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Extremizing temperature functions of rods
with Robin boundary conditions

Jeffrey J. Langford and Patrick McDonald

Abstract. We compare the solutions of two one-dimensional Poisson problems on an interval
with Robin boundary conditions, one with given data, and one where the data has been sym-
metrized. When the Robin parameter is positive and the symmetrization is symmetric decreasing
rearrangement, we prove that the solution to the symmetrized problem has larger increasing convex
means. When the Robin parameter equals zero (so that we have Neumann boundary conditions)
and the symmetrization is decreasing rearrangement, we similarly show that the solution to the
symmetrized problem has larger convex means.

Robinin reunaehdoilla varustetun sauvan lämpötilan funktioiden maksimoiminen

Tiivistelmä. Vertaamme Robinin reunaehdoilla varustetun välin yksiulotteisen Poissonin on-
gelman kahta ratkaisua, joista yhdellä on annettu lähde ja toisella lähde on symmetrisoitu. Kun
Robinin parametri on positiivinen ja symmetrisointina käytetään symmetristä laskevaa uudelleen-
järjestelyä, osoitamme, että symmetrisoidun ongelman ratkaisun kasvavilla konvekseilla funktioilla
on suuremmat keskiarvot. Kun Robinin parametri on nolla (jolloin kyseessä on Neumannin reu-
naehdot) ja symmetrisointina käytetään laskevaa uudelleenjärjestelyä, osoitamme vastaavasti, että
symmetrisoidun ongelman ratkaisun konvekseilla funktioilla on suuremmat keskiarvot.

1. Introduction: Physical motivation and main results

Our paper is motivated by the following physical problem:

Problem 1.1. Consider a metal rod of length `. To half the locations on the rod,
heat is generated uniformly, while on the remaining half of the rod, heat is neither
generated nor absorbed. If the rod’s ends are frozen at zero temperature, where
should we place the heat sources to maximize the hottest steady-state temperature
across the rod?

Several possible arrangements appear in Figure 1 below. Heat is generated in the
white regions while heat is neither generated nor absorbed in the gray regions.

(a) (b)

(c) (d)

Figure 1. Four possible heat source arrangements for Problem 1.1.
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The solution to Problem 1.1 follows from a celebrated result in symmetrization
known as Talenti’s Theorem [19]. To understand Talenti’s solution1, we write out
the mathematical formulation of Problem 1.1. Suppose the rod is located along
the interval

[
− `

2
, `
2

]
and let E ⊆ [− `

2
, `
2
] denote the locations of the heat sources.

Then the steady-state temperature function u satisfies the one-dimensional Poisson
problem

(1) − u′′ = χE in
(
− `

2
,
`

2

)
, u

(
− `

2

)
= u

(
`

2

)
= 0,

where χE denotes the characteristic function of the set E. Talenti’s Theorem com-
pares the solution u in (1) to the solution v of a problem that has been “symmetrized”.
Specifically, let v solve the Poisson problem

−v′′ = χ(− |E|
2
,
|E|
2 ) in

(
− `

2
,
`

2

)
, v

(
− `

2

)
= v

(
`

2

)
= 0,

where |E| denotes the length of E; in this case χ(− |E|
2
,
|E|
2 ) is called the symmetric

decreasing rearrangement of χE (for a precise definition, see Definition 2.4). Talenti
showed that the temperature functions u and v compare through their convex means,
that is,

(2)
ˆ `

2

− `
2

φ(u) dx ≤
ˆ `

2

− `
2

φ(v) dx

for each convex increasing function φ : R→ R. Since u and v are concave functions,
they are minimized at the ends of the interval

[
− `

2
, `
2

]
, where both functions vanish.

That is,

(3) min
[− `2 ,

`
2 ]
u = min

[− `2 ,
`
2 ]
v = 0.

Thus u and v are nonnegative. Taking φ(x) = χ[0,∞)(x) · xp in (2) gives

‖u‖Lp[− `2 , `2 ] ≤ ‖v‖Lp[− `2 , `2 ], 1 ≤ p < +∞,

and sending p→ +∞ shows

(4) max
[− `2 ,

`
2 ]
u ≤ max

[− `2 ,
`
2 ]
v.

Talenti’s Theorem thus says that the hottest temperature in Problem 1.1 is maxi-
mized when the heat sources are centrally gathered in the middle of the rod as in
(A) of Figure 1. Note also that equations (3) and (4) show that

osc
[− `2 ,

`
2 ]
u ≤ osc

[− `2 ,
`
2 ]
v,

where osc = max−min denotes the oscillation, or temperature gap (the difference
between the rod’s largest and smallest temperatures). Thus, arrangement (A) not
only maximizes the rod’s hottest temperature but also its temperature gap.

The present paper is motivated by a simple question: What happens if we con-
sider analogues of Problem 1.1 with other boundary conditions? To start, we might
consider a situation where the ends of the bar interact with the outside environment.
For example, imagine that each end of the bar is submerged in a large bath of fluid

1Although Talenti’s work in [19] explicitly assumes that the dimension n ≥ 2, the result still
holds in dimension 1. For a different approach to comparison theorems that yields the same result
in all dimensions, see Corollary 3 of [8] or Theorem 10.10 of [9] and Corollary 3.1 below.
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with temperature zero. Newton’s law of cooling then says that the heat flux is pro-
portional to the temperature at each end of the rod. This physical setting yields
boundary conditions known as Robin boundary conditions. Thus, we ask:

Problem 1.2. With the same setup as Problem 1.1 for a rod with Robin bound-
ary conditions, where should we locate the heat sources to maximize the hottest
steady-state temperature?

