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Semigroups for quadratic evolution equations acting
on Shubin–Sobolev and Gelfand–Shilov spaces

Patrik Wahlberg

Abstract. We consider the initial value Cauchy problem for a class of evolution equations

whose Hamiltonian is the Weyl quantization of a homogeneous quadratic form with non-negative

definite real part. The solution semigroup is shown to be strongly continuous on several spaces: the

Shubin–Sobolev spaces, the Schwartz space, the tempered distributions, the equal index Beurling

type Gelfand–Shilov spaces and their dual ultradistribution spaces.

Neliöllisten evoluutioyhtälöiden ratkaisupuoliryhmät

Shubinin–Sobolevin ja Gelfandin–Shilovin avaruuksissa

Tiivistelmä. Tarkastelemme eräiden evoluutioyhtälöiden Cauchyn alkuarvo-ongelmaa tilan-

teessa, jossa yhtälön Hamiltonin operaattori on reaaliosaltaan positiivisesti semidefiniitin homogee-

nisen neliömuodon Weylin kvantisointi. Ratkaisupuoliryhmä osoitetaan vahvasti jatkuvaksi useissa

avaruuksissa: Shubinin–Sobolevin avaruuksissa, Schwartzin avaruudessa, vaimennettujen distribuu-

tioiden joukossa, Beurlingin-tyyppisissä Gelfandin–Shilovin avaruuksissa, joiden indeksit ovat kes-

kenään yhtä suuret, sekä näiden ultradistribuutioista koostuvissa duaaliavaruuksissa.

1. Introduction

Consider the Cauchy problem for the evolution equation
{
∂tu(t, x) + qw(x,D)u(t, x) = 0, t > 0, x ∈ R

d,

u(0, ·) = u0 ∈ L2(Rd),

where qw(x,D) is the Weyl quantization of a symbol q which is a homogeneous
quadratic form on the phase space T ∗

R
d, defined by a symmetric matrix Q ∈ C

2d×2d

such that ReQ > 0. Particular cases include the heat equation, the free Schrödinger
equation and the harmonic oscillator Schrödinger equation.

Hörmander [19] showed that the solution operator e−tqw(x,D) is a strongly contin-
uous contraction semigroup on L2(Rd) with respect to the parameter t > 0. Semi-
group theory then guarantees that u(t, x) = e−tqw(x,D)u0 is the unique solution to the
Cauchy problem when u0 ∈ D(qw(x,D)) ⊆ L2(Rd) where D(qw(x,D)) denotes the
domain of the closure of qw(x,D) considered as an unbounded operator on L2. In
this paper we show that the semigroup e−tqw(x,D) is strongly continuous in several
other functional frameworks.

First we show strong continuity on the Shubin–Sobolev spaces, or Hilbert modu-
lation spaces M2

s (R
d), with polynomial weights indexed by s ∈ R. Since the M2

s (R
d)

norms for s > 0 is a system of seminorms for the Schwartz space S (Rd) we obtain as
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byproduct the following results. The propagator e−tqw(x,D) is a locally equicontinuous
strongly continuous semigroup on S (Rd). By duality it is also strongly continuous
on the tempered distributions S ′(Rd), equipped with either the weak∗ or the strong
topology. In the latter case the semigroup is moreover locally equicontinuous.

Then we consider the equal index Beurling type Gelfand–Shilov spaces Σs(R
d)

for s > 1
2
. Again we prove that the propagator is a locally equicontinuous strongly

continuous semigroup on Σs(R
d), that extends by duality to a strongly continuous

semigroup on the Gelfand–Shilov ultradistribution space Σ′
s(R

d), equipped with ei-
ther the weak∗ or the strong topology. In the latter case we show again local equicon-
tinuity. In the process we show that the Gelfand–Shilov space Σs(R

d) is reflexive,
which apparently has not been stated in the literature.

The proofs rely heavily on Hörmander’s results [19]. We use both his formula for
the Weyl symbol of the propagator e−tqw(x,D), and his expression of the propagator
as a Fourier integral operator with respect to a quadratic phase function. The latter
is a particular case of an extension of the metaplectic group, called the metaplectic
semigroup in [19], indexed by the semigroup of complex symplectic matrices that are
positive in a certain sense.

The results presented here provide a link that is missing in our papers [4, 27, 33].
In fact a discussion on the action of the solution semigroup on tempered distributions
and on Gelfand–Shilov ultradistributions is lacking in them.

The class of evolution equations under study in this paper is currently an active
field of research [13, 24, 27]. In particular it has been studied with respect to Gelfand–
Shilov smoothing effects [14, 15], where it turns out that the singular space [13] plays
a crucial role. The singular space is a linear subspace of the phase space T ∗

R
d

determined by the quadratic form q.
The paper is organized as follows. Section 2 treats the functional analytical

background concerning the spaces of functions and (ultra-)distributions we study. In
Section 3 we specify the investigated class of evolution equations, and we give a brief
overview of Hörmander’s results [19] on the propagator acting on L2 expressed with
Fourier integral operators. In Section 4 we prepare for the main results in Sections 5
and 6, in particular by using results from [19] to study the action of differential and
monomial multiplication operators to the left of the propagator. Section 5 treats
strong continuity of the semigroup on Shubin–Sobolev spaces and its consequences,
and finally Section 6 concerns strong continuity on Gelfand–Shilov spaces and their
duals.

2. Preliminaries

An open ball in a Banach space X with center x0 ∈ X and radius r > 0 is
denoted Br(x0) = {x ∈ X : ‖x−x0‖ < r}, and Br = Br(0). We use 〈x〉 = (1+ |x|2)

1

2

for x ∈ R
d, and the partial derivative Dj = −i∂j , 1 6 j 6 d, acting on functions

and distributions on R
d, with extension to multi-indices. The standard basis vector

in R
d with index 1 6 j 6 d is denoted ej ∈ R

d. The transpose of a matrix A ∈
C

d×d is denoted AT . The real (complex) quadratic matrices of dimension d is R
d×d

(Cd×d), the group of invertible real (complex) matrices is denoted GL(d,R) ⊆ R
d×d

(GL(d,C) ⊆ C
d×d), and the subgroup of real orthogonal matrices is denoted O(d) ⊆

GL(d,R).
We write f(x) . g(x) provided there exists C > 0 such that f(x) 6 C g(x) for

all x in the domain of f and of g. The symbol f(x) ≍ g(x) means that f(x) . g(x)
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and g(x) . f(x). The normalization of the Fourier transform is

Ff(ξ) = f̂(ξ) = (2π)−
d
2

ˆ

Rd

f(x)e−i〈x,ξ〉 dx, ξ ∈ R
d,

for f ∈ S (Rd) (the Schwartz space), where 〈 · , · 〉 denotes the scalar product on R
d.

The conjugate linear action of a (ultra-)distribution u on a test function φ is written
(u, φ), consistent with the L2 inner product ( · , · ) = ( · , · )L2 which is conjugate
linear in the second argument.

Denote translation by Txf(y) = f(y−x) and modulation by Mξf(y) = ei〈y,ξ〉f(y)
for x, y, ξ ∈ R

d where f is a function or distribution defined on R
d. The composition

is denoted Π(x, ξ) = MξTx. Let ϕ ∈ S (Rd) \ {0}. The short-time Fourier transform
of a tempered distribution u ∈ S ′(Rd) is defined by

Vϕu(x, ξ) = (2π)−
d
2 (u,MξTxϕ), x, ξ ∈ R

d.

Then Vϕu is smooth and polynomially bounded [12, Theorem 11.2.3], and we have

(2.1) (u, f) = (Vϕu, Vϕf)L2(R2d)

for u ∈ S ′(Rd) and f ∈ S (Rd), provided ‖ϕ‖L2 = 1, cf. [12, Theorem 11.2.5].
The Hilbert modulation space, also known as the Shubin–Sobolev space, M2

s (R
d)

⊆ S ′(Rd) of order s ∈ R [9, 12, 23, 31] has norm

(2.2) ‖u‖M2
s
:= ‖〈·〉sVϕu‖L2(R2d) =

(
¨

R2d

〈(x, ξ)〉2s|Vϕu(x, ξ)|
2 dx dξ

)1/2

.

Different functions ϕ ∈ S (Rd) \ {0} give equivalent norms. We have M2
0 (R

d) =
L2(Rd), and for any s, t ∈ R with t 6 s the embeddings

(2.3) S (Rd) ⊆ M2
s (R

d) ⊆ M2
t (R

d) ⊆ S
′(Rd)

where S ′ is equipped with its weak∗ topology, and

(2.4) S (Rd) =
⋂

s∈R

M2
s (R

d), S
′(Rd) =

⋃

s∈R

M2
s (R

d).

(Inclusions of function and distribution spaces understand embeddings.)
We need some elements from the calculus of pseudodifferential operators [10, 17,

23, 31]. Let a ∈ C∞(R2d) and m ∈ R. Then a is a Shubin symbol of order m,
denoted a ∈ Γm, if for all α, β ∈ N

d there exists a constant Cα,β > 0 such that

(2.5) |∂α
x∂

β
ξ a(x, ξ)| 6 Cα,β〈(x, ξ)〉

m−|α+β|, x, ξ ∈ R
d.

The Shubin symbols Γm form a Fréchet space where the seminorms are given by the
smallest possible constants in (2.5).

For a ∈ Γm a pseudodifferential operator in the Weyl quantization is defined by

(2.6) aw(x,D)f(x) = (2π)−d

ˆ

R2d

ei〈x−y,ξ〉a

(
x+ y

2
, ξ

)
f(y) dy dξ, f ∈ S (Rd),

when m < −d. The definition extends to general m ∈ R if the integral is viewed as
an oscillatory integral. The operator aw(x,D) then acts continuously on S (Rd) and
extends uniquely by duality to a continuous operator on S ′(Rd). By Schwartz’s ker-
nel theorem the Weyl quantization procedure may be extended to a weak formulation
which yields operators aw(x,D) : S (Rd) → S ′(Rd), even if a is only an element of
S ′(R2d).
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For a ∈ S ′(R2d) and f, g ∈ S (Rd) we have

(2.7) (aw(x,D)f, g) = (2π)−
d
2 (a,W (g, f))

where

(2.8) W (g, f)(x, ξ) = (2π)−
d
2

ˆ

Rd

g(x+ y/2)f(x− y/2) e−i〈y,ξ〉 dy ∈ S (R2d)

is the Wigner distribution [10, 12].
According to [23, Theorem 1.7.16 and Corollary 1.7.17], [31, Theorem 25.2], the

Weyl operators with a ∈ Γm act continuously on the Hilbert modulation spaces as

(2.9) aw(x,D) : M2
s (R

d) → M2
s−m(R

d), s ∈ R.

The real phase space T ∗
R

d ≃ R
d⊕R

d is a real symplectic vector space equipped
with the canonical symplectic form

σ((x, ξ), (x′, ξ′)) = 〈x′, ξ〉 − 〈x, ξ′〉, (x, ξ), (x′, ξ′) ∈ T ∗
R

d.

This form can be expressed with the inner product as σ(X, Y ) = 〈JX, Y 〉 for X, Y ∈
T ∗

R
d where

(2.10) J =

(
0 Id

−Id 0

)
∈ R

2d×2d.

The complex phase space T ∗
C

d ≃ C
d ⊕ C

d is likewise a complex symplectic vector
space with respect to the same symplectic form. (Note that 〈 · , · 〉 is not conjugate
linear in one argument, but bilinear for arguments in C

d ×C
d.) The real (complex)

symplectic group Sp(d,R) (Sp(d,C)) is the set of matrices in GL(2d,R) (GL(2d,C))
that leaves σ invariant. Hence J ∈ Sp(d,R). A Lagrangian subspace λ ⊆ T ∗

R
d

(λ ⊆ T ∗
C

d) is a real (complex) linear space of dimension d such that σ|λ×λ = 0. A
Lagrangian λ ⊆ T ∗

C
d is called positive [18, 19] if

iσ(X,X) > 0, X ∈ λ.

To each symplectic matrix χ ∈ Sp(d,R) is associated an operator µ(χ) that is
unitary on L2(Rd), and determined up to a complex factor of modulus one, such that

(2.11) µ(χ)−1aw(x,D)µ(χ) = (a ◦ χ)w(x,D), a ∈ S
′(R2d)

(cf. [10, 17]). The operator µ(χ) is a homeomorphism on S and on S ′.
The mapping Sp(d,R) ∋ χ → µ(χ) is called the metaplectic representation

[10]. It is in fact a representation of the so called 2-fold covering group of Sp(d,R),
which is called the metaplectic group. The metaplectic representation satisfies the
homomorphism relation modulo a change of sign:

µ(χχ′) = ±µ(χ)µ(χ′), χ, χ′ ∈ Sp(d,R).

