
i ‖ · ‖A(i)

j ‖ ≤ ‖A(i)
i A

(i)
j ‖ ≤

‖A(i)
i ‖ · ‖A(i)

j ‖ for all i = 1, . . . , ℓ and i, j ∈ Σ∗
N , which clearly implies

∥

∥

∥
A

(i)
ji

∥

∥

∥

ti
≥ τ |ti|

∥

∥

∥
A

(i)
i

∥

∥

∥

ti
∥

∥

∥
A

(i)
j

∥

∥

∥

ti

for all i, i and j. The inequality

∑

|i|=n+m

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti
≥ τ

∑ℓ
i=1 |ti|





∑

|i|=n

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti









∑

|i|=m

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti





for all n,m ≥ 1 follows, so by superadditivity the limit

eP(t) := lim
n→∞





∑

|i|=n

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti





1
n

= sup
n≥1



τ
∑ℓ

i=1 |ti|
∑

|i|=n

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti





1
n

is well-defined. We obtain in particular the inequality

(19)
∑

|i|=n

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti
≤ τ−

∑ℓ
i=1 |ti|enP(t) ≤ C

‖t‖
5 enP(t),

say, for all n ≥ 1.
We next introduce a subset of Ω which will be useful in describing the behaviour

of the eigenfunctions of Lt. By Theorem 4(4) there exist for each i = 1, . . . , ℓ
a metric di on Ω which is equivalent to the standard metric and a real number

θi ∈ (0, 1) such that every φ
(i)
i is a θi-contraction with respect to di. Clearly if d

is the product metric derived from d1, . . . , dℓ and θ := maxi θi then every φi is a
θ-contraction on Ω with respect to d and d is equivalent to the standard metric on
Ω. It follows that φ1, . . . , φN defines an iterated function system on the compact
set Ω′ :=

⋃

i∈Σ∗
N
φi(Ω) in the sense of Hutchinson [31] and therefore there exists a

unique nonempty compact set Λ ⊆ Ω′ with the property Λ =
⋃N

j=1 φj(Λ). Clearly

Λ =
⋃

|i|=n φi(Λ) for every n ≥ 1 by a straightforward induction and it follows

easily by contractivity that Λ =
⋂

n=1

⋃

|i|=n φi(Ω). On the other hand φ1, . . . , φN

clearly also defines an iterated function system on Ω′ ∩⊕ℓ
i=1R

di since each map
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zi 7→ 〈A(i)
i z, wi〉−1A

(i)
i zi obviously preserves Ωi ∩Rdi . There therefore exists a unique

nonempty compact set Λ′ ⊆ Ω′ ∩⊕ℓ
i=1R

di with the same property Λ′ =
⋃N

j=1 φj(Λ
′).

By uniqueness we have Λ = Λ′ and we deduce that Λ ⊆ Ω ∩⊕ℓ
i=1R

di .
We claim that Λ has the following transitivity property: for every open set U ⊂ Ω

having nonempty intersection with Λ there exists j ∈ Σ∗
N such that φj(Ω) ⊆ U . To

demonstrate this choose ω ∈ U ∩ Λ arbitrarily, let ε > 0 be small enough that the
ball of centre ω and radius ε in the metric d is a subset of U , and let n be large
enough that θn diamΩ < ε in the sense of the metric d. Since ω ∈ Λ =

⋃

|i|=n φi(Λ)

there exists j ∈ Σ∗
N with length n such that ω ∈ φj(Λ). Clearly ω ∈ φj(Ω) and every

other point of φj(Ω) is within distance θn diamΩ < ε of ω, so φj(Ω) is contained in
the ε-ball around ω and is therefore a subset of U as required. The claim is proved.

We make one final preliminary claim: there exists C6 > 1 such that for every
f ∈ A2(Ω),

(20) lim sup
n→∞

sup
z∈Ω

e−nP(t) |(L n
t f)(z)| ≤ C

‖t‖
6 sup

z∈Λ
|f(z)|.

To prove the claim let z0 ∈ Ω and n ≥ 1 be arbitrary: we have

e−nP(t) |(L n
t f) (z0)| = e−nP(t)

∣

∣

∣

∣

∣

∣

∑

|i|=n

ψi,t(z0)f (φi(z0))

∣

∣

∣

∣

∣

∣

≤ C
‖t‖
2 e−nP(t)

∑

|i|=n

(

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti

)

|f (φi(z0))|

≤ C
‖t‖
2 C

‖t‖
5 sup

z∈
⋃

|i|=n φi(Ω)

|f(z)|

using (15) and (19) and the result follows easily since Λ =
⋂

n=1

⋃

|i|=n φi(Ω). We

observe immediately that ρ(Lt) ≤ eP(t) since obviously (20) prevents Lt from having
an eigenfunction which corresponds to an eigenvalue of modulus strictly greater than
eP(t). We also observe that as a consequence of (20) an eigenfunction of Lt with
eigenvalue of modulus eP(t) cannot vanish identically on Λ.

In order to apply Theorem 10 we wish to study the action of Lt on a real Hilbert
space. Let us define

H :=

{

f ∈ A2(Ω) : f(z) ∈ R for all z ∈ Ω ∩
ℓ
⊕

i=1

R
di

}

and note that H is a closed subset of A2(Ω) as a consequence of Lemma 4.1. It is
clear that H is also a real Hilbert space when equipped with the norm ‖ · ‖A2(Ω).
We observe that the complexification HC is precisely A2(Ω). Indeed, since z ∈ Ω if
and only if z∗ ∈ Ω by Theorem 4, for every f ∈ A2(Ω) the holomorphic function f ∗

defined by f ∗(z) := f(z∗)∗ is also an element of A2(Ω); thus every f ∈ A2(Ω) can be
written as f = 1

2
(f+f ∗)+ 1

2
(f−f ∗) = g+ih, say, where f, g ∈ H. This decomposition

is moreover unique since if g+ ih is the zero function with g, h ∈ H then g and h are
identically zero on Ω ∩⊕ℓ

i=1R
di, hence all of their derivatives vanish there, hence

they are zero on every connected component of Ω which intersects
⊕ℓ

i=1R
di , hence

they are zero throughout Ω by Theorem 4(4).
We wish to apply Theorem 10 in order to study the spectrum of Lt on H and

hence on its complexification A2(Ω). The natural mechanism for doing this is to
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consider the cone of elements of H which are non-negative on a convenient compact
subset such as

⋃N
j=1 φj(Ω) ∩

⊕ℓ
i=1R

di and show that every nonzero element of the

cone is eventually mapped to an interior point (which is precisely a function which
is positive throughout the compact subset) by some power of Lt. However, in the
full generality of Theorem 2 it is possible that φi(Ω) may be extremely small, indeed
even a singleton set. In such cases it is not necessarily the case that every nonzero
holomorphic function on Ω is eventually mapped to a function which is positive on a
prescribed set and Theorem 10 may not be directly applicable. To resolve this issue
we will pass to a suitable quotient Hilbert space.

