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Complex flows, escape to infinity
and a question of Rubel

James K. Langley

Abstract. Let f be a transcendental entire function. It was shown in a previous paper (2017)

that the holomorphic flow ż = f(z) always has infinitely many trajectories tending to infinity in

finite time. It will be proved here that such trajectories are in a certain sense rare, although an

example will be given to show that there can be uncountably many. In contrast, for the classical

antiholomorphic flow ż = f̄(z), such trajectories need not exist at all, although they must if f

belongs to the Eremenko–Lyubich class B. It is also shown that for transcendental entire f in

B there exists a path tending to infinity on which f and all its derivatives tend to infinity, thus

affirming a conjecture of Rubel for this class.

Kompleksiset virtaukset, pako äärettömyyteen ja Rubelin kysymys

Tiivistelmä. Olkoon f transkendenttinen kokonainen funktio. Aiemmassa tutkimuksessa

(2017) osoitettiin, että holomorfisella virtauksella ż = f(z) on aina äärettömän montaa rataa,

jotka lähestyvät äärettömyyttä äärellisessä ajassa. Tässä työssä osoitetaan, että tällaiset radat ovat

tietyssä mielessä harvinaisia, vaikka toisaalta näytetään esimerkillä, että näitä ratoja voi olla yli-

numeroituva määrä. Tälle vastakkainen ilmiö on se, että klassisella antiholomorfisella virtauksella

ż = f̄(z) tällaisia ratoja ei tarvitse olla lainkaan, paitsi siinä tapauksessa, että f kuuluu Eremenkon–

Lyubichin luokkaan B. Lisäksi osoitetaan, että transkendenttisella kokonaisella funktiolla f ∈ B on

olemassa äärettömyyttä lähestyvä polku, jota pitkin sekä f että sen kaikki derivaatat lähestyvät

ääretöntä, mikä vahvistaa Rubelin otaksuman tälle funktioluokalle.

1. Introduction

The starting point of this note is the flow

(1) ż = f(z),

in which f or its conjugate f̄ is an entire function. A trajectory for (1) is a path z(t)
in the plane with z′(t) = f(z(t)) ∈ C for t in some maximal interval (α, β) ⊆ R. It
was shown in [15, Theorem 5] that if f is a polynomial in z of degree n ≥ 2 then
there exist n−1 disjoint trajectories for (1) which tend to infinity in finite increasing
time, that is, which satisfy β ∈ R and limt→β− z(t) = ∞. The following theorem for
holomorphic flows with transcendental entire f was proved in [12, Theorem 1.1].

Theorem 1.1. [12] Let the function f be transcendental entire: then (1) has
infinitely many pairwise disjoint trajectories which tend to infinity in finite increasing
time.

For meromorphic functions in general, such trajectories need not exist at all
[12], but a result was also proved in [12] for the case where f is transcendental and
meromorphic in the plane and the inverse function f−1 has a logarithmic singularity
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over ∞: this means that there exist M > 0 and a simply connected component U of
the set {z ∈ C : |f(z)| > M} such that U contains no poles of f and log f maps U
conformally onto the half-plane H = {v ∈ C : Re v > logM} [3, 16]. In this case [12,
Theorem 1.2], (1) has infinitely many pairwise disjoint trajectories tending to infinity
in finite increasing time from within a neighbourhood {z ∈ U : |f(z)| > M ′ ≥M} of
the singularity.

On the other hand, for entire f in (1), it seems that trajectories which tend to
infinity in finite increasing time are somewhat exceptional. For the simple example
ż = − exp(−z), it is easy to check that all trajectories satisfy exp(z(t)) = exp(z(0))−t
and so tend to infinity as t increases, but take infinite time to do so unless exp(z(0))
is real and positive.

It will be shown that for transcendental entire f there is, in a certain sense, zero
probability of landing on a trajectory of (1) which tends to infinity in finite increasing
time. To state the theorem, let f be transcendental entire and let

(2) z0 ∈ C, f(z0) 6= 0, F (z) =

ˆ z

z0

du

f(u)
.

