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Existence and multiplicity of normalized solutions for
a class of fractional Schrödinger–Poisson equations

Zhipeng Yang, Fukun Zhao
∗ and Shunneng Zhao

Abstract. We consider the fractional Schrödinger–Poisson equation
{
(−∆)su− λu+ φu = |u|p−2u, x ∈ R3,

(−∆)tφ = u2, x ∈ R3,

where s, t ∈ (0, 1) satisfy 2s+ 2t > 3, p ∈ (4s+6

3
, 2∗s) and λ ∈ R is an undetermined parameter. We

deal with the case where the associated functional is not bounded below on the L2-unit sphere and

show the existence of infinitely many solutions (u, λ) with u having prescribed L2-norm.

Murtoasteisten Schrödingerin–Poissonin yhtälöiden luokan

normitettujen ratkaisujen olemassaolo ja monikäsitteisyys

Tiivistelmä. Tarkastelemme murtoasteista Schrödingerin–Poissonin yhtälöä
{
(−∆)su− λu+ φu = |u|p−2u, x ∈ R3,

(−∆)tφ = u2, x ∈ R3,

missä luvut s, t ∈ (0, 1) toteuttavat ehdon 2s + 2t > 3, p ∈ (4s+6

3
, 2∗s) ja λ ∈ R on määrittämätön

parametri. Käsittelemme tapausta, jossa vastaava funktionaali ei ole alhaalta rajattu avaruuden

L2 yksikköpallonkuorella, ja osoitamme, että em. yhtälöllä on äärettömästi ratkaisuja (u, λ), jossa

funktiolla u on annettu L2-normi.

1. Introduction and the main results

In this paper, we study the following stationary fractional Schrödinger–Poisson
equation

(1.1)

{
(−∆)su− λu+ φu = |u|p−2u, x ∈ R3,

(−∆)tφ = u2, x ∈ R3,

where s, t ∈ (0, 1) satisfies 2s + 2t > 3, p ∈ (4s+6
3
, 2∗s) and λ ∈ R, 2∗s = 6

3−2s
is the

fractional critical exponent. Part of the interest is the fact that solutions (u(x), φ(x))
of (1.1) are related to standing wave solutions (e−iλtu(x), φ(x)) of the time-dependent
system

(1.2)

{
i∂Ψ
∂t

= (−∆)sΨ+ φΨ− f̃(x, |Ψ|)Ψ in R3 × R,

(−∆)tφ = |Ψ|2 in R3,

where i is the imaginary unit and f̃(x, |u|)u = f(x, u).
The first equation in (1.2) was introduced by Laskin (see [21, 22]) and comes

from an expansion of the Feynman path integral from Brownian-like to Lévy-like
quantum mechanical paths. This class of fractional Schrödinger equations with a
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repulsive nonlocal Coulombic potential is obtained by approximation of the Hartree–
Fock equation describing a quantum mechanical system of many particles; see, for
instance, [14, 23, 24, 38]. It also appeared in several areas such as optimization,
finance, phase transitions, stratified materials, crystal dislocation, flame propagation,
conservation laws, materials science and water waves (see [9]).

A first line of studying (1.1) is to consider λ ∈ R as a fixed parameter and then
to search for critical points of the functional

Iλ(u) =
1

2

ˆ

R3

|(−∆)
s
2u|2 dx− λ

2

ˆ

R3

|u|2 dx

+
1

4

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy − 1

p

ˆ

R3

|u|p dx,
(1.3)

which is well defined and C1 in Hs
r (R

3). In that direction, to the best of our knowl-
edge, there are only few papers considering the existence and multiplicity of solutions
to the fractional Schrödinger–Poisson system (1.1). In [40], the authors studied the
existence of radial solutions by using the constrained minimization methods for sys-
tem (1.1) with λ = 0 and Berestycki–Lions type conditions [7]. In [33, 34], Teng
considers the fractional Schrödinger–Poisson system (1.1) with subcritical and crit-
ical nonlinearity respectively. By the monotone trick, concentration-compactness
principe and a global compactness lemma he establishes the existence of ground state
solutions. For other existence results we refer to [13, 19, 25, 26, 27, 29, 35, 36, 37, 39]
and the references therein.

In present paper, motivated by the fact that physicists are often interested in
“normalized solutions”, we look for solutions in Hs

r (R
3) having a prescribed L2-norm.