We will use two systems of seminorms on S (Rd). The first is

(2.12) S ∋ ϕ 7→ ‖ϕ‖n := max
|α+β|6n

sup
x∈Rd

∣∣xαDβϕ(x)
∣∣ , n ∈ N,

and the second is

(2.13) S ∋ ϕ 7→ ‖ϕ‖M2
s
, s > 0.

The fact that the seminorms (2.13) are equivalent to (2.12) follows from [12, Corol-
lary 11.2.6 and Lemma 11.3.3].
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Let h, s > 0 be fixed. The space denoted Ss,h(R
d) is the set of all f ∈ C∞(Rd)

such that

(2.14) ‖f‖Ss,h
≡ sup

|xαDβf(x)|

h|α+β|(α! β!)s

is finite, where the supremum is taken over all α, β ∈ N
d and x ∈ R

d. The function
space Ss,h is a Banach space which increases with h and s, and Ss,h ⊆ S . The
topological dual S ′

s,h(R
d) is a Banach space and S ′(Rd) ⊆ S ′

s,h(R
d). If s > 1/2,

then Ss,h and
⋃

h>0 S1/2,h contain all finite linear combinations of Hermite functions.
The Beurling type Gelfand–Shilov space Σs(R

d) is the projective limit of Ss,h(R
d)

with respect to h [11]. This means

(2.15) Σs(R
d) =

⋂

h>0

Ss,h(R
d)

and the Fréchet space topology of Σs(R
d) is defined by the seminorms ‖ · ‖Ss,h

for

h > 0. Then Σs(R
d) 6= {0} if and only if s > 1/2 [26]. The topological dual of Σs(R

d)
is the space of (Beurling type) Gelfand–Shilov ultradistributions [11, Section I.4.3]

(2.15)′ Σ′
s(R

d) =
⋃

h>0

S ′
s,h(R

d).

The dual space Σ′
s(R

d) may be equipped with several topologies: the weak∗

topology, the strong topology, the Mackey topology, and the topology defined by the
union (2.15)′ as an inductive limit topology [30]. The latter topology is the strongest
topology such that the inclusion S ′

s,h(R
d) ⊆ Σ′

s(R
d) is continuous for all h > 0.

As we shall see shortly, the space Σs(R
d) may be equipped with Hilbert space

seminorms, and thus it may be considered a countably-Hilbert space [1]. According
to [1, Theorem 4.16] the strong, the Mackey and the inductive limit topologies on
Σ′

s(R
d) coincide.

We will study Σ′
s(R

d) equipped with the weak∗ topology, denoted Σ′
s,w(R

d), or

with the strong topology, denoted Σ′
s,str(R

d). The latter topology is defined by semi-
norms

Σ′
s(R

d) ∋ u 7→ sup
ϕ∈B

|(u, ϕ)|

for each subset B ⊆ Σs(R
d) which is bounded, that is uniformly bounded with respect

to each seminorm. Both spaces Σ′
s,w(R

d) and Σ′
s,str(R

d) are sequentially complete
[11, Theorems I.5.1 and I.5.6]. From the latter result we also have: A sequence is
convergent in Σ′

s,w(R
d) exactly when it converges in the weak∗ topology of S ′

s,h(R
d)

for some h > 0.
By the proof of Proposition 6.17 (see Section 6) it will follow that the space

Σs(R
d) is a perfect space in the terminology of [11]: It is a space in which any

bounded set is relatively compact. By [11, Theorem I.6.4] sequential convergence in
Σ′

s,w and Σ′
s,str hence coincide.

The Roumieu type Gelfand–Shilov space is the union

Ss(R
d) =

⋃

h>0

Ss,h(R
d)

equipped with the inductive limit topology [30], that is the strongest topology such
that each inclusion Ss,h(R

d) ⊆ Ss(R
d) is continuous. Then Ss(R

d) 6= {0} if and
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only if s > 1/2. The corresponding (Roumieu type) Gelfand–Shilov ultradistribution
space is

S ′
s(R

d) =
⋂

h>0

S ′
s,h(R

d).

For every s > 0 and ε > 0

Σs(R
d) ⊆ Ss(R

d) ⊆ Σs+ε(R
d).

We will not use the Roumieu type spaces in this article but mention them as a service
to a reader interested in a wider context. On a similar note we notice that (α!β!)s in
(2.14) may be replaced by α!s1β!s2 for different parameters s1, s2 > 0 which leads to
a more flexible family of spaces. In this paper we restrict to the equal index case.

The Gelfand–Shilov (ultradistribution) spaces enjoy invariance properties, with
respect to translation, dilation, tensorization, coordinate transformation and (partial)
Fourier transformation. The Fourier transform extends uniquely to homeomorphisms
on S ′(Rd), S ′

s(R
d) and Σ′

s(R
d), and restricts to homeomorphisms on S (Rd), Ss(R

d)
and Σs(R

d), and to a unitary operator on L2(Rd). In particular the Wigner distri-
bution (2.8) satisfies W (g, f) ∈ Σs(R

2d) if f, g ∈ Σs(R
d), and the Weyl quantization

formula (2.7) holds for a ∈ Σ′
s(R

2d) and f, g ∈ Σs(R
d). Likewise (2.1) holds when

u ∈ Σ′
s(R

d), f ∈ Σs(R
d), ϕ ∈ Σs(R

d) and ‖ϕ‖L2 = 1.
We will use the Hermite functions

hα(x) = π− d
4 (−1)|α|(2|α|α!)−

1

2 e
|x|2

2 ∂αe−|x|2, x ∈ R
d, α ∈ N

d,

and formal series expansions with respect to Hermite functions:

f =
∑

α∈Nd

cαhα

where {cα} is a sequence of complex coefficients defined by cα = cα(f) = (f, hα).
Gelfand–Shilov spaces and their ultradistribution duals, as well as the Schwartz

space S and the tempered distributions S ′, and L2, can be identified by means of
such series expansions, with characterizations in terms of the corresponding sequence
spaces (see [7, 6, 22, 28]). Let

f =
∑

α∈Nd

cαhα and φ =
∑

α∈Nd

dαhα

with sequences {cα} and {dα} of finite support. Then the sesquilinear form

(2.16) (f, φ) =
∑

α∈Nd

cαdα

agrees with the inner product on L2(Rd) since {hα}α∈Nd ⊆ L2(Rd) is an orthonormal
basis.

The form (2.16) extends uniquely to the duality on S ′(Rd) × S (Rd), to the
duality on S ′

s(R
d)×Ss(R

d) for s > 1/2, as well as to the duality on Σ′
s(R

d)×Σs(R
d)

for s > 1/2.
To wit Simon [28, Theorem V.13] showed that the family of Hilbert sequence

spaces

ℓ2r = ℓ2r(N
d) =



{cα} : ‖cα‖ℓ2r =

(
∑

α∈Nd

|cα|
2〈α〉2r

) 1

2

< ∞
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for r > 0 provides a family of seminorms for S that is equivalent to (2.12), via
the homeomorphism S ∋ f 7→ {(f, hα)}α∈Nd . Thus the Schwartz space S (Rd) is
identified topologically as the projective limit

(2.17) S (Rd) =
⋂

r>0

{
∑

α∈Nd

cαhα : {cα} ∈ ℓ2r

}

and S ′(Rd) is identified [28, Theorem V.14] as the union

S
′(Rd) =

⋃

r>0

{
∑

α∈Nd

cαhα : {cα} ∈ ℓ2−r

}

with weak∗ convergence of the sum for each element in S ′.
Likewise Langenbruch [22, Theorem 3.4] has shown that the family of Hilbert

sequence spaces

ℓ2s,r = ℓ2s,r(N
d) =



{cα} : ‖cα‖ℓ2s,r =

(
∑

α∈Nd

|cα|
2e2r|α|

1
2s

) 1

2

< ∞





for r > 0 yields a family of seminorms that is equivalent to the family (2.14) for all
h > 0, when s > 1

2
. For s > 1/2 this means that the space Σs(R

d) can be identified
topologically as the projective limit

(2.18) Σs(R
d) =

⋂

r>0

{
∑

α∈Nd

cαhα : {cα} ∈ ℓ2s,r

}

and for s > 1/2 the space Ss(R
d) can be identified topologically as the inductive

limit

Ss(R
d) =

⋃

r>0

{
∑

α∈Nd

cαhα : {cα} ∈ ℓ2s,r

}
.

Moreover [22, Corollary 3.5] shows, in particular, that Σ′
s(R

d) may be identified
as the union

Σ′
s(R

d) =
⋃

r>0

{
∑

α∈Nd

cαhα : {cα} ∈ ℓ2s,−r

}
,

and S ′
s(R

d) may be identified as the intersection

S ′
s(R

d) =
⋂

r>0

{
∑

α∈Nd

cαhα : {cα} ∈ ℓ2s,−r

}
,

in both cases with weak∗ convergence of the sum for each ultradistribution.
Working with Gelfand–Shilov spaces we will occasionally need the inequality (cf.

[4])
|x+ y|1/s 6 2(|x|1/s + |y|1/s), x, y ∈ R

d,

which holds when s > 1
2

and which implies

(2.19)
eA|x+y|1/s 6 e2A|x|1/se2A|y|1/s, A > 0, x, y ∈ R

d,

e−2A|x+y|1/s 6 e−A|x|1/se2A|y|1/s , A > 0, x, y ∈ R
d.

Finally we state the basic definitions of a one-parameter semigroup of operators.
Often semigroups of operators are considered on a Banach space [8, 25] but we need
also the case of a locally convex space [21, 34]. Thus let X be a locally convex
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topological vector space, and let {Tt, t > 0} be a one-parameter family of continuous
linear operators on X. The family {Tt, t > 0} is called a strongly continuous
semigroup provided

T0 = I, TtTs = Tt+s, t, s > 0, and lim
t→0+

Ttx = x ∀x ∈ X.

The infinitesimal generator A of the semigroup Tt is the linear, in general unbounded,
operator

Ax = lim
t→0+

t−1(Tt − I)x

equipped with the domain D(A) ⊆ X of all x ∈ X such that the right-hand side
limit is well defined in X.

A locally equicontinuous strongly continuous semigroup [21] is a strongly contin-
uous semigroup {Tt}t>0 on X such that for all t0 > 0 and each seminorm p on X
there exists a seminorm q on X such that

p(Ttx) 6 q(x), x ∈ X, 0 6 t 6 t0.

3. A class of evolution equations and the propagator on L
2

Let q be a homogeneous quadratic form on T ∗
R

d, that is

(3.1) q(x, ξ) = 〈(x, ξ), Q(x, ξ)〉, (x, ξ) ∈ T ∗
R

d,

where Q ∈ C
2d×2d is symmetric, and suppose its real part is non-negative definite,

denoted ReQ > 0. We study the initial value Cauchy problem for the following class
of evolution equations.

(CP)

{
∂tu(t, x) + qw(x,D)u(t, x) = 0, t > 0, x ∈ R

d,

u(0, ·) = u0 ∈ L2(Rd).

Here qw(x,D) acts on functions of the variable x ∈ R
d. The Hamilton map F

corresponding to q is

F = JQ ∈ C
2d×2d

with J ∈ Sp(d,R) defined by (2.10). This framework of evolution equations has
been studied in many papers, e.g. [13, 19, 24].

The symbol q is a Shubin symbol of order two, q ∈ Γ2, which implies that
qw(x,D) : M2

s+2(R
d) → M2

s (R
d) is continuous for all s ∈ R by (2.9). There is a loss

of regularity of order two.
The operator qw(x,D) can be considered as an unbounded operator in L2(Rd).

In [19, pp. 425–26] it is shown that its maximal realization equals its closure as an
operator initially defined on S , and the closure of −qw(x,D) generates a strongly
continuous contraction semigroup on L2 for t > 0 denoted by e−tqw(x,D). The con-
traction property means that the L2 operator norm satisfies ‖e−tqw(x,D)‖ 6 1 for all
t > 0.

By semigroup theory (see e.g. [25, Theorem I.2.4] and [20, pp. 483–84]) the unique
solution in the space C1([0,∞), L2) to (CP) is

u(x, t) = e−tqw(x,D)u0

where u0 ∈ D(qw(x,D)) ⊆ L2(Rd) which denotes the domain of the closure of
qw(x,D). The notation C1([0,∞), L2) understands that the derivative is right con-
tinuous at t = 0.
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In the particular case when ReQ = 0 the propagator is given by means of the
metaplectic representation. In fact, then e−tqw(x,D) is a group of unitary operators on
L2(Rd), and we have by [10, Theorem 4.45]

e−tqw(x,D) = µ(e−2itF ), t ∈ R.

