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Accessible parts of the boundary for
domains in metric measure spaces

Ryan Gibara and Riikka Korte

Abstract. We prove in the setting of Q-Ahlfors regular PI-spaces the following result: if a

domain has uniformly large boundary when measured with respect to the s-dimensional Hausdorff

content, then its visible boundary has large t-dimensional Hausdorff content for every 0 < t < s ≤

Q− 1. The visible boundary is the set of points that can be reached by a John curve from a fixed

point z0 ∈ Ω. This generalizes recent results by Koskela–Nandi–Nicolau (from R
2) and Azzam (Rn).

In particular, our approach shows that the phenomenon is independent of the linear structure of

the space.

Alueen näkyvä reuna metrisissä avaruuksissa

Tiivistelmä. Osoitamme Ahlfors-säännöllisissä metrisissä avaruuksissa seuraavan tuloksen:

Jos alueen reuna on tasaisesti suuri s-uloitteisesen Hausdorffin mitan suhteen, tällöin sen näkyvä

reuna on suuri t-uloitteisen Hausdorffin mitan suhteen kaikilla 0 < t < s ≤ Q−1. Näkyvällä reunalla

tarkoitamme niitä pisteitä, jotka voidaan saavuttaa John-poluilla jostain kiinnitetystä pisteestä.

Tuloksemme yleistää Koskelan, Nandin ja Nicolaun (R2) sekä Azzamin (Rn) tuoreita tuloksia.

Erityisesti konstruktiivinen menetelmämme osoittaa, että tämä ilmiö ei ole riippuvainen avaruuden

lineaarisesta rakenteesta.

1. Introduction

We say that a domain (that is, a connected open set) Ω ⊂ R
n is c-John with

centre z0 ∈ Ω and constant c ≥ 1 if every z ∈ Ω can be joined to z0 by a c-John path.
That is, there exists a path γ such that

ℓ
(
γ(z′, z)

)
≤ c dΩ(z

′)

for all z′ in the image of γ, where ℓ
(
γ(z′, z)

)
is the length of the subpath joining z′

to z and dΩ(z
′) = d(z′,Ωc). For such domains, every point ω ∈ ∂Ω is accessible in a

non-tangential sense: there exists a c-John path connecting the centre z0 to ω.
Given a domain Ω, not necessarily John, fix a point z0 ∈ Ω and a constant c ≥ 1.

We consider the largest c-John subdomain of Ω with centre z0, Ωz0(c), and call the set
∂Ωz0(c) ∩ ∂Ω the c-accessible (or c-visible) boundary of Ω near z0. This corresponds
to those points on ∂Ω that can be reached from z0 by a c-John path.

One can ask if the visible boundary of a domain is large in the sense that there
exist C > 0 and 0 ≤ t ≤ n such that

(1) Ht
∞(∂Ωz0(c) ∩ ∂Ω) ≥ CdΩ(z0)

t
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for some c ≥ 1 and all z0 ∈ Ω. Here, the t-dimensional Hausdorff content of a subset
E ⊂ R

n is defined as

Ht
∞(E) = inf

{
∞∑

i=1

rti : E ⊂
∞⋃

i=1

B(xi, ri)

}
,

where B(xi, ri) denotes a ball (open or closed) centred at xi of radius ri. The case
t = 0 is not interesting as condition (1) is trivially satisfied with c = 1 for any proper
subdomain of Rn. On the other hand, condition (1) can fail for t = n− 1 even when
Ω is assumed to satisfy some nice geometric properties (see [2]), and so the focus is
on the interval 0 < t < n− 1.

As pointed out by Koskela and Lehrbäck in [9], if a uniform domain Ω has
uniformly large Hausdorff content in the sense that, for all z ∈ Ω,

Ht
∞

(
B(z, 2dΩ(z)) ∩ ∂Ω

)
≥ C0dΩ(z)

t

for some C0 > 0 and 0 < t ≤ n, then it has large visible boundary; i.e. Ω satisfies
(1) with the same t and some c ≥ 1. A domain is called uniform if there is a
constant cu ≥ 1 such that all pairs z0, z1 ∈ Ω can be joined by a path γ such that
ℓ(γ) ≤ cu|z0 − z1| and dΩ(z) ≥ c−1

u min{|z − z0|, |z − z1|} for all z in the image of γ.
A first result without assuming uniformity of the domain is proven by Koskela,

Nandi, and Nicolau in [10] where they use techniques from complex analysis to show
that any bounded simply connected domain in the complex plane satisfies (1) for all
0 < t < 1.