More precisely, for given c > 0, we look at

(uc, λc) ∈ Hs
r (R

3)× R is solution of (1.1) with |uc|22 = c.

In this case, a solution uc ∈ Hs
r (R

3) of (1.1) can be obtained as a constrained critical
point of the functional

J(u) =
1

2
|(−∆)

s
2u|22 +

1

4

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy − 1

p

ˆ

R3

|u|p dx.

on the constraint
Sr(c) := {u ∈ Hs

r (R
3) : |u|22 = c, c > 0}.

The parameter λc ∈ R, in this situation, can not be fixed any more and it appears
as a Lagrange parameter.

Set

(1.4) e(c) := inf
u∈Sr(c)

J(u).

It is standard that minimizers of e(c) are exactly critical points of J(u) restricted to
Sr(c), and thus solutions of (1.1). By the L2-preserving scaling and the fractional
Gagliardo–Nirenberg inequality with best constant [8]: Let p ∈ (2, 2∗s), then

|u|pp ≤
p

2|Q|p−2
p

|(−∆)
s
2u|

3(p−2)
2s

2 |u|p−
3(p−2)

2s
2 ,

with equality for u = Q, where Q is, up to translations, the unique positive ground
state solution of

3(p− 2)

4s
(−∆)su+

(
1 +

p− 2

4

(
2− 3

s

))
u− |u|p−2u = 0, x ∈ R

3.
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Therefore, we can prove that p = 4s+6
3

is the L2-critical exponent for (1.4), i.e. for all
c > 0, e(c) > −∞ if 2 < p < 4s+6

3
and e(c) = −∞ if 4s+6

3
< p < 2∗s.

The above normalized problem associated to (1.4) with s = 1, has been studied
in the literature[3, 5, 6, 16, 18, 20, 30]. In the cited references, the existence and non-
existence of normalized solutions are established, depending strongly on the value
p ∈ (2, 2∗) and of the parameter c > 0. Precisely, it is proved that a solution which
minimized globally J on Sr(c), exists when p ∈ (2, 3) and c > 0 small enough. When
p ∈ (3, 10

3
), there exists a c0 > 0 such that such a solution exists if and only if c ≥ c0.

When p ∈ (10
3
, 2∗), it is not possible to find a solution as a global minimizer of J

on Sr(c) since the associated functional is not bounded below on the L2-unit sphere.
However, it is proved in [4] that for c > 0 sufficiently small, there exists a critical
point which minimizes the energy among all solutions on Sr(c) and infinitely many
normalized solutions in [28].

For the nonlocal problem, that s ∈ (0, 1), up to our knowledge, in the existing
literature, results in this direction do not exist yet. Our contribution in this paper
is that there exist normalized solutions of (1.1) for p ∈ (4s+6

3
, 2∗s). The solutions

are obtained as critical points of the functional J on a suitable submanifold of the
constraint set Sr(c). We state our main results as follows.

Theorem 1.1. Assume that s, t ∈ (0, 1) satisfies 2s+ 2t > 3 and p ∈ (4s+6
3
, 2∗s).

There exists a c0 > 0 such that for any c ∈ (0, c0), Eq. (1.1) admits an unbounded

sequence of distinct pairs of radial solutions (±un, λn) with |un|22 = c and λn < 0 for

each n ∈ N.

We give the main idea in the proof of our main results. To prove Theorem 1.1,
because e(c) = −∞ for all c > 0, the genus of the sublevel sets Jc = {u ∈ Sr(c) |
J(u) ≤ c} is always infinite, so classical arguments based on the Kranoselski genus,
see [32], do not apply. Secondly, it can be easily checked that the functional J ,
restricted to Sr(c), does not satisfy the Palais–Smale condition, even working on the
subspace Hs

r (R
3) of radially symmetric functions where one has the advantage of

the compact embedding of Hs
r (R

3) into Lq(R3) for q ∈ (2, 2∗s). To overcome these
difficulties we are inspired by a recent work [2] and [28]. The authors present a new
type of linking geometry for the functional J on Sr(c) and set up a min-max scheme
where the cohomological index for spaces with an action on the group G := {−1, 1}
is used. Following [17], for each fixed n ∈ N, we can construct a special Palais–
Smale sequence. That construction leads easily to get the bounededness and further
non-vanishing of the Palais–Smale sequence.

