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Normalized solutions to a class of Kirchhoff
equations with Sobolev critical exponent

GONGBAO L1, X1A0 LU0 and TAO YANG

Abstract. In this paper, we consider the existence and asymptotic properties of solutions to
the following Kirchhoff equation

- (a + b/ |Vu|2> Au = M+ |ulP"?u + plu|??u in R?
R3

under the normalized constraint ng u? =% wherea > 0,b>0,¢>0,2<qg< i <p<6or
13—4 <q<p<6,u>0and A € R appears as a Lagrange multiplier. In both cases for the range
of p and ¢, the Sobolev critical exponent p = 6 is involved and the corresponding energy functional

is unbounded from below on S, = {u € H'(R?): [pau? =} If2<qg< X and & <p <6, we

10<p—6or%<q<p§6,weget

a ground state solution to the equation. Furthermore, we derive several asymptotic results on the

obtain a multiplicity result to the equation. If 2 < ¢ <

obtained normalized solutions.

Our results extend the results of Soave (J. Differential Equations 2020 & J. Funct. Anal. 2020),
which studied the nonlinear Schrodinger equations with combined nonlinearities, to the Kirchhoff
equations. To deal with the special difficulties created by the nonlocal term ([, |Vu|2)Au appearing
in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a
way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we
need some subtle energy estimates under the L2-constraint to recover compactness in the Sobolev

critical case.

Kirchhoffin yhtil6iden normitetut ratkaisut
kriittisen Sobolevin eksponentin tilanteessa

Tiivistelm#. Téssi tyossi tarkastelemme R3:ssa Kirchhoffin yhtélon
— (a + b/ |Vu|2) Au = du+ |u|P™2u 4 plu|?u
R3

ratkaisujen olemassaoloa ja asymptoottisia ominaisuuksia, kun oletetaan normitusehto ng u? =

A ,missia > 0,b>0,¢>02<¢g< i <p<btaill<g<p<6p>0jale

R on Lagrangen kerroin. Kummassakin eksponenttien p ja q arvojoukkoa koskevassa tapauksessa
on mukana kriittinen Sobolevin eksponentti p = 6, ja vastaava energiafunktionaali on alarajaton

pallolla S, = {u € H'(R3): [psu? = ?}. Kun 2 < ¢ < & ja & < p < 6, saamme ratkaisun

3
10 14

monikasitteisyyttd koskevan tuloksen. Kun 2 < ¢ < 5 < p =6 tai 5 < ¢ < p < 6, loydamme

yhtélolle perustilaratkaisun. Liséksi johdamme useita 10ydettyjd normitettuja ratkaisuja koskevia
asymptoottisia tuloksia.
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Tuloksemme laajentavat Kirchhoffin yhtdloihin Soaven (J. Differential Equations 2020 & J.
Funct. Anal. 2020) aiempia, useita epélineaarisia termejé sisiltdvid Schrodingerin yhtaloita koske-
via, tutkimuksia. Kirchhoffin-tyyppisissé yhtdloissi esiintyviin ei-paikallisen termin ( [p, |Vu|2)Au
aiheuttamien vaikeuksien késittelemiseksi kehitdmme Pohozaevin rajoitemenetelmésté héiriollisen
version ja saamme huolellisella analyysilla tarkan késityksen sidiekuvauksen muodosta. Téssa tar-
vitsemme joitakin L2-rajoitusehdon alaisia hienovaraisia energia-arvioita osoittaaksemme kompak-
tisuuden Sobolevin eksponentin kriittiselld arvolla.

1. Introduction and main result

This paper concerns the existence of solutions (u, \) € H'(R3) xR to the following
Kirchhoff equation

(1.1), — (a + b/ |Vu|2) Au = M+ [ulP?u 4 plul %y in R?
R3

under the constraint

(1.2) / u? = c?,
R3

where a >0,0>0,¢>0,2<¢g<p<6and u>0.
Letting A € R, we say that a function u € H'(R?) is a weak solution to (1.1), if

(a—i—b/ \Vu\Q)/ VuV@—,u/ |u|q_2ug0—/ |u\p_2u<p—)\/ up =0,
R3 R3 R3 R3 RS

for all p € H'(R3). For fixed A, equation (1.1), has been extensively studied, see
e.g. [8, 12, 13, 20, 26| and the references therein.