Shortly after, the result was generalized to R
n. More precisely, Azzam proved in

[2] that if for some 0 < s ≤ n− 1 and C0 > 0,

Hs
∞

(
B(ω, λ) \ Ω

)
≥ C0λ

s

holds for all ω ∈ ∂Ω and 0 < λ < diam(Ω), a condition he calls having lower s-
content regular complement, then (1) holds for some c ≥ 1 and for 0 < t < s. In
fact, Azzam shows the stronger result with the visible boundary defined with chord-
arc subdomains playing the role of John subdomains. The basis of his proof is the
construction of a subset of the visible boundary that makes use of projections, and
so it features strong reliance on the linear structure of the space.

The main result of the present paper is the following, a new proof showing that
the phenomenon holds in the nonlinear setting. Our proof is based on a very flexible
construction of a path family that is natural in more general metric measure spaces
than R

n. On the other hand, our estimates are based on iterative arguments, and so
we do not obtain sharp dimensions if the measure is merely doubling, see Remark 4.6.

Theorem 1.1. Let (X, d, µ) be a complete Q-Ahlfors regular metric measure
space supporting a weak (1, p)-Poincaré inequality, 1 ≤ p < ∞. Fix 0 < s ≤ Q− 1.
Let Ω ⊂ X be a domain such that for all ω ∈ ∂Ω and all 0 < λ < diam(Ω) we have

(2) Hs
∞

(
B(ω, λ) ∩ ∂Ω

)
≥ C0λ

s

for some C0 > 0. Then for all 0 < ε < s there exist c ≥ 1 and C > 0 such that

(3) Hs−ε
∞ (∂Ωz0(c) ∩ ∂Ω) ≥ CdΩ(z0)

s−ε

for all z0 ∈ Ω.

The study of the size of the visible boundary is partially motivated by its rela-
tionship to Hardy inequalities. It was shown in [9], in the Euclidean setting, that if a
domain has large visible boundary in the sense of (3), then it admits certain Hardy
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inequalities. This was generalised to metric measure spaces in [11], where the author
also shows that it is enough for a domain to satisfy (2) to guarantee that it admits a
Hardy inequality. The present work complements these results by showing, in fact,
that (2) implies (3).

We begin with some preliminaries, reviewing the definitions and notions relevant
to the analysis on metric measure spaces. In Section 3, we construct a set P∞ that,
in Section 4, is shown to be a subset of the visible boundary ∂Ωz0(c) ∩ ∂Ω for some
c ≥ 1 and to satisfy Hs−ε

∞ (P∞) ≥ CdΩ(z0)
s−ε, implying (3). In Section 5, an example

is given showing that it is necessary for (2) to hold at all ω and at all scales λ.

2. Preliminaries

Let (X, d, µ) be a metric measure space. By this we mean that (X, d) is a metric
space endowed with a non-trivial Borel regular (outer) measure µ such that 0 <
µ(B) < ∞ for all balls B ⊂ X of positive and finite radius. The notations B(r) and
B(x, r) will be used when the radius, or the centre and radius, respectively, must be
specified.

Throughout the rest of the paper, we assume that (X, d, µ) is a complete Q-
Ahlfors regular metric measure space supporting a weak (1, p)-Poincaré inequality
for sufficiently small exponent p. It turns out that, without loss of generality, it is
enough to prove the theorem under some additional assumptions—see Remark 2.6.
We review these definitions below for the reader’s benefit. A class of metric measure
spaces satisfying all of these assumptions is the Carnot–Carathéodory spaces [1], an
important example of which is the Heisenberg group.

Definition 2.1. We say that the measure µ is Q-Ahlfors regular, 1 < Q < ∞,
if there exists a constant cA > 0 such that for all balls B(r) ⊂ X,

1

cA
rQ ≤ µ

(
B(r)

)
≤ cA rQ.

A measure being Q-Ahlfors regular implies that it is doubling; i.e.

µ
(
B(2r)

)
≤ cdµ

(
B(r)

)

with cd = 2Qc2A. The optimal doubling constant may be smaller, however. Note that
a complete and doubling metric measure space is proper: bounded and closed sets
are compact.

Let f be a locally Lipschitz function. Then its local Lipschitz constant is defined
as

Lipf(x) = lim inf
r→0

sup
y∈B(x,r)

|f(x)− f(y)|

d(x, y)
.

Definition 2.2. We say that X supports a weak (1, p)-Poincaré inequality, 1 ≤
p < ∞, if there exist constants cP > 0 and τ ≥ 1 such that for all balls B(r) ⊂ X
and all locally Lipschitz functions f , we have

−

ˆ

B(r)

|f − fB(r)| dµ ≤ cP r

(
−

ˆ

B(τr)

(Lipf)p dµ

)1/p

.

Here, and elsewhere, for any set E ⊂ X with 0 < µ(E) < ∞, we write

fE = −

ˆ

E

f dµ =
1

µ(E)

ˆ

E

f dµ.
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Throughout the paper, we will often be measuring the size of sets in terms of its
Hausdorff content.