In this case F is purely imaginary and iF ∈ sp(d,R), the real symplectic Lie algebra,
which implies that e−2itF ∈ Sp(d,R) for any t ∈ R [10].

In the general case ReQ > 0, Hörmander [19] has shown that the propagator
e−tqw(x,D) can be identified as a time-indexed family of Fourier integral operators,
described briefly as follows. According to [19, Theorem 5.12] the Schwartz kernel of
the propagator e−tqw(x,D) for t > 0 is an oscillatory integral defined by a quadratic
phase function. More precisely we have

e−tqw(x,D) = Ke−2itF ,

where Ke−2itF : S (Rd) → S ′(Rd) is the linear continuous operator with kernel

(3.2) Ke−2itF (x, y) = (2π)−(d+N)/2

√
det

(
p′′θθ/i p′′θy
p′′xθ ip′′xy

)
ˆ

RN

eip(x,y,θ)dθ ∈ S
′(R2d),

where the quadratic form p is specified below.
By [19, Proposition 5.8] Ke−2itF is in fact continuous on S (Rd). The kernel

Ke−2itF is indexed by the matrix e−2itF ∈ C
2d×2d. By [27, Lemma 5.2] the matrix

e−2itF belongs to Sp(d,C), and its graph

(3.3) λ′ := G(e−2itF ) = {(e−2itFX,X) : X ∈ T ∗
C

d} ⊆ T ∗
C

d × T ∗
C

d,

is a positive Lagrangian with respect to the symplectic form σ1 defined by [27,
Eq. (5.1)]. As explained after [27, Lemma 5.1] the Lagrangian λ′ can be twisted
as in [27, Eq. (5.2)] to give a positive Lagrangian λ ⊆ T ∗

C
2d. According to [19,

Theorem 5.12 and p. 444] the oscillatory integral (3.2) is associated with the positive
Lagrangian λ.

By [27, Proposition 4.4] there exists a quadratic form p on R
2d+N that defines λ,

and this p defines (3.2). The factor in front of the integral (3.2) is designed to make
the oscillatory integral independent of the quadratic form p on R

2d+N , including
possible changes of dimension N as discussed after [27, Proposition 4.2], as long as p
defines λ by means of [27, Eq. (4.8)] with x ∈ C

d replaced by (x, y) ∈ C
2d.

It is shown in [19, p. 444] that the kernel Ke−2itF is uniquely determined by the
Lagrangian λ, apart from a sign ambiguity which is not essential for our purposes.
For brevity we denote Ke−2itF = Kt for t > 0.

By [19, p. 446] the L2 adjoint of Kt, defined by

(3.4) (Ktf, g) = (f,K ∗
t g), f, g ∈ L2(Rd),

is K ∗
t = KT where

T = (e−2itF )−1 = e2itF = e−2itF .

Thus the adjoint K ∗
t is an operator of the same type as Kt. It is obtained from the

latter by conjugation of the matrix F , i.e. K ∗
t = K ∗

e−2itF = Ke−2itF .

4. The propagator, multiplication and differential operators

The following lemma is an important tool for our results. It can be seen as a
commutator relation for the propagator Kt and xαDβ operators, and particularly the
limit behavior as t → 0+.
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Lemma 4.1. If α, β ∈ N
d, then

(4.1) xαDβ
Kt =

∑

|γ+κ|6|α+β|

Cγ,κ(t)Kt x
γDκ

where [0,∞) ∋ t 7→ Cγ,κ(t) are continuous functions that satisfy

(4.2)
lim
t→0+

Cα,β(t) = 1,

lim
t→0+

Cγ,κ(t) = 0, (γ, κ) 6= (α, β).

Proof. Let (x0, ξ0) ∈ T ∗
C

d and set (y0(t), η0(t)) = e2itF (x0, ξ0) ∈ T ∗
C

d. By the
proof of [19, Proposition 5.8] we have

(4.3) (〈Dx, x0〉 − 〈x, ξ0〉)Kt = Kt (〈Dx, y0(t)〉 − 〈x, η0(t)〉) .

We first prove (4.1) and (4.2) when α = 0 and β ∈ N
d using induction. Let

1 6 j 6 d and set x0 = ej and ξ0 = 0. Then

(4.4) lim
t→0+

(y0(t), η0(t)) = (ej , 0),

so (4.3) proves (4.1) and (4.2) when |β| = 1. Suppose (4.1) and (4.2) hold when
α = 0 and |β| = n > 1. Using (4.3) we have for 1 6 j 6 d, x0 = ej and ξ0 = 0

Dej+β
Kt =

∑

|γ+κ|6n

Cγ,κ(t)Kt (〈Dx, y0(t)〉 − 〈x, η0(t)〉)x
γDκ

where limt→0+ C0,β(t) = 1 and limt→0+ Cγ,κ(t) = 0 when (γ, κ) 6= (0, β). Again using
(4.4) we obtain (4.1) and (4.2) for α = 0 and |β| = n + 1, which constitutes the
induction step. Thus the claim (4.1) and (4.2) is true for α = 0 and any β ∈ N

d.
Next let 1 6 j 6 d and set x0 = 0 and ξ0 = −ej . Then

(4.5) lim
t→0+

(y0(t), η0(t)) = (0,−ej).

By combining what we have shown with (4.3) we have for β ∈ N
d

xjD
β
Kt =

∑

|γ+κ|6|β|

Cγ,κ(t)Kt (〈Dx, y0(t)〉 − 〈x, η0(t)〉) x
γDκ

where limt→0+ C0,β(t) = 1 and limt→0+ Cγ,κ(t) = 0 when (γ, κ) 6= (0, β). Invoking
(4.5) proves the claims (4.1) and (4.2) for |α| = 1 and β ∈ N

d. The generalization
to α ∈ N

d arbitrary follows again by induction. �

In the next result we use the concept of a bounded set in S (Rd). A subset
B ⊆ S (Rd) is bounded provided each seminorm is uniformly bounded. Using the
system of seminorms (2.12) this can be expressed as

(4.6) sup
ϕ∈B

‖ϕ‖n = Cn < ∞ ∀n ∈ N.

We prove a few preparatory results that are needed in Section 5, where we show
that the propagator Kt is a strongly continuous semigroup on M2

s (R
d) for all s ∈ R.

Lemma 4.2. If B ⊆ S (Rd) is bounded and γ, κ ∈ N
d, then {xγDκϕ, ϕ ∈

B} ⊆ S (Rd) is also bounded.
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Proof. We use the seminorms (2.12) so we assume that (4.6) is valid. For α, β ∈
N

d we have

∣∣xαDβ (xγDκϕ(x))
∣∣ =

∣∣∣∣∣∣

∑

σ6min(β,γ)

(
β

σ

)
γ! i−|σ|

(γ − σ)!
xα+γ−σDκ+β−σϕ(x)

∣∣∣∣∣∣

6 |γ|!
∑

σ6min(β,γ)

(
β

σ

) ∣∣xα+γ−σDκ+β−σϕ(x)
∣∣

which gives for any n ∈ N

‖xγDκϕ‖n = max
|α+β|6n

sup
x∈Rd

∣∣xαDβ (xγDκϕ(x))
∣∣

6 |γ|! max
|α+β|6n

∑

σ6min(β,γ)

(
β

σ

)
sup
x∈Rd

∣∣xα+γ−σDκ+β−σϕ(x)
∣∣

6 |γ|! ‖ϕ‖n+|γ+κ| max
|α+β|6n

∑

σ6min(β,γ)

(
β

σ

)

6 |γ|!Cn+|γ+κ| max
|α+β|6n

2|β| 6 |γ|! 2nCn+|γ+κ|, ϕ ∈ B. �

Lemma 4.3. If B ⊆ S (Rd) is bounded and ε > 0, then there exists K ∈ N

and ϕj ∈ S (Rd) for 1 6 j 6 K such that

B ⊆

K⋃

j=1

Bε(ϕj)

where the open balls Bε(ϕj) ⊆ L2(Rd) refer to the L2 norm.

Proof. We use the identification (2.17) of S (Rd) as a projective limit of sequence
spaces for Hermite series expansions. Then L2(Rd) corresponds to ℓ2(Nd). We work
on the side of the sequences c = (cα)α∈Nd . Since B ⊆ S (Rd) is bounded there exists
for each r > 0 a bound Cr > 0 such that

‖c‖2ℓ2r =
∑

α∈Nd

|cα|
2〈α〉2r 6 C2

r , c ∈ B.

For r = 1 and N ∈ N this gives
∑

α∈Nd, |α|>N

|cα|
2 =

∑

α∈Nd, |α|>N

|cα|
2〈α〉2−2

6 〈N〉−2
∑

α∈Nd

|cα|
2〈α〉2 6 C2

1 〈N〉−2, c ∈ B.

If we pick N > 0 sufficiently large we thus have

(4.7) sup
c∈B

∑

α∈Nd, |α|>N

|cα|
2 <

ε2

2
.

On the other hand we have

B(N) :=
{
{cα}|α|6N : {cα}α∈Nd ∈ B

}
⊆ C

M

for some M ∈ N, and
∑

|α|6N

|cα|
2 6

∑

α∈Nd

|cα|
2〈α〉2 6 C2

1 , c ∈ B,
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so B(N) ⊆ BC1
⊆ C

M where BC1
denotes the open ball in C

M , considered as a Hilbert

space, with radius C1 > 0. By the compactness of its closure BC1
⊆ C

M there exist
{cj}

K
j=1 ⊆ C

M such that

(4.8) min
16j6K

‖c− cj‖
2
ℓ2M

<
ε2

2
, c ∈ B(N).

We extend cj to elements in ℓ2(Nd) by zero-padding:

cj,α = 0, |α| > N, 1 6 j 6 K.

Combining (4.7) and (4.8) gives

min
16j6K

‖c− cj‖
2
ℓ2(Nd) = min

16j6K

∑

|α|6N

|cα − cj,α|
2 +

∑

|α|>N

|cα|
2 < ε2, c ∈ B.

Thus

B ⊆

K⋃

j=1

Bε(cj). �

Lemma 4.4. If B ⊆ S (Rd) is bounded and α, β ∈ N
d, then

lim
t→0+

sup
ϕ∈B

‖xαDβ(Kt − I)ϕ‖L2 = 0.

Proof. From Lemma 4.1 we obtain for ϕ ∈ S

xαDβ(Kt − I)ϕ = Cα,β(t)(Kt − I)xαDβϕ+ (Cα,β(t)− 1)xαDβϕ

+
∑

|γ+κ|6|α+β|

(γ,κ)6=(α,β)

Cγ,κ(t)Kt x
γDκϕ

where (4.2) holds. The contraction property of Kt acting on L2 yields for 0 < t 6 1

(4.9)

‖xαDβ(Kt − I)ϕ‖L2 6 C‖(Kt − I)xαDβϕ‖L2 + |Cα,β(t)− 1| ‖xαDβϕ‖L2

+
∑

|γ+κ|6|α+β|

(γ,κ)6=(α,β)

|Cγ,κ(t)| ‖x
γDκϕ‖L2

where C > 0.
Let ε > 0. By Lemmas 4.2 and 4.3 there exists K ∈ N and ϕj ∈ S (Rd),

1 6 j 6 K, such that

min
16j6K

‖xαDβϕ− ϕj‖L2 <
ε

8C
, ϕ ∈ B.

Next we use two properties of Kt acting on L2: the contraction property and the
strong continuity. This gives for 0 < t 6 δ

(4.10)

‖(Kt − I)xαDβϕ‖L2 = min
16j6K

‖(Kt − I)(xαDβϕ− ϕj + ϕj)‖L2

6 min
16j6K

(
2‖xαDβϕ− ϕj‖L2 + ‖(Kt − I)ϕj‖L2

)

6
ε

4C
+

ε

4C
=

ε

2C
, ϕ ∈ B,

provided δ > 0 is sufficiently small.
In the next step we use the seminorms (2.12) for S and (4.6). We also use

(4.11) 〈x〉2d = (1 + x2
1 + · · ·+ x2

d)
d =

∑

|σ|6d

Cσx
2σ
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where Cσ > 0 are constants. Thus we obtain for |γ + κ| 6 |α + β|

(4.12) ‖xγDκϕ‖2L2 =
∑

|σ|6d

Cσ

ˆ

Rd

〈x〉−2d|xσ+γDκϕ(x)|2 dx 6 D2
1 C

2
|α+β|+d, ϕ ∈ B,

for some D1 > 0.
Finally we insert (4.10) and (4.12) into (4.9). We obtain then for 0 < t 6 δ,

again after possibly decreasing δ > 0,

‖xαDβ(Kt − I)ϕ‖L2

6 C‖(Kt − I)xαDβϕ‖L2 +D1C|α+β|+d


|Cα,β(t)− 1|+

∑

|γ+κ|6|α+β|

(γ,κ)6=(α,β)

|Cγ,κ(t)|




6
ε

2
+

ε

2
= ε, ϕ ∈ B.

