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The weak lower density condition
and uniform rectifiability

Jonas Azzam and Matthew Hyde

Abstract. We show that an Ahlfors d-regular set E in R
n is uniformly rectifiable if the

set of pairs (x, r) ∈ E × (0,∞) for which there exists y ∈ B(x, r) and 0 < t < r satisfying
H d

∞
(E ∩ B(y, t)) < (2t)d − ε(2r)d is a Carleson set for every ε > 0. To prove this, we generalize

a result of Schul by proving, if X is a C-doubling metric space, ε, ρ ∈ (0, 1), A > 1, and Xn is a
sequence of maximal 2−n-separated sets in X , and B = {B(x, 2−n) : x ∈ Xn, n ∈ N}, then

∑

{

rsB : B ∈ B,
H s

ρrB
(X ∩ AB)

(2rAB)s
> 1 + ε

}

.C,A,ε,ρ,s H
s(X).

This is a quantitative version of the classical result that for a metric space X of finite s-dimensional

Hausdorff measure, the upper s-dimensional densities are at most 1 H s-almost everywhere.

Heikko alatiheysehto ja tasainen suoristuvuus

Tiivistelmä. Osoitamme, että Ahlforsin d-säännöllinen joukko E avaruudessa R
n on tasaisesti

suoristuva, mikäli niiden pisteparien (x, r) ∈ E×(0,∞) kokoelma, joita kohti on olemassa y ∈ B(x, r)
ja 0 < t < r, joilla H d

∞
(E ∩ B(y, t)) < (2t)d − ε(2r)d, toteuttaa Carlesonin ehdon kaikilla ε > 0.

Tätä varten yleistämme Schulin aiempaa tulosta seuraavasti: jos X on metrinen avaruus, joka
toteuttaa kahdennusehdon vakiolla C, jos Xn on jono maksimaalisia 2−n-erillisten pisteiden joukkoja
avaruudessa X ja B = {B(x, 2−n) : x ∈ Xn, n ∈ N}, ja jos ε, ρ ∈ (0, 1) ja A > 1, niin

∑

{

rsB : B ∈ B,
H s

ρrB
(X ∩ AB)

(2rAB)s
> 1 + ε

}

.C,A,ε,ρ,s H
s(X).

Tämä on seuraavan klassisen tuloksen kvantitatiivinen muotoilu: jos metrisellä avaruudella X on

äärellinen s-ulotteinen Hausdorffin mitta, niin sen s-ulotteinen ylätiheys on H s-melkein kaikkialla

korkeintaan 1.

1. Introduction

A classical fact from geometric measure theory is that, if the lower densities of a
set of finite H d-measure are close enough to 1, then the set is d-rectifiable. Recall
that a metric space X is d-rectifiable if it may be covered up to a set of zero d-
dimensional Hausdorff measure (denoted H d) by Lipschitz images of subsets of Rd.
We define the lower and upper d-dimensional densities of a set E at a point x to be

Θd
∗(E, x) := lim inf

r→0

H d(E ∩ B(x, r))

(2r)d

and

Θd,∗(E, x) := lim sup
r→0

H d(E ∩B(x, r))

(2r)d
.
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The d = 1 case is the Besicovitch 3
4
-Theorem [Bes38], which states that if E ⊆ R

2 is
a set of finite 1-dimensional Hausdorff measure such that

(1.1) Θ1
∗(E, x) >

3

4
for H 1-a.e. x ∈ E,

then E is 1-rectifiable (and it is conjectured that 3
4

can be replaced by 1
2
, see [PT92,

Far00, Far02] for some partial progress). The case for d > 1 is due to Preiss [Pre87]
(which generalized earlier works of Mattila [Mat75] and Marstrand [Mar61]): there
is a constant α(n, d) ∈ (0, 1) such that for any E ⊆ R

n of locally finite H d-measure,
E is d-rectifiable if

(1.2) 0 < α(n, d)Θd,∗(E, x) < Θd
∗(E, x) for H d-a.e. x ∈ E.

In other words, rectifiability follows if the density of Hausdorff measure in a ball
becomes roughly stable as the ball shrinks to a point at almost every point. This
result requires information about the upper densities as well, but it gives a kind of
generalization of Besicovitch’s theorem using the following result [Fed69, 2.10.19(5)]:
for any metric space X of locally finite d-dimensional measure,

(1.3) Θd,∗(X, ·) ≤ 1 H d-almost everywhere in X

and in fact, this holds for spherical Hausdorff measure. In particular, this coupled
with Preiss’ result shows that the rectifiability of E follows if

(1.4) α(n, d) < Θd
∗(E, x) for H d-a.e. x ∈ E.

In fact, the same inequality is needed for Besicovitch’s proof as well.
The objective of our paper is to develop an analogue of these lower density criteria

that guarantee a stronger rectifiable structure, in particular uniform rectifiability. A
measure µ on R

n is said to be d-uniformly rectifiable (UR) if

(1) it is C0-Ahlfors d-regular for some C0 > 0, meaning

C−1
0 rd ≤ µ(B(x, r)) ≤ C0r

d for all x ∈ E, 0 < r < diam(supp µ),

(2) µ has big pieces of Lipschitz images of Rd (BPLI), meaning there are L, c > 0
so that for all x ∈ supp µ and 0 < r < diam(suppµ), there is f : Rd → R

n

L-Lipschitz so that µ(f(B(0, r)) ∩ B(x, r)) ≥ crd.

A set E ⊆ R
n is said to be UR if H d|E is UR.

These sets were introduced by David and Semmes in [DS91], the initial moti-
vation being to characterize when certain singular integral operators were bounded
on subsets of Euclidean space (see [DS91] for more discussion on this context). This
began a program of trying to find various equivalent criteria for uniform rectifiability.
We review a few such criteria here. Let DE denote the Christ–David cubes for E
(see Section 4 below). For each cube Q ∈ DE , there is a ball BQ centered on and
containing Q of comparable size. Given two closed sets E and F , and B a set, we
denote

dB(E, F ) =
2

diamB
max

{

sup
y∈E∩B

dist(y, F ), sup
y∈F∩B

dist(y, E)

}

.

For A > 0, ε > 0, and R ∈ DE , let

BWGL(A, ε, R) =
∑

{(diamQ)d : Q ∈ D
E , Q ⊆ R, and

dABQ
(E, P ) ≥ ε for all d-planes P}.

We say E satisfies the bilateral weak geometric lemma (BWGL) if for all A > 0,
ε > 0, and R ∈ DE , we have BWGL(A, ε, R) . H d(R). Another condition is the
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bilateral approximation by unions of planes (BAUP). We define BAUP(A, ε, R) in a
similar way to BWGL(A, ε, R) except now we measure the distance between E and
any union of d-planes, not just one.

It is known that these two conditions are equivalent to UR (see [DS93]). Part of
the motivation for finding such criteria is that, depending on the kind of problem you
are working on, it may be more natural to prove UR using one criterion over another.
For example, the BWGL condition was crucial for showing uniform domains with UR
boundaries are chord-arc domains [AH+17], and the BAUP condition was crucial to
the solution of the David-Semmes Conjecture in codimension 1 (see [NTV14]) and
for studying the Dirichlet problem in domains with Ahlfors regular boundaries (see
[HLMN17]).

Another motivation, which is also the motivation of this paper, is to revisit clas-
sical results from geometric measure theory and determine whether one can develop
quantitative analogues.

There is already a UR analogue of Preiss’ result which was introduced in [DS93]:
for an Ahlfors d-regular set E and ε > 0, let AE(c1, ε) be the set of pairs (x, r) ∈ E×
(0, diamE) for which there is a c1-Ahlfors d-regular measure σx,r with supp σx,r = E
and

|σx,r(B(y, t))− td| < εrd for all y ∈ E ∩ B(x, r) and all 0 < t < r.

Let BE(c1, ε) = E × (0, diamE)\AE(c1, ε). We say E satisfies the weak constant
density (WCD) condition if there is c1 so that BE(c1, ε) is a Carleson set for every
ε > 0, with norm depending on ε. Recall, a set A ⊆ E × (0, diamE) is a Carleson
set if 1AdH

d(x)dr
r

is a Carleson measure on E × (0, diamE), and a measure µ is a

Carleson measure on E×(0, diamE) if there is C > 0 so that µ(B(x, r)×(0, r)) ≤ Crd

for all x ∈ E and 0 < r < diamE. The infimum over all constants C such that the
above holds is called the Carleson norm. The WCD condition is certainly satisfied
if the set of (x, r) for which

|H d|E(B(y, t))− (2t)d| < εrd for all y ∈ E ∩B(x, r) and 0 < t < r

is a Carleson set for each ε > 0, which is a stronger condition than (1.2) in that
the latter is implied by the former. David and Semmes first showed the WCD was
satisfied by every UR set, and that it implied UR when d = 1, 2, or n − 1, and the
general case was established by Tolsa [Tol15].

There are similar results to these that characterize UR in terms of the fluctuations
of the density of Hausdorff measure between scales rather than how far it is from 1.
For example, in [CGLT16], the authors show that an Ahlfors regular set E is UR if
∆d

µ(x, r)
2 dr

r
dH d(x) is a Carleson measure on E × (0, diamE) where µ = H d|E and

∆d
µ(x, r) =

∣

∣

∣

∣

µ(B(x, r))

(2r)d
−

µ(B(x, r/2))

rd

∣

∣

∣

∣

.

In fact, their results hold more generally for Ahlfors regular measures µ and not
just Hausdorff measure. See also [TT15, Tol17] where this quantity is also used to
characterize rectifiable sets and measures.

Our main result establishes a lower density criterion for uniform rectifiability
using Hausdorff content H d

∞ rather than Hausdorff measure:

Theorem 1.1. Let E ⊆ R
n be a C0-Ahlfors d-regular set. For ε > 0, let BWLD(ε)

be the set of (x, r) ∈ E× (0,∞) for which there exists y ∈ E ∩B(x, r) and 0 < t < r
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such that

(1.5) H
d
∞(E ∩ B(y, t)) < (2t)d − ε(2r)d.