We solve Problem 1.2 by proving a one-dimensional comparison principle for
Robin problems in the spirit of Talenti. The result stated below is normalized so the
length of the bar equals 2π, but the the result holds for any interval. Specifically, we
prove:

Theorem 1.3. (ODE Robin Comparison Principle) Let 0 ≤ f ∈ L1[−π, π] and
α > 0. Suppose u and v solve the Poisson problems

−u′′ = f in (−π, π), −u′(−π) + αu(−π) = u′(π) + αu(π) = 0,

−v′′ = f# in (−π, π), −v′(−π) + αv(−π) = v′(π) + αv(π) = 0,

with f# the symmetric decreasing rearrangement of f . Thenˆ π

−π
φ(u) dx ≤

ˆ π

−π
φ(v) dx

for each increasing convex function φ : R→ R. In particular,

(5) ‖u‖Lp[−π,π] ≤ ‖v‖Lp[−π,π], 1 ≤ p ≤ +∞.
To resolve Problem 1.2, let E ⊆ [−π, π] denote the locations of the heat sources

and let u and v denote the corresponding temperature functions for the Robin prob-
lems of Theorem 1.3:

−u′′ = χE in (−π, π), −u′(−π) + αu(−π) = u′(π) + αu(π) = 0,

−v′′ = χ(−π2 ,
π
2 ) in (−π, π), −v′(−π) + αv(−π) = v′(π) + αv(π) = 0.

The proof of Theorem 1.3 shows that u and v are nonnegative, thus taking p = +∞
in (5) shows

max
[−π,π]

u ≤ max
[−π,π]

v.

Thus, as in Problem 1.1, Problem 1.2 is resolved with an arrangement of heat sources
analogous to (A) in Figure 1. In fact, in Corollary 3.1, we prove that the correspond-
ing Dirichlet result follows from Theorem 1.3. Unlike the Dirichlet setting, however,
the temperature gap does not necessarily increase under symmetric decreasing re-
arrangement; see Example 3.1 and Proposition 3.3.

We also address the situation where the ends of the rod are perfectly insulated.
In this setting, we cannot consider a verbatim analogue of Problem 1.1, since perfect
insulation requires the presence of both heat sinks and sources. The temperature
function, moreover, is unique only up to an additive constant. Thus, we ask:

Problem 1.4. Suppose half of a given rod is heated uniformly, while on the
complementary half, heat is absorbed uniformly. If the rod’s ends are perfectly
insulated, where should we place the heat sources and sinks to maximize the hottest
steady-state temperature across the rod, assuming the temperature has zero mean?

Again, we solve Problem 1.4 by proving a Talenti-style comparison principle. We
normalize and assume the rod has length π, but as before, the result holds for any
interval. We prove:
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Theorem 1.5. (ODE Neumann Comparison Principle) Let f ∈ L1[0, π] have
zero mean and suppose u and v solve the Poisson problems

−u′′ = f in (0, π), u′(0) = u′(π) = 0,

−v′′ = f ∗ in (0, π), v′(0) = v′(π) = 0,

with f ∗ the decreasing rearrangement of f . If u and v both have zero mean, thenˆ π

0

φ(u) dx ≤
ˆ π

0

φ(v) dx

for each convex function φ : R→ R. In particular,

‖u‖Lp[0,π] ≤ ‖v‖Lp[0,π], 1 ≤ p ≤ +∞,
max
[0,π]

u ≤ max
[0,π]

v, min
[0,π]

v ≤ min
[0,π]

u, osc
[0,π]

u ≤ osc
[0,π]

v.

To resolve Problem 1.4, let E ⊆ [0, π] denote the locations of the heat sources
and let u and v denote the temperature functions for the Neumann problems of
Theorem 1.5:

−u′′ = χE − χ[0,π]\E in (0, π), u′(0) = u′(π) = 0,

−v′′ = χ[0,π2 ) − χ[π2 ,π]
in (0, π), v′(0) = v′(π) = 0.

According to Theorem 1.5, the maximum temperature and temperature gap increase,
and the minimal temperature decreases under decreasing rearrangement:

max
[0,π]

u ≤ max
[0,π]

v, min
[0,π]

v ≤ min
[0,π]

u, osc
[0,π]

u ≤ osc
[0,π]

v.

Thus Problem 1.4 is resolved by choosing an arrangement of sources and sinks analo-
gous to (B) in Figure 1, only here, white areas represent heat sources and gray areas
represent heat sinks.

Taken in sum, Theorems 1.3 and 1.5 reveal a striking difference in the behavior
of source functions that induce large temperature functions (interpreted in the sense
of convex means). With the Neumann problem, one takes full advantage of the
insulated ends, sweeping the greatest sources to one end of the bar and greatest
sinks to the opposite end. However, the instant any heat energy is allowed to escape
through the bar’s ends and the Robin regime is entered, the arrangement switches
and we instead move the greatest sources towards the middle of the bar and push
the weakest sources out towards the ends.

The results of our paper are examples of comparison theorems for differential
equations. To place our work in the existing literature, we recall that the first major
comparison result, as mentioned above, is due to Talenti [19], who compared the so-
lutions of two Poisson problems with Dirichlet boundary conditions and nonnegative
source, f , namely

−∆u = f in Ω, −∆v = f# in Ω#,

u = 0 on ∂Ω, v = 0 on ∂Ω#.