2. Variational settings and preliminary results

Throughout this paper, we denote | · |q the usual norm of the space Lq(R3),
1 ≤ q < ∞, Br(x) denotes the open ball with center at x and radius r, C or Ci

(i = 1, 2, · · · ) denote some positive constants may change from line to line. ⇀ and
→ mean the weak and strong convergence.

2.1. The functional space setting. Firstly, fractional Sobolev spaces are the
convenient setting for our problem, so we will give some sketches of the fractional
order Sobolev spaces and the complete introduction can be found in [11]. We recall
that, for any s ∈ (0, 1), the fractional Sobolev space Hs(R3) = W s,2(R3) is defined
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as follows:

Hs(R3) = {u ∈ L2(R3) :

ˆ

R3

(
|ξ|2s|F(u)|2 + |F(u)|2

)
dξ <∞},

whose norm is defined as

‖u‖2 =
ˆ

R3

(
|ξ|2s|F(u)|2 + |F(u)|2

)
dξ,

where F denotes the Fourier transform. We also define the homogeneous fractional
Sobolev space Ds,2(R3) as the completion of C∞

0 (R3) with respect to the norm

[u]Hs(R3) :=

(
¨

R3×R3

|u(x)− u(y)|2
|x− y|3+2s

dx dy

)1
2

.

Obviously, Hs(R3) is a Hilbert space. A function is radial if and only if it is
invariant under all rotations leaving the origin fixed. Let Hs

r (R
3) denote the subset

of Hs(R3) containing only the radial function, and equipped topology with Hs(R3),
which is also a Hilbert space.

The fractional Laplace, (−∆)su, of a smooth function u : R3 → R, is defined by

F((−∆)su)(ξ) = |ξ|2sF(u)(ξ), ξ ∈ R
3.

Moreover, (−∆)su can be equivalently represented [11] as

(−∆)su(x) = −1

2
C(s)

ˆ

R3

u(x+ y) + u(x− y)− 2u(x)

|y|3+2s
dy, ∀x ∈ R

3,

where

C(s) =

(
ˆ

R3

(1− cosξ1)

|ξ|3+2s
dξ

)−1

, ξ = (ξ1, ξ2, ξ3).

Also, by the Plancherel formular in Fourier analysis, we have

[u]2Hs(R3) =
2

C(s)
|(−∆)

s
2u|22.

As a consequence, the norms on Hs(R3) defined below are equivalent:

u 7−→
(
ˆ

R3

|u|2 dx+
¨

R3×R3

|u(x)− u(y)|2
|x− y|3+2s

dx dy

)1
2

;

u 7−→
(
ˆ

R3

(|ξ|2s|F(u)|2 + |F(u)|2) dξ
)1

2

;

u 7−→
(
ˆ

R3

|u|2dx+ |(−∆)
s
2u|22

) 1
2

.

For the reader’s convenience, we review some useful results for Hs(R3) and
Hs

r (R
3), which will be used later.

Lemma 2.1. [11] Let 0 < s < 1, then there exists a constant C = C(s) > 0,
such that

|u|22∗s ≤ C[u]2Hs(R3)

for every u ∈ Hs(R3). Moreover, the embedding Hs(R3) →֒ Lq(R3) is continuous for

any q ∈ [2, 2∗s] and is locally compact whenever q ∈ [2, 2∗s).
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Lemma 2.2. [31] If {un} is bounded in Hs(R3) and for some R > 0 we have

lim
n→∞

sup
y∈R3

ˆ

BR(y)

|un|2dx = 0,

then un → 0 in Lq(R3) for any 2 < q < 2∗s.

Lemma 2.3. [15] Let 2 < q < 2∗s, then every bounded sequence {un} ⊂ Hs
r (R

3)
has a convergent subsequence in Lq(R3).

2.2. Some preliminary lemmas. We first establish some useful preliminary
results. Let {Vn} ⊂ Hs

r (R
3) be a strictly increasing sequence of finite-dimensional

linear subspaces in Hs
r (R

3), such that
⋃

n Vn is dense in Hs
r (R

3). We denote by V ⊥
n

the orthogonal space of {Vn} in Hs
r (R

3).

Lemma 2.4. Assume that p ∈ (2, 2∗s). Then there holds

µn := inf
u∈V ⊥

n−1

´

R3(|(−∆)
s
2u|2 + |u|2) dx

(
´

R3 |u|p dx)
2
p

= inf
u∈V ⊥

n−1

‖u‖2
|u|2p

→ ∞, as n→ ∞.