Since ε > 0 is arbitrary this proves the claim. �

Lemma 4.1 is useful in order to understand the behavior of the propagator Kt

as t → 0+, witness Lemma 4.4. We will prove more results in this direction further
on, see Theorems 5.2 and 6.12.

5. Strong continuity on Hilbert modulation spaces
and tempered distributions

In this section we prove that Kt is a strongly continuous semigroup in several
subspaces of the tempered distributions: M2

s (R
d) for any s ∈ R, the Schwartz space

S (Rd), and S ′(Rd) equipped with either the weak∗ or the strong topology. In the
case of S ′(Rd) equipped with the strong topology, we show that the semigroup is
locally equicontinuous.

We need the following tool in the proof of Theorem 5.2.

Lemma 5.1. Let s ∈ R and T > 0. The propagator Kt is bounded on M2
s (R

d)
uniformly over 0 6 t 6 T .

Proof. By [9, Theorem 4.5] (cf. [16, Proposition 1.2]) the modulation spaces are
closed under complex interpolation of Banach spaces [2]. We may thus assume that
s = k ∈ Z. Suppose k > 0. By [23, Theorem 2.1.12]

(5.1) ‖u‖ =
∑

|α+β|6k

‖xαDβu‖L2

is a norm on M2
k (R

d) that is equivalent to (2.2).
From Lemma 4.1 and the contraction property of Kt we obtain

‖Ktu‖M2
k
≍

∑

|α+β|6k

‖xαDβ
Ktu‖L2 6

∑

|α+β|6k

∑

|γ+κ|6|α+β|

|Cγ,κ(t)| ‖x
γDκu‖L2

.
∑

|α+β|6k

‖xαDβu‖L2 ≍ ‖u‖M2
k
,

in the last inequality using the consequence of Lemma 4.1 that the functions Cγ,κ are
continuous and therefore uniformly bounded with respect to t ∈ [0, T ]. This proves
the lemma when k > 0.
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If k < 0 we use duality. In fact the dual of M2
k can be identified with M2

−k with
respect to an extension of the L2 inner product [9], [12, Theorem 11.3.6]. We also
use the expression of the adjoint of Kt as K ∗

t = Ke−2itF , cf. (3.4). By the result
above we have

‖Ke−2itFu‖M2
−k

. ‖u‖M2
−k
, 0 6 t 6 T,

which gives

‖Ktu‖M2
k
= sup

‖g‖
M2

−k
61

|(Ktu, g)| = sup
‖g‖

M2
−k

61

∣∣(u,Ke−2itF g
)∣∣

6 ‖u‖M2
k

sup
‖g‖

M2
−k

61

‖Ke−2itF g‖M2
−k

. ‖u‖M2
k
, 0 6 t 6 T. �

Theorem 5.2. Let s ∈ R. The propagator Kt = e−tqw(x,D) is for t > 0 a strongly

continuous semigroup on M2
s (R

d).

Proof. By Lemma 5.1 the operators Kt are bounded on M2
s , uniformly over

t ∈ [0, T ] for any T > 0. Pick k ∈ N such that k > s. For any ϕ ∈ S (Rd) we obtain
from (2.3), using the norm (5.1) on M2

k , and Lemma 4.4

‖(Kt − I)ϕ‖M2
s
. ‖(Kt − I)ϕ‖M2

k
≍

∑

|α+β|6k

‖xαDβ(Kt − I)ϕ‖L2 −→ 0, t → 0+.

Since S ⊆ M2
s is dense [12, Proposition 11.3.4], we may combine this find, Lemma 5.1

and [8, Proposition I.5.3]. The conclusion of the latter result is then the strong
continuity of Kt on M2

s (R
d).

Finally we consider the semigroup property. If s > 0, then M2
s ⊆ L2. Thus

K0 = I and Kt1+t2 = Kt1Kt2 hold on M2
s (R

d) due to the corresponding properties
on L2. If s < 0, then let u ∈ M2

s (R
d) and let t1, t2 > 0. From the extension of (3.4)

to the duality on M2
−s ×M2

s we have for ϕ ∈ S (Rd)

((Kt1+t2 − Kt1Kt2)u, ϕ) = (u, (K ∗
t1+t2

− K
∗
t2

K
∗
t1
)ϕ) = 0

due to the semigroup property K ∗
t1+t2 = K ∗

t2 K
∗
t1 when the action refers to L2. This

proves the semigroup property Kt1+t2 = Kt1Kt2 for action on M2
s (R

d), and likewise
K0 = I on M2

s (R
d). �

Corollary 5.3. The propagator Kt is for t > 0 a locally equicontinuous strongly

continuous semigroup on S (Rd).

Proof. We use the seminorms (2.13) on S (Rd). The continuity of Kt on S

follows from Lemma 5.1, as well as the local equicontinuity. The strong continuity is
a consequence of the proof of Theorem 5.2. Finally the semigroup property Kt1+t2 =
Kt1Kt2 for t1, t2 > 0, and K0 = I, are immediate consequences of the corresponding
properties for the semigroup acting on L2. �

The generator of the semigroup Kt acting on M2
s (R

d) according to Theorem 5.2
is

(5.2) Asf = lim
h→0+

h−1 (Kh − I) f

for all f ∈ M2
s (R

d) such that the right-hand side limit exists in M2
s (R

d) [25]. The
linear space of all such f ∈ M2

s (R
d) is the domain of As denoted D(As) ⊆ M2

s (R
d).

For each s ∈ R the operator As equipped with the domain D(As) is an unbounded
linear operator in M2

s (R
d). The domain D(As) is dense in M2

s (R
d) and the operator

As is closed [25, Corollary I.2.5].
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It follows from (2.3) that D(As2) ⊆ D(As1) if s1 6 s2 and As2f = As1f if
f ∈ D(As2). Thus we have for 0 6 s1 6 s2

(5.3) As2 ⊆ As1 ⊆ −qw(x,D) ⊆ A−s1 ⊆ A−s2

where −qw(x,D) = A0 denotes the generator of the semigroup Kt on L2.
According to Corollary 5.3 the propagator Kt is also a locally equicontinuous

strongly continuous semigroup on S . The generator of the semigroup Kt acting on
S is

(5.4) Af = lim
h→0+

h−1 (Kh − I) f

for all f ∈ S such that the limit is well defined in S . The space of such f is the
domain denoted D(A) ⊆ S . According to [21, Propositions 1.3 and 1.4] A is a closed
linear operator and D(A) ⊆ S is dense (cf. Remark 5.10).

Let f ∈ D(A) and let s > 0. Then (5.4) converges in S and therefore also in
M2

s , to the same element in M2
s . Thus f ∈ D(As), so this means that D(A) ⊆ D(As)

and A ⊆ As. In particular for s = 0 we have Af = −qw(x,D)f if f ∈ D(A) ⊆ S .
By [31, p. 178] qw(x,D) is continuous on S . Since A is closed and D(A) ⊆ S is
dense we must have D(A) = S . Combined with (5.3) his yields

S = D(A) ⊆
⋂

s∈R

D(As).

If f ∈
⋂

s∈RD(As), then (5.4) converges in S so f ∈ D(A) = S and we can
strengthen the inclusion into

(5.5) S =
⋂

s∈R

D(As).

It follows from above that A is continuous on S . We can thus extend A uniquely
to S ′, using its formal L2 adjoint A∗ = −qw(x,D) acting on S , by

(5.6) (Au, ϕ) = (u,A∗ϕ), u ∈ S
′(Rd), ϕ ∈ S (Rd).

The extension is continuous on S ′ equipped with its weak∗ topology.

Lemma 5.4. For each s ∈ R we have M2
s+2(R

d) ⊆ D(As).

Proof. Since q ∈ Γ2 we have by (2.9) for any s ∈ R

(5.7) ‖qw(x,D)f‖M2
s
. ‖f‖M2

s+2
, f ∈ S .

Let f ∈ M2
s+2(R

d). Since S ⊆ M2
s+2 is a dense subspace [12, Proposition 11.3.4]

there exists a sequence (fn)n>1 ⊆ S such that fn → f in M2
s+2 as n → ∞. By (2.3)

this implies that

(5.8) fn → f in M2
s as n → ∞.

From (5.5) we know that S ⊆ D(As)
⋂
D(qw(x,D)) and hence using (5.7) we obtain

‖As(fn − fm)‖M2
s
= ‖qw(x,D)(fn − fm)‖M2

s
. ‖fn − fm‖M2

s+2

for n,m > 1. Thus (Asfn)n>1 is a Cauchy sequence in M2
s , which converges to

an element g ∈ M2
s . If we combine Asfn → g in M2

s as n → ∞ with (5.8) and
the fact that As is closed, we may conclude that f ∈ D(As) and Asf = g. Hence
M2

s+2(R
d) ⊆ D(As). �

When we consider the equation (CP) in M2
s (R

d), we identify As = −qw(x,D).
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Corollary 5.5. Let s ∈ R and consider the Cauchy problem (CP) in M2
s (R

d).
If u0 ∈ M2

s+2(R
d), then Ktu0 is the unique solution in C1([0,∞),M2

s ).

Proof. The claim is a consequence of Lemma 5.4, [25, Theorem I.2.4] and [20,
pp. 483–84]. �

Finally we obtain from (2.4) the following consequence.

Corollary 5.6. The Cauchy problem (CP) has the solution Ktu0 for any u0 ∈
S ′(Rd). It is unique in the sense of Corollary 5.5.

A version of Corollary 5.6 with additional information can be obtained in another
fashion, as follows.

By Corollary 5.3 we may for fixed t > 0 extend Kt from domain S (Rd) to
S ′(Rd) uniquely by defining

(5.9) (Ktu, ϕ) = (u,K ∗
t ϕ) = (u,Ke−2itFϕ), u ∈ S

′(Rd), ϕ ∈ S (Rd),

since K ∗
t ϕ ∈ S , cf. (3.4). Then Kt1+t2 = Kt1Kt2 for t1, t2 > 0 and K0 = I for the

action on S ′ follows as in the proof of Theorem 5.2.
Denote by S ′

w the space S ′ equipped with its weak∗ topology, with seminorms
S ′ ∋ u 7→ |(u, ϕ)| for all ϕ ∈ S . From Corollary 5.3 it follows that Kt : S ′

w → S ′
w

is continuous for each t > 0. Let u ∈ S ′(Rd). For some s > 0 we have for ϕ ∈ S

|((Kt − I)u, ϕ)| = |(u, (K ∗
t − I)ϕ)| . ‖(K ∗

t − I)ϕ‖M2
s
.

The right-hand side approaches zero as t → 0+ according to Theorem 5.2. We may
conclude that Kt is a strongly continuous semigroup on S ′

w.
The modulus of the right-hand side of (5.9) equals |(u,K ∗

t ϕ)|. For t in the
interval 0 6 t 6 T < ∞ with T > 0 given, this is an indexed family of seminorms
of u ∈ S ′

w, but we cannot estimate {|(u,K ∗
t ϕ)|}06t6T by a single seminorm. Thus

we cannot show that the semigroup Kt is locally equicontinuous on S ′
w. For that

purpose we need to equip S ′ with another topology.
The space S ′

str denotes S ′ equipped with its strong topology [28], with seminorms

S
′ ∋ u 7→ sup

ϕ∈B
|(u, ϕ)|

for each bounded set B ⊆ S . Expressed with the seminorms (2.13) a bounded set
satisfies

sup
ϕ∈B

‖ϕ‖M2
s
= Cs < ∞, ∀s > 0.

If B ⊆ S is bounded and 0 6 t 6 T , then

sup
ϕ∈B

|(Ktu, ϕ)| = sup
ϕ∈B

|(u,K ∗
t ϕ)| 6 sup

ϕ∈B, 06t6T
|(u,K ∗

t ϕ)|, u ∈ S
′.