Definition 2.3. Let E ⊂ X. The α-dimensional Hausdorff content of E is
defined as

Hα
∞(E) = inf

{
∞∑

i=1

rαi : E ⊂
∞⋃

i=1

B(xi, ri)

}
.

Next we define the concepts mentioned in the introduction within the setting of
metric measure spaces. For a set E ⊂ X we write dE(z) = d(z,X \E) for z ∈ E. By
a path we mean a rectifiable, nonconstant compact curve γ on X. Such curves can
always be parametrized by arclength (see [4]); as such, all paths will be assumed to
have domain [0, ℓ(γ)], where ℓ(γ) is the arclength of γ. We denote by i(γ) the image
of γ in X and by γ(x, y) the subpath of γ joining x, y ∈ i(γ). For a set E ⊂ X and
a path γ in X, we write

dE(γ) = inf
z∈i(γ)

dE(z).

Definition 2.4. A path γ : [0, ℓ] → Ω with x = γ(0) and y = γ(ℓ(γ)) is called
c-John if there exists a constant c ≥ 1 such that

ℓ
(
γ(z, y)

)
≤ c dΩ(z)

for all z ∈ i(γ). A domain Ω ⊂ X is called c-John with centre z0 ∈ Ω if for every
z ∈ Ω there exists a c-John path γ : [0, ℓ(γ)] → Ω with z0 = γ(0) and z = γ(ℓ(γ)).

If Ω ⊂ X is a c-John domain, then for every ω ∈ ∂Ω (or, equivalently, for every
ω ∈ Ω) there exists a path γ : [0, s] → Ω ∪ {ω} with z0 = γ(0) and ω = γ(s) such
that ℓ

(
γ(z, ω)

)
≤ cdΩ(z) for all z ∈ i(γ).

Note that a c-John domain Ω with centre z0 satisfies Ω ⊂ B
(
z0, cdΩ(z0)

)
. In

particular, it is bounded.

Definition 2.5. Given a domain Ω ⊂ X, a point z0 ∈ Ω, and a constant c ≥ 1,
write

Ωz0(c) =
⋃
{U ⊂ Ω: U is a c-John domain with centre z0}.

The set ∂Ωz0(c) ∩ ∂Ω is called the visible, or accessible, boundary of Ω near z0.

Remark 2.6. Recall that our metric measure space is always assumed to be com-
plete and Ahflors regular, and to support a weak Poincaré inequality. In this setting,
we may assume without loss of generality that the metric is geodesic. Specifically, d
is quasiconvex, thus bi-Lipschitz equivalent to a geodesic metric d′ [7, Theorem 8.3.2].
The space retains all of its properties under this change of metric, but with modified
constants. In fact, under this geodesic metric, we may assume that τ = 1 in the
Poincaré inequality [5, Theorem 4.18]. Additionally, a path is John with respect to
d if and only if it is John with respect to d′, but again with a potentially different
constant. Therefore, we will assume throughout the paper that we have selected the
geodesic metric and that τ = 1.

A consequence of selecting the geodesic metric is that balls are John domains,
from which it follows that Ωz0(c) 6= ∅ by the openness of Ω. Then, it follows from
the definition of visible boundary that Ωz0(c) is a John domain inside Ω.

Some monographs on metric measure spaces where the reader may learn about
these and further topics in the field are [3], [5], and [7].
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3. The construction

In this section, we provide an iterative construction of a subset P∞ of the bound-
ary of Ω. In Section 4, we will prove that P∞ is part of the visible boundary and give
a lower bound for its Hausdorff content.

To make the description of the construction simpler, we introduce some more
definitions.

Definition 3.1. A collection of balls {Bi = B(xi, r)}i∈I for some common radius
r > 0 is said to be finitely chainable if for all i, j ∈ I there exists a finite subcollection
of balls {Bi1, Bi2 , . . . , Bim} such that i1 = i, im = j, and xik+1

∈ Bik for all k =
1, 2, . . . , m− 1.

In the construction of the visible boundary, we need to find plenty of balls that
touch the boundary of Ω at all scales. In addition, the balls need to be far enough
from each other so that the “descendants” of the balls will not touch the balls in
different branches. These conditions will be fulfilled by balls that satisfy the next
definition.

Definition 3.2. A collection of balls {Bi}i∈I is said to be well placed along some
set F if ∂Bi ∩ F 6= ∅ for all i ∈ I and 4Bi ∩ 4Bj = ∅ for every i, j ∈ I, i 6= j.

Now we commence the construction. Fix z0 ∈ Ω and 0 < η < 1, and set
r = r0 = dΩ(z0). The value of η will be specified later.

Step 0. Consider the ball B(z0, r) and choose a point ω0 ∈ ∂B(z0, r)∩∂Ω. Write
P0 = {ω0}.