Proof. Arguing by contradiction, suppose there exists a sequence {un} ⊂ Hs
r (R

3)
such that un ∈ V ⊥

n−1, |un|p = 1, and ‖un‖ → c < ∞. Then there exists u ∈ Hs
r (R

3)
with un ⇀ u in Hs

r (R
3) and un → u in Lp(R3) up to a subsequence. Let v ∈ Hs

r (R
3)

and {vn} ⊂ Hs
r (R

3) such that vn ∈ Vn−1 and vn → v in Hs
r (R

3). We have, in Hs
r (R

3),

|〈un, v〉| ≤ |〈un, v − vn〉|+ |〈un, vn〉| ≤ ‖un‖‖v − vn‖ → 0,

so that un ⇀ 0 = u, while |u|p = 1, a contradiction. �

Now for c > 0 fixed and for each n ∈ N, we define

ρn :=
µ

p

p−2
n

K
2

p−2

with K = max
|(−∆)

s
2 |2>0

(|(−∆)
s
2u|22 + c)

p

2

|(−∆)
s
2u|p2 + c

p

2

,

and

(2.1) Bn := {u ∈ V ⊥
n−1 ∩ Sr(c) : |(−∆)

s
2u|22 = ρn}.

We also define

(2.2) bn := inf
u∈Bn

J(u).

Then we have

Lemma 2.5. For any p ∈ (2, 2∗s), bn → +∞ as n → ∞. In particular, we can

assume without restriction that bn ≥ 1 for all n ∈ N.

Proof. For any u ∈ Bn, we have that

J(u) =
1

2
|(−∆)

s
2u|22 +

1

4

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy − 1

p

ˆ

R3

|u|p dx

≥ 1

2
|(−∆)

s
2u|22 −

1

pµ
2
p
n

(|(−∆)
s
2u|22 + c)

p

2

≥ 1

2
|(−∆)

s
2u|22 −

K

pµ
2
p
n

(|(−∆)
s
2u|p2 + c

p

2 )

=

(
1

2
− 1

p

)
ρn −

1

pµ
2
p
n

c
p

2 .
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From this estimate and Lemma 2.4, it follow since p > 2, that bn → +∞ as n→ ∞.
Next, considering the sequence {Vn} ⊂ Hs

r (R
3) only from an n0 ∈ N such that bn ≥ 1

for any n ≥ n0 it concludes the proof of the Lemma. �

Next we start to set up our min-max scheme. First we introduce the map

(2.3) m : Hs
r (R

3)× R → Hs
r (R

3), m(u, θ) = u ∗ θ,
be the action of group R on Hs

r (R
3) defined by

(2.4) m(u, θ)(x) = (u ∗ θ)(x) = e
3θ
2 u(eθx).

Observe that for any given u ∈ Sr(c), we have m(u, θ) ∈ Sr(c) for all θ ∈ R.

Lemma 2.6. Assume that u ∈ Sr(c) be arbitrary but fixed. Let A(u) :=
´

R3 |(−∆)
s
2u|2 dx, then we have

(i) A(m(u, θ)) → 0 and J(m(u, θ)) → 0 as θ → −∞.

(ii) A(m(u, θ)) → +∞ and J(m(u, θ)) → −∞ as θ → +∞.

Proof. A straightforward calculation shows that

A(m(u, θ)) = e2sθ|(−∆)
s
2u|22 → 0 as θ → −∞,

and

A(m(u, θ)) = e2sθ|(−∆)
s
2u|22 → +∞ as θ → +∞.

Next, we get for θ < 0,

|J(m(u, θ))| =
∣∣∣∣
1

2
|(−∆)

s
2m(u, θ)

∣∣∣∣
2

2

+
1

4

ˆ

R3

ˆ

R3

|m(u, θ)(x)|2|m(u, θ)(y)|2
|x− y|3−2t

dx dy

− 1

p

ˆ

R3

|m(u, θ)|p dx
∣∣

≤ e2sθ

2
|(−∆)

s
2u|22 +

e(3−2t)θ

4

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy

+
e

3θ(p−2)
2

p

ˆ

R3

|u|p dx.