By Lemma 5.1 {K ∗
t B, 0 6 t 6 T} ⊆ S is a bounded set. This shows that Kt is

continuous on S ′
str for each t > 0, and {Kt}t>0 is a locally equicontinuous semigroup

on S ′
str. It is also a strongly continuous semigroup on S ′

str. In fact let u ∈ S ′(Rd)
and let B ⊆ S be bounded. We have for some k ∈ N using (5.1) and Lemma 4.4

sup
ϕ∈B

|((Kt − I)u, ϕ)| = sup
ϕ∈B

|(u, (K ∗
t − I)ϕ)| . sup

ϕ∈B
‖(K ∗

t − I)ϕ)‖M2
k

6
∑

|α+β|6k

sup
ϕ∈B

‖xαDβ(K ∗
t − I)ϕ‖L2 −→ 0, t → 0+.

We have proved:
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Theorem 5.7. The semigroup Kt is:

(i) strongly continuous on S ′
w, and

(ii) locally equicontinuous strongly continuous on S ′
str.

The generator of the semigroup Kt on S ′
w is denoted

A′
wu = lim

h→0+
h−1 (Kh − I)u

for all u ∈ S ′
w, denoted D(A′

w) ⊆ S ′
w, such that the limit is well defined in S ′

w. The
generator of the semigroup Kt on S ′

str is denoted A′
str. Note that A′

str ⊆ A′
w. By [21,

Proposition 2.1] A′
w = A defined by (5.6) and hence D(A′

w) = S ′.
The local equicontinuity of Kt acting on S ′

str guarantees by [21, Proposition 1.4]
that the operator A′

str is closed. By [21, Proposition 1.3], the inclusion D(A′
str) ⊆ S ′

is dense. Combining the latter two facts gives D(A′
str) = S ′ and A′

str = A′
w = A.

The generators of the two semigroups are identical.
We denote A′ = A′

str = A′
w, and A is defined by (5.4). Extending (5.3) we thus

have for s1 6 s2
A ⊆ As2 ⊆ As1 ⊆ A′.

Remark 5.8. There is also a more abstract motivation for some of the conclu-
sions above, based on the fact that the space S is reflexive [28, Theorem V.24].
Theorem 5.7 (i) is an immediate consequence of the definition (5.9), cf. [21, p. 262].
The reflexivity of S entails the following consequence by [21, Theorem 1 and its
Corollary]. The semigroup Kt, considered as a strongly continuous semigroup on
S ′

w, is automatically a strongly continuous semigroup on S ′
str, and the two semi-

groups have identical infinitesimal generators.

An appeal to [21, Proposition 1.2] and [20, pp. 483–84] gives a version of Corol-
lary 5.6 with a continuity statement. Note that the uniqueness space is larger than
the solution space: C1([0,∞),S ′

str) ⊆ C1([0,∞),S ′
w).

Corollary 5.9. For any u0 ∈ S ′(Rd) the Cauchy problem (CP) has the so-

lution Ktu0 in the space C1([0,∞),S ′
str). The solution is unique in the space

C1([0,∞),S ′
w).

Remark 5.10. A strongly continuous semigroup Tt in a locally convex space X
has the following interesting property. The map [0,∞) ∋ t 7→ Ttu0 is a solution to
(CP) (with qw(x,D) replaced by −A) in C1([0,∞), X) when u0 ∈ D(A) where A
denotes the generator of the semigroup [21, Proposition 1.2]. The proof in [21] uses
integrals of Ttu0 with respect to t over finite intervals in [0,∞). Thanks to the strong
continuity such integrals are well defined as Riemann integrals. Local equicontinuity
is not needed to define integrals, as is done e.g. in the proof of [34, Theorem IX.3.1].
The solution Ttu0 is unique in C1([0,∞), X) by the argument in [20, pp. 483–84].

If the space X is sequentially complete, then the domain D(A) ⊆ X is dense [21,
Proposition 1.3]. If the semigroup Tt is locally equicontinuous, then the generator A
is a closed operator [21, Proposition 1.4].

6. Strong continuity on Gelfand–Shilov (ultradistribution) spaces

In this section we study the semigroup Kt acting on the Gelfand–Shilov space
Σs(R

d) for s > 1
2

and its dual space of ultradistributions Σ′
s(R

d).
We need the following lemma which is similar to [23, Theorem 6.1.6]. It is

basically a special case of [22, Remark 2.1], but we provide an elementary proof in
order to give a selfcontained account as a service to the reader.
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Lemma 6.1. If s > 1
2
, then the family of seminorms

(6.1) ‖f‖h ≡ sup
α,β∈Nd

‖xαDβf‖L2

h|α+β|(α! β!)s

for h > 0, is equivalent to the family {‖ · ‖Ss,h
}h>0 as seminorms on Σs(R

d).

Proof. Using (α + γ)! 6 2|α+γ|α!γ! (cf. [23, Eq. (0.3.6)]) we have for α, β ∈ N
d

and 0 < h 6 1, cf. (4.11),

‖xαDβf‖L2 = ‖〈x〉−d〈x〉dxαDβf‖L2 .
∑

|γ|6d

‖xα+γDβf‖L∞

6 ‖f‖Ss,h

∑

|γ|6d

h|α+γ+β|((α+ γ)! β!)s . ‖f‖Ss,h
(2sh)|α+β|(α! β!)s.

This gives ‖f‖2sh . ‖f‖Ss,h
, or equivalently ‖f‖h . ‖f‖Ss,2−sh

for 0 < h 6 2s. Since

‖ · ‖h1
6 ‖ · ‖h2

when h1 > h2 > 0 this shows that any seminorm ‖ · ‖h with h > 0
can be estimated by a seminorm from {‖ · ‖Ss,h

}h>0.

For an opposite estimate, again for α, β ∈ N
d and h > 0 we have using Fourier’s

inversion formula and Plancherel’s identity for x ∈ R
d

|xαDβf(x)| =

∣∣∣∣(2π)
− d

2

ˆ

Rd

〈ξ〉−2d〈ξ〉2dx̂αDβf(ξ)ei〈x,ξ〉 dξ

∣∣∣∣

.

∥∥∥∥∥∥

∑

|γ|62d

Cγ ξ
γx̂αDβf(ξ)

∥∥∥∥∥∥
L2

.
∑

|γ|62d

∥∥F
(
Dγ
(
xαDβf

))∥∥
L2

=
∑

|γ|62d

∥∥Dγ
(
xαDβf

)∥∥
L2

6
∑

|γ|62d

∑

κ6min(γ,α)

(
γ

κ

)
α!

(α− κ)!

∥∥xα−κDβ+γ−κf
∥∥
L2

6 2|α|
∑

|γ|62d

∑

κ6min(γ,α)

(
γ

κ

)
κ!
∥∥xα−κDβ+γ−κf

∥∥
L2

in the last step using α! = (α− κ+ κ)! 6 (α− κ)! κ! 2|α|.
Next we use 1 = 2s−δ where δ > 0, and κ! > |κ|! d−|κ| for κ ∈ N

d [23, Eq. (0.3.3)]
which gives

(6.2) κ!−δh−2|κ| =

(
h− 2|κ|

δ

κ!

)δ

6




(
dh− 2

δ

)|κ|

|κ|!




δ

6 exp
(
δdh− 2

δ

)
.

Thus for 0 < h 6 1 and x ∈ R
d

|xαDβf(x)| 6 ‖f‖h 2
|α|
∑

|γ|62d

∑

κ6min(γ,α)

(
γ

κ

)
κ!2s−δh|α+β+γ−2κ| ((α− κ)!(β + γ − κ)!)s

6 ‖f‖h 2
|α|h|α+β|

∑

|γ|62d

∑

κ6min(γ,α)

(
γ

κ

)
κ!−δh−2|κ| (α!(β + γ)!)s

. ‖f‖h (2h)
|α+β| (α!β!)s

∑

|γ|62d

∑

κ6min(γ,α)

(
γ

κ

)
2s|β|

. ‖f‖h (2
1+sh)|α+β| (α!β!)s
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which gives ‖f‖Ss,21+sh
. ‖f‖h, or equivalently ‖f‖Ss,h

. ‖f‖2−1−sh for any 0 < h 6

21+s. Since ‖ · ‖Ss,h1
6 ‖ · ‖Ss,h2

when h1 > h2 > 0 this shows that any seminorm

‖ · ‖Ss,h
can be estimated by a seminorm from {‖ · ‖h}h>0. �

The next project is to prove the fundamental Theorem 6.7 which shows that Kt

is uniformly continuous on Σs(R
d) for 0 6 t 6 T , for any T > 0. In order to prove it

we need several auxiliary results. First we study the derivatives of a Gaussian type
function gλ(x) = eλx

2/2 for x ∈ R and λ ∈ C. It is clear that

(6.3) ∂kgλ(x) = pλ,k(x) gλ(x)

where pλ,k is a polynomial of order k ∈ N. This polynomial is essentially a rescaled
Hermite polynomial with complex argument [32].

Lemma 6.2. Suppose gλ(x) = eλx
2/2 for x ∈ R and λ ∈ C, let pλ,k be the

polynomial defined in (6.3) for k ∈ N, and let s > 1
2
. For each µ > 0 there exists

0 < δ 6 1 such that pλ,k satisfy the following estimates provided |λ| 6 δ: For any

h > 0

|pλ,k(x)| . hkk!seµh− 1
s |x|

1
s , x ∈ R, k ∈ N.

Proof. By a straightforward induction argument one may confirm the formula
(cf. [32, Eq. (5.5.4)])

pλ,k(x) = k!

⌊k/2⌋∑

m=0

xk−2mλk−m

m!(k − 2m)!2m
.

Since k! 6 2k(k − 2m)!(2m)! we can estimate |pλ,k(x)| as

|pλ,k(x)| 6

⌊k/2⌋∑

m=0

(|λ|
1

2 |x|)k−2m(2m)!

m!2m−k
6

⌊k/2⌋∑

m=0

(δ
1

2 |x|)k−2mm!2m+k.

Combining with m! = m!2s−ε where ε = 2s − 1 > 0, this gives for any h > 0 and
b > 0

|pλ,k(x)|h
−kk!−s 6

⌊k/2⌋∑

m=0

(δ
1

2 |x|)k−2mm!2s−ε2m+kh−kk!−s

=

⌊k/2⌋∑

m=0




(
b
s
(δ

1

2 |x|)
1

s

)k−2m

(k − 2m)!




s(
b

s

)s(2m−k)(
(k − 2m)!m!2

k!

)s
2m+kh−k

m!ε

6 eb δ
1
2s |x|

1
s
(
2
(s
b

)s
h−1
)k ⌊k/2⌋∑

m=0




(
2
(
b
s

)2s)m
ε

m!




ε

6 e
ε
(

2( b
s)

2s
)

1
ε

eb δ
1
2s |x|

1
s

(
4
(s
b

)s
h−1
)k

= Cs,b e
b δ

1
2s |x|

1
s ,

where Cs,b > 0, provided b = s 4
1

sh− 1

s . Thus if δ 6 4−2
(
µ
s

)2s
, then

b δ
1

2s = s 4
1

s δ
1

2sh− 1

s 6 µh− 1

s

and therefore

|pλ,k(x)| . hkk!seµh− 1
s |x|

1
s . �
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Corollary 6.3. Let λ > 0 and s > 1
2
. Suppose Λ ∈ C

2d×2d is a diagonal matrix

with entries λj that are bounded as |λj| 6 λ for all 1 6 j 6 2d. If g(z) = e
1

2
〈Λz,z〉,

z ∈ R
2d, then

(6.4) ∂αg(z) = pΛ,α(z)g(z), α ∈ N
2d,

where pΛ,α are polynomials of order |α|. For each µ > 0 there exists 0 < δ 6 1 such

that the polynomials pΛ,α satisfy the following estimates provided λ 6 δ: For any

h > 0

(6.5) |pΛ,α(z)| . h|α|α!seµ h−1
s |z|

1
s , z ∈ R

2d, α ∈ N
2d.

Proposition 6.4. Let λ > 0 and ε > 0. Suppose Tt ∈ C
2d×2d, 0 6 t 6 ε,

is a parametrized family of symmetric matrices such that for all t ∈ [0, ε] we have

ReTt 6 0, and ReTt and ImTt both have eigenvalues in the interval [−λ, λ]. Let

at(z) = e
1

2
〈Ttz,z〉, z ∈ R

2d and let s > 1
2
. For each µ > 0 there exists δ > 0 such that

if λ 6 δ, then for any h > 0

(6.6) |∂αat(z)| . h|α|α!seµh− 1
s |z|

1
s , z ∈ R

2d, α ∈ N
2d, 0 6 t 6 ε.

Proof. We may factorize ReTt = UT
t ΛtUt where Ut ∈ O(2d) and Λt ∈ R

2d×2d is
diagonal, with the non-positive eigenvalues of ReTt on the diagonal. The coefficients
of Ut satisfy the bound

(6.7) |(Ut)j,k| 6 ‖Ut‖ = 1, 1 6 j, k 6 2d,

where ‖Ut‖ denotes the operator matrix norm.