Here, Ω ⊆ Rn is a bounded Lipschitz domain with n ≥ 2, 0 ≤ f ∈ L2(Ω), Ω# ⊆ Rn is
the open ball centered at 0 with the same volume as Ω and f# denotes the symmetric
decreasing rearrangement of f , a radially decreasing function on Ω# whose upper
level sets have the same volume as those of f , meaning |{x ∈ Ω: f(x) > t}| = |{x ∈
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Ω# : f#(x) > t}| for t ∈ R. Talenti showed that the solutions u and v compare via
their symmetric decreasing rearrangements through the inequality

u# ≤ v in Ω#.

The history of comparison phenomena that followed Talenti’s original work is long
and the results are the subject of many articles. Fortunately, Talenti has prepared a
thorough survey of the material (up to 2016). We direct the reader interested in this
important background to [20] and the references therein.

Since the publication of Talenti’s survey, authors have begun to turn their at-
tention to comparison principles for Robin problems. As an example relevant to our
work, in [2] Alvino, Nitsch and Trombetti consider the exact same setup addressed
by Talenti [19] and mentioned above, but impose Robin boundary conditions rather
than Dirichlet boundary conditions. That is, for α > 0, Ω ⊆ Rn a bounded Lipschitz
domain with n ≥ 2 and 0 ≤ f ∈ L2(Ω), they consider the problems

−∆u = f in Ω, −∆v = f# in Ω#,

∂u

∂ν
+ αu = 0 on ∂Ω,

∂v

∂ν
+ αv = 0 on ∂Ω#,

with ∂
∂ν

the outer normal derivative and # the symmetric decreasing rearrangement.
The authors show that Talenti’s conclusion u# ≤ v in Ω# fails in general, but that
u and v compare via their Lorentz norms. In dimension n = 2, they show that the
L1- and L2-norms of u are dominated by those of v, and when f = 1, that u# ≤ v
in Ω#. These results are extended in the subsequent work of Alvino, Chiacchio,
Nitsch and Trombetti [1]. See also [11]. In related work [3], Amato, Gentile and
Masiello generalize results of [2] to a nonlinear setting, replacing the Laplacian with
the p-Laplace operator.

In addition to the the results of [1, 2, 3], in [17] the first author studies Poisson
problems of the form

−∆u = f in A, −∆v = f# in A,
∂u

∂ν
+ αu = 0 on ∂A,

∂v

∂ν
+ αv = 0 on ∂A,

where A ⊆ Rn is a spherical shell (the region between two concentric spheres), α > 0,
f ∈ L2(A) and # is the cap symmetrization. To cap symmetrize a function f : A→ R,
one applies the spherical rearrangement (the analogue of the symmetric decreasing
rearrangement on the sphere) to each of f ’s radial slice functions. The author shows
that the solutions u and v compare through their convex means:ˆ

A

φ(u) dx ≤
ˆ
A

φ(v) dx

for each convex function φ : R → R. The author obtains similar results for α = 0
(the Neumann problem), assuming f , u and v all have zero mean. For related work
on the Neumann problem, see [14, 15, 16].

To the best of our knowledge, references [1, 2, 3, 17] comprise all that has ap-
peared in print to addresses Robin comparison principles for differential equations
in the spirit of Talenti. Thus, our work adds an interesting contribution to this new
direction in the study of comparison principles.

The rest of this note is organized as follows. In Section 2 we discuss existence
and uniqueness results for the Poisson problems of Theorems 1.3 and 1.5, so that our
paper may be self-contained. We then discuss Robin Green’s functions and relevant
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rearrangement inequalities needed to prove Theorems 1.3 and 1.5. In Section 3 we
prove our paper’s main results.

2. Background

Since the goal of our paper is to compare the solutions of one-dimensional Pois-
son problems with Robin and Neumann boundary conditions, we begin with two
existence and uniqueness results. These results are stated on the interval [−π, π] for
convenience, but they hold for any interval.

Proposition 2.1. (Robin Existence and Uniqueness) Let f ∈ L1[−π, π] and
α > 0. A unique u ∈ C1[−π, π] exists satisfying

1. u′ is absolutely continuous on [−π, π],
2. −u′′ = f a.e. on (−π, π),
3. −u′(−π) + αu(−π) = u′(π) + αu(π) = 0.

Proof. We first establish uniqueness. Suppose u and v both satisfy all the
properties listed above, and let w = u−v. Since w′ is absolutely continuous, for each
x ∈ [−π, π] we have

w′(x) = w′(x)− w′(−π) + αw(−π) =

ˆ x

−π
(−f + f) dy + αw(−π) = αw(−π).

Thus, w(x) = αw(−π)x+b for some constant b. The equations −w′(−π)+αw(−π) =
w′(π) + αw(π) = 0 imply that αw(−π) = b = 0, and so u ≡ v. For existence, we
simply take

u(x) = −
ˆ x

−π

ˆ t

−π
f(s) ds dt+ cx+ d,

where c and d are chosen to make −u′(−π) + αu(−π) = u′(π) + αu(π) = 0. �

We also have an existence and uniqueness result for the Neumann problem. The
proof is similar to that of the Robin result.