Alternatively, letting ¢ > 0 be fixed, we aim at finding a real number A\ € R and
a function u € H'(R?) solving (1.1), with [lull, = ¢. Physicists call a solution u
of (1.1)) with |lu||, = ¢ a normalized solution, and it can be obtained by searching
critical points of the energy functional

a 9 b 4 1 12
1.3 Bu(u) =2 2 — al? = Bt w0
(1.3) u(u) = S Vully + [Vl p||u||p q||U||q, =0,

on the constraint
Se:={ue H'(R®): ull} = }
with Lagrange multipliers \. We call % the L2-critical exponent for (1.1)y, since
infycs, By (u) > —oo if ¢,p € (2,%) and infyes, E,(u) = —oo if ¥ < ¢ < 6 or
%4 <p<6.
Taking a = 1 and b = 0, then (1.1), reduces to the classical Schrédinger equation:
(1.4) —Au = A+ [uP2u + plul?*u in R®.

Cazenave and Lions [7] and the very recent works of Soave [27, 28], Jeanjean et al.
[16], Jeanjean and Le [17] are concerned with (1.4) in the more general cases

(1.5) —Au = M+ |uP2u 4 plu|? win RY,
where N > 1, p € R, p € (2,2%], ¢ € (2,2*) and 2* := % It is worth pointing

out that, Jeanjean and Le [17] solved an open question raised by Soave [28] if N > 4.
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Some of their results on normalized solutions to (1.5) are summarized in the following
table:

7 p and ¢ classifications of solutions | references
N>1 1| pu>0 2<qg<p<2+ % a global minimizer [7, 27]
N>1| p<0 |2<g<2+ 4+ <p<2"| aMountain Pass solution [27]
local minimizer;
> i * a 9
Nzl p>012<g<24y5<p<2 a Mountain Pass solution 127]
N>3 | u>0]2<qg<2+ %, p=2* a local minimizer [28, 16|
N>3 | pu>0 |2+ % <g<2* p=2*| a Mountain Pass solution [28]
local minimizer;
> é — * a 9
Nzd | p>012<qg<2+y, p=2 a Mountain Pass solution [17].

Problem (1.1), also arises in the Kirchhoff type problem
(1.6) —M(/ |Vu|2> Au= f(z,u)in Q, wu=0on Jf,
Q

where  C R? is a smooth domain, M : R — R is some function and f: @ x R -+ R
is some nonlinearity. Recalling that (1.6) with M (t) = a + bt (a,b > 0) is related to
the stationary analogue of the equation

U — (a+ b/ |Vu|2) Au = f(z,u) in Q x (0,400),
Q
u(z,t) =0 on 0N x [0, +00).

(1.7)

In [19], Kirchhoff introduced (1.7) as an extension of the D’Alembert wave equation

0*u po E [F Ou, 0*u
Pw*(fi . 1] d‘”)%

for free vibrations of elastic strings, where p denotes the mass density, u the lateral
displacement, h the cross section area, pg the initial axial tension, E the Young
modulus, L the length of the string and f the external force. In particular, (1.6)
with M (0) = 0 models a string with zero initial tension, and is called the degenerate
Kirchhoff equation, see [14, 24|. One can refer to [1, 6, 8, 12, 13, 20, 9] and the
references therein for more mathematical and physical background of (1.6).

In [32], Ye studied (1.1),—(1.2) with a > 0, b > 0, p = 0 and p € (2,6). By
considering a global minimization problem

= f(x,u)

m(c,0) := ulgbfc Ey(u) > —o0,

she proved that m(c, 0) is attained if and only if p € (2,4] and ¢ > ¢* or p € (¥, 1)

3
and ¢ > ¢*, where

0, 2<p<i
3
¢ = q ai|[Wyl2, p=1

inf{c € (0,400): m(c,0) <0}, R <p<i,

where W, is the unique positive solution of —AW + (é - W = ]%|W|p*2W and

0p = 3(’;—;2). (see Lemma 2.2 below). When p = Y, she showed that m(c,0) has no
minimizers for any ¢ > 0. Finally, she proved the existence of solutions to (1.1),—

(1.2) by using the Pohozaev constraint method if p € (4!, 6). Later on, Guo et al. in
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[10] proved that

(20 N0 =TT 10 14
— 2w, | it — e
g (25) (50) L]

As subsequent works of [32], Ye in [33, 34| considered the existence and mass con-
centration of critical points for Ey|s, if p = 4. She also studied (1.1)\~(1.2) with
an extra potential V(z) in [21]. Zeng et al. in [35] proved the existence and unique-
ness of solutions to (1.1),—(1.2) with @ > 0, b > 0, 4 = 0 and p € (2,6) by using
some simple energy estimates rather than the concentration-compactness principles
adopted in [32].