Thus at,1(z) = e
1

2
〈ReTtz,z〉 = gt,1(Utz) where gt,1 satisfies the assumptions of Corol-

lary 6.3. We pick δ > 0 so that the polynomials pΛ,α,t,1, that correspond to gt,1 as in

(6.4), satisfy (6.5) with µ replaced by µ1 = µ 2−2− 2

sd−1− 1

s . We have

∂jat,1(z) =
2d∑

k=1

(Ut)k,j∂kgt,1(Utx), 1 6 j 6 2d.

Taking into account (6.7), it follows that we may express ∂αat,1(z) for α ∈ N
2d as

a sum of (2d)|α| terms, consisting of coefficients the modulus of which are upper
bounded by one, times ∂βgt,1(Utx) where β ∈ N

2d satisfies |β| = |α|.
Let h > 0. We obtain using Corollary 6.3, [23, Eq. (0.3.3)] and the assumption

ReTt 6 0

|∂αat,1(z)| 6 (2d)|α| max
|β|=|α|

|∂βgt,1(Utz)|

. (2dh)|α||α|!seµ1 h
− 1

s |Utz|
1
s |gt,1(Utz)|

6 ((2d)1+sh)|α|α!seµ1 h
− 1

s |z|
1
s e

1

2
〈Re Ttz,z〉

6 ((2d)1+sh)|α|α!seµ1 h
− 1

s |z|
1
s , 0 6 t 6 ε.

We apply the same argument to at,2(z) = e
i
2
〈Im Ttz,z〉. This gives new matrices

Ut ∈ O(2d) and at,2(z) = gt,2(Utz) where gt,2 again satisfies the assumptions of
Corollary 6.3. We obtain

|∂αat,2(z)| . ((2d)1+sh)|α|α!seµ1 h
−1

s |z|
1
s |at,2(z)|

= ((2d)1+sh)|α|α!seµ1 h
− 1

s |z|
1
s , 0 6 t 6 ε.
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Finally Leibniz’ rule gives

|∂αat(z)| = |∂α (at,1(z) at,2(z)) | 6
∑

β6α

(
α

β

)
|∂α−βat,1(z)| |∂

βat,2(z)|

.
∑

β6α

(
α

β

)
((2d)1+sh)|α−β|+|β|(α− β)!sβ!se2µ1 h

− 1
s |z|

1
s

6 (22+sd1+sh)|α|α!se2µ1 h
− 1

s |z|
1
s , 0 6 t 6 ε.

The result now follows by replacing 22+sd1+sh by h. �

Lemma 6.5. Let ε > 0 and s > 1
2
. Suppose that at ∈ C∞(R2d) is a family of

functions parametrized by t ∈ [0, ε] that for any h > 0 satisfy the estimates

|∂αat(z)| . h|α|α!seµh− 1
s |z|

1
s , z ∈ R

2d, α ∈ N
2d, 0 6 t 6 ε,

where µ = s 2−4− 3

2sd−
1

2s . Let Φ ∈ Σs(R
2d)\0. Then for any b > 0 there exists Cb > 0

such that

|VΦat(z, ζ)| 6 Cb e
b
4
|z|

1
s −b|ζ|

1
s , z, ζ ∈ R

2d, 0 6 t 6 ε.

Proof. We will use the fact that

f 7→ sup
x∈Rd, β∈Nd

β!−sA|β|eA|x|
1
s |∂βf(x)|

for all A > 0 is a family of seminorms for Σs(R
d), equivalent to (2.14) for all h > 0

(cf. [4, Proposition 3.1]).
Integration by parts and (2.19) gives for any h1, h2 > 0

|ζαVΦat(z, ζ)| = (2π)−d

∣∣∣∣
ˆ

R2d

at(w)∂
α
w

(
e−i〈ζ,w〉

)
Φ(w − z) dw

∣∣∣∣

6 (2π)−d
∑

β6α

(
α

β

)
ˆ

R2d

∣∣∂βat(w)
∣∣ ∣∣∂α−βΦ(w − z)

∣∣ dw

.
∑

β6α

(
α

β

)
h
|β|
1 h

|α−β|
2 β!s(α− β)!s

ˆ

R2d

eµh
− 1

s
1

|w|
1
s e−h−1

2
|w−z|

1
s dw

6 α!se2µh
− 1

s
1

|z|
1
s
∑

β6α

(
α

β

)
h
|β|
1 h

|α−β|
2

ˆ

R2d

e(2µ h
− 1

s
1

−h−1

2
)|w−z|

1
s dw

. α!s(h1 + h2)
|α|e2µh

− 1
s

1
|z|

1
s , z, ζ ∈ R

2d, α ∈ N
2d, 0 6 t 6 ε,

provided h−1
2 > 2µ h

− 1

s
1 .

Let b > 0. Using

|ζ |n 6 (2d)
n
2 max
|α|=n

|ζα|
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we obtain

e
b
s
|ζ|

1
s |VΦat(z, ζ)|

1

s =
∞∑

n=0

2−nn!−1

(
2b

s
|ζ |

1

s

)n

|VΦat(z, ζ)|
1

s

6 2

(
sup
n>0

n!−s

((
2b

s

)s

|ζ |

)n

|VΦat(z, ζ)|

) 1

s

.

(
sup
n>0

((
2b

s

)s

(2d)
1

2

)n

max
|α|=n

|ζαVΦat(z, ζ)|

n!s

) 1

s

. e
1

s
2µh

− 1
s

1
|z|

1
s

(
sup
n>0

((
2b

s

)s

(2d)
1

2 (h1 + h2)

)n) 1

s

.

The result now follows provided the following three conditions are true:

2µ h
− 1

s
1 =

b

4
,(6.8)

h−1
2 > 2µ h

− 1

s
1 ,(6.9)

(
2b

s

)s

(2d)
1

2 (h1 + h2) 6 1.(6.10)

We first pick

h1 =
1

2

( s

2b

)s
(2d)−

1

2 = ss2−
3

2
−sd−

1

2 b−s

which means that (6.8) is satisfied. Since
(
2b

s

)s

(2d)
1

2h1 =
1

2
,

we may pick h2 > 0 sufficiently small so that (6.9) and (6.10) are satisfied. �

Finally we are in a position to prove that estimates for a family of symbols as
required in Lemma 6.5 give rise to operators that are uniformly bounded on Σs(R

d).
It is interesting to compare this result with [3, Theorem 4.10]. The conditions that
are sufficient for continuity given in [3, Theorem 4.10] and here are quite similar, but
neither condition implies the other.

Proposition 6.6. Suppose s > 1
2

and ε > 0. Let at ∈ C∞(R2d) be a family of

functions parametrized by t ∈ [0, ε], that for any h > 0 satisfy the estimates

|∂αat(z)| . h|α|α!seµh− 1
s |z|

1
s , z ∈ R

2d, α ∈ N
2d, 0 6 t 6 ε,

where µ = s 2−4− 3

2sd−
1

2s . Then for any h > 0 there exists h1 = h1(h) > 0 and

C = Ch > 0 such that

‖awt (x,D)f‖h 6 C‖f‖h1
, 0 6 t 6 ε, f ∈ Σs(R

d).

Proof. Let ϕ ∈ Σs(R
d) be such that Φ = W (ϕ, ϕ) ∈ Σs(R

2d) satisfies ‖Φ‖L2 = 1.
We use the Weyl quantization formula (2.7), involving the Wigner distribution (2.8),
and (2.1). This gives for f, g ∈ Σs(R

d) and w ∈ R
2d

(awt (x,D)f,Π(w)g) = (2π)−
d
2 (at,W (Π(w)g, f))

= (2π)−
d
2 (VΦat, VΦW (Π(w)g, f)).

(6.11)
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Since Φ = W (ϕ, ϕ) we obtain from [12, Lemma 14.5.1 and Lemma 3.1.3]

|VΦW (Π(w)ϕ, f)(z, ζ)| =

∣∣∣∣Vϕf

(
z +

1

2
J ζ

)∣∣∣∣
∣∣∣∣Vϕ (Π(w)ϕ)

(
z −

1

2
J ζ

)∣∣∣∣

=

∣∣∣∣Vϕf

(
z +

1

2
J ζ

)∣∣∣∣
∣∣∣∣Vϕϕ

(
z − w −

1

2
J ζ

)∣∣∣∣ .

Inserting this into (6.11), using Lemma 6.5 and (2.19) we obtain for any b > 0

(6.12)

|Vϕ(a
w
t (x,D)f)(w)| = (2π)−

d
2 |(awt (x,D)f,Π(w)ϕ)|

6 (2π)−d

ˆ

R4d

|VΦat(z, ζ)| |VΦW (Π(w)ϕ, f)(z, ζ)| dz d ζ

6 Cb

ˆ

R4d

e
b
4
|z|

1
s−b|ζ|

1
s

∣∣∣∣Vϕf

(
z +

1

2
J ζ

)∣∣∣∣
∣∣∣∣Vϕϕ

(
z − w −

1

2
J ζ

)∣∣∣∣ dz dζ

= Cb

ˆ

R4d

e
b
4 |z−

1

2
J ζ|

1
s −b|ζ|

1
s
|Vϕf(z)| |Vϕϕ (z − w − J ζ)| dz dζ

6 Cb

ˆ

R4d

e
b
2
|z|

1
s−b

(

1−2−1− 1
s

)

|ζ|
1
s
|Vϕf(z)| |Vϕϕ (z − w −J ζ)| dz dζ.

The estimate is uniform with respect to t ∈ [0, ε].
Next we use the seminorms on Σs(R

d) defined by

(6.13) Σs(R
d) ∋ f 7→ ‖f‖′′A = sup

z∈R2d

eA|z|
1
s |Vϕf(z)|, A > 0,

where ϕ ∈ Σs(R
d) \ {0} is fixed but arbitrary (cf. [4, Propositon 3.1]). Using

2−1− 1

s < 2−1 and again (2.19) we obtain for any a > 0

(6.14)

|Vϕ(a
w
t (x,D)f)(w)|

6 Cb‖f‖
′′
b+2a‖ϕ‖

′′
4a

ˆ

R4d

e
−( b

2
+2a)|z|

1
s −b

(

1−2−1− 1
s

)

|ζ|
1
s −4a|z−w−J ζ|

1
s
dz dζ

6 Cb‖f‖
′′
b+2a‖ϕ‖

′′
4a

ˆ

R4d

e−(
b
2
+2a)|z|

1
s − b

2
|ζ|

1
s −4a|z−w−J ζ|

1
s
dz dζ

6 Cb‖f‖
′′
b+2a‖ϕ‖

′′
4a

ˆ

R4d

e−(
b
2
+2a)|z|

1
s −( b

2
−4a)|ζ|

1
s−2a|z−w|

1
s
dz dζ

6 Cb‖f‖
′′
b+2a‖ϕ‖

′′
4a e

−a|w|
1
s

ˆ

R4d

e−
b
2
|z|

1
s −( b

2
−4a)|ζ|

1
s
dz dζ, w ∈ R

2d.

Let B > 0 be arbitrary. If we first pick a > B and then b > 8a we obtain

(6.15) ‖awt (x,D)f‖′′B = sup
w∈R2d

eB|w|
1
s |Vϕ(a

w
t (x,D)f)(w)| 6 C‖f‖′′b+2a

for a constant C > 0 and for all t ∈ [0, ε].
Finally we combine Lemma 6.1 and [4, Proposition 3.1], which admits the con-

clusion that the seminorms (6.13) are equivalent to the seminorms ‖ · ‖h for h > 0,
defined in (6.1). This implies the claim. �

We have reached a point at which we may prove the theorem for which Lemma 6.2,
Corollary 6.3, Proposition 6.4, Lemma 6.5, and Proposition 6.6 are preparations.

Theorem 6.7. Let ReQ > 0, s > 1
2

and T > 0. For every h > 0 there exists

h1 = h1(h) > 0 and C = CT,h > 0 such that

‖Ktf‖h 6 C‖f‖h1
, 0 6 t 6 T, f ∈ Σs(R

d).
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Proof. It suffices to show the following statement. There exists ε > 0 such that
for any h > 0 there exists h1 = h1(h) > 0 and C = C(h) > 0 such that

(6.16) ‖Ktf‖h 6 C‖f‖h1
, 0 6 t 6 ε.