Proposition 2.2. (Neumann Existence and Uniqueness) Let f ∈ L1[−π, π] with´ π
−π f dx = 0. A unique u ∈ C1[−π, π] exists satisfying

1. u′ is absolutely continuous on [−π, π],
2. −u′′ = f a.e. on (−π, π),
3. u′(−π) = u′(π) = 0,
4.
´ π
−π u dx = 0.

Thus, the solutions u and v in Theorems 1.3 and 1.5 are guaranteed to exist and
be unique. For the Robin problem, we in fact prove a bit more. Namely, we show
that solutions are obtained by integration against an explicitly computable Green’s
function.

Proposition 2.3. (Green’s Representation) For α > 0, the Green’s function for
the Robin problem on the interval [−π, π] equals

G(x, y) = −1

2
cαxy −

1

2
|x− y|+ 1

2cα
, x, y ∈ [−π, π],

where

(6) cα =
α

1 + απ
.

That is,
1. −Gxx(x, y) = δx(y), for x, y ∈ (−π, π),
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2. −Gx(−π, y) + αG(−π, y) = Gx(π, y) + αG(π, y) = 0 for y ∈ (−π, π).
Thus, if f ∈ L1[−π, π] and u solves

−u′′ = f in (−π, π), −u′(−π) + αu(−π) = u′(π) + αu(π) = 0,

then
u(x) =

ˆ π

−π
G(x, y)f(y) dy, x ∈ [−π, π].

Proof. Properties 1 and 2 follow from a straightforward calculation. Define

(7) w(x) =

ˆ π

−π
G(x, y)f(y) dy.

We show that w ∈ C1[−π, π] and that w satisfies all three properties of Proposi-
tion 2.1.

The Dominated Convergence Theorem gives

w′(x) =

ˆ π

−π
Gx(x, y)f(y) dy(8)

=

ˆ x

−π

(
−1

2
cαy −

1

2

)
f(y) dy +

ˆ π

x

(
−1

2
cαy +

1

2

)
f(y) dy,

and this representation shows that w′ is absolutely continuous on [−π, π] with −w′′ =
f a.e. Formulas (7) and (8) for w and w′ together with property 2 of the present
proposition give −w′(−π) + αw(−π) = w′(π) + αw(π) = 0. The result now follows
from uniqueness in Proposition 2.1. �

To prove our main results we will also need several tools from symmetrization.
We start with the decreasing and symmetric decreasing rearrangements.

Definition 2.4. (Decreasing and Symmetric Decreasing Rearrangements) Sup-
pose X ⊆ R is a measurable set and f ∈ L1(X) satisfies the finiteness condition

|{x ∈ X : f(x) > t}| <∞, t > ess inf
X

f.

Define f ∗ : [0, |X|]→ [−∞,+∞] via

f ∗(t) =


ess sup

X
f if t = 0,

inf{s : |{x : s < f(x)}| ≤ t} if t ∈ (0, |X|),
ess inf

X
f if t = |X|.

We call f ∗ the decreasing rearrangement of f . The symmetric decreasing rearrange-
ment of f is the function f# :

[
−1

2
|X|, 1

2
|X|
]
→ [−∞,+∞] defined by f#(t) =

f ∗(2|t|).
We next define the notion of a star function, first introduced by Baernstein to

solve extremal problems in complex analysis. For more on star functions and their
use in analysis, see [4, 5, 6, 9].

Definition 2.5. (Star Function) Let f ∈ L1(X), where X ⊆ R is a measurable
set of finite length. We define the star function of f on the interval [0, |X|] by the
formula

fF(t) = sup
|E|=t

ˆ
E

f dx,

where the sup is taken over all measurable subsets E ⊆ X with |E| = t.
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Our next proposition establishes a key connection between the star function and
the decreasing rearrangement.

Proposition 2.6. Assume f ∈ L1(X) with X ⊆ R a measurable subset of finite
length. Then for each t ∈ [0, |X|],

fF(t) =

ˆ t

0

f ∗(s) ds,

where f ∗ is the decreasing rearrangement of f .

For a proof of Proposition 2.6, see Proposition 9.2 of [10]. Our proofs of The-
orems 1.3 and 1.5 will show that the solutions u and v satisfy the star function
inequality uF ≤ vF. Our next result recasts this inequality into an equivalent in-
equality about convex means.

Proposition 2.7. (Majorization) Assume X ⊆ R is a measurable subset of finite
length and u, v ∈ L1(X). Then

uF ≤ vF

on [0, |X|] if and only if ˆ
X

φ(u) dx ≤
ˆ
X

φ(v) dx

for every increasing convex function φ : R→ R. If
´
X
u dx =

´
X
v dx, then the word

“increasing” may be removed from the previous statement.

For a proof of Proposition 2.7, see Propositions 10.1 and 10.3 of [10]. If the
convex means of u are dominated by those of v and additional information is known
about u and v, we can deduce further inequalities about Lp-norms, ess sup, ess inf,
and osc.

Proposition 2.8. Say u, v ∈ L1(X) where X ⊆ R is a measurable subset of
finite length and assume uF ≤ vF on [0, |X|]. If either u, v ≥ 0 or

´
X
u dx =

´
X
v dx,

then
‖u‖Lp(X) ≤ ‖v‖Lp(X), 1 ≤ p ≤ +∞.