Then F (z) is defined near z0 and is real and increasing as z follows the trajectory
ζz0(t) of (1) starting at z0. Let δ be small and positive and take the pre-image Lδ(z0)
of the real interval (−δ, δ) under the function −iF (z); then Lδ(z0) is perpendicular
to ζz0(t) at z0. The proof of the following result is adapted from that of the Gross
star theorem [16, p. 292].

Theorem 1.2. Let f be a transcendental entire function and let z0 and F be as
in (2). For small positive δ let Yδ be the set of y ∈ (−δ, δ) such that the trajectory
of (1) starting at F−1(iy) tends to infinity in finite increasing time. Then Yδ has
Lebesgue measure 0.

Theorem 1.2 seems unlikely to be best possible, but a construction from [18]
(see §3) gives rise to a transcendental entire f for which (1) has uncountably many
trajectories tending to infinity in finite increasing time.

It seems natural to ask similar questions in respect of the antiholomorphic flow

(3) ż =
dz

dt
= ḡ(z),

where g is a non-constant entire function. Equation (3) appears widely in textbooks
as a model for incompressible irrotational plane fluid flow [19, pp. 85–86], and is
linked to (1) insofar as if f = 1/g then (3) has the same trajectories as (1), since
ḡ = f/|f |2, although zeros of one of f and g are of course poles of the other and in
general the speeds of travel differ. The trajectories of (3) are determined by choosing
G with G′(z) = g(z) and writing

(4) v = G(z), v̇ = g(z)ż = |g(z)|2 ≥ 0,

which leads to the classical fact that trajectories for (3) are level curves of ImG(z)
on which ReG(z) increases with t. By the maximum principle, ImG(z) cannot be
constant on a closed curve. Thus, apart from the countably many which tend to a
zero of G′ = g, all non-constant trajectories for (3) go to infinity, but how long they
take to do so is less evident.

If a non-constant trajectory Γ of (3) passes from z1 to z2 along an arc avoiding
zeros of g, then (4) implies that Im v = β is constant on Γ and X = Re v increases
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from X1 = ReG(z1) to X2 = ReG(z2), the transit time being given by

(5)

ˆ X2+iβ

X1+iβ

1

|g(z)|2 dv =
ˆ X2+iβ

X1+iβ

∣

∣

∣

∣

dz

dv

∣

∣

∣

∣

2

dv =

ˆ X2

X1

∣

∣

∣

∣

dz

dX

∣

∣

∣

∣

2

dX.

Suppose that G′ = g is a polynomial of degree n ≥ 1 in (3), (4) and (5). If S ∈ R

and R is sufficiently large and positive then each pre-image under v = G(z) of the
half-line v = r+ iS, r ≥ R, gives a trajectory of (3) which tends to infinity, on which
(4) delivers

dt

dv
=

1

|g(z)|2 ∼ c1
|z|2n ∼ c2

|v|2n/(n+1)
,

with c1, c2 positive constants. Hence (5) implies that the transit time to infinity is
finite for n ≥ 2 and infinite for n = 1. Thus, if g is a non-linear polynomial, (3)
always has uncountably many trajectories tending to infinity in finite increasing time,
but it turns out that this need not be the case for transcendental entire g.

Theorem 1.3. There exists a transcendental entire function g such that (3) has
no trajectories tending to infinity in finite increasing time.

Theorem 1.3 also marks a sharp contrast with Theorem 1.1, and its proof rests
on the following immediate consequence of a result of Barth, Brannan and Hayman
[1, Theorem 2].

Theorem 1.4. [1] There exists a transcendental entire function G such that any
unbounded connected plane set contains a sequence (wn) tending to infinity on which
U = ReG satisfies (−1)nU(wn) ≤ |wn|1/2.

To establish Theorem 1.4, take the plane harmonic function v constructed in [1,
Theorem 2], using ψ(r) as given by [1, p. 364]. With U = v, and V a harmonic
conjugate of U , elementary considerations show that the resulting entire function
G = U + iV cannot be a polynomial.

On the other hand, in the presence of a logarithmic singularity of the inverse
function over infinity, trajectories of (3) tending to infinity in finite increasing time
exist in abundance.