Step 1. Consider the ball B1 = B(ω0, 2r). Denote by B̃1 a maximal finitely
chainable collection of balls in B1 ∩ Ω of radius ηr such that B(z0, ηr) ∈ B̃1. Then,

consider B1, a maximal subcollection of B̃1 that is well placed along ∂Ω. For each
ball B ∈ B1, consider a point ω ∈ ∂B ∩ ∂Ω and write P1 for the collection of all such
points.

Step k + 1. Fix an ω ∈ Pk (that is ω ∈ ∂B(z, ηkr) ∩ ∂Ω for some z ∈ Ω) and

consider the ball Bk+1 = B(ω, 2ηkr). Denote by B̃k+1(ω) a maximal finitely chainable
collection of balls in Bk+1∩Ω of radius ηk+1r such that B(z, ηk+1r) ∈ B̃k+1(ω). Then,

consider Bk+1(ω), a maximal subcollection of B̃k+1(ω) that is well placed along ∂Ω.
Write

Bk+1 =
⋃

ω∈Pk

Bk+1(ω).

For each ball B ∈ Bk+1, consider a point ω ∈ ∂B ∩ ∂Ω and write Pk+1 for the
collection of all such points.

The set P∞ ⊂ B(ω0, 2r) ∩ ∂Ω is then defined as P∞ =
⋃

k≥1 Pk.

Remark 3.3. Due to the assumed geodecity of the metric (see Remark 2.6), this
construction can be done in such a way that each each point w ∈ Pk is also in Pj for

all j > k. Indeed, if ω ∈ ∂B ∩ Ω with B ∈ Bk, then B(ω̃, ηk+1r) ∈ B̃k+1, where ω̃
is the point along the geodesic connecting ω to the centre of B with distance ηk+1r
from the boundary of B. Geodecity of the space guarantees that B(ω̃, ηk+1r) ⊂ B
and that ω is on the boundary of B(ω̃, ηk+1r). If the space were not geodesic, there
might not exist a ball of radius ηk+1r with ω on its boundary that is contained in Ω.
This will be useful in later lemmas.
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4. Proof of the result

To complete the proof of Theorem 1.1, we show that the set P∞ that was con-
structed in the previous section is part of the visible boundary and then we give
an estimate for the Hausdorff content of P∞. We start with two simple technical
lemmas, Lemma 4.1 and Lemma 4.2, that are needed for proving that P∞ is part of
the visible boundary.

Lemma 4.1. Let {B(xi, r)}
S
i=1 be a finitely chainable collection of balls of some

fixed radius. If x and y are centres of balls from {B(xi, r)}
S
i=1, then there exists a

path γx,y such that

dE(γx,y) ≥
r

2
and ℓ(γx,y) ≤ Sr,

where E =
⋃S

i=1B(xi, r).

Proof. As the collection is finitely chainable, there exists a sequence of points
xi0 = x, xi1 , . . . , xik = y with k < S such that xij ∈ B(xij−1

, r) for each j = 1, . . . , k.
Let γj be a geodesic connecting xij to xij+1

. Then ℓ(γj) ≤ r and i(γj) ⊂ B(xij , r/2)∪
B(xij+1

, r/2). Consequently,

dE(γj) ≥ dB(xij
,r)∪B(xij+1

,r)(γj) ≥ r/2.

Thus γ = γ1 ∪ · · · ∪ γk is a path that satisfies the required conditions. �

Lemma 4.2. Let M > 1 and 0 < η < 1. Let {γk} be a sequence, finite or
infinite, of paths with images in some ball B ⊂ Ω of radius r > 0 such that, for each
k, γk(ℓ(γk)) = γk+1(0), ℓ(γk) ≤ Mηkr and dΩ(γk) >

1
M
ηkr. Then γ = γ1 ∪ γ2 ∪ · · · is

a c-John path with c = c(η,M).

Proof. Denote by zk−1 and zk the initial and terminal points, respectively, of γk.
First, we show that γk is M2-John for each k. Fixing k and z ∈ i(γk), we have

ℓ
(
γk(z, zk)

)
≤ ℓ(γk) ≤ Mηkr = M2

(
1

M
ηkr

)
< M2dΩ(γk) ≤ M2dΩ(z).

Begin by assuming that γ is comprised of N paths. We show that γ = γ1 ∪ γ2 ∪
· · · ∪ γN is M2

1−η
-John. If z ∈ i(γk), then we have that

ℓ
(
γ(z, zN )

)
= ℓ
(
γk(z, zk)

)
+ ℓ(γk+1) + . . .+ ℓ(γN)

≤ M(ηk + . . .+ ηN)r < M(ηk + . . .+ ηN)Mη−kdΩ(γk)

≤
M2

1− η
dΩ(z).