If E satisfies the weak lower density condition (WLD), meaning BWLD(ε) is a Car-
leson set for each ε > 0, then E is UR.

In other words, if we have nice estimates on how often the density of Haus-
dorff content dips below 1, then we can guarantee UR. We explain later why we
require Hausdorff content rather than Hausdorff measure. Notice also that if (x, r) 6∈
BWLD(ε), this means (1.5) fails for all balls B(y, t) with y ∈ E∩B(x, r) and 0 < t < r,
but this doesn’t say the density of Hausdorff content is not much smaller than 1 in
all balls, since (1.5) fails trivially for all t < ε

1
d r. Hence, (x, r) 6∈ BWLD(ε) only gives

information about the densities of Hausdorff content in balls that aren’t too much
smaller than r.

Theorem 1.1 can be strengthened slightly. In particular, it can be shown that
there exists ε > 0 (depending on n and d) such that if BWLD(ε) is Carleson set, then
E is UR. Moreover, the UR constants for E depend only on ε, the Carleson norm
for BWLD(ε) and the Ahlfors regularity and dimensional constants. This is explained
in Remark 4.2 and Remark 4.11. It is natural to ask whether the converse holds;
given a UR set E, does there exists ε > 0 such that BWLD(ε) is a Carleson set, with
Carleson norm depending only on ε, the UR constants for E and the dimensional
constants? We show this is not possible by constructing a sequence of UR sets En

with uniform UR constants, so that the associated sequence of Carleson norms blows
up.

For n ∈ N, let En ⊆ [0, 1] ⊆ R be the set consisting every other dyadic interval
of length 2−n contained in [0, 1], that is,

En =

2n−1
⋃

k=1

[(2k − 1)2−n, (2k)2−n].

It is not difficult to show that En is UR with constants C0 = 4, L = 1 and c = 1
4

for

each n ∈ N. Let ε < 1
3
. Since each ball B (where balls in this setting are actually

intervals) centered on En with radius larger than 2−n satisfies

H
1
∞(En ∩B) ≤

2

3
(2rB) < (1− ε)(2rB),

it follows that En × (2−n, 1) ⊆ BWLD(ε). Then for any x ∈ En and 2−n < R < 1,
ˆ R

2−n

ˆ

B(x,R)

1BWLD(ε)(y, r) dH
1|En(y)

dr

r
≥ log(R2n)H 1(En ∩B(x,R))

& log(R2n)R

and the right-hand side goes to ∞ as n → ∞.
Note that while we do rely on work from [Tol15] in our proof, there is still much

work to do. For one, our condition is in terms of Hausdorff content and not Hausdorff
measure, but more importantly our condition does not require information about how
often the density of Hausdorff content dips above 1, whereas the conditions of David,
Semmes, and Tolsa ask that the density of Hausdorff measure is not too much above
or below 1 in most balls.

One reason we only need to control how often the density of Hausdorff content
dips below 1 is the following result that may be of independent interest, which says
that actually content doesn’t jump above 1 too much anyway, and this holds for
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quite general sets, not just Ahlfors regular sets. One can view this as a quantitative
version of (1.3).

Theorem 1.2. Let X be a compact C-doubling metric space, meaning that
every ball B in X can be covered by at most C many balls of half the radius. Let
ε, ρ ∈ (0, 1

2
), A > 1, and Xn be a sequence of maximal 2−n-separated sets in X, and

B = {B(x, 2−n) : x ∈ Xn, n ∈ N}, then

∑

{

rsB : B ∈ B,
H s

ρrB
(X ∩ AB)

(2rAB)s
> 1 + ε

}

.C,A

log 1
min{ρ,ε/s}

ε
H

s(X).

The proof of this theorem is mostly an adaptation of the geometric martingale
techniques in Schul’s proof of the Analyst’s Traveling Salesman Theorem in Hilbert
space [Sch07]. In that paper, Schul needs to control the sum of diameters of balls
centered along a curve Γ of finite length for which the portion of Γ in these balls
consists of more than one approximately straight curve segments. In such balls, Γ
will have large Hausdorff content, and it is really that property that he is using
implicitly in his proof, so his method can be extrapolated to sets other than curves,
or even sets of non-integer dimension.

The referee asked some very interesting questions that we were not able to answer
but are venues for future work.

First, in light of the example En we constructed, the referee asked us whether the
assumptions in Theorem 1.1 were so strong that they may imply a stronger property
than being UR: having big pieces of Lipschitz graphs.

We say a set E has big pieces of Lipschitz graphs (or BPLG) if there are L, c > 0
so that for all x ∈ E and 0 < r < diamE, there is a d-dimensional L-Lipschitz
graph Γ ⊆ R

n (that is, a rotated copy of the graph of an L-Lipschitz function
f : Rd → R

n−d) so that H d(Γ ∩ B(x, r) ∩ E) ≥ crd. The distinction between BPBI
and BPLG might seem arbitrary, but BPLG is quite crucial in some applications, see
for example [DJ90].

It is part of the lore in the theory of UR that this property implies but is not
equivalent to UR due to an unpublished example of Hrycak1. The example is actually
a special case of the classical Venetian blinds construction (see [Fal86a, Fal86b]), but
it was Hrycak’s idea to use it to show BPBI 6⇒ BPLG. A start towards answering the
referee’s question would be to see if this example satisfies the WLD condition. The
authors believe they can show (not reported here) that it satisfies a weaker WLD
type condition–the same condition but with Hausdorff measure instead of Hausdorff
content–but the proof relies on the additivity of Hausdorff measure and it is not clear
whether it can be extended to the case of Hausdorff content.

The second question the referee asked was whether we could generalize the result
to sets that are not Ahlfors regular. The definition of UR is no longer appropriate
in this setting, but there are ways of generalizing results from UR to more general
settings: In [AV21], the first author and Villa generalized many results from UR to
lower content regular sets, which are sets where we assume H d

∞(E ∩ B(x, r)) & rd

for all x ∈ E and 0 < r < diamE. It turns out that the geometric sums BWGL and
BAUP are still meaningful in this context in the sense that the following estimate
holds inside any cube R:

(1.6) H
d(R) + BWGL(A, ε, R) ∼ H

d(R) + BAUP(A, ε, R)

1The first author learned this from John Garnett who had emailed Steve Hofmann who had
emailed Stephen Semmes who learned it from Hrycak.
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and in fact these are comparable to other sums like BWGL that appear in the theory
of UR, see [AV21] for more details.

The most natural way to define a quantity WLD(R), like BWGL(A, ε, R), is to
let it equal the sum of (diamQ)d for cubes Q in R for which (1.5) holds for CBQ

for some C > 0. The referee’s question is whether H d(R) + WLD(R) has any
relation to H d(R) +BWGL(A, ε, R). The earlier example we constructed shows the
two are not comparable: if R = En, then H d(R) + BWGL(A, ε, R) ∼ 1 whereas
H d(R) + WLD(R) → ∞ as n → ∞. It could be that we still have H d(R) +
BWGL(A, ε, R) . H d(R) + WLD(R). Some of our arguments take us part of the
way, however our work below takes advantage of the fact that Ahlfors regular sets
form a compact family in the sense that if we have a sequence of such sets containing
the origin, then we can pass to a subsequence so that they converge to another Ahlfors
regular set, and in particular we take advantage of Hausdorff measure being locally
finite on this set, whereas a sequence of d-lower regular sets of locally finite d-measure
may not converge to a set of locally finite d-measure.

Acknowledgments. We would like to thank the anonymous referees for spotting
several mistakes and for their many useful comments and suggestions that greatly im-
proved the paper. The second author was supported by The Maxwell Institute Gradu-
ate School in Analysis and its Applications, a Centre for Doctoral Training funded by
the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01),
the Scottish Funding Council, Heriot-Watt University and the University of Edin-
burgh. Revisions were carried out with support from the European Union’s Horizon
2020 research and innovation programme (Grant agreement No. 948021)

2. Notation

We will write a . b if there is C > 0 such that a ≤ Cb and a .t b if the constant
C depends on the parameter t. We also write a ∼ b to mean a . b . a and define
a ∼t b similarly.

Let X be a metric space. We will denote the distance between two points x, y ∈ X
by |x− y|. For sets A,B ⊂ X, let

dist(A,B) = inf{|x− y| | x ∈ A, y ∈ B}, dist(x,A) = dist({x}, A),

and

diamA = sup{|x− y| | x, y ∈ A}.

For x ∈ X and r > 0, we will let B(x, r) be the closed ball centered at x of radius
r. If B = B(x, r) and λ > 0, we will let λB = B(x, λr). For a closed ball B, we let
B◦ be the open ball with the same centre and radius as B.

We recall the definition of Hausdorff measures and contents, but more information
can be found in [Mat95]: for A ⊆ X, s ≥ 0, and δ > 0, we define

H
s
δ (A) = inf

{

∑

(diamAi)
s : A ⊆

⋃

Ai, diamAi ≤ δ
}

.

The s-dimensional Hausdorff content is defined to be H s
∞(A), and s-dimensional

Hausdorff measure is defined to be the limit

H
s(A) = lim

δ→0
H

s
δ (A).

Notice that H s
δ (A) is decreasing in δ, that is,

(2.1) H
s
δ (A) ≤ H

s
δ′ (A) ≤ H

s(A) for δ′ ≤ δ.



The weak lower density condition and uniform rectifiability 797

3. Weak convergence of measures

In this section we consider the weak convergence of a sequence of measures of
the form µk = H d

ρk
|Ek

, where ρk → 0. In what follows, unless stated otherwise, a
measure will simply refer to a monotonic, countably subadditive set function which
vanishes for the empty set. In particular, we do not require a measure to be additive.
The results of this section will be used in the proof of Theorem 1.1, we delay their
proofs until the appendix.