If
´
X
u dx =

´
X
v dx, moreover

ess sup
X

u ≤ ess sup
X

v, ess inf
X

v ≤ ess inf
X

u, osc
X

u ≤ osc
X

v,

where osc = ess sup− ess inf.

For a proof of Proposition 2.8, see Corollary 10.2 and Proposition 10.3 in [10]. We
end the background section with three rearrangement inequalities. These inequalities
play a major role in our proofs of Theorems 1.3 and 1.5. The first two are well known
(for discussion and proofs see Theorem 1.2.2 of [13] and Theorem 8.4 of [10]). The
third rearrangement inequality appears to be less well known (for discussion and
proof see [7] or Theorem 8.1 of [10]).

Theorem 2.9. (Hardy–Littlewood) Given f ∈ L1[−π, π] and g ∈ L∞[−π, π], we
have ˆ π

−π
fg dx ≤

ˆ π

−π
f#g# dx,

with # the symmetric decreasing rearrangement.
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Theorem 2.10. (Riesz–Sobolev) Suppose f, g, h ∈ L1(R) are nonnegative. Then
we haveˆ ∞

−∞

ˆ ∞
−∞

f(x)g(y)h(x− y) dy dx ≤
ˆ ∞
−∞

ˆ ∞
−∞

f#(x)g#(y)h#(x− y) dy dx,

with # the symmetric decreasing rearrangement.

Theorem 2.11. (Baernstein) Let f, g ∈ L1[−π, π] and h ∈ L∞[−π, π] be 2π-
periodic functions on R. Thenˆ π

−π

ˆ π

−π
f(x)g(y)h(x− y) dy dx ≤

ˆ π

−π

ˆ π

−π
f#(x)g#(y)h#(x− y) dy dx,

with # the 2π-periodic extension of symmetric decreasing rearrangement on [−π, π]
to all of R.

3. Proofs of main results

The Robin problem. We start this section with a proof of our first main result.

Proof of Theorem 1.3. Say E ⊆ [−π, π] is a measurable subset. Thenˆ
E

u(x) dx =

ˆ π

−π

ˆ π

−π
χE(x)f(y)G(x, y) dy dx,

where G is the Robin Green’s function from Proposition 2.3. Observe that

G(x, y) = −1

2
cαxy −

1

2
|x− y|+ 1

2cα

= −1

4
cα(x2 + y2) +

1

4
cα(x− y)2 − 1

2
|x− y|+ 1

2cα

where cα is the constant given in (6). Since f, f# are rearrangements and nonnegative,
applying Theorem 2.9 to the dx integral yields

(9)
1

4
cα

ˆ π

−π

ˆ π

−π
χE(x)f(y)(−x2) dy dx ≤ 1

4
cα

ˆ π

−π

ˆ π

−π
χ#
E(x)f#(y)(−x2) dy dx.

Similarly, χE, χE# are rearrangements, so applying Theorem 2.9 to the dy integral
gives

(10)
1

4
cα

ˆ π

−π

ˆ π

−π
χE(x)f(y)(−y2) dy dx ≤ 1

4
cα

ˆ π

−π

ˆ π

−π
χ#
E(x)f#(y)(−y2) dy dx.

Next, write

h(z) =
1

4
cαz

2 − 1

2
|z|, z ∈ [−2π, 2π].

Write h̃ for the 2π-periodic extension of h
∣∣
[−π,π] to all of R. When z ∈ (0, π], note

that

h′(z) =
1

2
cαz −

1

2
≤ 1

2
cαπ −

1

2
= − 1

2(1 + απ)
< 0.

Thus, h is symmetric decreasing on [−π, π]. It follows from Theorem 2.11 that

(11)
ˆ π

−π

ˆ π

−π
χE(x)f(y)h̃(x− y) dy dx ≤

ˆ π

−π

ˆ π

−π
χ#
E(x)f#(y)h̃(x− y) dy dx.
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Moreover, on [π, 2π],

h(z)− h̃(z) = h(z)− h(2π − z)

=
1

4
cαz

2 − 1

2
z −

(
1

4
cα(2π − z)2 − 1

2
(2π − z)

)
= (z − π)(cαπ − 1).

As we saw above, cαπ − 1 < 0. Since h = h̃ on [0, π], it follows that h − h̃ is
symmetric decreasing on [−2π, 2π]. Extend χE and f to vanish outside [−π, π] and
extend h− h̃+ π(1− cαπ) to vanish outside [−2π, 2π]. Then Theorem 2.10 givesˆ π

−π

ˆ π

−π
χE(x)f(y)

(
(h− h̃)(x− y) + π(1− cαπ)

)
dy dx

≤
ˆ π

−π

ˆ π

−π
χ#
E(x)f#(y)

(
(h− h̃)(x− y) + π(1− cαπ)

)
dy dx.

Since χE, χE# and f, f# are rearrangements, the inequality above givesˆ π

−π

ˆ π

−π
χE(x)f(y)(h− h̃)(x− y) dy dx

≤
ˆ π

−π

ˆ π

−π
χ#
E(x)f#(y)(h− h̃)(x− y) dy dx.

(12)

Combining inequalities (11) and (12) and noting χ#
E = χE# gives

(13)
ˆ π

−π

ˆ π

−π
χE(x)f(y)h(x− y) dy dx ≤

ˆ π

−π

ˆ π

−π
χE#(x)f#(y)h(x− y) dy dx.