Thus γ is M2

1−η
-John when γ is formed by a finite union. As the estimate does

not depend on N , we can pass to the limit and the result holds also for an infinite
sequence {γk}

∞
k=1. �

Now we present some preliminary estimates that will be needed in proving that
the set P∞ has large enough Hausdorff content.

The next lemma follows from the Poincaré inequality and it is our key tool for
the proof of Theorem 1.1. It transforms the information of the Poincaré inequality
from integrals to estimates on Hausdorff content of level sets. We use it to estimate
the number of points in the sets Pk that were constructed in the previous section.
For the proof see Theorem 5.9 in [6]. The case p = 1 and s = Q − 1 follows from
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combining the arguments from the proofs of Theorem 5.9 in [6] and Theorem 3.6 in
[8].

Lemma 4.3. Suppose that 0 ≤ Q− p < s ≤ Q− 1, or p = 1 and s = Q− 1, and
E, F ⊂ B(r) are compact. If

min{Hs
∞(E),Hs

∞(F )} ≥ λrs

for some 0 < λ ≤ 1, then for any Lipschitz function f such that f = 1 in E and
f = 0 in F , we have

ˆ

B(r)

(Lipf)p dµ ≥
1

C
λrQ−p,

where C = C(s, p, Q, cA, cP ) ≥ 1.

The next lemma enables us to estimate the number of balls in the families Pk.

Lemma 4.4. Fix 0 ≤ Q− p < s ≤ Q − 1, or p = 1 and s = Q− 1. Let Ω ⊂ X
be a domain, ω ∈ ∂Ω, 0 < r < diam(Ω), B = B(ω, r), and η > 0 sufficiently small
(say η < η1 < 1, which will be specified in the proof). Assume that

(4) Hs
∞

(
B ∩ ∂Ω

)
≥ C0r

s

holds for some constant C0 > 0. Suppose that there exists zB ∈ ∂B ∩ Ω such that
B(zB, r/2) ⊂ Ω. Let {Bi(ηr)}

N
i=1 be a maximal collection of balls inside B∩Ω that is

well placed along ∂Ω and such that {Bi(ηr)}
N
i=1∪{B(zB, ηr)} is a subset of a finitely

chainable collection of balls. Then

N ≥
1

K

1

ηQ−p
,

where K = K(C0, s, p, Q, cA, cP ).

Proof. Let F = B(zB, r/4) ∩ B and E = ∂Ω ∩ B, which are compact subsets of
B as X is proper. Let B be a maximal chainable collection of balls of radius ηr in Ω
such that

(i) {Bi(ηr)}
N
i=1 ∪ {B(zB, ηr)} ⊂ B,

(ii) x ∈ B for each B(x, ηr) ∈ B, and
(iii) d(x, y) ≥ ηr/2 whenever x 6= y and B(x, ηr), B(y, ηr) ∈ B.

As the distance of the centres of the balls in B is bounded by ηr/2 from below, the
number of the balls in B is bounded by some constant S = S(η, cA, Q).

Now define

f(x) =





1, x ∈ B \D,

g(x) = max
1≤i≤N

[
1− d(x,40Bi)

ηr

]
+
, x ∈ B ∩D.

Here

D =
⋃

B∈B

20B,

i.e. it consists of all points that are close to (or in) the maximal chainable set. Now
f = 1 in E and f = 0 in F . The first claim is clear if x ∈ E \ D. Let us consider
the case x ∈ E ∩ D. This means that x ∈ B(y, 20ηr) with some B(y, ηr) ∈ B. By
considering balls of radius ηr that have centres on the geodesic connecting y to x, we
find a point ỹ such that d(x, ỹ) ≤ d(x, y), B(ỹ, ηr) is in Ω and touches the boundary
of Ω. As {Bi(ηr)}

N
i=1 is a maximal collection of balls inside B ∩Ω that is well placed

along ∂Ω, there exists i ∈ 1, 2, . . . , N such that B(ỹ, 4ηr)∩ 4Bi 6= ∅ as, otherwise, we
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could add B(ỹ, ηr) to the collection. It follows that the distance of x to the centre
of Bi is at most 28ηr and consequently f(x) = 1.

The claim that f = 0 on F holds clearly whenever the balls 41Bi do not touch
F . As each ball Bi touches the boundary of Ω and B(zB, r/2) ⊂ Ω, this holds at
least when 42ηr < r/2− r/4 i.e. if η < η1 ≤ 164.

Moreover, f is a 1
ηr

-Lipschitz function in B. To see this, notice first that g

is 1
ηr

-Lipschitz as a maximum of 1
ηr

-Lipschitz functions. As f is constant outside

D, we only need to check what happens at ∂D ∩ B. Notice that the balls 10Bi,
i = 1, 2, . . . , N cover the subset of {x ∈ Ω ∩ B : d(x, ∂Ω) = ηr} that belong to the
union of the balls in B as, otherwise, we could add more balls to the collection of
balls that are well placed along ∂Ω. If x ∈ ∂D ∩ (Ω ∩ B) then x ∈ 20Bi for some
i ∈ {1, 2, . . . , N} and consequently g(x) = 1.