For a measure µ and a function f : Rn → [0,∞), define the Choquet integral of
f with respect to µ by the formula

ˆ

f dµ =

ˆ ∞

0

µ({x ∈ R
n : f(x) > t}) dt.

For a real valued function f : Rn → R, let f+ = max{f, 0} and f− = max{−f, 0}.
Define the Choquet integral of f with respect to µ by

ˆ

f dµ =

ˆ

f+ dµ−

ˆ

f− dµ.

Definition 3.1. Let {µk} be a sequence of measures on R
n. We say the sequence

{µk} converges weakly to a Radon measure µ, and write

µk ⇀ µ,

if

lim
k→∞

ˆ

ϕdµk =

ˆ

ϕdµ for all ϕ ∈ C0(R
n).

Here, C0(R
n) is the space of continuous functions of compact support.

We state some general results about the weak convergence of measures. The
results are essentially those found in Chapter 1 of [Mat95] and Chapter III.5 of
[DS93].

Lemma 3.2. Suppose {µk} is a sequence of measures converging weakly to a
Radon measure µ. For K ⊆ R

n compact and U ⊆ R
n open we have

µ(K) ≥ lim sup
k→∞

µk(K)

and
µ(U) ≤ lim inf

k→∞
µk(U).

Lemma 3.3. Suppose {µk} is a sequence of measures converging weakly to a
Radon measure µ. Suppose additionally there exists C0 > 0 such that each µk is
C0-Ahlfors d-regular (in the sense that it satisfies the upper and lower regularity
condition with constant C0, but may not be additive). Then, for any ball B, we have

lim
k→∞

(

sup
p∈B∩suppµ

dist(p, suppµk)

)

= 0

and

lim
k→∞

(

sup
p∈B∩supp µk

dist(p, suppµ)

)

= 0.

The main result of this section is the following.

Lemma 3.4. Let {Ek} be a sequence of C0-Ahlfors d-regular sets in R
n and {ρk}

a sequence of positive real numbers such that ρk → 0. Let µk = H d
ρk
|Ek

, then there
exists sub-sequence {µkj} and a Radon measure µ such that µkj ⇀ µ.
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4. Proof of Theorem 1.1

We recall the properties of the Christ–David cubes from [Dav88, Chr90]. Let
E ⊆ R

n be C0-Ahlfors d-regular. Let Xn be a sequence of maximal 2−n-separated
nets in E and

D
E =

⋃

j∈Z

D
E
j

denote the Christ–David cubes with respect to this sequence of nets. If the context
is clear, we shall drop the superscript E. For a measure µ, denote Dµ = D supp µ. The
cubes in D satisfy the following:

(i) For each j ∈ Z, E =
⋃

Q∈Dj
Q.

(ii) If Q ∈ Dj and Q′ ∈ Dk for j ≤ k then either Q′ ⊆ Q or Q ∩Q′ = ∅.
(iii) There exists c0 such that the following holds. For j ∈ Z and Q ∈ Dj , let

ℓ(Q) = 2−j , there is xQ ∈ Q such that

BE(xQ, c0ℓ(Q)) ⊆ Q ⊆ BE(xQ, ℓ(Q)).

Given a cube Q, denote

BQ = B(xQ, rQ) = B(xQ, 3ℓ(Q)).

We say a collection of cubes C ⊆ D satisfies a Carleson packing condition if there
exists C > 0 such that for each R ∈ D ,

∑

Q∈C

Q⊆R

ℓ(Q)d ≤ Cℓ(R)d.

The main idea behind the proof of Theorem 1.1 is that if E satisfies the WLD
condition, then at most scales and locations, E may be approximated by the support
of some uniform measure (see definition below). We use this, along with [Tol15], to
finish the proof.

We recall some notation and results from [Tol15]. A Borel measure µ in R
n is

said to be d-uniform if the exists a constant c > 0 such that

µ(B(x, r)) = crd

for all x ∈ supp µ and r > 0.
Given a ball B and two Radon measures µ and ν such that supp µ ∩ B 6= ∅ and

supp ν ∩B 6= ∅, define

dB(µ, ν) = sup
x∈B∩supp ν

dist(x, supp µ) + sup
x∈B∩suppµ

dist(x, supp ν).

For a Radon measure µ and a constant η > 0, let N0(µ, η) be the collection of balls
B such that there exists a d-uniform measure ν in R

n satisfying

dB(µ, ν) ≤ η.

Furthermore, let N (µ, η) denote the set of cubes Q ∈ Dµ such that BQ ∈ N0(µ, η).
When the context is clear, we shall simply write N (η) and N0(η).

Although not explicitly stated, in the Section 4 of [Tol15], Tolsa proves the fol-
lowing:

Proposition 4.1. Suppose µ is an Ahlfors d-regular measure and Dµ \ N (η)
satisfies a Carleson packing condition for each η > 0. Then, µ is UR.
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Given the results on uniform measure contained in Sections 1–3 of [Tol15], the
proof of the above Proposition 4.1 is contained within the proof of Theorem 1.1 of
the aforementioned paper, beginning on page 16.

Remark 4.2. Proposition 4.1 may be strengthened by only requiring a single
Carleson packing condition. More precisely, there exists η0 depending only on n and
d such that if Dµ \ N (η0), then µ is UR. Indeed, for each ε > 0 the arguments of
[Tol15] show there exists η > 0 such that the Carleson packing condition on D \N (η)
implies a Carleson packing condition on B(ε), the set of cubes Q ∈ D such that

dBQ
(E, P ) ≥ ε for all d-planes P .

As long as ε > 0 (and hence η) is chosen small enough, depending on n and d, this
final condition is sufficient to prove µ is UR with UR constants depending only on ε,
see [DS93, Remark II.2.5].

With the following result of David and Semmes (see [DS93, Chapter III.5]),
Proposition 4.1 proves the WCD condition implies UR.

Proposition 4.3. Suppose µ satisfies the WCD condition, then Dµ \ N (η)
satisfies a Carleson packing condition for each η > 0.

The main goal of this section is to prove the following lemma, analogous to the
above result of David and Semmes. This, along with Proposition 4.1, will finish the
proof of Theorem 1.1.

Lemma 4.4. Suppose E ⊆ R
n satisfies the WLD condition. Then DE \ N (η)

satisfies a Carleson packing condition for each η > 0.

For A > 1 and ε, ρ > 0, let G (A, ε, ρ) be the collection of cubes Q ∈ D such that

H
d
ρrQ

(E ∩ABQ) ≤ (1 + ε)(2ArQ)
d

and

H
d
∞(E ∩ B(x, r)) ≥ (2r)d − ε(2ArQ)

d

for all x ∈ E ∩ ABQ and 0 < r < ArQ.
We prove Lemma 4.4 by showing, for suitable choices of A, ε, ρ, that for each

Q ∈ G (A, ε, ρ) there is a d-uniform measure such that E is locally well-approximated
by supp µ. The Carleson packing condition on D \ N (η) will follow from packing
conditions on B(A, ε, ρ) = D \ G (A, ε, ρ), which in turn follow from Theorem 1.2
and the definition of WLD.

Denote by B1(A, ε) the set of cubes Q in D for which there exists y ∈ E ∩ABQ

and 0 < r < ArQ satisfying

H
d
∞(E ∩B(y, r)) < (2r)d − ε(2ArQ)

d.(4.1)

Additionally, let B2(A, ε, ρ) denote the set of cubes Q such that

H
d
ρrQ

(E ∩ABQ) > (1 + ε)(2ArQ)
d.

Lemma 4.5. Suppose E satisfies the WLD condition, then B1(A, ε) satisfies a
Carleson packing condition for each A > 1 and ε > 0.

Proof. Let A > 1, ε > 0 and R ∈ D . Let Q ∈ B1(A, ε), and let B = B(y, r) be
the ball satisfying (4.1). Thus, if x ∈ Q then y ∈ B(x, 2ArQ) and

H
d
∞(E ∩B(y, r)) < (2r)d − ε(2ArQ)

d = (2r)d − 2−dε(4ArQ)
d,
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that is (x, 2ArQ) ∈ BWLD(ε/2
d) ⊆ BWLD(ε/4

d). Similarly, one can show that
(x, αArQ) ∈ BWLD(ε/4

d) for each 2 ≤ α ≤ 4. Let k∗ be such that R ∈ Dk∗ .
Denoting Bk,1(A, ε) = B1(A, ε) ∩ Dk, we have

∑

Q∈B1(A,ε)
Q⊆R

ℓ(Q)d ≤
∞
∑

k=k∗

ˆ 3A2−k+2

3A2−k+1

∑

Q∈Bk,1(A,ε)
Q⊆R

ℓ(Q)d
dr

r

.

∞
∑

k=k∗

ˆ 3A2−k+2

3A2−k+1

∑

Q∈Bk,1(A,ε)
Q⊆R

H
d({x ∈ Q : (x, r) ∈ BWLD(ε/4

d)})
dr

r

.

ˆ 4ArR

ArR

ˆ

ABR

1BWLD(ε/4d)(x, r) dH
d|E(x)

dr

r

+

ˆ ArR

0

ˆ

ABR

1BWLD(ε/4d)(x, r) dH
d|E(x)

dr

r

.A,ε ℓ(R)d,

where the second inequality follows from Ahlfors regularity and the final inequality
follows from Ahlfors regularity and the fact that BWLD(ε) is a Carleson set. �

Lemma 4.6. The set B2(A, ε, ρ) satisfies a Carleson packing condition for each
A > 1 and ε, ρ > 0.