Theorem 1.5. Let g and G be transcendental meromorphic functions in the
plane such that G′ = g and either G−1 or g−1 has a logarithmic singularity over ∞.
Then in each neighbourhood of the singularity the flow (3) has a family of pairwise
disjoint trajectories γY , Y ∈ R, each of which tends to infinity in finite increasing
time.

Theorem 1.5 applies in particular if g or its antiderivative G is a transcendental
entire function and belongs to the Eremenko–Lyubich class B, which plays a salient
role in complex dynamics [2, 6, 17] and is defined by the property that F ∈ B if the
finite critical and asymptotic values of F form a bounded set, from which it follows
that if F ∈ B is transcendental entire then F−1 automatically has a logarithmic
singularity over ∞. A specific function to which Theorem 1.5 may be applied is
g(z) = e−z + 1; here g is in B, but its antiderivative G is not, and this example
also gives uncountably many trajectories of (3) taking infinite time to reach infinity
through the right half-plane.

Theorem 1.5 is quite straightforward to prove when the inverse of G has a loga-
rithmic singularity over infinity, but the method turns out to have a bearing on the
following question of Rubel [7, pp. 595–596]: if f is a transcendental entire function,
must there exist a path tending to infinity on which f and its derivative f ′ both
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have asymptotic value ∞? This problem was motivated by the classical theorem of
Iversen [16], which states that ∞ is an asymptotic value of every non-constant entire
function. For transcendental entire f of finite order, a strongly affirmative answer to
Rubel’s question was provided by the following result [11, Theorem 1.5].

Theorem 1.6. [11] Let the function f be transcendental and meromorphic in
the plane, of finite order of growth, and with finitely many poles. Then there exists
a path γ tending to infinity such that, for each non-negative integer m and each
positive real number c,

(6) lim
z→∞,z∈γ

log |f (m)(z)|
log |z| = +∞ and

ˆ

γ

|f (m)(z)|−c|dz| < +∞.

For functions of infinite order, Rubel’s question appears to be difficult, although
a path satisfying (6) for m = 0 is known to exist for any transcendental entire
function f [14]. However, a direct analogue of Theorem 1.6 goes through relatively
straightforwardly for transcendental entire functions f in the Eremenko–Lyubich
class B.

Theorem 1.7. Let f be a transcendental meromorphic function in the plane
such that f−1 has a logarithmic singularity over ∞, and let D ∈ R. Then there
exists a path γ tending to infinity in a neighbourhood of the singularity, such that
f(z)− iD is real, positive and increasing on γ and (6) holds for each integer m ≥ 0
and real c > 0.

This paper is organised as follows: Theorem 1.2 is proved in §2, followed by an
example in §3 and the proof of Theorem 1.3 in §4. It is then convenient to give the
proof of Theorem 1.7 in §5, prior to that of Theorem 1.5 in §6.

2. Proof of Theorem 1.2

Let f , F , z0 and δ be as in the statement of Theorem 1.2. For y ∈ (−δ, δ) let
g(y) = F−1(iy) and let T (y) be the supremum of s > 0 such that the trajectory
ζg(y)(t) of (1) with ζg(y)(0) = g(y) is defined and injective for 0 ≤ t < s. If the
trajectory ζg(y)(t) is periodic with minimal period Sy then T (y) = Sy and ζg(y′)(t)
has the same period for y′ close to y [4]. Furthermore, if ζg(y)(t) tends to infinity in
finite time then T (y) < +∞, while if T (y) is finite but ζg(y)(t) is not periodic then
limt↑T (y) ζg(y)(t) = ∞ [12, Lemma 2.1]. Set

A = {iy + t : y ∈ (−δ, δ), 0 < t < T (y)}, B = {ζg(y)(t) : y ∈ (−δ, δ), 0 < t < T (y)}.

Then G(iy + t) = ζg(y)(t) is a bijection from A to B.
For u = ζg(y)(t), where y ∈ (−δ, δ) and 0 < t < T (y), let σu be the subarc

of Lδ(z0) from z0 to g(y) followed by the sub-trajectory of (1) from g(y) to u, and
define F by (2) on a simply connected neighbourhood Du of σu. Then F maps σu
bijectively to the line segment [0, iy] followed by the line segment [iy, iy + t], and
taking a sub-domain if necessary makes it possible to assume that F is univalent on
Du, with inverse function defined on a neighbourhood of [iy, iy + t].