Thus J(m(u, θ)) → 0 as θ → −∞ and point (i) holds. Moreover, we have for θ > 0,

J(m(u, θ)) =
1

2
|(−∆)

s
2m(u, θ)|22 +

1

4

ˆ

R3

ˆ

R3

|m(u, θ)(x)|2|m(u, θ)(y)|2
|x− y|3−2t

dx dy

− 1

p

ˆ

R3

|m(u, θ)|pdx

=
e2sθ

2
|(−∆)

s
2u|22 +

e(3−2t)θ

4

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy

− e
3θ(p−2)

2

p

ˆ

R3

|u|p dx.

Taking into account that 2s + 2t > 3 and p ∈ (4s+6
3
, 2∗s) it shows that J(m(u, θ)) →

−∞ as θ → +∞. �

Due to Lemma 2.6, using the fact that Vn is finite dimensional, we deduce that,
for each n ∈ N, there exists a θn > 0, such that

γ̄n : [0, 1]× (Sr(c) ∩ Vn) → Sr(c), γ̄n(t, u) = m(u, (2t− 1)θn)
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satisfies

(2.5) A(γ̄n(0, u)) < ρn, A(γ̄n(1, u)) > ρn,

and

(2.6) J(γ̄n(0, u)) < bn, J(γ̄n(1, u)) < bn.

Now we define

Γn :=
{
γ : [0, 1]× (Sr(c) ∩ Vn) → Sr(c) | γ is continuous, odd in u

and such that ∀ u : γ(0, u) = γ̄n(0, u), γ(1, u) = γ̄n(1, u)
}
.

Clearly we have γ̄n ∈ Γn. Now we give the follow linking property, due to [2].

Lemma 2.7. For every γ ∈ Γn, there exists (t, u) ∈ [0, 1] × (Sr(c) ∩ Vn) such

that γ(t, u) ∈ Bn.

Proof. In order to prove this lemma, we first recall some properties of the co-
homological index for spaces with an action of the group G = {1,−1}. This index
goes back to [10] and has been used in a variational setting in [12]. It associates to a
G-spaceX an element i(X) ∈ N0∪{∞}. We shall need the following properties[1, 32]:

(I1) If G acts on Sn−1 via multiplication, then i(Sn−1) = n.
(I2) If there exists an equivariant map X → Y , then i(X) ≤ i(Y ).
(I3) Let X = X0 ∪ X1 be metrisable and X0, X1 ⊂ X be closed G-invariant

subspaces. Let Y be a G-space, and consider a continuous map φ : [0, 1]×Y →
X such that each φt = φ(t, ·) : Y → X is equivariant. If φ0(Y ) ⊂ X0 and
φ1(Y ) ⊂ X1, then

i(Im(φ) ∩X0 ∩X1) ≥ i(Y ).

Now, let Pn−1 : H
s
r (R

3) → Vn−1 be the orthogonal projection, and set

hn : Sr(c) → Vn−1 × R
+, u 7→ (Pn−1u, |(−∆)

s
2u|22).

Then clearly Bn = h−1
n (0, ρn). We fix γ ∈ Γn and consider the map

φ = hn ◦ γ : [0, 1]× (Sr(c) ∩ Vn) → Vn−1 × R
+ := X.

Since

φ0(Sr(c) ∩ Vn) ⊂ Vn−1 × (0, ρn] := X0

and

φ1(Sr(c) ∩ Vn) ⊂ Vn−1 × [ρn,∞) := X1,

it follows from (I1) to (I3) that

i(Im(φ) ∩X0 ∩X1) ≥ i(Sr(c) ∩ Vn) = dimVn.

If there would not exist (t, u) ∈ [0, 1]× (Sr(c) ∩ Vn) with γ(t, u) ∈ Bn, then

Im(φ) ∩X0 ∩X1 ⊂ (Vn−1\{0})× {ρn}.
Therefore (I1), (I2) imply that

i(Im(φ) ∩X0 ∩X1) ≤ i((Vn−1\{0})× {ρn}) = dimVn−1,

contradicting dimVn−1 < dim Vn. �
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Remark 2.1. Note that by Lemma 2.7 we have that for each n ∈ N,

cn := inf
γ∈Γn

max
t∈[0,1],u∈Sr(c)∩Vn

J(γ(t, u)) ≥ bn → ∞.

Then we have that for any γ ∈ Γn,

cn ≥ bn > max
{

max
u∈Sr(c)∩Vn

J(γ(0, u)), max
u∈Sr(c)∩Vn

J(γ(1, u))
}
.