Proof. This is an immediate consequence of Theorem 1.2. �

Notice B(A, ε, ρ) ⊆ B1(A, ε) ∪ B2(A, ε, ρ). Thus, combining Lemma 4.5 and
Lemma 4.6, it follows that B(A, ε, ρ) also satisfies a Carleson packing condition for
each A > 1 and ε, ρ > 0. To finish the proof of Lemma 4.4, it now remains to show
this implies a Carleson packing condition on D \ N (η).

4.1. Approximation by uniform measures. In this section we prove that,
for a suitable choice of A > 1 and ε, ρ > 0, if Q ∈ G (A, ε, ρ), then there exists
a d-uniform measure µQ which well-approximates Q. We first consider a related
collection of sets.

Definition 4.7. Let U (A,C0, ε, ρ) be the collection of subsets E ⊆ R
n which

are C0-Ahlfors d-regular, contain the origin, and satisfy:

(1) H d
ρrB

(E ∩ AB) ≤ (1 + ε)(2A)d,

(2) H d
∞(E ∩B) ≥ (2rB)

d − ε(2A)d for all B centered on E ∩ AB with rB ≤ A.

Here, B denotes the unit ball in R
n centered at the origin.

Most of the details of the following lemma are contained in the proof of [DS93,
Lemma III.5.13], we include a proof for the reader’s convenience.

Lemma 4.8. Let η > 0 be given. There is A > 1 such that if µ is a C0-Ahlfors
d-regular Radon measure satisfying

µ(B) = (2rB)
d

for all B centered on suppµ∩AB with rB ≤ A, then there is a d-uniform measure ν
such that

dB(µ, ν) ≤ η.
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Proof. Suppose the statement is false. We can find a sequence of real numbers
Aj → ∞ and C0-Ahlfors d-regular Radon measures µj such that µj(B) = (2rB)

d for
all B centered on supp µj ∩ AjB with rB ≤ Aj , but dB(µj , ν) > η for all d-uniform
measures ν. By extracting a subsequence if necessary, we can assume µj ⇀ µ, where
µ is a Radon measure. This is possible by [Mat95, Lemma 1.23] since the µj are
C0-Ahlfors d-regular.

We claim µ is d-uniform. Let B = B(xB , rB) be centered on supp µ. For each j,
let

δj = sup
p∈B∩suppµ

dist(p, suppµj)

so that there exists xj ∈ supp µj satisfying |xB − xj | ≤ δj . Let Bj = B(xj , rB + δj).
Clearly B ⊆ Bj, and rBj

→ rB by Lemma 3.3. Let ε > 0 be small. For j large
enough (1 + ε)rBj

≤ Aj, so by Lemma 3.2,

µ(B) ≤ µ((1 + ε)B◦) ≤ lim inf
j→∞

µj((1 + ε)B◦) ≤ lim inf
j→∞

µj((1 + ε)Bj)

= lim inf
j→∞

(2(1 + ε)rBj
)d = (2(1 + ε)rB)

d.

Since ε > 0 was arbitrary, we conclude that

µ(B) ≤ (2rB)
d.

Similarly, let B′
j = B(xj , rB − δj). Then, B′

j ⊆ B, rB′
j
→ rB, and rB′

j
≤ Aj for j large

enough. Hence

µ(B) ≥ lim sup
j→∞

µj(B) ≥ lim sup
j→∞

µj(B
′
j) ≥ lim sup

j→∞
(2rB′

j
)d = (2rB)

d.

For all j large enough dB(µj, µ) ≤ η, by Lemma 3.3. This contradicts the assumptions
on the µj since µ is d-uniform. �

Lemma 4.9. Let A > 1 and η > 0 be given. There exists ε, ρ > 0 so that if
E ∈ U (2A,C0, ε, ρ) then there is a Radon measure µ such that

dB(H
d|E, µ) ≤ η

and

µ(B) = (2rB)
d

for all B centered on suppµ ∩ AB such that rB ≤ A.

Proof. Suppose the lemma is false. Then, there exists a sequence of sets Ej and
real numbers εj, ρj → 0 such that Ej ∈ U (2A,C0, εj, ρj) but the conclusion of the
above lemma is false for each j. Let µj = H d

ρj
|Ej

. By Lemma 3.4, we can extract a

subsequence (which we do not relabel) such that µj ⇀ µ where µ is a Radon measure.
Note that

µ(2AB◦) ≤ lim inf
j→∞

µj(2AB
◦) ≤ lim inf

j→∞
(1 + εj)(4A)

d = (4A)d.

Let B be a ball centered on suppµ∩AB with rB ≤ A. As in the proof of the previous
lemma, for each j we can find balls Bj centered on supp µj ∩ AB such that Bj ⊆ B
and rBj

→ rB. Then

µ(B) ≥ lim sup
j→∞

µj(B) ≥ lim sup
j→∞

µj(Bj) ≥ lim sup
j→∞

H
d
∞|Ej

(Bj)

≥ lim sup
j→∞

(

(2rBj
)d − εj(4A)

d
)

= (2rB)
d.



802 Jonas Azzam and Matthew Hyde

We claim, in fact, µ(B) = (2rB)
d. Assume µ(B) > (2rB)

d. For each x ∈ suppµ ∩
2AB◦, let

rx = sup{r : B(x, r) ⊆ 2AB◦ and B(x, r) ∩B = ∅}.

Then, let

Bx = {B(x, r) : 0 < r < rx} and B
′ =

⋃

x∈suppµ∩2ABo

Bx.

Notice each ball B′ ∈ B′ is contained in 2AB◦ and has empty intersection with B.
By the Vitali Covering Theorem ([Mat95, Theorem 2.8]), we may find a disjoint
collection of balls B ⊆ B′ such that

H
d|suppµ

(

2AB◦ \

(

B ∪
⋃

B′∈B

B′

))

= 0,

in particular

H
d
∞

(

suppµ ∩ 2AB◦ \

(

B ∪
⋃

B′∈B

B′

))

= 0.

Let τ > 0 be so that µ(B) = τ + (2rB)
d. By [MM97, Theorem 2.1], H d

∞ is an upper
semicontinuous function when acting on compact subsets of a compact metric space
equipped with the Hausdorff norm. Using this, with the fact that the balls in B are
pairwise disjoint and have empty intersection with B, for any 0 < α < 1 we get

(4A)d ≥ µ(2AB◦) ≥ µ(B) +
∑

B′∈B

µ(B′) ≥ τ + (2rB)
d +

∑

B′∈B

(2rB′)d

≥ τ + H
d
∞

(

suppµ ∩

(

B ∪
⋃

B′∈B′

B′

))

≥ τ + H
d
∞(supp µ ∩ 2AB◦)− H

d
∞

(

supp µ ∩ 2AB◦ \

(

B ∪
⋃

B′∈B

B′

))

≥ τ + H
d
∞(supp µ ∩ 2AαB)

≥ τ + lim sup
j→∞

H
d
∞(Ej ∩ 2AαB) ≥ τ + (4Aα)d.

Taking α → 1 gives (4A)d ≥ τ +(4A)d which is a contradiction and proves the claim.
We finish the proof of the lemma by noting that for j large enough,

dB(H
d|Ej

, µ) = dB(µj, µ) ≤ η

by Lemma 3.3, which is a contradiction. �

Combining the above two lemmas, for η > 0 we can find A > 1 and ε, ρ >
0 (depending on η) so that for any E ∈ U (2A,C0, ε, ρ), there exists a d-uniform
measure µ satisfying dB(H

d|E , µ) ≤ η. By re-scaling and translation, we have the
following.

Lemma 4.10. Let η > 0. There exist A > 1 and ε, ρ > 0 so that for any
Q ∈ G (A, ε, ρ), there is a d-uniform measure µ such that

dBQ
(H d|E, µ) ≤ η.
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Proof of Lemma 4.4. Let η > 0. By Lemma 4.10, we can find A > 1 and ε, ρ > 0
depending on η such that G (A, ε, ρ) ⊆ N (η). Hence D \ N (η) ⊆ B(A, ε, ρ). The
proof of Lemma 4.4 is completed by noting that

∑

Q∈D\N (η)
Q⊆R

ℓ(Q)d ≤
∑

Q∈B(A,ε,ρ)
Q⊆R

ℓ(Q)d .η ℓ(R)d,(4.2)

where the last inequality follows since B(A, ε, ρ) satisfies a Carleson packing condi-
tion. �

Remark 4.11. (Strengthening of Theorem 1.1) Let η0 > 0 be the constant
appearing in Remark 4.2. By (4.2), a Carleson packing condition on D\N (η0) follows
from a Carleson packing condition on B(A, ε, ρ) for suitably chosen constants A > 1
and ε, ρ > 0 depending on η0. A Carleson packing condition on B(A, ε, ρ) is implied
by a Carleson packing condition on B1(A, ε, ρ) (recall the definition above Lemma 4.5
and the argument below Lemma 4.6) which follows if one assume BWLD(ε/4

d) is a
Carleson set (see the proof of Lemma 4.5). In summary, if we let ε0 = ε/4d and
assume BWLD(ε0) is a Carleson set, then the above arguments and Remark 4.2 imply
E is UR.

5. Proof of Theorem 1.2

5.1. Notation and conventions. In the sections below, X will denote a
C-doubling metric space. By the Kuratowski embedding theorem, X isometrically
embeds into ℓ∞(X), so without loss of generality, we will assume X is a subset of
some Banach space X . Thus, whenever we talk about a ball B(x, r), we mean the
closed ball centered at x of radius r with respect to X . In this way, the ball in X is
just BX(x, r) = X ∩ B(x, r). The diameter of a set is defined in the usual way, but
note that, while for a metric space X we could have diamBX(x, r) = 0, we always
have diamB(x, r) = 2r.

We will also denote

µ = H
s|X .