Finally, note that

(14)
1

2cα

ˆ π

−π

ˆ π

−π
χE(x)f(y) dy dx =

1

2cα

ˆ π

−π

ˆ π

−π
χE#(x)f#(y) dy dx,

again as χE, χE# and f, f# are rearrangements. Combining (9), (10), (13) and (14)
shows ˆ

E

u(x) dx ≤
ˆ
E#

v(x) dx.

Taking the sup over all measurable subsets E ⊆ [−π, π] with fixed length, say t, the
inequality above gives

uF(t) ≤
ˆ t

2

− t
2

v(x) dx ≤ vF(t).

The theorem’s claims about convex means now follows from Proposition 2.7. To prove
the remaining claims, we next argue that u, v ≥ 0. First note that u is concave, so
min[−π,π] u is achieved at either −π or π. Suppose the minimum occurs at π. If
u(π) < 0, then from the Robin boundary condition we see

u′(π) = −αu(π) > 0,

and so min[−π,π] u cannot be achieved at π. We conclude that u(π) ≥ 0. An identical
argument applies when the minimum occurs at −π from which we conclude that
u is nonnegative. Since the same argument applies to the function v, we conclude
that v is also nonnegative. The theorem’s remaining conclusions now follow from
Proposition 2.8. �
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From Robin to Dirichlet. As mentioned in the introduction, our Robin com-
parison principle implies the corresponding Dirichlet result. The main idea behind
the proof is that as α tends to +∞, the Robin boundary condition converts into a
Dirichlet condition.

Corollary 3.1. (ODE Dirichlet Comparison Principle) Let 0 ≤ f ∈ L1[−π, π]
and suppose u and v solve the Poisson problems

−u′′ = f in (−π, π), u(−π) = u(π) = 0,

−v′′ = f# in (−π, π), v(−π) = v(π) = 0,

with f# the symmetric decreasing rearrangement of f . Thenˆ π

−π
φ(u) dx ≤

ˆ π

−π
φ(v) dx

for each increasing convex function φ : R→ R.
Proof. Let f , u and v be as stated, and suppose uk and vk solve the Robin

problems

−u′′k = f in (−π, π), −u′k(−π) + αkuk(−π) = u′k(π) + αkuk(π) = 0,

−v′′k = f# in (−π, π), −v′k(−π) + αkvk(−π) = v′k(π) + αkvk(π) = 0,

where 0 < αk → +∞. Then by Theorem 1.3 and Proposition 2.7,

(15) uFk (t) ≤ vFk (t), t ∈ [0, 2π].

If Gαk denotes the Robin Green’s function of Proposition 2.3 with parameter αk,
then

Gαk(x, y)→ G(x, y)

uniformly on [−π, π]× [−π, π], where

G(x, y) = − 1

2π
xy − 1

2
|x− y|+ π

2

is the Dirichlet Green’s function on [−π, π]. Using the Green’s representation, we
see uk → u and vk → v uniformly on [−π, π]. Since symmetrization decreases the
L1-distance, we note that for any t ∈ [0, 2π],

|uFk (t)− uF(t)| =

∣∣∣∣∣
ˆ t

2

− t
2

(
u#k (x)− u#(x)

)
dx

∣∣∣∣∣
≤
ˆ π

−π

∣∣∣u#k (x)− u#(x)
∣∣∣ dx

≤
ˆ π

−π
|uk(x)− u(x)| dx,

and this last term tends to zero by uniform convergence. Thus we have pointwise
convergence of star functions:

(16) uFk (t)→ uF(t), t ∈ [0, 2π].

A similar argument shows

(17) vFk (t)→ vF(t), t ∈ [0, 2π].

Combining inequality (15) with (16) and (17) gives uF ≤ vF in [0, 2π] and this
inequality is equivalent to the corollary’s conclusion courtesy of Proposition 2.7. �
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The conclusion of Corollary 3.1 can be strengthened to u# ≤ v in [−π, π], though
this stronger conclusion is not needed for our paper. The argument is simple but
requires additional tools developed by Baernstein. We include the proof for the sake
of completeness.

Define
w(s) = uF(2s)− vF(2s), s ∈ [0, π].

Then by Theorem 9.20 in [10] or Theorem 5 of [8], d2

ds2
w(s) ≥ 0 weakly. That is,ˆ π

0

w(s)G′′(s) ds ≥ 0

for each G ∈ C2
c (0, π) nonnegative with compact support. Integrating by parts, we

see ˆ π

0

w′(s)G′(s) ds ≤ 0.

An easy argument gives that w′(s) is increasing. But
d

ds
w(s) =

d

ds

ˆ s

−s

(
u#(x)− v#(x)

)
dx = 2

(
u#(s)− v#(s)

)
and we see that u#(s)− v#(s) is increasing for s ∈ [0, π]. But as u#(π) = v#(π) = 0,
we conclude u#(s) − v#(s) ≤ 0. Finally, since v = v#, this last inequality implies
u# ≤ v on [−π, π].

An interesting example. As noted in the introduction, with Robin problems
the oscillation need not increase under symmetric decreasing rearrangement. Con-
sider the following example.

Example 3.1. Consider the solutions u and v to the Poisson problems of The-
orem 1.3 with f = χ[−π,0]:

−u′′ = χ[−π,0] in (−π, π), −u′(−π) + αu(−π) = u′(π) + αu(π) = 0,

−v′′ = χ[−π2 ,
π
2 ] in (−π, π), −v′(−π) + αv(−π) = v′(π) + αv(π) = 0.