3. Proofs of the main results

In this section, we shall prove that the sequence {cn} is indeed a sequence of
critical values for J restricted to Sr(c). To this purpose, we first show that there
exists a bounded Palais–Smale sequence at each level cn. From now on, we fix an
arbitrary n ∈ N.

Lemma 3.1. There exists a Palais–Smale sequence {uk} ⊂ Sr(c) for J at the

level cn satisfying

Q(uk) = s|(−∆)
s
2uk|22 +

3− 2t

4

ˆ

R3

ˆ

R3

|uk(x)|2|uk(y)|2
|x− y|3−2t

dx dy

− 3(p− 2)

2p

ˆ

R3

|uk|p dx→ 0.

(3.1)

In particular, {uk} ⊂ Sr(c) is bounded.

Proof. In order to find such a Palais–Smale sequence, we apply the approach
developed by Jeanjean [17], which already applied in [2] and [28]. First, we introduce
the auxiliary functional

J̃ : Sr(c)× R → R, (u, θ) 7→ J(m(u, θ)),

where m(u, θ) is given in (2.4), and we define the set

Γ̃n :=
{
γ̃ : [0, 1]× (Sr(c) ∩ Vn) → Sr(c)× R |γ̃ is continuous, odd in u

and such that m ◦ γ̃ ∈ Γn

}
.

Clearly, for any γ ∈ Γn, γ̃ := (γ, 0) ∈ Γ̃n.
Observe that defining

c̃n := inf
γ̃∈Γ̃n

max
t∈[0,1],u∈Sr(c)∩Vn

J̃(γ̃(t, u)),

we have that c̃n = cn. Indeed, by the definitions of c̃n and cn, this identity follows
immediately from the fact that the maps

ϕ : Γn → Γ̃n, γ 7→ ϕ(γ) : (γ, 0),

and

ψ : Γ̃n → Γn, γ̃ 7→ ψ(γ̃) : m ◦ γ̃,
satisfy

J̃(ϕ(γ)) = J(γ) and J(m ◦ γ̃) = J̃(γ̃).

Now from the definition of cn, we know that for each k ∈ N, there exists an γk ∈ Γn

such that

max
t∈[0,1],u∈Sr(c)∩Vn

J(γk(t, uk)) ≤ cn +
1

k
.



Existence and multiplicity of normalized solutions for a class of fractional Schrödinger–Poisson. . . 785

Since c̃n = cn, γ̃k = (γk, 0) ∈ Γ̃n satisfies

max
t∈[0,1],u∈Sr(c)∩Vn

J̃(γ̃k(t, u)) ≤ c̃n +
1

k
.

We can apply the Ekeland’s variational principle to obtain a sequence {(uk, θk)} ⊂
Sr(c)× R such that:

(i) J̃(uk, θk) ∈ [cn − 1
k
, cn +

1
k
];

(ii) min
t∈[0,1],u∈Sr(c)∩Vn

‖(uk, θk)− (γk(t, u), 0)‖E ≤ 1√
k
;

(iii) ‖J̃ ′|Sr(c)∩R(uk, θk)‖E∗ ≤ 2√
k
, i.e. ‖〈J̃ ′(uk, θk), z〉E∗×E | ≤ 2√

k
‖z‖, holds for all

z ∈ T̃(uk,θk) := {(z1, z2) ∈ E, 〈uk, z1〉L2 = 0}.
Here we denote by E the set Hs

r (R
3)×R equipped with ‖ · ‖2E = ‖ · ‖2Hs

r
+ | · |2

R
, and by

E∗ its dual space. For each k ∈ N, let vk = m(uk, θk). We shall prove that vk ∈ Sr(c)
is the sequence we need.

Indeed, first, since J(vk) = J(m(uk, θk)) = J̃(uk, θk), from (i) we have that

J(vk)
k→ cn. Secondly, note that

Q(vk) = s|(−∆)
s
2 vk|22 +

3− 2t

4

ˆ

R3

ˆ

R3

|vk(x)|2|vk(y)|2
|x− y|3−2t

dx dy

− 3(p− 2)

2p

ˆ

R3

|vk|p dx = 〈J̃ ′(uk, θk), (0, 1)〉E∗×E ,

and (0, 1) ∈ T̃(uk,θk). Thus (iii) yields Q(vk)
k→ 0. Finally, to verify that J ′|Sr(c)(vk)

k→
0, it suffices to prove for k ∈ N sufficiently large, that

(3.2) |〈J ′(vk), w〉(Hs
r)