It is clear from the definition of ψj,t and φj that (Ltf)(z) is real when f ∈ H and

z ∈ Ω∩⊕ℓ
i=1R

di , so Lt acts on H. Define Z := {f ∈ H : f(z) = 0 for all z ∈ Λ} and
note that Z is a vector subspace of H and is closed as a consequence of Lemma 4.1. We
observe that by similar reasoning Lt preserves the subspace Z. The quotient space
H/Z is a Hilbert space when equipped with norm ‖[f ]‖H/Z := inf{‖f − g‖A2(Ω) : g ∈
Z}, being isometrically isomorphic to the orthogonal complement of Z in H. It is not
difficult to see that the operator Lt induces a compact operator on the real Hilbert
space H/Z which we also denote by Lt.

We observe that for each z ∈ Λ the functional [f ] 7→ f(z) is a well-defined
continuous linear functional H/Z → R. Indeed, if [f ] ∈ H/Z and g ∈ Z then we
have f(z) = (f + g)(z) and

|f(z)| = |(f + g)(z)| ≤ CΛ‖f + g‖A2(Ω)

where CΛ > 0 is the constant given by Lemma 4.1 in respect of the nonempty compact
set Λ. In particular f(z) is independent of the choice of representative f ∈ [f ] and

(21) |f(z)| ≤ CΛ inf{‖f + g‖A2(Ω) : g ∈ Z} = CΛ‖[f ]‖H/Z

so that the functional [f ] 7→ f(z) is continuous as claimed. Now define

C := {[f ] ∈ H/Z : f(z) ≥ 0 for all z ∈ Λ} =
⋂

z∈Λ
{[f ] ∈ H/Z : f(z) ≥ 0} .

This set is clearly well-defined, positively homogenous, convex, and closed. If [f ] ∈
C ∩ −C then f(z) = 0 for all z ∈ Λ so that f ∈ Z and therefore the only element of
C ∩ −C is [0]. Since the function [f ] 7→ infz∈Λ f(z) is continuous as a consequence of
(21) it is not difficult to see that [f ] ∈ H/Z is an interior point of C if and only if
infz∈Λ f(z) > 0. In particular the set C satisfies conditions (i)–(iii) of Theorem 10. We

observe also that LtC ⊆ C since by construction each ψj,t is positive on Ω∩⊕ℓ
i=1R

di

and in particular on Λ.
In order to be able to apply Theorem 10 we must show that for every [f ] ∈ C with

[f ] 6= [0] there exists n ≥ 1 such that infz∈Λ(Ln
t f)(z) > 0. Given [f ] ∈ C with [f ] 6= [0]

there necessarily exists z0 ∈ Λ such that f(z0) > 0 and hence there exists an open
set U ⊂ Ω intersecting Λ such that f(z) > 0 for all z ∈ U ∩ Λ. By the transitivity
property of Λ remarked earlier there exists a word j ∈ Σ∗

N with some length n such

that φj(Ω) ⊂ U , so in particular φj(Λ) ⊂ U ∩ Λ and therefore f(φj(z)) > 0 for all
z ∈ Λ. Hence

(L n
t f)(z) =

∑

|i|=n

ψi,t(z)f(φi(z)) ≥ ψj,t(z)f(φj(z)) > 0

for all z ∈ Λ since each ψi,t is real and positive throughout Λ, each f ◦ φi is real and
non-negative throughout Λ, and f ◦ φj is real and positive throughout Λ. We have
obtained infz∈Λ(Ln

t f)(z) > 0 and therefore [Ln
t f ] ∈ C as required.
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We may now apply Theorem 10 to the action of Lt on H/Z. By that theorem
the spectral radius R of Lt on H/Z is positive and there exists [ξt] ∈ Int C such that
[Ltξt] = R[ξt]. Now let z0 ∈ Λ be arbitrary. It follows from (14) that

C
−‖t‖
1

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti
≤ ψi,t(z0) ≤ C

‖t‖
1

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti

for every i ∈ Σ∗
N , so

(L n
t ξt) (z0) =

∑

|i|=n

ψi,t(z0)ξt(φi(z0)) ≥ C
−‖t‖
1

∑

|i|=n

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti
(

inf
z∈Λ

ξt(z)

)

and in a similar fashion

(L n
t ξt) (z0) ≤ C

‖t‖
1 ≤

∑

|i|=n

ℓ
∏

i=1

∥

∥

∥
A

(i)
i

∥

∥

∥

ti
(

sup
z∈Λ

ξt(z)

)

.

Since [L n
t ξ] = Rn[ξt] and the function [f ] 7→ f(z0) is continuous, the left-hand

side of each of the last two displayed equations is simply Rnξt(z0) > 0. Taking
the power 1/n and letting n → ∞ it follows that R = eP(t), and we previously
observed that eP(t) ≥ ρ(Lt). On the other hand it is clear that necessarily ρ(Lt) ≥
limn→∞ |(L n

t ξt)(z0)|1/n = R and we conclude that R = eP(t) = ρ(Lt).
If an eigenvalue of Lt acting on A2(Ω) has absolute value ρ(Lt) then by (20)

its corresponding eigenfunction ηt cannot be identically zero on Λ. Consequently
[ηt] 6= [0] and therefore [ηt] is an eigenfunction of Lt on H/Z (or its complexification)
with the same eigenvalue. But by Theorem 10 this is only possible if the eigenvalue
is ρ(Lt) itself, and we conclude that ρ(Lt) is the only eigenvalue of Lt on A2(Ω)
which has maximum modulus. Moreover this eigenvalue is simple: if two linearly
independent eigenfunctions ξ1t , ξ

2
t ∈ A2(Ω) exist then by (20) neither function can

be identically zero on Λ; by multiplying each by a complex unit if necessary, we
may assume that each takes a nonzero real value somewhere on Λ; and replacing ξ1t
and ξ2t with the functions ξ1t + (ξ1t )

∗ and ξt + (ξ2t )
∗ if necessary we may assume that

ξ1t , ξ
2
t ∈ H and [ξ1t ], [ξ

2
t ] 6= 0. Since Lt acting on H/Z has a simple eigenvalue at eP(t)

by Theorem 10, the equivalence classes [ξ1t ] and [ξ2t ] must be exact, nonzero scalar
multiples of one another. This is precisely to say that some linear combination of
ξ1t and ξ2t vanishes identically on Λ but is not the zero element of H; but since that
linear combination is an eigenfunction with eigenvalue eP(t) this contradicts (20).

To complete the proof it remains only to show that ρ(Lt) is an algebraically sim-
ple eigenvalue. Let ξt ∈ A2(Ω) be an eigenfunction corresponding to this eigenvalue
and observe that by (20) ξt is not identically zero on Λ. If eP(t) is not algebraically
simple, there exists nonzero ηt ∈ A2(Ω) such that Ltηt = eP(t)(ηt+ ξt) and therefore
L n

t ηt = enP(t)(ηt + nξt) for every n ≥ 1, but this is only compatible with (20) if ξt is
identically zero on Λ, a contradiction. The proof is complete. �

6. Proof of Theorem 2

Before starting the proof of Theorem 2 we require two preliminary lemmas, one
concerning the behaviour of the leading eigenvalue of the operator Ls of Theorems 3
and 11 and one an abstract result concerning sequences of implicit functions in two
complex variables.
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Lemma 6.1. Let (A1, . . . , AN) ∈ Md(R)
N be k- and (k + 1)-multipositive with

N, d ≥ 2 and 0 ≤ k < d, and for each s ∈ C let Ls : H → H be as given by
Theorem 3. Define

p(s) := log ρ(Ls) = lim
n→∞

1

n
log





∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−s
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s−k





for all s ∈ R. Then p : R → R is convex. If additionally there exists a norm |||·||| on
Rd with respect to which max1≤i≤N |||Ai||| < 1, then there exists c > 0 such that

p(s2)− p(s1)

s2 − s1
≤ −c < 0

for all pairs of distinct points s1, s2 ∈ R.