Let y′ and t′ be real and close to y and t respectively. Then the image under
F−1 of the line segment [iy′, iy′ + t′] is an injective sub-trajectory of (1) joining
g(y′) ∈ Lδ(z0) to F−1(iy′ + t′) = ζg(y′)(t

′) = G(iy′ + t′), and so T (y′) ≥ t′. Thus
y → T (y) is lower semi-continuous and A is a domain, while G : A → B is analytic.
Moreover, A is simply connected, because its complement in C ∪ {∞} is connected,
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and so is B. Furthermore, F extends to be analytic on B, by (2) and the fact that
f 6= 0 on B, and F ◦G is the identity on A because F (G(t)) = t for small positive t.

For N ∈ (0,+∞), let MN be the set of all y in (−δ, δ) such that ζg(y)(t) tends
to infinity and T (y) < N . To prove Theorem 1.2, it suffices to show that each such
MN has measure 0, and the subsequent steps will be adapted from the proof of the
Gross star theorem [16, p.292] and its extensions due to Kaplan [10]. Let ΛN ⊆ B
be the image of ΩN = {w ∈ A : Rew < N} under G, let r be large and positive and
denote the circle |z| = r by S(0, r). Then S(0, r)∩ ΛN is a union of countably many
open arcs Σr.

If y ∈ MN then T (y) < N and as t → T (y) the image z = G(iy + t) tends
to infinity in ΛN and so crosses S(0, r), and hence there exists ζ in some Σr with
ImF (ζ) = y, since F : B → A is the inverse of G. Thus the measure µN of MN is
at most the total length s(r) of the arcs F (Σr). It follows from the Cauchy–Schwarz
inequality that, as t→ +∞,

µ2
N ≤ s(t)2 =

(
ˆ

teiφ∈ΛN

|F ′(teiφ)|t dφ
)2

≤
(
ˆ

teiφ∈ΛN

|F ′(teiφ)|2t dφ
)(
ˆ

teiφ∈ΛN

t dφ

)

≤ 2πt

(
ˆ

teiφ∈ΛN

|F ′(teiφ)|2t dφ
)

.

Thus µN = 0, since dividing by 2πt and integrating from r to r2 yields, as r → +∞,

µ2
N log r

2π
≤
ˆ r2

r

ˆ

teiφ∈ΛN

|F ′(teiφ)|2 t dφ dt ≤
ˆ

ΛN

|F ′(teiφ)|2 t dφ dt

= area(ΩN ) ≤ 2δN. �

3. An example

Suppose that G is a locally univalent meromorphic function in the plane, whose
set of asymptotic values is an uncountable subset E of the unit circle T. Suppose
further that there exists a simply connected plane domain D, mapped univalently
onto the unit disc ∆ by G, such that the branch φ of G−1 mapping ∆ to D has no
analytic extension to a neighbourhood of any β ∈ E.

Let F = S(G), where S is a Möbius transformation mapping ∆ onto {w ∈
C : Rew < 0}, and for β ∈ E let α = S(β) and let L be the half-open line segment
[α − 1, α). Then M = S−1(L) is a line segment or circular arc in ∆ which meets
T orthogonally at β. Moreover, φ(M) is a level curve of ImF in D, which cannot
tend to a simple β-point of G in C because this would imply that φ extends to a
neighbourhood of β. Hence φ(M) is a path tending to infinity in D, on which ImF (z)
is constant and F (z) tends to α.

Since G and F are locally univalent, f = 1/F ′ is entire. As t → 0− write, on
φ(M),

F (z) = α + t,
dt

dz
= F ′(z) =

1

f(z)
,

dz

dt
= f(z),

so that φ(M) is a trajectory of (1) which tends to infinity in finite increasing time,
and there exists one of these for every β in the uncountable set E.