The local Lipschitz constant of f satisfies

Lipf(x) = 0 if x /∈
N⋃

i=1

41Bi,

0 ≤ Lipf(x) ≤
1

ηr
if x ∈

N⋃

i=1

41Bi.

This shows that Lipf is integrable on B. Thus, using that µ is Q-Ahlfors regular,

ˆ

B

(Lipf)p dµ ≤
1

(ηr)p
µ

(
N⋃

i=1

41Bi

)
≤

1

(ηr)p

N∑

i=1

cA(41ηr)
Q = NcA41

Q(ηr)Q−p.

Lemma 4.3 implies that
´

B
(Lipf)p dµ ≥ CrQ−p. Combining this with the previous

estimate, we obtain

(5) N ≥
1

K

1

ηQ−p
,

where K only depends on the data related to the space and C0, i.e. K = K(C0, s, p,
Q, cA, cP ). �

Lemma 4.5. Let P∞ be as in the construction and η1, K be as in Lemma 4.4.
Suppose that (4) is satisfied with some s for all ω ∈ ∂Ω and 0 < r < r0. Fix
0 < ε < s and 0 < η < η2 = min(η1, K

−2/ε). Then Hs−ε
∞ (P∞) ≥ Crs−ε

0 , where
C = C(C0, s, p, Q, cA, cP , ε, η) > 0.

Proof. Fix 0 < ε < s. Let p = Q − s + ε
2

if s < Q − 1 and p = 1 if s = Q − 1.
Assume without loss of generality that r0 = dΩ(z0) = 1.

Let us construct a sequence of probability measures {νk}
∞
k=0 as follows. First, we

set

ν0 = δω0
,

where P0 = {ω0}, using the notation built up in Section 3. For k ≥ 1, we define
the measures as follows. For every ω ∈ Pk−1, let Pω ⊂ Pk denote the kth generation
descendants of ω and Nω the number of points in Pω. Then we define νk to be the
measure supported on Pk that satisfies

νk =
∑

ω∈Pk−1

1

Nω
νk−1(ω)δPω

.
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One can show that the sequence {νk}
∞
k=0 converges weakly to some limiting prob-

ability measure ν, in the sense that

lim
k→∞

ˆ

X

f dνk =

ˆ

X

f dν

for every bounded continuous function f on X. Moreover, ν is supported on P∞.
In order to prove the lemma, it suffices to show that the measure ν satisfies

ν
(
B(r)

)
. rs−ε for every ball B(r) that intersects P∞. Then, for any cover {B(ri)}

of P∞ it would follow that

1 = ν(P∞) ≤
∑

i

ν
(
B(ri)

)
.
∑

i

rs−ε
i .

Hence, taking an infimum over all covers of P∞ by balls,

Hs−ε
∞ (P∞) & 1,

as desired.
Write Nk for the number of points in Pk. From the construction, N0 = 1, and, by

Lemma 4.4, since η < η1, Nk ≥ K−1η−(Q−p)Nk−1 for all k ≥ 1. From here it follows
that

νk(2Bj) ≤ KηQ−pνk−1(2Bj−1),

where Bj ∈ Bj , Bj−1 ∈ Bj−1, and 2Bj ⊂ 2Bj−1. Applying this j − 1 more times
yields

ν(2Bj) ≤ Kjηj(Q−p) ≤ ηj(Q−p−ε/2) ≤ ηj(s−ε),

as η satisfies 0 < η < K−2/ε.
Fix a ball B ⊂ X that intersects P∞. If its radius r satisfies r ≥ 1, then

ν(B) ≤ 1 ≤ rs−ε.

If r < 1, however, consider j such that ηj+1 ≤ r < ηj. Then B intersects at most one
ball 2Bj , where Bj ∈ Bj . It follows that for 0 < η < K−2/ε,

ν(B) ≤ ν(2Bj) ≤ ηj(s−ε) ≤ η−s+εrs−ε,

completing the proof. �

Proof of the main theorem. Fix 0 < ε < s, z0 ∈ Ω, r = r0 = dΩ(z0), and
0 < η < η2. It suffices to show that P∞ ⊂ ∂Ωz0(c) ∩ ∂Ω for some c ≥ 1 as then, by
Lemma 4.5, we would have

Hs−ε
∞ (∂Ωz0(c) ∩ ∂Ω) ≥ Hs−ε

∞ (P∞) ≥ Crs−ε
0 ,

where C is as in the lemma.
Suppose that ω ∈ Pk for some k. That is, there exists a Bk = B(zk, η

kr) ∈ B̃k

such that ω ∈ ∂Bk ∩ ∂Ω for some zk ∈ Ω. Since X is geodesic and Bk ⊂ Ω, we can
connect ω to zk by a 1-John curve, γk+1. By construction, B̃k satisfies the conditions
of Lemma 4.1 and so there exists a path γk connecting zk to zk−1, where zk−1 is the
centre of some ball Bk−1 ∈ B̃k−1, such that

d∪B̃k
(γk) ≥

ηkr

2
and ℓ(γk) . ηkr.