In fact, suppose that (6.16) holds, for given ε > 0, all h > 0 and some C, h1 > 0.
Take n ∈ N such that n > Tε−1, which implies t/n 6 ε for 0 6 t 6 T . We use the
semigroup property Kt1+t2 = Kt1Kt2 for t1, t2 > 0. Thus we obtain from (6.16) the
existence of C1, C2, · · · , Cn > 0 and h1, h2, · · · , hn > 0

‖Ktf‖h = ‖(Kt/n)
nf‖h 6 C1‖(Kt/n)

n−1f‖h1
6 C1C2‖(Kt/n)

n−2f‖h2

6 C1C2 · · ·Cn‖f‖hn, 0 6 t 6 T,

which implies the claim of the theorem.
Thus we may concentrate on the proof of (6.16) for some ε > 0, and for all h > 0,

some h1 = h1(h) > 0 and some C = C(h) > 0. We express Kt as a Weyl operator
(2.6) as Kt = awt (x,D). Then we can benefit from Hörmander’s [19, Theorem 4.3]
explicit formula for the Weyl symbol

at(z) = (det(cos(tF )))−
1

2 exp (σ(tan(tF )z, z)) , z ∈ R
2d,

where F = JQ and tan(tF ) = sin(tF )(cos(tF ))−1, which is valid for all t > 0 such
that det(cos(tF )) 6= 0. According to [19, Theorem 4.1], det(cos(tF )) 6= 0 unless
tλ ∈ π

(
1
2
+ Z

)
where λ ∈ C is an eigenvalue of F . Clearly it is possible to pick ε > 0

such that det(cos(tF )) 6= 0 for 0 6 t 6 ε.
The exponent of at is

σ(tan(tF )z, z) = 〈J tan(tF )z, z〉 =
1

2
〈Ttz, z〉

where the symmetric matrix Tt ∈ C
2d×2d is

Tt = J tan(tF )− (tan(tF ))TJ

due to J T = −J .
Since cos(tF ) → I as t → 0+ we may assume that the factor (det(cos(tF )))−

1

2

satisfies

(det(cos(tF )))−
1

2 6 2, 0 6 t 6 ε,

after possibly decreasing ε > 0.
According to [19, Theorem 4.6] we have ReTt 6 0 for t ∈ [0, ε]. Since Tt → 0 as

t → 0+, we may assume that ReTt and ImTt both have small eigenvalues, uniformly
over t ∈ [0, ε], again after possibly decreasing ε > 0. Specifically we assume that
the eigenvalues belong to [−δ, δ] for t ∈ [0, ε], where δ > 0 is chosen small enough
to guarantee by Proposition 6.4 that the estimates (6.6) hold for all h > 0 with

µ = s 2−4− 3

2sd−
1

2s . The claim is now a consequence of Proposition 6.6. �

By Theorem 6.7 we may extend Kt uniquely from the domain Σs(R
d) to Σ′

s(R
d)

by the assignment

(6.17) (Ktu, ϕ) = (u,K ∗
t ϕ) = (u,Ke−2itFϕ), u ∈ Σ′

s(R
d), ϕ ∈ Σs(R

d).

Corollary 6.8. If s > 1
2

and t > 0, then Kt is a continuous linear operator on

Σs(R
d), that extends uniquely to a continuous linear operator on Σ′

s(R
d) equipped

with its weak∗ topology.

Theorem 6.7 implies in particular that Kt = Ke−2itF : Σs(R
d) → Σs(R

d) is con-
tinuous for each fixed t > 0.
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Remark 6.9. The continuity of Kt : Σs(R
d) → Σs(R

d) can be generalized as
follows. The operator KT : Σs(R

d) → Σs(R
d) is continuous for any matrix T ∈

Sp(d,C) which is positive in the sense of

(6.18) i(σ(TX, TX)− σ(X,X)) > 0, X ∈ T ∗
C

d,

(cf. [19]), where KT is the operator with kernel KT defined as in (3.2) with e−2itF

replaced by T . Condition (6.18) means that the graph of T is a positive Lagrangian
in T ∗

C
d × T ∗

C
d. The operator Kt with kernel Ke−2itF defined by the oscillatory

integral kernel (3.2) is a particular case with T = e−2itF . The matrix e−2itF is a
positive matrix in Sp(d,C) according to [27, Lemma 5.2].

This generalization of Theorem 6.7 has been stated in [4, Proposition 8.1]. The
proof there is unfortunately wrong but it has been corrected [5].

The next result is a Gelfand–Shilov version of Lemma 4.2.

Lemma 6.10. If B ⊆ Σs(R
d) is bounded and N > 0 is an integer, then

{xγDκf, f ∈ B, |γ + κ| < N} ⊆ Σs(R
d)

is also bounded.

Proof. Using the seminorms (6.1) the assumption means that

(6.19) sup
f∈B

‖f‖h = Ch < ∞ ∀h > 0.

We have for f ∈ B and α, β, γ, κ ∈ N
d

∥∥xαDβ (xγDκf)
∥∥
L2 =

∥∥∥∥∥∥

∑

σ6min(β,γ)

(
β

σ

)
γ! i−|σ|

(γ − σ)!
xα+γ−σDκ+β−σf

∥∥∥∥∥∥
L2

6
∑

σ6min(β,γ)

(
β

σ

)
σ! 2|γ|

∥∥xα+γ−σDκ+β−σf
∥∥
L2 .

As in the proof of Lemma 6.1 we next use 1 = 2s − δ where δ > 0. Let h > 0.
Since ‖ · ‖h1

6 ‖ · ‖h2
when h1 > h2 > 0 we may assume that h 6 1. Provided

|γ + κ| < N we obtain using (6.2) and (6.19)

∥∥xαDβ (xγDκf)
∥∥
L2 6 2N

∑

σ6min(β,γ)

(
β

σ

)
σ!2s−δ

∥∥xα+γ−σDκ+β−σf
∥∥
L2

6 2NCh

∑

σ6min(β,γ)

(
β

σ

)
σ!2s−δh|α+β+γ+κ−2σ|((α+γ−σ)!(κ+β−σ)!)s

6 2NCh h
|α+β|

∑

σ6min(β,γ)

(
β

σ

)
σ!−δh−2|σ|((α + γ)!(κ+ β)!)s

6 2NCδ,d,hCh h
|α+β|(α!β!)s

∑

σ6min(β,γ)

(
β

σ

)
2s|α+β+γ+κ|(γ!κ!)s

6 CN Cδ,d,hCh (2
s+1h)|α+β|(α!β!)s.

This gives for some C ′
δ,d,h,N > 0

‖xγDκf‖2s+1h 6 C ′
δ,d,h,N , |γ + κ| < N, f ∈ B.

Since 0 < h 6 1 is arbitrary we have proved the claim. �
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The proof of the next result is omitted since it is conceptually identical to the
proof of Lemma 4.3.

Lemma 6.11. If B ⊆ Σs(R
d) is bounded and ε > 0, then there exists K ∈ N

and ϕj ∈ Σs(R
d) for 1 6 j 6 K such that

B ⊆

K⋃

j=1

Bε(ϕj)

where the open balls Bε(ϕj) ⊆ L2(Rd) refer to the L2 norm.

We have now reached a point where we may prove that Kt is a strongly continuous
semigroup on Σs(R

d). It is a consequence of the following result.

Theorem 6.12. The map [0,∞) ∋ t 7→ Kt is a semigroup on Σs(R
d), which

satisfies for each bounded set B ⊆ Σs(R
d) and all h > 0

(6.20) lim
t→0+

sup
ϕ∈B

‖(Kt − I)ϕ‖h = 0.

Proof. The semigroup property Kt1+t2 = Kt1Kt2 for t1, t2 > 0, as well as K0 = I,
are immediate since they hold on L2 and Σs(R

d) ⊆ L2, and Corollary 6.8 shows that
Kt : Σs(R

d) → Σs(R
d) is continuous for each t > 0.

It remains to show (6.20) where h > 0 and B ⊆ Σs(R
d) is bounded as in (6.19).

We may assume that h 6 1.
Let ε > 0 and N ∈ N. If |α + β| > N and 0 < t 6 1, then we obtain from

Theorem 6.7

(6.21)

‖xαDβ(Kt − I)ϕ‖L2

h|α+β|(α!β!)s
6 2−|α+β|‖x

αDβKtϕ‖L2 + ‖xαDβϕ‖L2

(
h
2

)|α+β|
(α!β!)s

6 2−N
(
‖Ktϕ‖h

2

+ ‖ϕ‖h
2

)

. 2−N
(
‖ϕ‖h1

+ ‖ϕ‖h
2

)
6 ε, ϕ ∈ B,

for some h1 > 0, provided N ∈ N is sufficiently large, taking into account (6.19).
We also have to consider α, β ∈ N

d such that |α+β| < N . From Lemma 4.1 and
the contraction property of Kt acting on L2 we obtain for 0 < t 6 1
(6.22)

‖xαDβ(Kt − I)ϕ‖L2 6 |Cα,β(t)| ‖(Kt − I)xαDβϕ‖L2 + |Cα,β(t)− 1| ‖xαDβϕ‖L2

+
∑

|γ+κ|6|α+β|

(γ,κ)6=(α,β)

|Cγ,κ(t)| ‖x
γDκϕ‖L2

6 C‖(Kt − I)xαDβϕ‖L2 + |Cα,β(t)− 1| ‖xαDβϕ‖L2

+
∑

|γ+κ|6|α+β|

(γ,κ)6=(α,β)

|Cγ,κ(t)| ‖x
γDκϕ‖L2

where C > 0 and (4.2) hold.
By Lemma 6.10, {xαDβϕ : ϕ ∈ B, |α+ β| < N} ⊆ Σs(R

d) is bounded. Thus by
Lemma 6.11 there exists K ∈ N and ϕj ∈ Σs(R

d), 1 6 j 6 K, such that

min
16j6K

‖xαDβϕ− ϕj‖L2 <
εhN

8C
, |α + β| < N, ϕ ∈ B.
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The strong continuity and the contraction property of Kt acting on L2 gives for
0 < t 6 δ

(6.23)

‖(Kt − I)xαDβϕ‖L2 = min
16j6K

‖(Kt − I)(xαDβϕ− ϕj + ϕj)‖L2

6 min
16j6K

(
2‖xαDβϕ− ϕj‖L2 + ‖(Kt − I)ϕj‖L2

)

6
εhN

4C
+

εhN

4C
=

εhN

2C
, |α+ β| < N, ϕ ∈ B,

provided δ > 0 is sufficiently small.
We have

(6.24) ‖xαDβϕ‖L2 6 Ch(α!β!)
sh|α+β|, α, β ∈ N

d, ϕ ∈ B,

and for |γ + κ| 6 |α+ β| < N we have

‖xγDκϕ‖L2 6 Chh
|γ+κ|(γ!κ!)s 6 Ch max

|γ+κ|<N
(γ!κ!)s := Ch,N , ϕ ∈ B.

Due to (4.2) the latter gives for 0 < t 6 δ

(6.25)
∑

|γ+κ|6|α+β|

(γ,κ)6=(α,β)

|Cγ,κ(t)| ‖x
γDκϕ‖L2 <

εhN

4
, |α+ β| < N, ϕ ∈ B,

after possibly decreasing δ > 0.
Finally we insert (6.23), (6.24) and (6.25) into (6.22). Using (4.2) we obtain then

for 0 < t 6 δ, again after possibly decreasing δ > 0,

‖xαDβ(Kt − I)ϕ‖L2

h|α+β|(α!β!)s

6
C‖(Kt − I)xαDβϕ‖L2

hN
+ |Cα,β(t)− 1|Ch +

∑

|γ+κ|6|α+β|

(γ,κ)6=(α,β)

|Cγ,κ(t)|
‖xγDκϕ‖L2

hN

6
ε

2
+

ε

4
+

ε

4
= ε, |α + β| < N, ϕ ∈ B.

If we combine this estimate with (6.21) we obtain for 0 < t 6 δ

‖xαDβ(Kt − I)ϕ‖L2

h|α+β|(α!β!)s
6 ε, α, β ∈ N

d, ϕ ∈ B.

Since ε > 0 is arbitrary this proves (6.20). �

As a consequence, picking the bounded set B as a single element in Σs, we obtain
the following result. The local equicontinuity is a consequence of Theorem 6.7.

Corollary 6.13. For t > 0, Kt is a locally equicontinuous strongly continuous

semigroup on Σs(R
d).

We denote the generator of the semigroup Kt acting on Σs(R
d) by Ls, to distin-

guish from the generator As defined in (5.2). Because of Σs ⊆ S we have Ls ⊆ A,
cf. (5.4).

By [21, Proposition 1.3] the domain D(Ls) ⊆ Σs(R
d) is dense, and by [21, Propo-

sition 1.4] Ls is a closed operator in Σs(R
d).