5.2. Cubes. Before embarking on the proof of Theorem 1.2, we need to recall
Schul’s cubes [Sch07]. These are a family of subsets of X, that have properties similar
to dyadic cubes in Euclidean space. These are similar to the so-called Christ–David
cubes [Dav88, Chr90] in some respects. Both collections have the property that, much
like dyadic cubes in Euclidean space, they can be divided into different generations
and the cubes from each scale partition the cubes from previous generations. The
main differences are that the Christ–David cubes and dyadic cubes are partitioned by
cubes at the next generation of roughly the same size, while the children of Schul’s
cubes can vary wildly. Moreover, the Christ–David construction can be modified
slightly to exactly partition a doubling space X, whereas Schul’s cubes may not.
The important property they do have, however, is that they are approximately like
balls.

Fix M > 1, K > 0 and c ∈ (0, 1
8
). For each integer n ≥ 0, let Xn ⊆ X be a

maximal KM−n-net in X. Let

Bn = {B(x,KM−n) : x ∈ Xn}, B =
⋃

n

Bn.
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For B = B(x,KM−n) ∈ Bn, define

Q0
B = cB, Qj

B = Qj−1
B ∪

⋃

{

cB : B ∈
⋃

m≥nBm, cB ∩Qj−1
B 6= ∅

}

,

and

QB =
∞
⋃

j=0

Qj
B.

Basically, QB is the union of all balls B′ that may be connected to B by a chain
{cBj} with Bj ∈ B, diamBj ≤ diamB, and cBj ∩ cBj+1 6= ∅ for all j.

For such a cube Q constructed from B(x,KM−n), we let xQ = x and BQ =
B(x, cKM−n).

Let
∆n = {QB : B ∈ Bn}, ∆ =

⋃

∆n.

Note that, for Q ∈ ∆n, xQ ∈ Xn.

Lemma 5.1. If c ∈ (0, 1
8
), then for X and ∆ as above, the family of cubes ∆

satisfy the following properties.

(1) If Q,R ∈ ∆ and Q ∩ R 6= ∅, then Q ⊆ R or R ⊆ Q.
(2) For Q ∈ ∆,

(5.1) BQ ⊆ Q ⊆ (1 + 8M−1)BQ.

In other words, for M large, our cubes don’t differ much from balls.
This version is a slight modification of a similar result in [Sch07, Theorem 3.19]

and is proven in [Azz15, Lemma 2.1]. There it is assumed that the Xn are nested
maximal M−n-nets, but this is not necessary in the proof. In both papers it is also
assumed that K = 1, but the result above follows by just applying these results to a
scaled copy of X.

5.3. Now the proof. The rest of this section is devoted to the proof of
Theorem 1.2. Let ε, ρ ∈ (0, 1

2
), A > 1, and let X be a C-doubling metric space

such that µ(X) = H s(X) < ∞. We will assume without loss of generality that
diamX = 1. For every n ≥ 0, let Xn be a maximal set of 2−n-separated points in X,
that is, a maximal set of points such that |x− y| ≥ 2−n for all x, y ∈ Xn, x 6= y. Let

Bn = {B(x, 2−n) : x ∈ Xn}, B =
⋃

n≥0

Bn.

We would like to use Schul’s cubes in such a way that each cube Q corresponds
to a dilated ball AB for some B ∈ B. The issue here is that we constructed those
cubes from contractions of balls and not enlargements, i.e. using balls of the form
cB where c ≪ 1, not balls AB with A > 1. What we do is split up the collections
of balls into separate families that are separated enough so that, if we consider balls
B′ from one such family, then cB′ = AB for some B in our original collection (this
is the thinning process done in [Sch07, Section 3.3.1]).

Let a ∈ N be so that

(5.2) 2a−1 ≤ A < 2a.

Since X is doubling, one can find N = N(A,C) and subsets X1
n, . . . , X

N
n in Xn that

are maximally 2−n+a+4-separated in Xn and so that

Xn =

N
⋃

i=1

X i
n.
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Let J ∈ N be such that

(5.3) 2−J+1 < min
{ ρ

4A
,

ε

16s

}

≤ 2−J+2.

Let X i,j
n = X i

nJ+j. For i = 1, . . . , N , j = 1, . . . , J − 1, let ∆i,j
n and ∆i,j =

⋃

n ∆
i,j
n be

those cubes constructed in the previous section for the sequence (X i,j
n )n of 2−nJ−j+a+4-

separated points with K = 2−j+a+4, M = 2J , and

c = A2−4−a < 2−4 < 1/8,

so that if

B
i,j
n = {B(x, 2−nJ−j+a+4) : x ∈ X i,j

n }, B
i,j =

⋃

n≥0

B
i,j
n ,

and if

B = B(x, 2−nJ−j+a+4) = B(x,KM−n) ∈ B
i,j
n ,

then

cB = B(x,A2−nJ+j).

So we have for j = 1, . . . , J − 1,

ABnJ+j := {B(x,A2−nJ+j) : x ∈
⋃

i

X i,j
n } =

⋃

i

cBi,j
n =

⋃

i

{cB : B ∈ B
i,j
n }.

and thus

AB =
⋃

n,i,j

cBi,j
n .(5.4)

Fix some i and j.

Lemma 5.2. For µ-a.e. x ∈ X, if x is contained in infinitely many Q ∈ ∆i,j ,
then

(5.5) lim
r→0

sup
Q∈∆i,j

x∈Q⊆B(x,r)

µ(Q)

(diamQ)s
≤ 1.

Proof. The proof is exactly the same as the analogous one with balls in place of
cubes [Mat95, Theorem 6.2], apart from the fact that we don’t have the Besicovitch
covering lemma, but this is not needed if we are working with cubes. We include the
proof for completeness:

Let t > 1 and

Et =







x ∈ X : lim
r→0

sup
Q∈∆i,j

x∈Q⊆B(x,r)

µ(Q)

(diamQ)s
> t







,

Assume µ(Et) > 0 for some t > 1. Since µ(X) < ∞, µ|X is Radon (see [Mat95,
Theorems 1.11 and 4.2]), so we may find U ⊇ Et open with

(5.6) µ(U\Et) < (t− 1)µ(Et).

For any δ > 0 and for each x ∈ Et, we may pick Q(x) ⊆ U with diamQ(x) < δ and
µ(Q(x))

(diamQ(x))s
> t. Let Qk be the maximal cubes we get in this way, so Et ⊆

⋃

k Qk.

Hence,

tH s
δ (Et) ≤ t

∑

k

(diamQk)
s <

∑

k

µ(Qk) ≤ µ(U),



806 Jonas Azzam and Matthew Hyde

thus, letting δ → 0, we get

tµ(Et) = lim
δ→0

tH s
δ (Et) ≤ µ(U)

(5.6)
< µ(Et)

which is impossible, thus µ(Et) = 0 for all t > 1, which proves (5.5). �

The proof of Theorem 1.2 now proceeds almost exactly as in [Sch07, Lemma 3.25].

Lemma 5.3. Let

C
i,j = {Q ∈ ∆i,j : H

s
ρ diamQ

4A

(X ∩Q) > (1 + ε/4)(diamQ)s}

and

C =
{

B ∈ B : H
s
ρrB

(X ∩AB) > (1 + ε)(2rAB)
s
}

.

Then

(5.7) {Q ∈ ∆i,j : BQ = AB for some B ∈ C } ⊆ C
i,j.

Proof. Let Q ∈ ∆i,j be such that BQ = AB for some B ∈ C . Recall by (5.1)
that AB ⊆ Q ⊆ (1 + 8M−1)AB, hence, diamQ ≤ (1 + 8M−1)2rAB ≤ 4rAB. Thus,
using that ε ∈ (0, 1

2
) and (1 + t)−s ≥ 1− st for t ≥ 0,

H
s
ρ diamQ

4A

(X ∩Q)

(5.1)
(2.1)

≥ H
s
ρrB

(X ∩AB) ≥ (1 + ε)(2rAB)
s

(5.1)

≥ (1 + ε)(1 + 8M−1)−s(diamQ)s

= (1 + ε)(1 + 2−J+3)−s(diamQ)s

≥ (1 + ε)(1− s2−J+3)(diamQ)s

(5.3)
> (1 + ε)

(

1−
ε

2

)

(diamQ)s

≥
(

1 +
ε

4

)

(diamQ)s. �

Lemma 5.4. For each Q ∈ C i,j , there is a function wQ defined on X, and a
constant α > 1 so that

(1) suppwQ ⊆ Q,
(2)
´

wQ dµ = (diamQ)s,
(3) wQ(x) < α−kQ(x) where kQ(x) is the number of cubes in C i,j properly con-

tained in Q containing x.

Proof. For convenience, we will treat functions as measures below, so given a
function f , f(A) will also denote

´

A
f dµ.

We will define wQ in a martingale fashion, that is, as a sequence of functions
where we obtain the next function by redefining the previous function in various
cubes so that the integrals in those cubes is unaffected. First we need to introduce
some notation relating to the cubes. For Q ∈ C i,j , let Stop0 = {Q}, Stop1(Q) be the
set of maximal cubes in C i,j properly contained in Q and inductively set

Stopk+1(Q) =
⋃

R∈Stopk(Q)

Stop1(R).

Now we define the sequence of functions that will converge to wQ. We first let

w0
Q = 1X∩Q

(diamQ)s

µ(Q)
,
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so in this way, w0
Q(Q) = (diamQ)s.

Let

RQ = Q\
⋃

R∈Stop1(Q)

R

and

m(Q) = µ(RQ) +
∑

R∈Stop1(Q)

(diamR)s.

Note, by (5.1) and (5.3), any cube properly contained in Q (and hence those cubes
in Stop1(Q)) has diameter at most 2−J+1 diamQ < ρ diamQ

4A
. Thus, setting

(5.8) α = 1 +
ε

4

we have

m(Q) ≥ H
s
ρ diamQ

4A

(RQ) +
∑

R∈Stop1(Q)

(diamR)s(5.9)

≥ H
s
ρ diamQ

4A

(X ∩Q) >
(

1 +
ε

4

)

(diamQ)s = α(diamQ)s.