∗×Hs
r
| ≤ 4√

k
‖w‖, for all w ∈ Tvk ,

where Tvk := {w ∈ Hs
r (R

3), 〈vk, w〉L2 = 0}. To this end, we note that, for w ∈ Tvk ,
setting w̃ = m(w,−θk), we have

〈J ′(vk), w〉(Hs
r )

∗×Hs
r

=

ˆ

R3

(−∆)
s
2 vk(−∆)

s
2w dx+

ˆ

R3

ˆ

R3

|vk(x)|2vk(y)w(y)
|x− y|3−2t

dx dy −
ˆ

R3

|vk|p−2vkw dx

= e2sθk
ˆ

R3

(−∆)
s
2uk(−∆)

s
2 w̃ dx+ e(3−2t)θk

ˆ

R3

ˆ

R3

|uk(x)|2uk(y)w̃(y)
|x− y|3−2t

dx dy

− e
3(p−2)

2
θk

ˆ

R3

|uk|p−2ukw̃ dx = 〈J̃ ′(uk, θk), (w̃, 0)〉E∗×E.

If (w̃, 0) ∈ T̃(uk ,θk) and ‖(w̃, 0)‖2E ≤ 4‖w‖2 when k ∈ N is sufficiently large, then (iii)

implies (3.2). To verify these conditions, observe that (w̃, 0) ∈ T̃(uk ,θk) ⇔ w ∈ Tvk .
Also from (ii) it follows that

|θk| = |θk − 0| ≤ min
t∈[0,1],u∈Sr(c)∩Vn

‖(uk, θk)− (γk(t, u), 0)‖E ≤ 1√
k
,

by which we deduce that

‖(w̃, 0)‖2E = ‖W̃‖2Hs
r
≤ 4‖w‖2,

holds for k ∈ N large enough. At this point, (3.2) has been verified. To end the proof
of the lemma it remains to show that {vk} ⊂ Sr(c) is bounded. Notes that for any
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u ∈ Hs
r (R

3), there holds that

J(u)− 2

3(p− 2)
Q(u) =

3p− (6 + 4s)

6(p− 2)
|(−∆)su|22

+
3(p− 2)− 2(3− 2t)

12(p− 2)

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy.

(3.3)

Thus we have

cn + ok(1) =
3p− (6 + 4s)

6(p− 2)
|(−∆)svk|22

+
3(p− 2)− 2(3− 2t)

12(p− 2)

ˆ

R3

ˆ

R3

|vk(x)|2|vk(y)|2
|x− y|3−2t

dx dy.

(3.4)

Since p ∈ (4s+6
3
, 2∗s) and 2s+2t > 3 it follows immediately from (3.4) that {vk} ⊂ Sr(c)

is bounded in Hs
r (R

3). �

Lemma 3.2. If u0 is a critical point of J(u) on Sr(c), then Q(u0) = 0.

Proof. First, we denote

Fλ(u) := 〈I ′λ(u), u〉 =
ˆ

R3

|(−∆)
s
2u|2 dx− λ

ˆ

R3

|u|2 dx

+

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy −
ˆ

R3

|u|p dx.
(3.5)

Pλ(u) =
3− 2s

2

ˆ

R3

|(−∆)
s
2u|2 dx− 3

2
λ

ˆ

R3

u2 dx

+
3 + 2t

4

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy − 3

p

ˆ

R3

|u|p dx.
(3.6)

Here, λ ∈ R is a parameter and Iλ is the energy functional corresponding to the
equation (1.1), that is

Iλ(u) =
1

2

ˆ

R3

|(−∆)
s
2u|2 dx− λ

2

ˆ

R3

|u|2 dx

+
1

4

ˆ

R3

ˆ

R3

|u(x)|2|u(y)|2
|x− y|3−2t

dx dy − 1

p

ˆ

R3

|u|p dx.
(3.7)

Clearly, Iλ(u) = J(u)− λ
2

´

R3 |u|2 dx and simple calculations imply that

(3.8)
3

2
Fλ(u)− Pλ(u) = Q(u).

Now, from [34], we know that Pλ(u) = 0 is a Pohožaev identity for the fractional
Schrödinger–Poisson equation (1.1). In particular, any critical point u of Iλ(u) sat-
isfies Pλ(u) = 0.