It is straightforward to check that

u(x) = −u1(x) +

(
π

2
+
π2

4
cα

)
x+

π

2cα
+
π2

4
,

where

u1(x) =

{
1
2
x2 + πx+ π2

2
if − π ≤ x < 0,

πx+ π2

2
if 0 ≤ x ≤ π,

and cα is defined in (6). Similarly,

v(x) = −v1(x) +
π

2
x+

π

2cα
,

where

v1(x) =


0 if − π ≤ x < −π

2
,

1
2
x2 + π

2
x+ π2

8
if − π

2
≤ x < π

2
,

πx if π
2
≤ x ≤ π.

Since v is symmetric decreasing, we have

osc
[−π,π]

v = v(0)− v(π) =
3π2

8
.



Extremizing temperature functions of rods with Robin boundary conditions 771

Note, rather curiously, that this oscillation is independent of α. On the other hand,

osc
[−π,π]

u ≥ u
(
−π

2

)
− u(π) =

π2(5 + 2απ)

8(1 + απ)
.

Now it is easy to verify that 3π2

8
< π2(5+2απ)

8(1+απ)
so long as α < 2

π
, which ensures

osc
[−π,π]

v < osc
[−π,π]

u.

Example 3.1 leads to an interesting open question.

Problem 3.2. (Open) Suppose half of a rod of length 2π with Robin boundary
conditions is heated uniformly, while in the remaining half, heat is neither generated
nor absorbed. Where should we place the heat sources to maximize the temperature
gap?

Our intuition suggests that an optimal source in Problem 3.2 is an interval of
length π. Assuming this is the case, we have the following proposition.

Proposition 3.3. Assume the temperature gap in Problem 3.2 is maximized
by a source interval of length π. Then when 0 < α ≤ 2√

3π
, the temperature gap is

maximized by locating the source interval at either end of the rod. As α increases from
2√
3π

to +∞, the temperature gap is maximized by a source interval that continuously
transitions from one end of the rod towards its center.

Proof. Denote Ib =
[
b− π

2
, b+ π

2

]
for −π

2
≤ b ≤ π

2
. We consider the gap function

Gap(α, b) = max
[−π,π]

u− min
[−π,π]

u, 0 < α <∞, −π
2
≤ b ≤ π

2
,

where u is the solution of the Poisson problem

−u′′ = χIb in (−π, π), −u′(−π) + αu(−π) = u′(π) + αu(π) = 0.

By symmetry, one has

Gap(α,−b) = Gap(α, b), 0 ≤ b ≤ π

2
,

and so for the remainder of the argument we focus our attention on Gap when
−π

2
≤ b ≤ 0, i.e. on source intervals whose center lies in the left half of the rod.
With a bit of work and help from Mathematica, one computes

Gap(α, b) = −π(1 + α(b+ π))(−3π(1 + απ) + b(4 + 3απ))

8(1 + απ)2

and so
∂Gap
∂b

(α, b) = −π(2 + 2απ + αb(4 + 3απ))

4(1 + απ)2
,(18)

∂2Gap
∂b2

(α, b) = −απ(4 + 3απ)

4(1 + απ)2
.(19)

Equation (18) implies that Gap(α, b) is decreasing in b on
[
−π

2
, 0
]
when α ∈

(
0, 2√

3π

]
.

This establishes the proposition’s first claim.
Equation (19) says that Gap(α, b) is strictly concave in b holding α fixed. We

also note that
∂Gap
∂b

(
α,−π

2

)
=
π(−4 + 3α2π2)

8(1 + απ)2
> 0
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when α > 2√
3π
. It also holds that

∂Gap
∂b

(α, 0) = − π

2(1 + απ)
< 0,

and so Gap(α, b) is maximized at some b ∈
(
−π

2
, 0
)
when α > 2√

3π
. Returning to

equation (18), we note that Gap(α, b) is maximized when

b = bcrit = − 2(1 + απ)

α(4 + 3απ)
.

Since
dbcrit
dα

=
8 + 6απ(2 + απ)

α2(4 + 3απ)2
> 0,

we conclude that bcrit continuously increases from −π
2
towards 0 as α increases from

2√
3π

to +∞. �

The Neumann problem. Our approach here is driven by Fourier series. Sup-
pose that f ∈ L1[−π, π] has zero mean. One attempt to solve the Poisson equation
−u′′ = f in (−π, π) might be to consider the function whose Fourier series is given
by

(20) u(x) =
∑
n6=0

1

n2
f̂(n)einx,

where f̂(n) = 1
2π

´ π
−π f(x)e−inx dx. Formally differentiating the equation above termwise

shows
−u′′(x) =

∑
n6=0

f̂(n)einx = f(x).

We are thus led to consider the function K whose Fourier coefficients are given by

K̂(n) =

{
1
n2 if n 6= 0,

0 if n = 0.

One readily verifies that

K(x) =
1

2
x2 − π|x|+ 1

3
π2, −π ≤ x ≤ π.

Extend f andK to all of R by 2π-periodicity. The function u in (20) has the property
that

û(n) = K̂(n)f̂(n) = K̂ ∗ f(n)

which leads us to study the convolution

(21) u(x) = (K ∗ f)(x) =
1

2π

ˆ π

−π
K(x− y)f(y) dy.