Now let w1
Q be a function on X that is constant in the sets RQ and R ∈ Stop1(Q)

(and zero elsewhere) so that

w1
Q(RQ) =

µ(RQ)

m(Q)
w0

Q(Q) and w1
Q(R) =

(diamR)s

m(Q)
w0

Q(Q).

In this way,

w1
Q(Q) = w0

Q(Q) = (diamQ)s.

Inductively, suppose for some k ≥ 1 we have defined wk
Q for each Q ∈ C i,j. We

now let

wk+1
Q |RQ

= wk
Q|RQ

and wk+1
Q |R =

w0
Q(Q)

m(Q)
wk

R|R for R ∈ Stop1(Q).

Remark 5.5. By construction, we have for all k

wk
Q(RQ) = wk−1

Q (RQ) = · · · = w1
Q(RQ) =

µ(RQ)

m(Q)
w0

Q(Q),

wk
Q(Q) = wk−1

Q (Q) = · · · = w0
Q(Q) = (diamQ)s,

and wk
Q is constant on each set RT for T ∈

⋃k−1
ℓ=0 Stopℓ(Q) and on T ∩ X for each

T ∈ Stopk(Q) (and is zero outside these sets).

We now claim that if x ∈ Q is contained in k0 many cubes from C i,j properly
contained in Q

(5.10) wk0
Q (x) < α−k0 .

We begin the proof of the claim: First, since w0
Q is constant in Q, for x ∈ Q,

w0
Q(x) =

(diamQ)s

µ(Q)

(2.1)

≤
(diamQ)s

H s
ρ diamQ

4A

(X ∩Q)

(5.9)
< α−1.
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This proves the k = 0 case of (5.10). For k ≥ 1, let T ∈ Stopk(Q). Then T ∈
Stopk−1(R) for some R ∈ Stop1(Q), and the construction implies

wk
Q(T )

(diamT )s
=

w0
Q(Q)

m(Q)

wk−1
R (T )

(diamT )s
=

(diamQ)s

m(Q)

wk−1
R (T )

(diamT )s
(5.9)
< α−1 wk−1

R (T )

(diamT )s

< · · · < α−k w0
T (T )

(diamT )s
= α−k.(5.11)

In particular, since wk
Q is constant on T ∩X, this shows that for x ∈ T ,

wk
Q(x) =

wk
Q(T )

µ(T )

(2.1)

≤
wk

Q(T )

H s
ρ diamT

4A

(X ∩ T )

(5.9)
< α−1

wk
Q(T )

(diamT )s
(5.11)
< α−k−1.

Moreover, if U ∈ Stopℓ(Q) for some 1 ≤ ℓ < k, then since wk
Q is constant on RU , for

x ∈ RU ,

wk
Q(x) = wℓ

Q(x) =
wℓ

Q(RU)

µ(U)

(2.1)

≤
wℓ

Q(RU )

H s
ρ diamU

4A

(X ∩ U)

(5.9)
< α−1

wℓ
Q(RU)

(diamU)s

≤ α−1
wℓ

Q(U)

(diamU)s
(5.11)
< α−ℓ−1.

By Remark 5.5, any x ∈ Q where wk
Q is nonzero is in either some T ∈ Stopk(Q) or

RU for some U ∈ Stopℓ(Q), ℓ < k, so the above estimates imply (5.10) and prove the
claim.

In particular, wk
Q is a sequence of uniformly bounded L∞ functions vanishing

outside of X ∩ Q. By (5.5), µ-a.e. x ∈ X is contained in at most finitely many
Q ∈ C i,j, and so wk

Q converges pointwise a.e. to a function wQ that is zero outside Q
(proving (1)), and by the dominated convergence theorem,

wQ(R) = lim
k→∞

wk
Q(R) for R ∈

∞
⋃

k=0

Stopk(Q),

proving (2). Finally, (3) follows from the previous claim. �

In particular, if C
i,j
0 is the collection of maximal cubes in C i,j (recall the sizes of

the cubes in C i,j are bounded above), then those cubes are disjoint and thus

∑

Q∈C i,j

(diamQ)s =
∑

Q∈C i,j

ˆ

wQ(x)dµ(x) =

ˆ

∑

Q∈C i,j

wQ(x)dµ(x)

<
∑

Q0∈C
i,j
0

ˆ

Q0

∞
∑

k=0

α−kdµ(x) =
1

1− α

∑

Q0∈C
i,j
0

µ(Q0) .
µ(X)

ε
.

By (5.4), for each B ∈ C there exist i, j and B′ ∈ Bi,j such that AB = cB′.
In particular, there exists Q ∈ ∆i,j such that BQ = AB. Clearly, for each Q ∈ ∆i,j

there is at most one B ∈ C such that BQ = AB. Hence, by Lemma 5.3, our choice
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of J , and recalling the definition of N from (5.2),
∑

B∈C

(diamAB)s ≤
∑

i,j

∑

Q∈∆i,j

BQ∈C

(diamQ)s ≤
∑

i,j

∑

Q∈C i,j

(diamQ)s

.
∑

i=1,...,N
j=1,...,J

µ(X)

ε
≤

NJ

ε
µ(X) .A N

log 1
min{ρ,ε/s}

ε
µ(X).

Appendix A. Weak convergence of measures

We now prove the results stated in Section 3. We begin by recalling the definitions
of Choquet integration and weak convergence of measures. Recall that for us, a
measure is a monotonic, countably subadditive set function which vanishes for the
empty set.

For a measure µ and a function f : Rn → [0,∞), define the Choquet integral of
f with respect to µ by the formula

ˆ

f dµ =

ˆ ∞

0

µ({x ∈ R
n : f(x) > t}) dt.

For a real valued function f : Rn → R, let f+ = max{f, 0} and f− = max{−f, 0}.
Define the Choquet integral of f with respect to µ by

ˆ

f dµ =

ˆ

f+ dµ−

ˆ

f− dµ.

For a measure µ, the Choquet integral with respect to µ is not necessarily additive
or even subadditive. We do however have the following quasi-subadditivity.

Lemma A.1. Let 0 < γ < 1, µ a measure and f, g : Rn → [0,∞). Then
ˆ

(f + g) dµ ≤
1

γ

ˆ

f dµ+
1

1− γ

ˆ

g dµ.(A.1)

Proof. For any t ≥ 0 we have

{x ∈ R
n : f(x) + g(x) > t} ⊆ {x ∈ R

n : f(x) > γt} ∪ {x ∈ R
n : g(x) > (1− γ)t},

since outside this union, f(x) + g(x) ≤ γt + (1 − γ)t = t. The lemma follows
immediately by using the sub-additivity of µ and integrating in t. �

Definition A.2. Let {µk} be a sequence of measures on R
n. We say the sequence

{µk} converges weakly to a Radon measure µ, and write

µk ⇀ µ,

if

lim
k→∞

ˆ

ϕdµk =

ˆ

ϕdµ for all ϕ ∈ C0(R
n).

Here, C0(R
n) is the space of continuous functions of compact support.

We can now prove the main results from Section 3, we shall state each result
again before proving it.

Lemma A.3. Suppose {µk} is a sequence of measures converging weakly to a
Radon measure µ. For K ⊆ R

n compact and U ⊆ R
n open we have

µ(K) ≥ lim sup
k→∞

µk(K)
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and
µ(U) ≤ lim inf

k→∞
µk(U).

Proof. Let ε > 0. Since µ is Radon, there exists and open set V ⊃ K such
that µ(V ) ≤ µ(K) + ε. By Urysohn’s Lemma, there is ϕ ∈ C0(R

n) such that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on K and suppϕ ⊂ V . Then

µ(K) ≥ µ(V )− ε ≥

ˆ

ϕdµ− ε = lim
k→∞

ˆ

ϕdµk − ε ≥ lim sup
k→∞

µk(K)− ε.

Similarly, there exist a compact set F ⊂ U such that µ(F ) ≥ µ(U)− ε. We can find
ϕ ∈ C0(R

n) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on F and suppϕ ⊂ U . Then

µ(U) ≤ µ(F ) + ε ≤

ˆ

ϕdµ+ ε = lim
k→∞

ˆ

ϕdµk + ε ≤ lim inf
k→∞

µk(U) + ε.

The result follows since ε was arbitrary. �

Lemma A.4. Suppose {µk} is a sequence of measures converging weakly to a
Radon measure µ. Suppose additionally there exists C0 > 0 such that each µk is
C0-Ahlfors d-regular (in the sense that it satisfies the upper and lower regularity
condition with constant C0, but may not be additive). Then, for any ball B, we have

lim
k→∞

(

sup
p∈B∩suppµ

dist(p, suppµk)

)

= 0

and

lim
k→∞

(

sup
p∈B∩supp µk

dist(p, suppµ)

)

= 0.

Proof. Let δ > 0. Let K ∈ N and suppose there exists p ∈ B ∩ supp µ such that
dist(p, supp µk) > δ for all k ≥ K. Let φ ∈ C0(R

n) be such that 0 ≤ φ ≤ 1, φ ≡ 1 on
B(p, δ/2) and supp φ ⊂ B(p, δ). Since p ∈ suppµ,

ˆ

φ dµ ≥ µ(B(p, δ/2)) > 0,

but
ˆ

φ dµk = 0

for all k ≥ K, which gives a contradiction.
The proof of the second equality is lifted verbatim from the proof of [DS93,

Lemma III.2.43]. Let ε > 0 and B1, . . . , Bℓ be a finite collection of balls of radius
ε which cover B. For i = 1, . . . , ℓ, let φi ∈ C0(R

n) satisfy φi ≡ 1 on 2Bi and
suppφi ⊆ 3Bi. Choose K large enough so that

∣

∣

∣

∣

ˆ

φi dµk −

ˆ

φi dµ

∣

∣

∣

∣

≤ (2C0)
−1εd

for all k ≥ K and i = 1, . . . ℓ. For each such i and k, if Bi intersects supp µk then
ˆ

φi dµk ≥ C−1
0 εd

hence
ˆ

φi dµ ≥ (2C0)
−1εd,

which in turn implies 3Bi intersects supp µ. Thus, if p ∈ suppµk for k ≥ K, then
dist(p, supp µ) ≤ 6ε. Since ε was arbitrary this implies the second equality. �
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Finally, we must prove the following.