Applying Lemma 4.1 again k− 1 more times yields a sequence of paths {γj}
k
j=1 such

that γ = γ1 ∪ γ2 ∪ · · · ∪ γk connects zk to z0 and such that for each j = 1, 2, . . . , k,

d∪B̃j
(γj) ≥

ηjr

2
and ℓ(γj) . ηjr.
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Thus, for some M > 1, we have that

dΩ(γj) >
1

M
ηjr and ℓ(γj) ≤ Mηjr

for each j = 1, 2, . . . , k. Therefore, applying Lemma 4.2, it follows that γ is c-John
for some c. The path γ̃ = γ ∪ γk+1 connecting ω to z0 can then be shown to be
(1 + c)-John, demonstrating that Pk is a subset of the visible boundary. As the
obtained constant c is independent of k, this approach shows that

⋃
k Pk is a subset

of the visible boundary. In fact, since the visible boundary is closed, this implies that
P∞ is a subset of the visible boundary, and this completes the proof. �

Remark 4.6. The construction of Theorem 1.1 also works in doubling metric
measure spaces that are not Q-Ahlfors regular. The doubling condition (together
with the connectedness of the space) implies that there exist some constants 0 <
Q2 ≤ Q1 < ∞ such that

1

C

( r

R

)Q1

≤
µ(B(y, r))

µ(B(x,R))
≤ C

( r

R

)Q2

for all x ∈ X, 0 < r ≤ R < ∞ and y ∈ B(x,R). In the doubling setting, it is
more efficient to work with Hausdorff content of certain codimension. Our method of
estimating the size of visible boundary works in principle with the doubling measure,
but we seem to lose Q1 −Q2 in the size of exponents.

5. Necessity of assumptions

We now give an example that demonstrates that it is necessary to assume that the
boundary is thick at all locations and at all scales. In the first example (Theorem 5.1),
the complement of the domain can be chosen to be a closure of a connected open set.
In our second example (Theorem 5.2), we see that with disconnected complement,
the visual boundary can be made very small.

Theorem 5.1. Let n ≥ 3. Fix c ≥ 1, 0 ≤ ε < n − 1, and 0 < η < 1
4
. Then

there exists a domain Ω ⊂ R
n with connected boundary, and a z0 ∈ Ω such that, for

r = dΩ(z0),

Hn−1
∞

(
B(z0, 2r) ∩ ∂Ω

)
≥ rn−1,

but

Hn−1−ε
∞ (∂Ωz0(c) ∩ ∂Ω) ≤ ηrn−1−ε.

Proof. Let z0 = 0 and {pi}
N
i=1 be a set of points on ∂B

(
0, 3

2

)
such that

∂B(0, 3/2) ⊂
N⋃

i=1

B
(
pi,

1
2c

)
.

For each i = 1, 2, . . . , N , choose a connected and closed set Ai ⊂ R
n \ B(0, 3

2
) con-

taining pi such that Ai ∩ ∂B(0, 2) 6= ∅, diam(Ai) ≤ 1 and

Hn−1−ε
∞ (Ai) ≤

η

N
.

As diam(Ai) ≤ 1, this implies that

Hn−1
∞ (Ai) ≤ Hn−1−ε

∞ (Ai) ≤
η

N
.
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Now, let

Ω = B(0, 2) \
N⋃

i=1

Ai.

From this, we see that r = dΩ(z0) =
3
2
.

Consider any path γ connecting the origin to some point ω0 ∈ ∂Ω ∩ ∂B(0, 2).
Writing z for the point in i(γ)∩∂B(0, 3

2
), we have that ℓ(γ(z, ω0)) ≥

1
2

but cdΩ(z) ≤
1
4

and so no points of ∂B(0, 2) are part of the visible boundary of Ω near z0. Hence,

Hn−1−ε
∞ (∂Ωz0(c) ∩ ∂Ω) ≤

N∑

i=1

Hn−1−ε
∞ (Ai) ≤ η ≤ ηrn−1−ε

but

Hn−1
∞

(
B(0, 2r) ∩ ∂Ω

)
= Hn−1

∞ (∂Ω) ≥ Hn−1
∞

(
∂B(0, 2) \

N⋃

i=1

Ai

)

≥ (1− η)2n−1 ≥ rn−1. �

Theorem 5.2. Let n ≥ 2 and fix 0 ≤ ε < n− 1. There exists a domain Ω ⊂ R
n

and a z0 ∈ Ω such that, for r = dΩ(z0),

Hn−1
∞

(
B(z0, 2r) ∩ ∂Ω

)
≥ rn−1,

but

Hn−1−ε
∞ (∂Ωz0(c) ∩ ∂Ω) = 0

for any c ≥ 1.