Proof. If s1, s2 ∈ R, λ ∈ (0, 1) and n ≥ 1, then

∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−λs1−(1−λ)s2
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

λs1+(1−λ)s2−k

=
∑

|i|=n

(

∥

∥A∧k
i

∥

∥

k+1−s1
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s1−k
)λ(

∥

∥A∧k
i

∥

∥

k+1−s2
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s2−k
)1−λ

≤





∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−s1
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s1−k





λ



∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−s2
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s2−k





1−λ

using Hölder’s inequality with p = 1/λ and q = 1/(1 − λ). Taking nth roots and
letting n → ∞ it follows directly that ρ(Lλs1+(1−λ)s2) ≤ ρ(Ls1)

λρ(Ls2)
1−λ and the

convexity of p follows by taking logarithms.
To complete the proof suppose that there exists a norm |||·||| on R

d with respect
to which max1≤i≤N |||Ai||| < 1, and choose C > 0 such that ‖B‖ ≤ C|||B||| for all
B ∈ Md(R). Observe that in particular σk+1(Ai) ≤ σ1(Ai) = ‖Ai‖ ≤ C|||Ai||| for all
i ∈ Σ∗

N . If s1 < s2 ∈ R and n ≥ 1, then

∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−s2
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s2−k

=
∑

|i|=n

σ1(Ai) · · ·σk(Ai)σk+1(Ai)
s2−k

=
∑

|i|=n

σ1(Ai) · · ·σk(Ai)σk+1(Ai)
s1−kσk+1(Ai)

s2−s1

≤
(

max
|i|=n

σk+1(Ai)

)s2−s1
∑

|i|=n

σ1(Ai) · · ·σk(Ai)σk+1(Ai)
s1−k

≤
(

max
|i|=n

C|||Ai|||
)s2−s1

∑

|i|=n

σ1(Ai) · · ·σk(Ai)σk+1(Ai)
s1−k

≤ Cs2−s1

(

max
1≤i≤N

|||Ai|||
)n(s2−s1)

∑

|i|=n

∥

∥A∧k
i

∥

∥

k+1−s1
∥

∥

∥
A

∧(k+1)
i

∥

∥

∥

s1−k
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so that by taking the nth root and letting n→ ∞ we obtain

ρ(Ls2) ≤
(

max
1≤i≤N

|||Ai|||
)s2−s1

ρ(Ls1)

for all such s1 and s2. Taking logarithms and rearranging yields the claim with
c := − logmax1≤i≤N |||Ai||| > 0. �

Similarly to §4 we shall say that X1 is compactly contained in X2 if the closure
of X1 is a compact subset of the interior of X2, and express this relation with the
notation X1 ⋐ X2.

Lemma 6.2. Let D1, D2 ⊂ C be open discs, let fn : D1×D2 → C be a bounded
holomorphic function for each n ≥ 1, and let f : D1 × D2 → C be bounded and
holomorphic. Suppose that there exists a holomorphic function g : D1 → D2 such
that for all s ∈ D1, g(s) is a simple zero of the function z 7→ f(s, z) and is the unique
zero of that function in D2. Suppose also that

lim
n→∞

sup
s∈D1

sup
z∈D2

|fn(s, z)− f(s, z)| = 0.

Let D′
1 be any open disc which is compactly contained in D1. Then there exist a disc

D′
2 ⊆ D2, which may be chosen concentric with D2 and with radius arbitrarily close

to that of D2, an integer n0 ≥ 1 and holomorphic functions gn : D
′
1 → D′

2 defined for
all n ≥ n0 such that:

(i) For all n ≥ n0 and s ∈ D′
1, gn(s) is a simple zero of z 7→ fn(s, z) and is the

unique zero of that function in D′
2.

(ii) For every integer ℓ ≥ 0 there exists Cℓ > 0 such that

sup
s∈D′

1

∣

∣g(ℓ)n (s)− g(ℓ)(s)
∣

∣ ≤ Cℓ sup
s∈D1

sup
z∈D2

|fn(s, z)− f(s, z)|

for all n ≥ n0, where h(ℓ) denotes the ℓth derivative of the function h.

Proof. Throughout the proof let D3 be an open disc such that D′
1 ⋐ D3 ⋐ D1.

By compactness and continuity we have g(D3) ⋐ D2. Let D′
2 ⋐ D2 be any disc which

is concentric with D2 and has radius large enough that g(D3) ⋐ D′
2. By compactness

and continuity we obtain
inf
s∈D3

inf
z∈∂D′

2

|f(s, z)| > 0

and hence by uniform convergence there exists n1 ≥ 1 such that for all n ≥ n1

sup
s∈D3

sup
z∈∂D′

2

|f(s, z)− fn(s, z)| < inf
s∈D3

inf
z∈∂D′

2

|f(s, z)|.

It follows by Rouché’s theorem that for every s ∈ D3 and n ≥ n1 there exists a
unique zero gn(s) of the function z 7→ fn(s, z) in D′

2 and this zero is simple. Since
each fn is holomorphic it follows by the holomorphic implicit function theorem (see
e.g. [26, p. 34]) that each gn : D3 → D′

2 is holomorphic on D3.
We claim now that

lim
n→∞

sup
s∈D3

|gn(s)− g(s)| = 0.

Indeed, let ε > 0 be any number which is small enough that for every s ∈ D3 the
closed ε-ball centred at g(s) is a subset of D′

2. By compactness and the absence of
zeros of z 7→ f(s, z) in D2 \ {g(s)} we have

inf
s∈D3

inf
|z−g(s)|=ε

|f(s, z)| > 0
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so that in the same manner if n is large enough

sup
s∈D3

sup
|z−g(z)|=ε

|f(s, z)− fn(s, z)| < inf
s∈D3

inf
|z−g(s)|=ε

|f(s, z)|.

Applying Rouché’s theorem again it follows that if n is sufficiently large then for
all s ∈ D3 there is a unique zero of the function z 7→ fn(s, z) in the region 0 ≤
|z − g(s)| < ε. This zero belongs to D′

2 and hence is necessarily equal to gn(s), and
we therefore have sups∈D3

|gn(s)− g(s)| ≤ ε. Since ε was arbitrary we conclude that

(22) lim
n→∞

sup
s∈D3

|gn(s)− g(s)| = 0

as claimed.
For each s ∈ D1 the value g(s) is a simple zero of the function z 7→ f(s, z), so we

have ∂f
∂z
(s, g(s)) 6= 0 for all s ∈ D1. Define

c := inf
s∈D3

∣

∣

∣

∣

∂f

∂z
(s, g(s))

∣

∣

∣

∣

> 0.