A suitable G is furnished by a construction of Volkovyskii [5, 18], in which T \E
is a union of disjoint open circular arcs Ik = (ak, bk), oriented counter-clockwise. For
each k, take the multi-sheeted Riemann surface onto which (ak− bkez)/(1− ez) maps
the plane, cut it along a curve which projects to Ik, and glue to ∆ that half which



890 James K. Langley

lies to the right as Ik is followed counter-clockwise. This forms a simply connected
Riemann surface R with no algebraic branch points. By [18, Theorem 17, p. 71] (see
also [5, p. 6]), the Ik can be chosen so that R is parabolic and is thereby the image
surface of a locally univalent meromorphic function G in the plane. �

4. Proof of Theorem 1.3

Following the notation of the introduction, suppose that v = G(z) is a transcen-
dental entire function with derivative g in (3), (4) and (5).

Proposition 4.1. Let Γ be a level curve tending to infinity on which Y =
ImG(z) = β ∈ R and X = ReG(z) increases, with X ≥ α ∈ R, and assume that
Γ meets no zero of g. Suppose that (zn) is a sequence tending to infinity on Γ such
that vn = G(zn) = Xn + iβ satisfies vn = o(|zn|)2. Then the trajectory of (3) which
follows Γ takes infinite time in tending to infinity.

Here it is not assumed that X → +∞ as z → ∞ on Γ.

Proof of Proposition 4.1. It may be assumed that Γ starts at z∗ and G(z∗) =
α + iβ. Denote positive constants, independent of n, by Cj. Then the Cauchy–
Schwarz inequality gives, as n and zn tend to infinity,

|zn|2 ≤
(

C1 +

ˆ Xn

α

∣

∣

∣

∣

dz

dX

∣

∣

∣

∣

dX

)2

≤ 2

(
ˆ Xn

α

∣

∣

∣

∣

dz

dX

∣

∣

∣

∣

dX

)2

≤ 2

(
ˆ Xn

α

dX

)

(

ˆ Xn

α

∣

∣

∣

∣

dz

dX

∣

∣

∣

∣

2

dX

)

≤ 2 (|vn|+ C2)

(

ˆ Xn

α

∣

∣

∣

∣

dz

dX

∣

∣

∣

∣

2

dX

)

≤ o
(

|zn|2
)

(

ˆ Xn

α

∣

∣

∣

∣

dz

dX

∣

∣

∣

∣

2

dX

)

.

Thus (5) shows that the transit time from z∗ to zn tends to infinity with n. �

The assumption in Proposition 4.1 that Γ meets no zero of g represents no real
restriction since if ẑ is a zero of g of multiplicity m ≥ 1, then the trajectory of (3)

starting at ẑ is constant. Indeed, if z tends to ẑ as X = ReG(z) → X̂ then, with cj
denoting non-zero constants,

X − X̂ = G(z)−G(ẑ) ∼ c1(z − ẑ)m+1,
∣

∣

∣

∣

dz

dX

∣

∣

∣

∣

2

=
1

|g(z)|2 ∼ c2

|X − X̂|2m/(m+1)
≥ c2

|X − X̂|
.

Thus formula (5) shows that ẑ cannot be reached in finite (increasing or decreasing)
time. �

Proof of Theorem 1.3. Let G be the entire function given by Theorem 1.4, and
set g = G′. As already noted, no trajectory of (3) can pass through a zero of g, and
it takes infinite time for a trajectory to approach a zero of g. Furthermore, if Γ is
a level curve, starting at z∗ say, on which ImG(z) is constant and U(z) = ReG(z)
increases, and on which g has no zeros, then there exists a sequence zn = w2n which
tends to infinity on Γ and satisfies

U(z∗) ≤ U(zn) ≤ |zn|1/2, |G(zn)| ≤ |U(zn)|+O(1) ≤ |zn|1/2 +O(1).