Proposition 6.14. The generator Ls is a continuous operator on Σs(R
d) and

thus D(Ls) = Σs(R
d).
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Proof. First we consider the Weyl symbol q ∈ Γ2 defined in (3.1). It satisfies

|∂αq(z)| . 〈z〉2−|α|, z ∈ R
2d, α ∈ N

2d, |α| 6 2,

≡ 0, |α| > 2.

Combining with (cf. (6.2))

α!−sh−|α| =

(
h− |α|

s

α!

)s

6




(
2dh− 1

s

)|α|

|α|!




s

6 exp
(
2sdh− 1

s

)
, α ∈ N

2d, h > 0,

this gives

α!−sh−|α|e−|z|
1
s |∂αq(z)| . exp

(
2sdh− 1

s

)
〈z〉2e−|z|

1
s
6 C, z ∈ R

2d, α ∈ N
2d, h > 0,

where C = Cs,d,h > 0.
We have proved the estimates

|∂αq(z)| . h|α|α!se|z|
1
s , z ∈ R

2d, α ∈ N
2d, ∀h > 0,

which by [3, Definition 2.4] implies that q belongs to a space there denoted Γ∞
0,s(R

2d).

According to [3, Theorem 4.10] the operator qw(x,D) : Σs(R
d) → Σs(R

d) is thereby
continuous. Hence, referring to the seminorms (6.1), for any h1 > 0 there exists
h2 > 0 such that

(6.26) ‖qw(x,D)ϕ‖h1
. ‖ϕ‖h2

, ϕ ∈ Σs(R
d).

We have D(Ls) ⊆ Σs(R
d) ⊆ D(qw(x,D)). If f ∈ D(Ls), then the limit

Lsf = lim
h→0+

h−1 (Kh − I) f

exists in Σs. Since ‖ · ‖L2 6 ‖ · ‖h for any h > 0, the limit also exists in L2. It follows
that Lsf = −qw(x,D)f for f ∈ D(Ls), that is Ls ⊆ −qw(x,D).

Let f ∈ Σs(R
d). By the density D(Ls) ⊆ Σs(R

d) there exists a sequence
(fn)n>1 ⊆ D(Ls) such that fn → f in Σs. The estimate (6.26) gives for any h1 > 0

‖Ls(fn − fm)‖h1
= ‖qw(x,D)(fn − fm)‖h1

. ‖fn − fm‖h2

for some h2 > 0. Thus (Lsfn)n>1 is a Cauchy sequence in Σs(R
d) which converges

to an element g ∈ Σs(R
d). From the closedness of Ls it follows that f ∈ D(Ls) and

Lsf = g. Hence D(Ls) = Σs(R
d) and Ls is continuous on Σs(R

d). �

As in (5.6) we may extend Ls uniquely to a continuous operator on Σ′
s(R

d)
equipped with its weak∗ topology, denoted Σ′

s,w(R
d). In fact we set, using the formal

L2 adjoint L∗
s = −qw(x,D) acting on Σs,

(6.27) (Lsu, ϕ) = (u, L∗
sϕ), u ∈ Σ′

s(R
d), ϕ ∈ Σs(R

d).

The space Σ′
s(R

d) equipped with its strong topology is denoted Σ′
s,str(R

d), and
the topology is defined by the seminorms

Σ′
s(R

d) ∋ u 7→ sup
ϕ∈B

|(u, ϕ)|

for all bounded subsets B ⊆ Σs(R
d). Then Ls defined by (6.27) is continuous on

Σ′
s,str(R

d).
We can now formulate and prove a Gelfand–Shilov distribution version of Theo-

rem 5.7.

Theorem 6.15. The semigroup Kt is:
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(i) strongly continuous on Σ′
s,w, and

(ii) locally equicontinuous strongly continuous on Σ′
s,str.

Proof. The semigroup property Kt1+t2 = Kt1Kt2 for t1, t2 > 0, as well as K0 = I,
on Σ′

s(R
d) defined by (6.17) follow from the corresponding properties on Σs(R

d), as
in the proof of Theorem 5.2.

Let u ∈ Σ′
s(R

d) and let T > 0. For 0 6 t 6 T fixed, a seminorm of Ktu
considered as an element in Σ′

s,str is defined by a bounded set B ⊆ Σs(R
d) as

sup
ϕ∈B

|(Ktu, ϕ)| = sup
ϕ∈B

|(u,K ∗
t ϕ)|

and the right-hand side is a seminorm of u, since K ∗
t B ⊆ Σs(R

d) is a bounded set
according to Theorem 6.7. This shows the continuity Kt : Σ

′
s,str(R

d) → Σ′
s,str(R

d) as

well as the continuity Kt : Σ
′
s,w(R

d) → Σ′
s,w(R

d) for each fixed t such that 0 6 t 6 T .

Theorem 6.7 also shows that {K ∗
t B, 0 6 t 6 T} ⊆ Σs(R

d) is a bounded set so Kt

is locally equicontinuous on Σ′
s,str(R

d).

Finally let B ⊆ Σs(R
d) be a bounded set and let u ∈ Σ′

s(R
d). For some h > 0

we obtain using Theorem 6.12

sup
ϕ∈B

|((Kt − I)u, ϕ)| = sup
ϕ∈B

|(u, (K ∗
t − I)ϕ)| . sup

ϕ∈B
‖(K ∗

t − I)ϕ‖h −→ 0, t −→ 0+,

which shows that Kt is strongly continuous on Σ′
s,str(R

d) as well as on Σ′
s,w(R

d). �

The generator of the semigroup Kt acting on Σ′
s,w(R

d) is denoted L′
w, and the

generator of the semigroup Kt acting on Σ′
s,str(R

d) is denoted L′
str. By [21, Proposi-

tion 2.1] we have L′
w = Ls defined by (6.27), and hence D(L′

w) = Σ′
s.

The argument that proves A′
str = A′

w after Theorem 5.7 again shows that L′
str =

L′
w. Again we may thus conclude that the two semigroups have identical generators.

Denoting L′ = L′
str = L′

w we have D(L′) = Σ′
s. We may again invoke [21, Propo-

sition 1.2] and [20, pp. 483–84] to yield the following result which is conceptually
similar to Corollary 5.9. Note that the uniqueness space is again larger than the
solution space: C1([0,∞),Σ′

s,str) ⊆ C1([0,∞),Σ′
s,w).

Corollary 6.16. For any u0 ∈ Σ′
s(R

d) the Cauchy problem (CP) has the so-

lution Ktu0 in the space C1([0,∞),Σ′
s,str). The solution is unique in the space

C1([0,∞),Σ′
s,w).

There is also an alternative way to show D(L′
str) = Σ′

s, cf. Remark 5.8. In fact, if
we can show that Σs(R

d) is a reflexive space, then [21, Theorem 1 and its Corollary]
show that Kt, considered as a strongly continuous semigroup on Σ′

s,w, is necessarily
also strongly continuous on Σ′

s,str, and the two semigroups have identical generators.

Thus it remains to show that Σs(R
d) is a reflexive space (cf. [11, Theorem I.6.2]),

which may be of independent interest. A locally convex space X is called reflexive
provided X 7→ (X ′

β)
′
β is a topological isomorphism [30, p. 144]. Here X ′

β denotes the
dual of X, equipped with its strong topology.

Proposition 6.17. If s > 1
2
, then the space Σs(R

d) is reflexive.

Proof. By [28, Exercise V.52] the Fréchet space Σs(R
d) carries the Mackey topol-

ogy. By [28, Exercise V.56 (a) and Lemma on p. 166] it remains to prove the following
statement: Every weakly closed and weakly bounded subset B ⊆ Σs(R

d) is weakly
compact.
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By [28, Theorem V.23] B ⊆ Σs(R
d) is bounded in the Fréchet space topology of

Σs(R
d). The Fréchet space topology on Σs(R

d) is stronger than the weak topology.
This fact implies that B ⊆ Σs(R

d) is closed in its Fréchet space topology, and if B is
shown to be compact in the Fréchet space topology, then it is also weakly compact.

Thus it remains to show that B ⊆ Σs(R
d) is compact in its Fréchet space topol-

ogy. Since the Fréchet space topology of Σs(R
d) is metric we may prove compactness

of B by showing that any sequence (fn)n>1 ⊆ B has a convergent subsequence. The
space Σs(R

d) is complete and B is closed so it is suffices to show the existence of
a Cauchy subsequence of (fn)n>1 ⊆ Σs(R

d). We accomplish this by constructing
a subsequence which is Cauchy in the seminorm (2.14) for the space Ss,h for each
0 < h 6 1.

We have since B ⊆ Σs(R
d) is bounded

(6.28) |xαDβfn(x)| 6 Chh
|α+β|(α!β!)s, x ∈ R

d, α, β ∈ N
d, n > 1, h > 0,

for some constants Ch > 0.
Let 0 < h 6 1 and let ε > 0. The bound (6.28) gives

|xαDβfn(x)| = |x|−2

∣∣∣∣∣

d∑

j=1

x2
jx

αDβfn(x)

∣∣∣∣∣

6 |x|−2Ch
2

d∑

j=1

(
h

2

)|α+β|+2

(α!(αj + 1)(αj + 2)β!)s

6 |x|−2Ch
2

(
h

2

)|α+β|

(α!β!)sd(|α|+ 2)2s

6 |x|−2C Ch
2

h|α+β|(α!β!)s, x ∈ R
d \ 0, α, β ∈ N

d, n > 1,

for some C > 0. This gives

(6.29) sup
α,β∈Nd, |x|>L

|xαDβ(fn(x)− fm(x))|

h|α+β|(α!β!)s
< ε, n,m > 1,

provided L > 0 is sufficiently large.
Next we consider the sequences (xαDβfn(x))n>1 for |α + β| > N where N ∈ N

is to be chosen. Again (6.28) yields

|xαDβfn(x)| 6 Ch
2

(
h

2

)|α+β|

(α!β!)s

6 Ch
2

2−Nh|α+β|(α!β!)s, x ∈ R
d, |α+ β| > N, n > 1,

which proves the estimate

(6.30) sup
|α+β|>N, x∈Rd

|xαDβ(fn(x)− fm(x))|

h|α+β|(α!β!)s
< ε, n,m > 1,

provided N ∈ N is sufficiently large.
Finally we study the sequences of functions (xαDβfn(x))n>1 restricted to the

compact ball BL = {x ∈ R
d : |x| 6 L}, where α, β ∈ N

d satisfy |α + β| 6 N . If
1 6 j 6 d we obtain from (6.28) if αj = 0

|Dj(x
αDβfn)(x)| = |xαDβ+ejfn(x)| 6 Chh

|α+β|+1(α!β!)s(|β|+ 1)s

6 Ch(α!β!)
s(|β|+ 1)s, x ∈ R

d,



Semigroups for quadratic evolution equations acting on Shubin–Sobolev and Gelfand–Shilov spaces 851

and if αj > 0

|Dj(x
αDβfn)(x)| = |i−1αjx

α−ejDβfn(x) + xαDβ+ejfn(x)|

6 Ch(α!β!)
s(|α|h|α+β|−1 + h|α+β|+1(|β|+ 1)s)

6 Ch(α!β!)
s(|α|+ (|β|+ 1)s), x ∈ R

d.

The gradient is thus uniformly bounded with respect to x ∈ R
d:

sup
x∈Rd

|∇(xαDβfn)(x)| 6 Ch,α,β < ∞.

The mean value theorem gives

|(xαDβfn)(x)− (xαDβfn)(y)| 6 Ch,α,β|x− y|, x, y ∈ R
d,

which shows that {xαDβfn, n > 1} is an equicontinuous set of functions on R
d for

all α, β ∈ N
d, particularly if |α + β| 6 N .

Combining with the bound (6.28) which is uniform with respect to x ∈ R
d and

n > 1 we find that the assumptions for the Arzelà–Ascoli theorem [29, Theorem 11.28]
are satisfied for {xαDβfn, n > 1}, for each α, β ∈ N

d.
Thus we start by extracting a subsequence of (fn)n>1 that converges uniformly

on BL. We apply xαDβ to the subsequence and extract a new subsequence that
converges uniformly on BL, consecutively, first for all α, β ∈ N

d such that |α +
β| = 1, and after that for all multi-indices α, β ∈ N

d of increasing orders |α +
β| = 2, . . . , N . After a finite number of such subsequence extractions we obtain a
subsequence (fnk

)k>1 such that

(6.31) sup
|α+β|6N, |x|6L

|xαDβ(fnk
(x)− fnm(x))|

h|α+β|(α!β!)s
< ε, k,m > K,

provided K ∈ N is sufficiently large. When we combine (6.29), (6.30) and (6.31) it
follows that (fnk

)k>1 is a Cauchy sequence in Ss,h. �
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