Lemma A.5. Let {Ek} be a sequence of C0-Ahlfors d-regular sets in R
n and

{ρk} a sequence of positive real numbers such that ρk → 0. Let µk = H d
ρk
|Ek

, then
there exists sub-sequence {µkj} and a Radon measure µ such that µkj ⇀ µ.

Before proving Lemma A.5, we need a series of lemmas. Let I the collection of
Euclidean dyadic cubes in R

n and Im be those cubes in I with side length 2−m, for
m ∈ Z. Let Gm denote the dyadic grid at scale m, that is,

Gm =
⋃

I∈Im

∂I.

For x ∈ R
n, let Gm

x = x + Gm denote the translate of the dyadic grid at scale m by
x.

Lemma A.6. Let δ > 0, m ∈ N, R > 0 and µ a Radon measure. Then, there
exists x ∈ R

n such that

µ(Gm
x ∩ B(0, R)) < δ.

Proof. Assume the lemma is false. Let x0 = (1, 1, . . . , 1) ∈ R
n. By assumption,

we can find a sequence of distinct real numbers 0 ≤ λk ≤ 2−m, such that

µ(Gm
λkx0

∩B(0, R)) ≥ δ

for each k. Let xk = λkx0. Notice that Gm
xi
∩ Gm

xj
∩ Gm

xk
= ∅ for i 6= j 6= k, that is,

the Gm
xi

have bounded overlap. Hence,

∞ =
∞
∑

i=1

µ(Gm
xi
∩B(0, R)) ≤ 2µ(B(0, R)) . 1,

which is a contradiction. �

Lemma A.7. Let δ > 0, m ∈ N, R > 0, µ be a Radon measure, and x ∈ R
n. If

µ(Gm
x ∩B(0, R)) < δ, then there exists η > 0 such that

µ(Gm
x (η) ∩ B(0, R)) < 2δ,

where Gm
x (η) denotes the closed η-neighbourhood of Gm

x .

Proof. This simply follows by taking a sequence ηj ↓ 0 and using the continuity
property of µ on decreasing sequences of sets. �

Let µk be as in Lemma A.5 and set µ̃k = H d|Ek
. Note, µk ≤ µ̃k for each

k ∈ N. Since each µ̃k is a Radon measure and supk µ̃k(K) < ∞ for all compact
K ⊆ R

n (by virtue of the Ek being C0-Ahlfors d-regular), we are able to extract a
weakly convergent subsequence. Therefore, without loss of generality, we may assume
µ̃k ⇀ µ̃ to some Ahlfors d-regular Radon measure µ̃.

For i ∈ N, let φi be a C∞-bump function so that 0 ≤ φi ≤ 1, φi ≡ 1 on B(0, i)
and supp φi ⊆ B(0, i+ 1). Let

D′ = {Pφi : P is a non-negative polynomial

with rational coefficients and i ∈ N}

and let D be the set of all rational finite linear combinations of D′. By the Weierstrass
Approximation Theorem, it follows that D′ forms a countable dense subset of C+

0 (R
n)

under ‖ · ‖∞. Clearly then, this is also true for D.
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Let φ ∈ D. Since Ek is C0-Ahlfors d-regular for each k ∈ N, it follows that

µk(supp φ) ≤ µ̃k(suppφ) ≤ C0(diam(supp φ)/2)d < ∞.

Then, since φ is bounded, we can extract a convergent subsequence of {
´

φ dµk}. We
claim we can extract a further subsequence so that

Lφ = lim
k→∞

ˆ

φ dµk exists for all φ ∈ D.

This follows by a diagonal argument: enumerate D = {φ1, . . .}. Pick a subsequence
n1
k so that

´

φ1 dµn1
k

converges. Now pick a subsequence n2
k of n1

k so that
´

φ2dµn2
k

converges, and inductively, given a subsequence nj
k, pick a subsequence nj+1

k of this
sequence so that

´

φj+1dµnj+1
k

converges. Now set nk = nk
k. Then for each j, nk

k is a

subsequence of nj
k for k > j, and the limit above converges for every φj , which proves

the claim.
We will show that L defines a linear functional on all of C0(R

n). We first treat
the case of non-negative functions.

Lemma A.8. Let k ≥ 0 and N ≥ 1. For a function φ of the form

φ =

N
∑

j=1

aj1Aj

where aj ≥ 0 and Aj ⊆ R
n are such that dist(Ai, Aj) ≥ 2ρk, we have

ˆ

φ dµk =
N
∑

j=1

ajµk(Aj).

Proof. We claim µk is additive on any subset of {Aj}, i.e. for any C ⊆ {Aj}, we
have

µk





⋃

Aj∈C

Aj



 =
∑

Aj∈C

µk(Aj).

Let C ⊆ {Aj}. The forward inequality is immediate by sub-additivity. To prove the
reverse inequality, let ε > 0 and suppose U is a countable cover for

⋃

Aj∈C
Aj such

that diam(U) ≤ ρk for each U ∈ U and

∑

U∈U

diam(U)d ≤ µk





⋃

Aj∈C

Aj



+ ε.

Since the Aj are separated by 2ρk and diam(U) ≤ ρk, each U intersects only a single
Aj. Hence, the sets Uj = {U : U ∩ Aj 6= ∅} form a partition of U . Then,

∑

Aj∈C

µk(Aj) ≤
∑

Aj∈C

∑

U∈Uj

diam(U)d =
∑

U∈U

diam(U)d ≤ µk





⋃

Aj∈C

Aj



+ ε,

which proves the claim.
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Let φ be as above. We may assume aj+1 ≥ aj for all j = 0, 1, . . . , where we define
a0 = 0. Then

ˆ

φ dµk =

ˆ ∞

0

µk({x ∈ R
n : φ(x) > t}) dt

=

N
∑

j=1

ˆ aj

aj−1

µk({x ∈ R
n : φ(x) > t}) dt

=
N
∑

j=1

(aj − aj−1)µk

(

N
⋃

i=j

Ai

)

=
N
∑

j=1

(aj − aj−1)
N
∑

i=j

µk(Ai)

=

N
∑

i=1

µk(Ai)

i
∑

j=1

(aj − aj−1) =

N
∑

i=1

aiµk(Ai). �

As an immediate consequence of Lemma A.8, we get the following.

Corollary A.9. Let k ≥ 0 and N ≥ 1. Suppose φ and ϕ are functions of the
form

φ =

N
∑

j=1

aj1Aj
and ϕ =

N
∑

j=1

a′j1Aj

where aj , a
′
j ≥ 0 and Aj ⊆ R

n are such that dist(Ai, Aj) ≥ 2ρk. Then
ˆ

(φ+ ϕ) dµk =

ˆ

φ dµk +

ˆ

ϕdµk.

Lemma A.10. Let φ, ϕ ∈ D, such that φ, ϕ ≥ 0. Then

L(φ+ ϕ) = Lφ+ Lϕ.

Proof. Let α > 0 (to be chosen small later) and choose m = m(α) large enough
so that if x, y ∈ I ∈ Im then |φ(x) − φ(y)| ≤ α and |ϕ(x) − ϕ(y)| ≤ α. This
is possible since φ and ϕ are C∞ function with compact support and so they have
bounded derivatives. Set

M = sup
x∈Rn

max{φ(x), ϕ(x)}

and let R > 0 be such that supp φ, suppϕ ⊆ B(0, R). For each k ≥ 0, since Ek is
C0-Ahlfors regular, we have

(A.2) µk(B(0, R)) ≤ C0R
d.

Let δ > 0 (to be chosen small enough later). Recall the definition of µ̃, just after the
statement of Lemma A.7. By Lemma A.6, we can find a translate of the dyadic grid
Gm = Gm

x such that

µ̃(Gm ∩ B(0, R)) < δ.

By Lemma A.7, we can choose η > 0 small enough so that

µ̃(Gm(2−mη) ∩B(0, R)) < 2δ.

Since µ̃ is the weak limit of the µ̃k, there exist K = K(δ) such that for k ≥ K,

µ̃k(G
m(2−mη) ∩ B(0, R)) < lim sup

n→∞
µ̃n(G

m(2−mη) ∩ B(0, R)) + δ

≤ µ̃(Gm(2−mη) ∩ B(0, R)) + δ ≤ 3δ.
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Since µk ≤ µ̃k for all k, this remains true for the µk, that is, for k ≥ K,

(A.3) µk(G
m(2−mη) ∩ B(0, R)) ≤ 3δ.

For I ∈ I , let φI = φ1(1−η)I . We can write

φ =
∑

I∈Im

φI +

(

φ−
∑

I∈Im

φI

)

=
∑

I∈Im

φI + φG.

Notice that φG is supported on Gm(2−mη) ∩ B(0, R). Define also φ̃I : R
n → R, such

that
φ̃I(x) = inf

y∈I
φ(y)1(1−η)I(x).

By our choice of m, |φI − φ̃I | ≤ α for each I ∈ Im. Hence

φ ≤
∑

I∈Im

(φ̃I + α1(1−η)I∩B(0,R)) + φG ≤ α1B(0,R) +
∑

I∈Im

φ̃I + φG

Similarly, we define ϕI , ϕ̃I and ϕG, to get

ϕ ≤ α1B(0,R) +
∑

I∈Im

ϕ̃I + ϕG.