Hence Γ satisfies the hypotheses of Proposition 4.1. It now follows that (3) has no
trajectories tending to infinity in finite increasing time. Since time can be reversed
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for these flows by setting s = −t and dz/ds = −ḡ(z), the same example has no
trajectories tending to infinity in finite decreasing time either. �

5. Proof of Theorem 1.7

Let f be as in the hypotheses. Then there exist M > 0 and a component U
of {z ∈ C : |f(z)| > M} such that v = log f(z) is a conformal bijection from U to
the half-plane H given by Re v > N = logM ; it may be assumed that 0 6∈ U . Let
φ : H → U be the inverse function. If u ∈ H then φ and log φ are univalent on the
disc |w − u| < Re u−N and so Bieberbach’s theorem and Koebe’s quarter theorem
[9, Chapter 1] imply that

(7)

∣

∣

∣

∣

φ′′(u)

φ′(u)

∣

∣

∣

∣

≤ 4

Reu−N
,

∣

∣

∣

∣

φ′(u)

φ(u)

∣

∣

∣

∣

≤ 4π

Re u−N
.

Lemma 5.1. Let v0 be large and positive and for 0 ≤ k ∈ Z write

(8) Vk =
{

v0 + teiθ : t ≥ 0, − π

2k+2
≤ θ ≤ π

2k+2

}

, Gk(v) =
f (k)(z)

f(z)
, z = φ(v).

Then there exist positive constants d and ck such that

(9) | logφ(v)|+ | logφ′(v)| ≤ d log(Re v)

as v → ∞ in V1 and | log |Gk(v)|| ≤ ck log(Re v) as v → ∞ in Vk.

Proof. For v ∈ V1, parametrise the straight line segment from v0 to v with respect
to s = Re u. Then (9) follows from (7) and the simple estimate |du| ≤

√
2ds. Next,

the assertion for Gk is trivially true for k = 0, so assume that it holds for some k ≥ 0
and write

Gk+1(v) =
f (k+1)(z)

f(z)
=
f (k)(z)

f(z)
· f

′(z)

f(z)
+

d

dz

(

f (k)(z)

f(z)

)

= Gk(v)G1(v) +
G′

k(v)

φ′(v)
=
Gk(v)

φ′(v)

(

1 +
G′

k(v)

Gk(v)

)

.

Thus it suffices to show that G′
k(v)/Gk(v) → 0 as as v → ∞ in Vk+1. By (8) there

exists a small positive d1 such that if v ∈ Vk+1 is large then the circle |u− v| = rv =
d1Re v lies in Vk, and the differentiated Poisson–Jensen formula [8, p. 22] delivers

G′
k(v)

Gk(v)
=

1

π

ˆ 2π

0

log |Gk(v + rve
iθ)|

rveiθ
dθ = O

(

log(Re v)

Re v

)

→ 0

as v → ∞ in Vk+1. This proves the lemma. �

To establish Theorem 1.7, take any D ∈ R. Then there exist v1 ∈ [1,+∞) and a
path

Γ ⊆ {v ∈ C : Re v > N, |Im v| < π/4} ⊆ H

which is mapped by ev to the half-line {t + iD : t ≥ v1}. Thus f(z)− iD = ev − iD
is real and positive for z on γ = φ(Γ), and Γ \ Vk is bounded for each k ≥ 0. Now
write, on Γ,

ev = t+ iD,
dv

dt
=

1

t+ iD
, s = Re v =

1

2
ln(t2 +D2).

Hence, for any non-negative integers k,m, Lemma 5.1 gives, as v → ∞ on Γ,
∣

∣

∣

∣

f (k)(z)

zm

∣

∣

∣

∣

=

∣

∣

∣

∣

f(z)Gk(v)

zm

∣

∣

∣

∣

=

∣

∣

∣

∣

evGk(v)

φ(v)m

∣

∣

∣

∣

≥ es

sck+md
≥ es/2 → ∞.
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It then follows that, for c > 0,
ˆ

γ

|f (k)(z)|−c |dz| ≤ O(1) +

ˆ

Γ

e−cs/2|φ′(v)| |dv| ≤ O(1) +

ˆ

Γ

e−cs/4 |dv|

= O(1) +

ˆ +∞

v1

1

(t2 +D2)1/2+c/8
dt < +∞. �

6. Proof of Theorem 1.5

Suppose first that the inverse function of the antiderivative G of g has a loga-
rithmic singularity over infinity, and take D ∈ R. Then Theorem 1.7 may be applied
with f = G and m = c = 1, giving a level curve γ = γD, lying in a neighbourhood
of the singularity, on which ImG(z) = D and ReG(z) increases. This curve is a
trajectory for (3), traversed in time

ˆ

γ

1

ḡ(z)
dz ≤

ˆ

γ

|G′(z)|−1 |dz| < +∞,

which completes the proof in this case.
For the proof of the following lemma the reader is referred to the statement and

proof of [13, Lemma 3.1].