To the best knowledge of ours, the existence of L2-normalized solutions to (1.1)y
with a > 0,0 >0, u > 0, p,qg € (2,6] and p # ¢ is still unknown. Without loss
of generahty, we set ¢ < p and consider problem (1.1), in the following two cases,

respectively,

(i) the mixed critical case: @ >0,b>0,¢>0, p>0and 2 <q< % <p<6
(i) the purely L*-supercritical case: a > 0,5 >0,¢>0, p>0and ¥ <g<p <
6.

It is worth pointing out that in both (i) and (ii), we cover the Sobolev critical case
p = 6.
To state our main results, we say that @ € H*(R?) is a ground state of F,|g, if

dE,lg (@) =0 and E,(a)= inf {E.(u): d Eulg (u) =0, and u € Se}.
For p,q € (2,6], let

3(g—2 -2
-2 4 5, = 3(p—2)
2q 2p
Notice that é,,0, € (0,1) and §s = 1. In addition, we see that

(1.8) 5, =

14 10 14
4<q5q<p5pif§<q<p<6; q5q<2<4<p5pif2<q<Eand§<p<6.

For2<q<§and%<p§6,wedenote:

2—qdq

afl b pop—4 Pop :zéq 4—qdq
@ o e,
o e S (IR S P B
" .:{ q(pdy —4)b ] [ p(4 — q8,)b rap : 1
T 46, — a5)CT) (400, — a8)CE| s
i qd
(1 9) - 2(%) 4q 12(] (CLSA N b82A2) —Tq 1
| S N R T AN 12 ca(1=5,)"

4—qdq pdp—qdq

C,. = ( 8(4 — 49) )"‘5‘"4 _ ( 8(4 — qd,) ) B
- Pop(pdy — 2)(Pdp — qdy) Pop(pdy — 2)(pdy — qdy) ’
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A= % +4/aS + #, the embedding constants S and C, are given by

2 1-6p)
Vull, 1 [Vally [lulls

S = ) o
ueDL2(R3N\(0} w2 Cp,  ueH'(R3)\{0} [[ull,

)

(see Section 2 below for details). Let uo be the unique ground state of Eylg, (see
Lemma 4.14). In the mixed critical case 2 < ¢ < 1—34 < p < 6, our main results are
the following Theorems 1.1-1.2.

Theorem 1.1. Leta > 0,b>0,¢>0,2<¢< %, ¥ <p<b6and0<pu<
min{ e, p*}. Then

(1) E,|s, has a critical point ., at some energy level m(c, ) < 0, which is a
local minimizer of E,, on the set

Ap, ={u € S.: [|[Vull, < Ro}

for a suitable Ry = Ry(c, 1) > 0. Moreover, 4., is a ground state of E,|s.,
and any ground state of E,|s, is a local minimizer of E,, on Ag,;

(2) E,|s. has a second critical point of Mountain Pass type 4., at some energy
level o(c, ) > 0;

(3) ey solves (1.1)5 =~ and 4, solves (1.1)5 ~ for some Aeys dep < 0. Both
U,y and i, are bos1t1ve and radially symmetnc Moreover, 1., is radially
deceasing;

(4) If a., € S, is a ground state for E,|s., then m(c, ) — 07, |Vic,lls — 0 as
p— 0%

(5) o(c, p) = m(c,0) and G, — ug in H'(R?) as p — 0%, where m(c, 0) = Ey(uo)
and ug Is the unique ground state of Ey|g,.