On the other hand, since u0 is a critical point of J(u) restricted to Sr(c), there
exists a Lagrange multiplier λ0 ∈ R, such that

J ′(u0) = λ0u0.

Thus, for any φ ∈ Hs
r (R

3),

(3.9) 〈I ′λ0
(u0), φ〉 = 〈J ′(u0)− λ0u0, φ〉 = 0,

which shows that u0 is also a critical point of Iλ0(u). Hence,

Pλ0(u0) = 0, Fλ0(u0) = 〈I ′λ0
(u0), u0〉 = 0,
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and Q(u0) = 0 follows from (3.8). �

Lemma 3.3. Let {uk} ⊂ Sr(c) be the Palais–Smale sequence obtained in Lemma 3.1.

Then there exist λn ∈ R and un ∈ Hs
r (R

3), such that, up to a subsequence,

(i) uk ⇀ un 6= 0, in Hs
r (R

3);
(ii) (−∆)suk − λnuk + (|x|2t−3 ∗ |uk|2)uk − |uk|p−2uk → 0, in H−s

r (R3);
(iii) (−∆)sun − λnun + (|x|2t−3 ∗ |un|2)un − |un|p−2un = 0, in H−s

r (R3).

Moreover, if λn < 0, then we have

uk → un, in Hs
r (R

3), as k → ∞.

In particular, |un|22 = c, J(un) = cn and J ′(un)− λnun = 0 in H−s
r (R3).

Proof. Since {uk} ⊂ Sr(c) is bounded, up to a subsequence, there exists a
un ∈ Hs

r (R
3), such that

uk
k
⇀ un, in Hs

r (R
3),

uk
k→ un, in Lp(R3).

Next, we have un 6= 0. Indeed suppose by contradiction that un = 0. Then by the
strong convergence in Lp(R3) it follows that

´

R3 |uk|p dx → 0. Taking into account
that Q(uk) → 0 it then implies that J(uk) → 0 and this contradicts the fact that
cn ≥ bn > 0. Thus point (i) holds.

Since {uk} ⊂ Sr(c) is bounded, we know that:

J ′|Sr(c)(vk) → 0 ⇐⇒ J ′(vk)− 〈J ′(vk), vk〉vk → 0 in H−s
r (R3).

Thus, for any w ∈ Hs
r (R

3),

〈J ′(vk)− 〈J ′(vk), vk〉vk, w〉 =
ˆ

R3

(−∆)
s
2vk(−∆)

s
2w dx

+

ˆ

R3

ˆ

R3

|uk(x)|2vk(y)w(y)
|x− y|3−2t

dx dy

− λn

ˆ

R3

vkw dx−
ˆ

R3

|uk|p−2vkw dx,

with

(3.10) λn =
1

|vk|2

{
|(−∆)

s
2 vk|22 +

ˆ

R3

ˆ

R3

|uk(x)|2|vk(y)|2
|x− y|3−2t

dx dy − |vk|pp
}
.

Thus, we obtain (ii) with {λn} ⊂ R defined by (3.10). Moreover, we refer to [33,
Lemma 2.4] for a proof of (iii).

Finally, using point (ii)–(iii) and the convergence uk
k→ un in Lp(R3), it follows

that

‖uk‖2 − λn|uk|22 + (|x|2t−3 ∗ |uk|2)|uk|2 k→ ‖un‖2 − λn|un|22 + (|x|2s−3 ∗ |un|2)|un|2.

If λn < 0, then we conclude from the weak convergence of uk
k
⇀ un in Hs

r (R
3) and

[33, Lemma 2.3], that uk
k→ un in Hs

r (R
3). And in particular, |un|22 = c, J(un) = cn

and J ′(un)− λnun = 0 in H−s
r (R3). �

Proof of Theorem 1.1. Similar the proof in [4, Lemma 4.2], we can prove that
if (u, λ) ∈ Sr(c)×R solves (1.1), then necessarily λ < 0 provided c > 0 is sufficiently
small. Thus by Lemma 3.1 and Lemma 3.3, when c > 0 is small enough, for each
n ∈ N, we obtain a couple solution (un, λn) ∈ Hs

r (R
3)×R− solving (1.1) with |un|22 = c

and J(un) = cn. Note from Lemma 2.5 and Remark 2.1 that cn → ∞ as n → ∞
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and then we deduce that the sequence of solutions {(un, λn)} is unbounded. At this
point, the proof of the theorem is completed. �
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