Lemma 6.1. [13] Let the function φ : H → C \ {0} be analytic and univalent,
where H = {v ∈ C : Re v > 0}, and for v, v1 ∈ H define Z(v) = Z(v, v1) by

(10) Z(v, v1) =

ˆ v

v1

eu/2φ′(u) du = 2ev/2φ′(v)− 2ev1/2φ′(v1)− 2

ˆ v

v1

eu/2φ′′(u) du.

Let ε be a small positive real number. Then there exists a large positive real number
N0, depending on ε but not on φ, with the following property.

Let v0 ∈ H be such that S0 = Re v0 ≥ N0, and define v1, v2, v3, K2 and K3 by

vj =
2jS0

128
+ iT0, T0 = Im v0, Kj =

{

vj + reiθ : r ≥ 0, − π

2j
≤ θ ≤ π

2j

}

.

Then the following two conclusions both hold:

(i) Z = Z(v, v1) satisfies, for v ∈ K2,

(11) Z(v, v1) =

ˆ v

v1

eu/2φ′(u) du = 2ev/2φ′(v)(1 + δ(v)), |δ(v)| < ε.

(ii) ψ = ψ(v, v1) = logZ(v, v1) is univalent on a domain H1, with v0 ∈ H1 ⊆ K3,
and ψ(H1) contains the strip

�(12)

{

ψ(v0) + σ + iτ : σ ≥ log
1

8
, −2π ≤ τ ≤ 2π

}

.

Assume henceforth that g is as in the hypotheses of Theorem 1.5 and the inverse
function of g has a logarithmic singularity over infinity. This time there exist M > 0
and a component C of {z ∈ C : |g(z)| > M} such that ζ = log g(z) is a conformal
mapping of C onto the half-plane given by Re ζ > logM . Since (3) may be re-scaled
via z =Mw and g(z) =Mh(w), it may be assumed that M = 1 and 0 6∈ C. In order
to apply Lemma 6.1, let φ : H → C be the inverse function z = φ(v) of the mapping
from C onto H given by

v = 2ζ = 2 log g(z), g(z) = ev/2.

As in the proof of Theorem 1.7, (7) holds for u ∈ H , with N = 0.
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By (12) there exists X0 > 0 such that Z(v, v1) maps a domain H2 ⊆ H1 ⊆ K3 ⊆
H univalently onto a half-plane ReZ > X0. Hence, for any Y0 ∈ R, there exists a
path Γ which tends to infinity in H2 and is mapped by Z(v, v1) onto the half-line
L0 = {X + iY0, X ≥ X0 + 1}. Consider the flow in H2 given by

(13) φ′(v)v̇ = ev/2;

by (11) this transforms under Z = Z(v, v1) to

(14) Ż =
dZ

dv
v̇ = ev/2φ′(v)v̇ = |ev|.

Combining (7) and (11) shows that |ev| ≥ |Z(v)|3/2 for large v on Γ. Hence there
exists a trajectory of (14) which starts at X0 +1+ iY0 and tends to infinity along L0

in time

T0 ≤
ˆ ∞

X0+1

∣

∣

∣

∣

dt

dX

∣

∣

∣

∣

dX ≤ O(1) +

ˆ ∞

X0+1

(X2 + Y 2
0 )

−3/4 dX < +∞.

This gives a trajectory of (13) tending to infinity along Γ and taking finite time to
do so, and hence a trajectory γ of (3) in C, tending to infinity in finite increasing
time. Since Y0 ∈ R may be chosen at will, this proves Theorem 1.5. �
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