Since g(D3) ⋐ D′
2 ⋐ D2 we may choose τ > 0 small enough that for every z ∈ ∂D′

2

the closed ball of radius 2τ centred at z is a subset of D2 which does not intersect
g(D3). Using (22) take n2 ≥ n1 large enough that

sup
s∈D3

|gn(s)− g(s)| < τ

for all n ≥ n2. Observe that if s ∈ D3 and n ≥ n2 then |gn(s) − g(s)| < τ and
|g(s) − ω| > 2τ and therefore |gn(s) − ω| > τ for all ω ∈ ∂D′

2. Using Cauchy’s
integral formula, for any two distinct points z1, z2 ∈ D′

2 we have

f(s, z1)− f(s, z2)

z1 − z2
− ∂f

∂z
(s, z2)

=
1

2πi

ˆ

∂D′
2

f(s, ω)

(z1 − z2)(ω − z1)
− f(s, ω)

(z1 − z2)(ω − z2)
− f(s, ω)

(ω − z2)2
dω

=
1

2πi

ˆ

∂D′
2

f(s, ω)((ω − z2)
2 − (ω − z1)(ω − z2)− (z1 − z2)(ω − z1))

(z1 − z2)(ω − z1)(ω − z2)2
dω

=
1

2πi

ˆ

∂D′
2

f(s, ω)(z21 − 2z1z2 + z22)

(z1 − z2)(ω − z1)(ω − z2)2
dω

=
1

2πi

ˆ

∂D′
2

f(s, ω)(z1 − z2)

(ω − z1)(ω − z2)2
dω.

Hence if s ∈ D3, n ≥ n2 and gn(s) 6= g(s), then since g(s), gn(s) ∈ D′
2

∣

∣

∣

∣

f(s, gn(s))− f(s, g(s))

gn(s)− g(s)
− ∂f

∂z
(s, g(s))

∣

∣

∣

∣

≤ R|gn(s)− g(s)|
τ 3

· sup
t∈D1

sup
z∈D2

|f(t, z)|

where R denotes the radius of D′
2. Now take n3 ≥ n2 large enough that additionally

(

sup
s∈D3

|gn(s)− g(s)|
)

(

R

τ 3
sup
s∈D1

sup
z∈D2

|f(s, z)|
)

<
c

2
.
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If n ≥ n3, s ∈ D3 and gn(s) 6= g(s), then since fn(s, gn(s)) = 0 = f(s, g(s)) we have
∣

∣

∣

∣

f(s, gn(s))− fn(s, gn(s))

gn(s)− g(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(s, gn(s))− f(s, g(s))

gn(s)− g(s)

∣

∣

∣

∣

≥
∣

∣

∣

∣

∂f

∂z
(s, g(s))

∣

∣

∣

∣

−
∣

∣

∣

∣

f(s, gn(s))− f(s, g(s))

gn(s)− g(s)
− ∂f

∂z
(s, g(s))

∣

∣

∣

∣

>
c

2
.

It follows that when n ≥ n3

sup
s∈D3

|gn(s)− g(s)| ≤ 2

c
sup
s∈D3

sup
z∈D2

|fn(s, z)− f(s, z)|.

To complete the proof of the lemma let δ > 0 be small enough that for every s ∈ D′
1

the closed δ-ball centred at s is a subset of D3. By the Cauchy integral formula we
have for each integer ℓ ≥ 0 and every n ≥ n3

sup
s∈D′

1

∣

∣g(ℓ)n (s)− g(ℓ)(s)
∣

∣ ≤ sup
s∈D′

1

∣

∣

∣

∣

ℓ!

2πi

ˆ

|s−t|=δ

gn(t)− g(t)

(t− s)ℓ+1
dt

∣

∣

∣

∣

≤ δ−ℓℓ! sup
s∈D3

|gn(s)− g(s)|

≤ 2ℓ!

cδℓ
sup
s∈D1

sup
z∈D2

|fn(s, z)− f(s, z)|

as required. The proof is complete. �

Proof of Theorem 2. Let (A1, . . . , AN) ∈Md(R)
N be k- and (k+1)-multipositive

where N, d ≥ 2 and 0 ≤ k < d. For all s ∈ C let Ls : H → H be as given by
Theorem 3. Let tn(s) and an(s) be as defined in the statement of Theorem 2. We
claim that there exist K̃, γ̃, κ > 0 such that

(23) |an(s)| ≤ K̃nenκ|s| exp (−γ̃nα)

for all n ≥ 1 and s ∈ C, where K̃, γ̃ and κ do not depend on s or n and where

α :=

(

d+1
k+1

)

− 1
(

d+1
k+1

)

− 2
= 1 +

1
(

d
k

)

+
(

d
k+1

)

− 2
.

By Theorem 3 there exist constants C, γ, κ > 0 such that

(24) sn(Ls) ≤ C exp
(

κ|s| − γnβ
)

for all n ≥ 1 and s ∈ C where β := (
(

d+1
k+1

)

− 2)−1 = α− 1, and Ls is trace-class with
trL n

s = tn(s) for all s ∈ C. By Theorem 6 we have

(25) |an(s)| ≤
∑

i1<···<in

si1(Ls) · · · sin(Ls)

for all n ≥ 1. In order to proceed further we require two elementary inequalities. We
first note that for every integer m ≥ 2

∞
∑

ℓ=m

e−γℓβ ≤
ˆ ∞

m−1

e−γtβ dt =
1

β

ˆ ∞

(m−1)β
u

1
β
−1e−γu du(26)

≤ K

β

ˆ ∞

(m−1)β
e−

γ
2
u du ≤ 2K

βγ
e−

γ
2
(m−1)β ≤ 2K

βγ
e−

γ

21+β mβ
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where K := sup{x 1
β
−1e−γx/2 : x ≥ 1

2
} > 0 depends only on β and γ, and by increasing

K if necessary we have
∑∞

ℓ=m e
−γℓβ ≤ 2K

βγ
e−

γ

21+β mβ

also for m = 1. Secondly we notice
that

(27)
m
∑

ℓ=1

ℓβ ≥
ˆ m

0

tβ dt =
m1+β

1 + β

for all integers m ≥ 1 since the series is an upper Riemann sum for the integral.
Combining (24), (25), (26) and (27) we may now obtain

|an(s)| ≤
∑

i1<···<in

n
∏

ℓ=1

C exp(κ|s| − γiβℓ )

=
(

Ceκ|s|
)n ∑

i1<···<in

exp
(

−γ
(

iβ1 + · · ·+ iβn

))

≤
(

Ceκ|s|
)n

∞
∑

i1=1

∞
∑

i2=2

· · ·
∞
∑

in=n

exp
(

−γ
(

iβ1 + · · ·+ iβn

))

=
(

Ceκ|s|
)n

n
∏

m=1

∞
∑

ℓ=m

exp
(

−γℓβ
)

≤
(

2KCeκ|s|

βγ

)n n
∏

m=1

exp
(

− γ

21+β
mβ
)

≤
(

2KCeκ|s|

βγ

)n

exp

(

− γ

(1 + β)21+β
n1+β

)

which establishes the claimed inequality (23) with γ̃ := γ/(21+β(1 + β)) and K̃ :=
2KC/βγ.

Now define a function dn : C
2 → C for each n ≥ 1 by dn(s, z) :=

∑n
m=0 am(s)z

m,
and define also d∞(s, z) :=

∑∞
m=0 am(s)z

m, the convergence of the series being guar-
anteed by (23). As a consequence of (23) it is clear that

(28) |dn(s, z)− d∞(s, z)| =
∣

∣

∣

∣

∣

∞
∑

m=n+1

am(s)z
m

∣

∣

∣

∣

∣

= O

(

exp

(

− γ̃
2
nα

))

uniformly on compact subsets of C2. It is clear by inspection that each dn is holo-
morphic, and using the convergence of dn to d∞ uniformly on compact sets together
with Cauchy’s theorem and Morera’s theorem it follows easily that d∞ : C2 → C is
holomorphic. By Theorem 6 we have d∞(s, z) = det(I − zLs) for every (s, z) ∈ C

2.
In particular for every s ∈ C the zeros of z 7→ d∞(s, z) are precisely the reciprocals
of the nonzero eigenvalues of Ls, with the degree of each zero being equal to the
algebraic multiplicity of the corresponding eigenvalue.