For any I, I ′ ∈ Im, we have

dist((1− η)I, (1− η)I ′) ≥ 2−mη.

Thus, for k large enough so that 2ρk ≤ 2−mη, by Corollary A.9,
ˆ

∑

I∈Im

φ̃I dµk +

ˆ

∑

I∈Im

ϕ̃I dµk =

ˆ

(

∑

I∈Im

φ̃I +
∑

I∈Im

ϕ̃I

)

dµk.(A.4)

Let ε > 0, γ ∈ (0, 1) and suppose α and δ have been chosen small enough so that
γε ≥ 4C0R

dα + 12Mδ. Using the above combined with Lemma A.1 we can find
K = K(η, δ,m) such that for k ≥ K,
ˆ

φ dµk +

ˆ

ϕdµk

(A.1)

≤
1

1− γ

[

ˆ

∑

I∈Im

φ̃I dµk +

ˆ

∑

I∈Im

ϕ̃I dµk

]

+
1

γ

[
ˆ

(α1B(0,R) + φG) dµk +

ˆ

(α1B(0,R) + ϕG) dµk

]

(A.4)
(A.1),(γ=1/2)

≤
1

1− γ

[

ˆ

(

∑

I∈Im

φ̃I +
∑

I∈Im

ϕ̃I

)

dµk

]

+
2

γ

[

2

ˆ

α1B(0,R) dµk +

ˆ

φGdµk +

ˆ

ϕG dµk

]

≤
1

1− γ

ˆ

(φ+ ϕ) dµk

+
2

γ

[

2αµk(B(0, R)) + 2Mµk(G
m(2−mη) ∩ B(0, R))

]

(A.2)
(A.3)

≤
1

1− γ

ˆ

(φ+ ϕ) dµk +
2

γ

[

2C0R
dα + 6Mδ

]

≤
1

1− γ

ˆ

(φ+ ϕ) dµk + ε.
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On the other hand

ˆ

(φ+ ϕ) dµk ≤

ˆ

(2α1B(0,R) +
∑

I∈Im

φ̃I + φG +
∑

I∈Im

ϕ̃I + ϕG) dµk

(A.1)

≤
1

1− γ

ˆ

(

∑

I∈Dm

φ̃I +
∑

I∈Im

ϕ̃I

)

dµk

+
1

γ

ˆ

(2α1B(0,R) + φG + ϕG) dµk

(A.1),(γ=1/2)

≤
1

1− γ

[

ˆ

∑

I∈Im

φ̃I dµk +

ˆ

∑

I∈Im

ϕ̃I dµk

]

+
2

γ

[
ˆ

2α1B(0,R) dµk +

ˆ

(φG + ϕG) dµk

]

≤
1

1− γ

[
ˆ

φ dµk +

ˆ

ϕdµk

]

+
2

γ

[

2αµk(B(0, R)) + 2Mµk(G
m(2−mη) ∩B(0, R))

]

≤
1

1− γ

[
ˆ

φ dµk +

ˆ

ϕdµk

]

+ ε.

Taking k → ∞ in the previous two sequences of inequalities, we get

L(φ) + L(ϕ) ≤
1

1− γ
L(φ+ ϕ) + ε

and

L(φ + ϕ) ≤
1

1− γ
(L(φ) + L(ϕ)) + ε

Thus, taking ε, γ → 0 we have

L(φ+ ϕ) = L(φ) + L(ϕ)

and this finishes the proof. �

Lemma A.11. Let f ∈ C+
0 (R

n) and R > 0 be such that supp f ⊆ B(0, R).
Suppose {fi} is a decreasing sequence of functions in D such that fi(x) ≥ f(x) for
all x ∈ R

n, supp fi ⊆ B(0, R+ 1) and fi → f in L∞. Then the limit

L(f) = lim
k→∞

ˆ

f dµk

exists and

L(f) = lim
i→∞

L(fi).
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Proof. Let k ∈ N. For each i, since µk is upper C0-Ahlfors d-regular and fi ≥ f,
and for any γ ∈ (0, 1), we have

∣

∣

∣

∣

ˆ

f dµk −

ˆ

fi dµk

∣

∣

∣

∣

=

ˆ

fi dµk −

ˆ

f dµk

=

ˆ

(fi − f + f) dµk −

ˆ

f dµk

(A.1)

≤
1

γ

ˆ

(fi − f) dµk +
γ

1− γ

ˆ

f dµk

≤

(

1

γ
‖fi − f‖∞ +

γ

1− γ
‖f‖∞

)

µk(B(0, R + 1))

≤ C0(R + 1)d
(

1

γ
‖fi − f‖∞ +

γ

1− γ
‖f‖∞

)

Taking k → ∞, we find

L(fi)− C0(R + 1)d
(

1

γ
‖fi − f‖∞ +

γ

1− γ
‖f‖∞

)

≤ lim inf
k→∞

ˆ

f dµk ≤ lim sup
k→∞

ˆ

f dµk ≤ lim sup
k→∞

ˆ

fi dµk ≤ L(fi).

Since L(fi) is a monotone decreasing sequence of non-negative real numbers,
limi→∞ L(fi) exists. Hence, taking i → ∞, it follows that

lim
i→∞

L(fi)− C0(R + 1)d
γ

1− γ
‖f‖∞ ≤ lim inf

k→∞

ˆ

f dµk ≤ lim sup
k→∞

ˆ

f dµk

≤ lim sup
k→∞

ˆ

fi dµk ≤ lim
i→∞

L(fi).

Since γ ∈ (0, 1) is arbitrary, this implies the limit L(f) exists and equals the desired
quantity. �

Lemma A.12. The functional L is linear on C+
0 (R

n).

Proof. Let f, g ∈ C+
0 (R

n). Since D′ is dense in C+
0 (R

n), we can find sequence of

function {f̃i} and {g̃i} in D′ such that

‖f − f̃i‖∞ ≤ 3−i and ‖g − g̃i‖∞ ≤ 3−i.(A.5)

Let Rf and Rg positive integers such that supp f ⊆ B(0, Rf) and supp g ⊆ B(0, Rg).
Recall that functions in D′ are of the form Pφj for some polynomial P with rational
coefficients and a bump function φj equal 1 on B(0, j) with support in B(0, j + 1).

Thus, without loss of generality we can assume f̃i = P f
i φRf

and g̃i = P g
i φRg where

P f
i , P

g
i are non-negative polynomials with rational coefficients such that

‖f − P f
i ‖L∞(BRf

) ≤ 3−i and ‖g − P g
i ‖L∞(BRg )

≤ 3−i.

We plan to modify the f̃i and g̃i so that they monotonically decrease to f and g
respectively. For each i, define

fi = f̃i + 2 · 3−iφRf
and gi = g̃i + 2 · 3−iφRg .
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We first consider the fi. We still have that fi → f and supp fi ⊆ B(0, Rf + 1).
Outside of B(0, Rf), f = 0 ≤ fi. For x ∈ B(0, Rf) and i ∈ N,

f(x) + 3−iφRf
(x) = f(x) + 3−i

(A.5)

≤ f̃i(x) + 2 · 3−iφRf
(x) = fi(x)

and

fi(x) = f̃i(x) + 2 · 3−iφRf
(x) ≤ (P f

i φRf
)(x) + 2 · 3−iφRf

(x)

≤ (f(x) + 3−i)φRf
(x) + 2 · 3−iφRf

(x) = f(x) + 3−i+1φRf
(x).

It follows that f ≤ fi for each i and

fi+1 ≤ f + 3−iφRf
≤ fi.

In summary the sequence {fi} satisfies the hypothesis of Lemma A.11 for f . The
same is true of the sequence {gi} for g. It is not difficult to show that

hi = fi + gi

satisfies the conditions of Lemma A.11 for f + g. Then, since L is linear on D, we
have

L(f + g) = lim
i→∞

L(hi) = lim
i→∞

L(fi) + lim
i→∞

L(gi) = L(f) + L(g)

which completes the proof. �

Proof of Lemma A.5. Let {µkj} be the subsequence defining L. By Lemma A.12,
L defines a linear functional on C+

0 (R
n). We claim L defines a linear functional on

C0(R
n). By definition, for any f ∈ C0(R

n) and k ∈ N, we have
ˆ

f dµk =

ˆ

f+ dµk −

ˆ

f− dµk.

Hence, the limit

L(f) = lim
j→∞

ˆ

f dµkj

exists and
L(f) = L(f+)− L(f−)

Suppose φ, ϕ ∈ C0(R
n). Then φ+, φ−, ϕ+ and ϕ− are in C+

0 (R
n). Observe that we

can write

(φ+ ϕ)+ − (φ+ ϕ)− = φ+ ϕ = (φ+ + ϕ+)− (φ− + ϕ−),

and after rearranging

(φ+ ϕ)+ + (φ− + ϕ−) = (φ+ + ϕ+) + (φ+ ϕ)−.

Taking L on both sides and using linearity of L on C+
0 (R

n), we have

L((φ+ ϕ)+) + L(φ− + ϕ−) = L(φ+ + ϕ+) + L((φ+ ϕ)−).

Rearranging once more gives

L((φ+ ϕ)+)− L((φ+ ϕ)−) = L(φ+ + ϕ+)− L(φ− + ϕ−).(A.6)

Using (A.6), linearity on C0(R
n) follows since

L(φ+ ϕ) = L((φ+ ϕ)+)− L((φ+ ϕ)−)

(A.6)
= L(φ+ + ϕ+)− L(φ− + ϕ−)

= L(φ+)− L(φ−) + L(ϕ+)− L(ϕ−)

= L(φ) + L(ϕ).
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Now, since L is linear on C0(R
n), by the Riesz Representation Theorem we can find

a Radon measure µ such that
ˆ

φ dµ = lim
j→∞

ˆ

φ dµkj

for all φ ∈ C0(R
n) as required. �
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