We now investigate how the u defined in (21) differs from the u in Proposition 2.2.
We will see that u defined in (21) satisfies properties 1, 2 and 4 of Proposition 2.2.
Below, we continue to identify K and f with their 2π-periodic extensions.

Proposition 3.4. The function u = K ∗ f defined in (21) satisfies the following
properties:

1. u is continuously differentiable on R with u′ = K ′ ∗ f ,
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2. u′ is absolutely continuous on [−π, π] and

u′(x)− u′(−π) = −
ˆ x

−π
f(y) dy, −π ≤ x ≤ π,

with −u′′ = f a.e. in (−π, π),
3. u′(−π) = u′(π) = − 1

2π

´ π
−π xf(x) dx,

4.
´ π
−π u(x) dx = 0.

Proof. Property 1 is a standard fact about convolutions. For property 2, we
compute

(K ′ ∗ f)(x) =
1

2π

ˆ π

−π
K ′(y)f(x− y) dy

=
1

2π

ˆ 0

−π
(y + π)f(x− y) dy +

1

2π

ˆ π

0

(y − π)f(x− y) dy

=
1

2π

ˆ x

x−π
(x− y − π)f(y) dy +

1

2π

ˆ x+π

x

(x− y + π)f(y) dy,

and from this representation it follows that (K ′ ∗ f)(x) is absolutely continuous on
[−π, π]. Its derivative equals −f(x) by direct calculation, for almost every x. Thus
property 2 holds. For property 3, one sees from the above calculation

(K ′ ∗ f)(−π) = (K ′ ∗ f)(π) = − 1

2π

ˆ π

−π
yf(y) dy.

To establish property 4 we simply observe
1

2π

ˆ π

−π
u(x) dx = û(0) = K̂(0)f̂(0) = 0. �

A consequence of Proposition 3.4 is:

Proposition 3.5. Let f and u be as in Proposition 2.2. If
´ π
−π xf(x) dx = 0,

then u is given by convolution as in equation (21).

Before proving Theorem 1.5, we first prove a preliminary comparison result.

Theorem 3.6. Let f ∈ L1[−π, π] where
´ π
−π f(x) dx =

´ π
−π xf(x) dx = 0. Let u

and v solve the Poisson problems

−u′′ = f in (−π, π), u′(−π) = u′(π) = 0,

−v′′ = f# in (−π, π), v′(−π) = v′(π) = 0,

where f# is the symmetric decreasing rearrangement of f , and
´ π
−π u(x) dx =

´ π
−π v(x) dx =

0. Then

uF(t) ≤
ˆ t

2

− t
2

v(x) dx ≤ vF(t)

on [0, 2π].

Proof. By Proposition 3.5, we have u = K ∗ f and v = K ∗ f# (because f#

is even, and so
´ π
−π xf

#(x) dx = 0). Fix t ∈ [0, 2π] and let E ⊆ [−π, π] denote a
measurable subset of length t. Applying Theorem 2.11 we seeˆ

E

u dx =

ˆ
E

K ∗ f dx ≤
ˆ
E#

K ∗ f# dx =

ˆ
E#

v dx.
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Taking the sup in the above inequality over all measurable subsets E of [−π, π] of
length t we obtain the desired conclusion. �

We are now prepared to prove our paper’s second main result.

Proof of Theorem 1.5. Given f ∈ L1[0, π], extend f to [−π, π] by even reflection,
and denote this extension by f̃ . Observe that

´ π
−π xf̃(x) dx = 0. Clearly,

(22) (f̃)#(x) = f ∗(x), 0 ≤ x ≤ π.

Let u correspond to f in the analogue of Proposition 2.2 over [0, π] and similarly let
v correspond to f ∗. Let ũ and ṽ correspond to f̃ and (f̃)# in the [−π, π] version of
Proposition 2.2. Proposition 3.5 gives ũ = K ∗ f̃ and ṽ = K ∗ (f̃)#.

We claim that ũ is obtained from u by even reflection. We show that ũ is even
and that ũ also satisfies the properties of Proposition 2.2 corresponding to f over the
interval [0, π]. First, ũ is even:

ũ(x) =
1

2π

ˆ π

−π
K(x− y)f̃(y) dy =

1

2π

ˆ π

−π
K(x+ y)f̃(y) dy

=
1

2π

ˆ π

−π
K(−x− y)f̃(y) dy = ũ(−x).

Since ũ ∈ C1[−π, π] and is even, we must have ũ′(0) = 0. Additionally, we have
ũ′(π) = 0 by assumption. Again, being even implies

´ π
0
ũ(x) dx = 1

2

´ π
−π ũ(x) dx = 0.

Hence by uniqueness, ũ(x) = u(x) on [0, π] and so (ũ)#(x) = u∗(x) on [0, π]. We
similarly have ṽ(x) = v(x) on [0, π]. By Theorem 3.6, we have for each 0 ≤ t ≤ 2π

ˆ t
2

− t
2

(ũ)#(x) dx ≤
ˆ t

2

− t
2

ṽ(x) dx

which implies ˆ t
2

0

(ũ)#(x) dx ≤
ˆ t

2

0

ṽ(x) dx

finally giving ˆ t
2

0

u∗(x) dx ≤
ˆ t

2

0

v(x) dx.

This last inequality implies uF ≤ vF on [0, π] and the theorem’s claims on convex
means follows from Proposition 2.7. The remaining conclusions follow from Proposi-
tion 2.8 since u and v have zero mean by assumption. �
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