For each s ∈ R define r∞(s) := ρ(Ls)
−1 ∈ (0,+∞). We observe that p(s) =

− log r∞(s) is a continuous function of s by Lemma 6.1 since it is a convex function
of s ∈ R, so r∞(s) : R → (0,+∞) is continuous. By the combination of Theorem 3
and Theorem 6, for each s ∈ R the function z 7→ d∞(s, z) has a simple zero at r∞(s)
and has no zeroes with equal or smaller absolute value. We claim that there exist
n0 ≥ 1, an open set U ⊂ C containing [k, k+1], a holomorphic extension of r∞|[k,k+1]

to U and a sequence of holomorphic functions rn : U → C defined for all n ≥ n0 such
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that

(29) sup
s∈U

∣

∣r(ℓ)n (s)− r(ℓ)∞ (s)
∣

∣ = O

(

exp

(

− γ̃
2
nα

))

for all integers ℓ ≥ 0 and such that for all n ≥ n0 and s ∈ [k, k + 1], rn(s) is the
smallest positive real number x such that dn(s, x) = 0.

To prove the claim it is clearly sufficient, by the compactness of [k, k + 1], to
show that every s0 ∈ [k, k + 1] admits an open neighbourhood U(s0) such that r∞
extends holomorphically from U(s0)∩ [k, k+1] to all of U(s0), such that there exists
a sequence of functions rn : U(s0) → C defined for all large enough n such that for
all s ∈ [k, k + 1] ∩ U(s0), rn(s) is the smallest positive real number x such that
dn(s, x) = 0, and such that

sup
s∈U(s0)

∣

∣r(ℓ)n (s)− r(ℓ)∞ (s)
∣

∣ = O

(

exp

(

− γ̃
2
nα

))

for all integers ℓ ≥ 0. The open set U can then be taken equal to the union of a
finite cover of [k, k + 1] by different sets U(s), and the characterisation of rn(s) as
the smallest positive root of dn(s, x) = 0 ensures that for each n the local functions
rn : U(s) → C extend consistently to a single well-defined function rn : U → C.

Let us therefore prove this local version of the preceding claim. Fix s0 ∈ [k, k+1].
Since z 7→ d∞(s0, z) has a unique zero in the closed disc with centre 0 and radius
r∞(s0), and all of its zeros are isolated, we may choose an open disc D2(s0) with

centre z0 ∈ R and radius R > 0 such that [0, r∞(s0)] ⊂ D2(s0) and such that D2(s0)
contains no other zeros of z 7→ d∞(s0, z). A simple argument using compactness
shows that we may choose a small open disc D1(s0) centred at s0 such that

sup
s∈D1(s0)

sup
|z−z0|=R

|d∞(s, z)− d∞(s0, z)| < inf
|z−z0|=R

|d∞(s0, z)|

and by shrinking the neighbourhood D1(s0) further if necessary we may assume using
continuity that additionally r∞(s) ∈ D2(s0) for all s ∈ D1(s0) ∩ [k, k + 1].

By Rouché’s theorem, for all s ∈ D1(s0) the function z 7→ d∞(s, z) has a unique
zero in D2(s0) and this zero is simple. When s ∈ D1(s0) ∩ [k, k + 1] this zero must
be equal to r∞(s) ∈ D2(s0) by uniqueness. Extend r∞ : D1(s0) ∩ [k, k + 1] → R to
a function D1(s0) → C by defining r∞(s) to be the unique zero of z 7→ d∞(s, z) in
D2(s0) for each s ∈ D1(s0). By the holomorphic implicit function theorem and the
simplicity of the zero r∞ : D1(s0) → D2(s0) is holomorphic. Applying Lemma 6.2 we
find, shrinking D1(s0) and D2(s0) if necessary, that there exist constants Cℓ > 0, an
integer n1 ≥ 1 and holomorphic functions rn : D1(s0) → D2(s0) defined for all n ≥ n1

such that

sup
s∈D1(s0)

∣

∣r(ℓ)n (s)− r(ℓ)∞ (s)
∣

∣ ≤ Cℓ sup
s∈D1(s0)

sup
z∈D2(s0)

|dn(s, z)− d∞(s, z)|

= O

(

exp

(

− γ̃
2
nα

))

for every integer ℓ ≥ 0, such that rn(s) is the unique zero of z 7→ dn(s, z) in D2(s0)
for all s ∈ D1(s0) and n ≥ n1 and is a simple zero for all such s and n, such that
[0, r∞(s0)] ⊆ D2(s0), and such that D2(s0) is an open disc centred on the real axis.
For all s ∈ D1(s0) ∩ [k, k + 1] and n ≥ n0 the numbers rn(s) and rn(s)

∗ both lie
in D2(s0) and are both zeros of the polynomial dn(s, z) =

∑n
m=0 an(s)z

m since the
coefficients of that polynomial are real and since D2(s0), being a disc centred on
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the real axis, is symmetric with respect to complex conjugation. By the uniqueness
of the zero rn(s) in D2(s0) this is possible only if rn(s) = rn(s)

∗, which is to say
if rn(s) is real. Since D2(s0) contains the interval from 0 to rn(s), it follows that
if rn(s) is positive then it is the smallest positive real root of

∑n
m=0 an(s)x

m for all
s ∈ D1(s0)∩ [k, k+1]. To complete the proof of the claim it therefore suffices to show
that if n is sufficiently large then rn(s) > 0 for all s ∈ D1(s0). To see this choose
δ ∈ (0, r∞(s0)) small enough that the open δ-ball centred at r∞(s0) is contained in
D2(s0), and observe that by shrinking D1(s0) further if necessary we may obtain

inf
s∈D1(s0)

inf
|z−r∞(s0)|=δ

|d∞(s, z)| > 0

and hence for all large enough n

sup
s∈D1(s0)

sup
|z−r∞(s0)|=δ

|dn(s, z)− d∞(s, z)| < inf
s∈D1(s0)

inf
|z−r∞(s0)|=δ

|d∞(s, z)|.

By Rouché’s theorem this implies that there exists n0 ≥ n1 such that for all n ≥ n0

and all s ∈ D1(s0) there is a unique zero of z 7→ dn(s, z) inside the circle of radius
δ and centre r∞(s0), and since this region is a subset of D2(s0) this root must equal
rn(s) by the uniqueness of that root in D2(s0). In particular for all n ≥ n0 and
s ∈ D1(s0) ∩ [k, k + 1] we have rn(s) > r∞(s0) − δ > 0 and no other root lies in
(0, rn(s)) ⊂ D2(s0). Hence rn(s) is the smallest positive real root of

∑n
m=0 an(s)x

m

for all s ∈ D1(s0) ∩ [k, k + 1] as required to prove the local version of the claim with
U(s0) := D1(s0). The full statement of the claim follows.