Proof. Let z0 = 0 and fix c ≥ 1. Select a set of points {pi}
N
i=1 on ∂B(0, 2− 21−c)

such that

∂B(0, 2− 21−c) ⊂
N⋃

i=1

B
(
pi,

1
c2c

)
.

Let

Ω = B(0, 2) \
N⋃

i=1

pi.

From this, we see that r = dΩ(z0) = 2− 21−c.
Consider any path γ connecting the origin to some point ω0 ∈ ∂B(0, 2). Writing z

for a point in i(γ)∩∂B(0, 2−21−c), we have that ℓ(γ(z, ω0)) ≥ 21−c but cdΩ(z) ≤ 2−c,
implying that ∂B(0, 2) ∩ ∂Ωz0(c) = ∅. Therefore,

Hn−1−ε
∞ (∂Ωz0(c) ∩ ∂Ω) ≤

N∑

i=1

Hn−1−ε
∞ (pi) = 0

but

Hn−1
∞

(
B(z0, 2r) ∩ ∂Ω

)
≥ Hn−1

∞ (∂B(0, 2)) = 2n−1 ≥ rn−1,

where the inequality holds since ∂Ω contains ∂B(0, 2) (up to a finite set of points, if
c = 1). Recall that a set of a finite number of points has zero s-dimensional Hausdorff
content so long as s 6= 0. �

Acknowledgements. The authors would like to thank the referees for their use-
ful comments, corrections, and recommended improvements. The first author was
partially supported by the Fonds de recherche du Québec – Nature et technologies



706 Ryan Gibara and Riikka Korte

(FRQNT). Part of the work for this project was done while the first author was visit-
ing Aalto University; he would like to thank that institution for their kind hospitality.
The second author was partially supported by Academy of Finland, project 308063.

References

[1] Ambrosio, L., M. Miranda Jr., and D. Pallara: Special functions of bounded variation
in doubling metric measure spaces. - In: Calculus of Variations: Topics from the Mathematical
Heritage of E. De Giorgi, Quaderni di Matematica 14, 2004, 1–45.

[2] Azzam, J.: Accesible parts of the boundary for domains with lower content regular comple-
ments. - Ann. Acad. Sci. Fenn. Math. 44, 2019, 889–901.

[3] Björn, A., and J. Björn: Nonlinear potential theory on metric spaces. - EMS Tracts Math.
17, Eur. Math. Soc., 2011.

[4] Busemann, H.: The geometry of geodesics. - Academic Press, New York, 1955.

[5] Heinonen,J.: Lectures on analysis on metric spaces. - Universitext, Springer-Verlag, New
York, 2001.

[6] Heinonen, J., and P. Koskela: Quasiconformal maps in metric spaces with controlled ge-
ometry. - Acta Math. 181:1, 1998, 1–61.

[7] Heinonen, J., P. Koskela, N. Shanmugalingam, and J. T. Tyson: Sobolev spaces on
metric measure spaces. An approach based on upper gradients. - New Math. Monogr. 27,
Cambridge Univ. Press, 2015.

[8] Kinnunen, J., R. Korte, N. Shanmugalingam, and H. Tuominen: Lebesgue points and
capacities via boxing inequality in metric spaces. - Indiana Univ. Math. J. 57:1, 2008, 401–430.

[9] Koskela, P., and J. Lehrbäck: Weighted pointwise Hardy inequalities. - J. Lond. Math.
Soc. 79:3, 2009, 757–779.

[10] Koskela, P., D. Nandi, and A. Nicolau: Accessible parts of boundary for simply connected
domains. - Proc. Amer. Math. Soc. 146:8, 2018, 3403–3412.

[11] Lehrbäck, J.: Weighted Hardy inequalities beyond Lipschitz domains. - Proc. Amer. Math.
Soc. 142:5, 2014, 1705–1715.

Received 3 March 2021 • Accepted 3 September 2021 • Published online 20 April 2022

Ryan Gibara

University of Cincinnati

Department of Mathematical Sciences

P.O. Box 210025, Cincinnati,

OH 45221–0025, USA

ryan.gibara@gmail.com

Riikka Korte

Aalto University

Department of Mathematics and

Systems Analysis

P.O. Box 11100, FI-00076 Aalto, Finland

riikka.korte@aalto.fi


	1. Introduction
	2. Preliminaries
	3. The construction
	4. Proof of the result
	5. Necessity of assumptions
	References