We may now complete the proof of the theorem. Define Pn(s) := rn(s)
−1 > 0 for

all s ∈ [k, k + 1] and n ≥ n0, and P (s) := r∞(s)−1 > 0 for all s ∈ R. Observe that
by Theorem 3 we have eP (A1,...,AN ;s) = P (s) for all s ∈ [k, k+1]. Since r∞ : U → C is
holomorphic, P is real-analytic at least on a neighbourhood of [k, k+1]. Since r∞(s)
is positive for all real s and [k, k + 1] is compact it follows that

(30) inf
s∈[k,k+1]

r∞(s) > 0

and by the case ℓ = 0 of (29) we deduce that

(31) lim
n→∞

inf
s∈[k,k+1]

rn(s) > 0.

Using (29), (30), (31) and the expressions

|Pn(s)− P (s)| =
∣

∣

∣

∣

1

rn(s)
− 1

r∞(s)

∣

∣

∣

∣

,

|P ′
n(s)− P ′(s)| =

∣

∣

∣

∣

r′n(s)

rn(s)2
− r′∞(s)

r∞(s)2

∣

∣

∣

∣

and

|P ′′
n (s)− P ′′(s)| =

∣

∣

∣

∣

r′′n(s)rn(s)− r′n(s)
2

rn(s)4
− r′′∞(s)r∞(s)− r′∞(s)2

r∞(s)4

∣

∣

∣

∣

it follows by elementary manipulations that

sup
s∈[k,k+1]

|Pn(s)− P (s)| = O

(

exp

(

− γ̃
2
nα

))

,(32)

sup
s∈[k,k+1]

|P ′
n(s)− P ′(s)| = O

(

exp

(

− γ̃
2
nα

))

(33)
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and

(34) sup
s∈[k,k+1]

|P ′′
n (s)− P ′′(s)| = O

(

exp

(

− γ̃
2
nα

))

.

In the case where we do not assume that max1≤i≤N |||Ai||| < 1 for some norm on Rd

the estimate (32) already completes the proof of Theorem 2. Otherwise, we claim
that infs∈[k,k+1] P

′′(s) > 0 and sups∈[k,k+1]P
′(s) < 0. Let p(s) := logP (s) for s ∈ R

so that P ′(s) = p′(s)P (s) and P ′′(s) = p′′(s)P (s) + p′(s)2P (s). Obviously p is real-
analytic on [k, k + 1] since P is positive and real-analytic there, and p is convex by
Lemma 6.1, so necessarily p′′(s) ≥ 0 for all s ∈ [k, k + 1]. By Lemma 6.1 we have
p′(s) < 0 for all s ∈ [k, k + 1] and therefore

(35) sup
s∈[k,k+1]

P ′(s) = sup
s∈[k,k+1]

p′(s)P (s) < 0.

Similarly we observe that infs∈[k,k+1] |p′(s)| > 0, and since P ′′(s) = p′′(s)P (s) +
p′(s)2P (s) ≥ p′(s)2P (s) we likewise deduce that infs∈[k,k+1]P

′′(s) > 0 as claimed.
Combining the previous claim with (34) we find in particular that infs∈[k,k+1]P

′′
n (s)

> 0 for all large enough n, which proves that each such function Pn : [k, k+1] → R is
convex. By the hypothesis dimaff(A1, . . . , AN) ∈ (k, k+ 1) of Theorem 2 there exists
a solution s ∈ (k, k+1) to P (s) = 1, and since P has negative derivative on [k, k+1]
this implies that P (k) > 1 > P (k+1). Combining this observation with (32) we find
that Pn(k) > 1 > Pn(k + 1) for all large enough n, and by the combination of (35)
and (33) we find that sups∈[k,k+1] P

′
n(s) ≤ −c < 0 for all large enough n where c > 0

is some positive constant. It follows that for all large enough n there exists a unique
sn ∈ [k, k+1] such that Pn(sn) = 1. Let s∞ := dimaff(A1, . . . , AN) ∈ [k, k+1] be the
unique solution to P (s∞) = 1. If sn 6= s∞ then by the Mean Value Theorem there
exists t strictly between sn and s∞ such that

P ′(t) =
P (sn)− P (s∞)

sn − s∞

and therefore since Pn(sn) = 1 = P (s∞) we obtain

|sn − s∞| = |P (sn)− P (s∞)|
|P ′(t)| =

|P (sn)− Pn(sn)|
|P ′(t)| ≤ c−1|P (sn)− Pn(sn)|.

The inequality |sn − s∞| ≤ c−1|P (sn)− Pn(sn)| obviously also holds when sn = s∞,
so

|sn − s∞| = O

(

exp

(

− γ̃
2
nα

))

as n→ ∞ using (32). The proof of the theorem is complete. �

7. Examples

7.1. Methodology. There are two intuitively natural mechanisms by which to
make the approximations given in Theorem 2 yield an approximation to the affinity
dimension. On the one hand since eP (A1,...,An;s) is decreasing in s and since the affinity
dimension is the unique s ∈ [k, k+1] such that 1 is the leading eigenvalue of Ls, the
affinity dimension corresponds to the smallest s ∈ [k, k+1] such that det(I−Ls) = 0,
which is to say the smallest s ∈ [k, k + 1] such that

∑∞
m=0 am(s) = 0. One might

therefore attempt to approximate the affinity dimension by looking for the smallest
solution s to the equation

∑n
m=0 am(s) = 0 for each fixed n. In practice this is

impractical since Ls may in general have infinitely many positive real eigenvalues
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and the number of solutions to
∑n

m=0 am(s) = 0 may therefore be extremely large
and the function itself highly oscillatory.

n Approximation to affinity dimension CPU time

2 1.14341 79598 76019 95000 60486 91827 85789 60135 0.043s
3 1.11827 23247 08006 28499 89060 66409 13091 47143 0.044s
4 1.11538 89736 67461 99644 51849 00512 18003 54788 0.053s
5 1.11560 42107 66261 56209 11669 09958 04069 77087 0.075s
6 1.11560 31850 39305 08475 98379 83168 80085 68510 0.11s
7 1.11560 32522 24751 03699 38823 87724 66623 37012 0.16s
8 1.11560 32579 27402 64806 11546 27227 11083 45893 0.30s
9 1.11560 32577 86505 71154 77556 50836 85812 53178 0.39s
10 1.11560 32577 87028 88533 65835 00045 83936 61000 0.67s
11 1.11560 32577 87030 91898 36777 33249 49956 17495 1.2s
12 1.11560 32577 87030 89197 97928 71446 51257 73313 2.0s
13 1.11560 32577 87030 89218 88050 96492 48585 23429 4.3s
14 1.11560 32577 87030 89218 84942 17623 75680 33697 8.8s
15 1.11560 32577 87030 89218 84937 14660 75123 27001 20s
16 1.11560 32577 87030 89218 84937 14840 85419 85122 44s
17 1.11560 32577 87030 89218 84937 14840 24544 08248 100s
18 1.11560 32577 87030 89218 84937 14840 24574 24137 210s
19 1.11560 32577 87030 89218 84937 14840 24574 25551 440s
20 1.11560 32577 87030 89218 84937 14840 24574 25551 990s

Table 1. Approximations to the affinity dimension of Example 1 calculated using Theorem 2

and the secant method as described in §7.1, implemented in Wolfram Mathematica. The CPU

time used in each approximation is as reported by Mathematica’s Timing function. For n = 1 the

approximation to the pressure function has no root in (1, 2) and this line is therefore omitted from

the table. Digits which are empirically observed to have converged to a stable value are underlined.

In practice we therefore adopt the following alternative approach. For large n the
smallest positive real root x = rn(s) of

∑n
m=0 am(s)x

m approximates the reciprocal
of the leading eigenvalue of Ls. Moreover, for large n the function s 7→ rn(s)

−1 is
convex and strictly decreasing with a unique root in [k, k + 1] by virtue of Theo-
rem 2. Computing the unique root of a convex decreasing function is a far more
tractable enterprise than finding the smallest root of an oscillating function, and for
this reason our application of Theorem 2 follows the approach of solving rn(s) = 1.
For this problem we use the secant method. Since r−1

n is convex and decreasing the
convergence of the sequence of approximations generated by the secant method is

guaranteed with super-exponential rate O(θm
(1+

√
5)/2

) for some θ ∈ (0, 1). In practical
instances we found that the sequence (sm) consistently converged empirically to 40
decimal places by around m ≃ 12 independently of n. The results of this proce-
dure applied to some examples of two- and three-dimensional affine iterated function
systems are presented in this section.

For large n one may show that the trace tn(s) appearing in Theorem 2 approx-
imates the value enP (A1,...,AN ;s) whereas the coefficients an(s) are shown in Theorem
2 to decrease to zero with super-exponential speed. The small size of an(s) is thus
attributable to additive cancellation between potentially very large summands. It is
therefore likely to be necessary in implementation to record the traces tn(s) to sig-
nificantly more decimal places than are desired for the ultimate approximation. In



686 Ian D. Morris

the computations which follow the traces tn(s) were calculated in arbitrary precision,
reducing to finite precision only for the outcome of the calculation of the coefficients
an(s).

7.2. Example 1: a pair of dominated matrices. Define

A1 :=

(

−4
7

5
7

0 1
7

)

, A2 :=

(

1
7

0
−5

7
−4

7

)

.

We claim that the pair (A1, A2) is 1-dominated. Indeed, define

C1 :=
{(

x
y

)

∈ R
2 : |x| ≥ 2|y|

}

,

C2 :=
{(

x
y

)

∈ R
2 : |y| ≥ 2|x|

}

.

If (x, y)⊤ ∈ C1, then
∣

∣

∣

∣

5

7
y − 4

7
x

∣

∣

∣

∣

≥ 4

7
|x| − 5

7
|y| ≥ 3

7
|y| ≥

∣

∣

∣

∣

2

7
y

∣

∣

∣

∣

and equality of the first and last terms is only possible if y = 0 and consequently
x = 0. In particular if (x, y)⊤ ∈ C1 is nonzero we obtain A1(x, y)

⊤ ∈ Int C1. Moreover
for (x, y)⊤ ∈ C1 we also have

∣

∣

∣

∣

4

7
y +

5

7
x

∣

∣

∣

∣

≥ 5

7
|x| − 4

7
|y| ≥ 3

7
|x| ≥

∣

∣

∣

∣

2

7
x

∣

∣

∣

∣

which yields A2(x, y)
⊤ ∈ Int C2 when (x, y)⊤ is nonzero. In a similar manner, if

(x, y)⊤ ∈ C2 then
∣

∣

∣

∣

5

7
y − 4

7
x

∣

∣

∣

∣

≥ 5

7
|y| − 4

7
|x| ≥ 3

7
|y| ≥

∣

∣

∣

∣

2

7
y

∣

∣

∣

∣

and
∣

∣

∣

∣

4

7
y +

5

7
x

∣

∣

∣

∣

≥ 4

7
|y| − 5

7
|x| ≥ 3

7
|x| ≥

∣

∣

∣

∣

2

7
x

∣

∣

∣

∣

which respectively give A1(x, y)
⊤ ∈ Int C1 and A2(x, y)

⊤ ∈ Int C2 when (x, y)⊤ is
nonzero.

If we now let w = (1, 1)⊤ then 〈u, w〉 is never zero for any nonzero u ∈ C1 ∪ C2,
so defining

Ki := {u ∈ Ci : 〈u, w〉 > 0}
for i = 1, 2, it is not difficult to see that (K1,K2) is a multicone for (A1, A2). In
particular Theorem 2 may be applied to estimate the affinity dimension of the pair
(A1, A2). Let (B1, B2) := (A1,−A2). Since

eP (A1,A2;1) = eP (B1,B2;1) = lim
n→∞





∑

|i|=n

‖Bi‖





1
n

≥ lim
n→∞

∥

∥

∥

∥

∥

∥

∑

|i|=n

Bi

∥

∥

∥

∥

∥

∥

1
n

= lim
n→∞

‖(B1 +B2)
n‖ 1

n = ρ(B1 +B2) =

√
50

7
> 1

and

eP (A1,A2;2) = | detA1|+ | detA2| =
8

49
< 1



Fast approximation of the affinity dimension for dominated affine iterated function systems 687

we infer that dimaff(A1, A2) ∈ (1, 2). The first 20 approximations to the affinity
dimension of (A1, A2) are tabulated in Table 1.

7.3. Example 2: a three-dimensional iterated function system.

n Approximation to affinity dimension CPU time

3 1.74010 38961 34544 64381 66016 57752 82592 79145 0.067s
4 1.53612 13489 34570 18769 13237 56458 61628 45041 0.10s
5 1.58779 31446 44939 17928 98900 28708 16065 92496 0.15s
6 1.58459 23810 06597 43285 21249 54866 32813 68839 0.22s
7 1.58477 97771 44149 34557 48903 92413 22985 52229 0.33s
8 1.58477 17757 07488 53767 71488 42424 52891 52003 0.63s
9 1.58477 20386 65944 76377 72361 85895 44529 09738 0.80s
10 1.58477 20318 53062 52952 58955 36166 25319 46959 1.4s
11 1.58477 20319 95110 47059 43620 26740 31575 13317 2.4s
12 1.58477 20319 92686 60697 00747 19778 01115 41015 5.4s
13 1.58477 20319 92720 93370 05697 62846 36869 58071 12s
14 1.58477 20319 92720 52545 02878 00445 78535 74528 27s
15 1.58477 20319 92720 52956 88351 89418 63989 50927 59s
16 1.58477 20319 92720 52953 32862 81715 84179 24019 130s
17 1.58477 20319 92720 52953 35507 79078 84111 41677 270s
18 1.58477 20319 92720 52953 35490 71502 87276 30757 560s
19 1.58477 20319 92720 52953 35490 81124 12318 84553 1200s
20 1.58477 20319 92720 52953 35490 81076 56294 07542 2800s
21 1.58477 20319 92720 52953 35490 81076 77018 06325 5900s

Table 2. Approximations to the affinity dimension of Example 3 calculated using Theorem 2

and the secant method as described in §7.1, implemented in Wolfram Mathematica. The CPU time

used in each approximation is as reported by Mathematica’s Timing function. Digits which are

empirically observed to have converged to a stable value are underlined. Convergence is noticeably

slower than for two-dimensional examples: in this context our bound for the error in the nth

approximation is O(exp(−γn5/4)) as opposed to O(exp(−γn2)) in the other examples. For n = 1, 2

the approximation to the pressure function has no root in (1, 2) and these lines are therefore omitted.

Consider (A1, A2) where

A1 :=
1

12





5 4 1
5 5 4
0 1 5



 , A2 :=
1

12





5 5 0
4 5 1
1 4 5



 = A⊤
1

and note that A1 and A2 are contractions in the Euclidean norm. It is easily checked
that (A1A1, A1A2, A2A1, A2A2) is a tuple of positive invertible matrices and is there-
fore 1-dominated. By the characterisation of domination in terms of singular values
this clearly implies that 1-domination holds also for (A1, A2).

We identify each Ai with the corresponding linear map R3 → R3 defined by
Ai with respect to the standard basis e1, e2, e3 of R3. With respect to the basis
e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 for ∧2R3 we have

A∧2
1 =

1

144





5 15 11
5 25 19
5 25 21



 , A∧2
2 =

1

144





5 5 5
15 25 25
11 19 21



 .
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Since (A∧2
1 , A

∧2
2 ) is thus representable by a pair of positive matrices we see that

(A1, A2) is both 1-and 2-dominated. Using non-negativity it follows by a theorem of
Protasov [58] that

lim
n→∞





∑

|i|=n

‖Ai‖





1
n

= ρ(A1 + A2) > 1

and

lim
n→∞





∑

|i|=n

∥

∥A∧2
i

∥

∥





1
n

= ρ
(

A∧2
1 + A∧2

2

)

< 1.

Thus P (A1, A2; 1) > 0 > P (A1, A2; 2) and consequently dimaff(A1, A2) ∈ (1, 2), and
we conclude that Theorem 2 is applicable to the computation of dimaff(A1, A2). The
first 21 approximations to dimaff(A1, A2) are presented in Table 2. An illustration of
the attractor of the iterated function system

T1





x
y
z



 :=
1

12





5 4 1
5 5 4
0 1 5









x
y
z



+





1
0
0





T2





x
y
z



 :=
1

12





5 5 0
4 5 1
1 4 5









x
y
z



+





0
0
1





is given in Figure 1.

Figure 1. A projection of the attractor of the iterated function system defined by Example 3.

Approximations to the affinity dimension computed using Theorem 2 are listed in Table 2. It is

known from work of Falconer [17, §5] that the upper box dimension dimBX is bounded above by

dimaff(A1, A2), but unlike the case of planar affine iterated function systems current techniques are

not powerful enough to determine whether or not dimH X = dimaff(A1, A2).
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Figure 2. This self-affine set was shown in [50, §6.6] to have Hausdorff dimension equal to the

affinity dimension of the defining iterated function system. However, the linear parts of the defining

affine transformations have non-real eigenvalues and Theorem 2 is not applicable. Non-rigorous

estimates using the discretisation method described in §8 as tabulated in Table 4 suggest that the

affinity dimension is equal to approximately 1.522688.

8. Non-dominated matrices

If (A1, . . . , AN) ∈ M2(R)
N is a tuple of invertible matrices which is not 1-

dominated then by a line of reasoning due to Avila [63] there exist tuples (A′
1, . . . , A

′
N)

arbitrarily close to (A1, . . . , AN) with the property that some product A′
i1
· · ·A′

in has
complex eigenvalues. For such matrices the formula for tn(s) in Theorem 2 has no
clear meaning, and also for such matrices no open subset of RP1 may be found which
is mapped strictly inside itself by the action of the matrices A′

i, preventing the con-
struction of a trace-class transfer operator in direct mimicry of Theorem 2. For such
matrices it is therefore difficult to see how any reasonable adaptation of Theorem
2 could be made. In this sense we believe that 1-domination, or multipositivity, is
the weakest open condition on the matrices A1, . . . , AN which permits a version of
Theorem 2 to be proved.

However, for non-dominated matrices it is still possible to obtain non-rigorous
estimates of the affinity dimension by other techniques. Given A1, . . . , AN ∈ GL2(R)
and s ∈ [0, 1] we may define an operator Ls : C

α(RP1) → Cα(RP1) by

(Lsf) (u) :=
N
∑

i=1

(‖Aiu‖
‖u‖

)s

f
(

Aiu
)

,

and for s ∈ [1, 2] by

(Lsf) (u) :=

N
∑

i=1

(‖Aiu‖
‖u‖

)2−s

| detAi|s−1f
(

Aiu
)

,
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in such a manner that

ρ(Ls) = lim
n→∞

(

N
∑

i1,...,in=1

ϕs (Ai1 · · ·Ain)

)
1
n

and such that ρ(Ls) is a simple eigenvalue of Ls, as long as α ∈ (0, 1) is chosen
suitably small (in a manner which in general will depend on s) and mild algebraic
non-degeneracy conditions on (A1, . . . , AN) are met. (These spectral properties are
guaranteed by, for example, [29, Théorème 8.8].) We could then hope to estimate
the spectral radius of Ls for different values of s by discretising the phase space RP

1,
constructing a large matrix representing a discretised action of Ls, and working on
the supposition that the spectral radius of the matrix is a good approximation to
ρ(Ls) and hence to eP (A1,...,AN ;s). In practical experiments we were able to obtain
around five decimal places of accuracy for the affinity dimension by discretising RP

1

into approximately 104 evenly-spaced mesh points: see Tables 3 and 4. We observe in
particular that the results obtained in Table 3 show good agreement with Theorem
2 when tested on the multipositive matrix set described in Example 2. However, we
have not been able to make this method of estimation rigorous. This approach could
also be applied to higher-dimensional affine iterated function systems but we have
not investigated the matter of finding suitable discretisations of the more complicated
phase spaces required in this context.

Mesh size
Approximation to
affinity dimension

CPU time

2 1.02591849 0.010s
22 1.07532743 0.0065s
23 1.11171266 0.018s
24 1.11715797 0.036s
25 1.11608327 0.053s
26 1.11557816 0.80s
27 1.11537306 0.46s
28 1.11561123 0.35s
29 1.11559940 0.65s
210 1.11561053 1.8s
211 1.11558601 2.7s
212 1.11560216 4.8s
213 1.11560441 24s
214 1.11560185 21s
215 1.11560275 67s
216 1.11560321 270s
217 1.11560315 4100s

Table 3. Estimates of the affinity dimension of Example 1 calculated using the non-rigorous

discretisation method described in §8. Even at small mesh sizes the first few decimal places show

good agreement with Table 1 but convergence in subsequent decimal places is markedly slower.

Digits which are empirically observed to have converged to a stable value are underlined.



Fast approximation of the affinity dimension for dominated affine iterated function systems 691

Mesh size
Approximation to
affinity dimension

CPU time

2 1.50000000 0.0028s
22 1.51578683 0.0025s
23 1.51254065 0.0047s
24 1.52070716 0.033s
25 1.52415711 0.059s
26 1.52305542 0.079s
27 1.52290806 0.13s
28 1.52262668 0.26s
29 1.52269395 0.61s
210 1.52270408 1.1s
211 1.52269152 2.2s
212 1.52268717 4.5s
213 1.52268810 7.7s
214 1.52268795 18s
215 1.52268780 55s
216 1.52268780 220s
217 1.52268782 1400s

Table 4. Estimates of the affinity dimension of the iterated function system defined in [50,

§6.6] and illustrated in Figure 2, calculated using the non-rigorous discretisation method described

in §8. Digits which are empirically observed to have converged to a stable value are underlined. No

rigorous estimate of the affinity dimension of this IFS is currently available.
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