Theorem 1.2. Let a > 0, b > 0,¢>0,2<q¢< Y p=6and0 < pu <

3 )
min{ ., pu*, p**}. Then

(1) E,|s. has a critical point ., at some energy level m(c,p) < 0, which is a
local minimizer of E,, on the set

Ap, :={u e S.: |Vu|, < Ro}

for a suitable Ry = Ry(c, 1) > 0. Moreover, 4., is a ground state of E,,|s.,
and any ground state of E,|s, is a local minimizer of E,, on Ag,;

(2) e,y solves (1.1)5  for some A, < 0. Moreover, i, is positive and radially
deceasing;

(3) If d., € S. is a ground state for E,|s., then m(c, 1) — 07, |Vic,lls — 0 as
u— 0.

In the purely L2-supercritical case 1—34 < g < p <6, we have the following results.

Theorem 1.3. Leta>0,b>0,c>0,%<q<p<6and,u>0. Then

(1) E,|s, has a critical point of Mountain Pass type ., at a positive level

o(e,p) > 0;
(2) 4, is a positive radial solution to (1.1);  for suitable ., < 0. In addition,
I

U, 1s a ground state of E,|s,;
(3) o(c, u) = m(c,0) and G, — ug in H'(R?) as u — 0%, where m(c, 0) = Ey(uq)
and ug Is the unique ground state of Ey|s..

Theorem 1.4. Leta>0,b>0,¢>0, X <¢ <6, p=06 and > 0. Then
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aSA+

(1) E,|s,. has a critical point of Mountain Pass type i, at level o(c, 1) € (0, 5

2A2
)

(2) dc,p. Is a positive radial solution to (1.1)5_ for suitable A, < 0. In addition,
U, is a ground state of E,|s.;

(3) ole, ) — 52 + bsszz, lallg = A, [Vieul3 — SA as p — 07, where

A:%+\/a8+b234.

4

Remark 1.1 Our results extend the results of Soave [27, 28|, which studied
nonlinear Schrodinger equations with combined nonlinearities, to the Kirchhoff equa-
tions. Compared with the cases a+b > 0 and ab = 0, our case a > 0 and b > 0 is more
difficult since the corresponding fiber map W#(s) has four different terms (see (2.6)
below). In fact, it is delicate to precisely determine the numbers and types of critical
points to W#(s); in the meantime, the compactness analysis and energy estimates
involving Sobolev critical exponent are very technical, since b > 0 brings in the non-
local term (s |Vu|*)Au. If @ = 1 and b = 0, our results cover the existence results

3
of [27, 28] in 3-dimensional case; in particular, we see that % + beQAQ = STT, which is
nothing but the well-known critical energy threshold corresponding to 3-dimensional
Schrodinger equation. For the degenerate case a = 0, the gap 13—0 <qg< % in Theo-
rems 1.1-1.2 can be filled, since WU#(s) has only three different terms and its critical

points are easily determined.

Remark 1.21f2 < g < % and % < p < 6, we obtain two critical points for £,|s,
in Theorem 1.1 because £, admits a convex-concave geometry provided 0 < p < p*.
The additional condition ;< p, guarantees the Pohozaev manifold P, , is a natural
constraint, on which the critical points of £, are indeed critical points for E,|g, (see
Lemma 4.2 below). The condition p < p** in Theorem 1.2 is crucial in compactness
analysis of the Palais-Smale sequences corresponding to E,|g,.. If 2 < ¢ < 1—34 and
p = 6, it is still a pending issue on how to obtain the second critical point for F,|g,
even in the case b = 0 (an open question raised by Soave [28]). For b = 0, Jeanjean
and Le [17] solved this open question if the dimension N of the work space satisfies
N > 4. Therefore, the method of [17] is not applicable to our case since N = 3.
When it comes to the range % < ¢ < p < 6, the convex-concave geometry of E,
disappears, we get at least one critical point for E,|s, in Theorems 1.3-1.4 because
E,, admits a Mountain Pass geometry.

The proofs of Theorems 1.1-1.4 are motivated by [5, 15, 27, 28|, which studied
the Schrédinger equations. In the L2-supercritical regime, the global minimization
method adopted in [32] does not work and it is difficult to prove the boundedness of
a Palais-Smale sequence corresponding to E,|s,. Furthermore, the main obstacle for

Kirchhoff-type problems is that we can not deduce

(1.10) lim ||Vun||§/ Vu,Védr = ||vu||§/ VuVodr, V¢ H' (R?)
n—oo R3 R3

only by u,, — u weakly in H'(R3?).

Usually, a bounded Palais-Smale sequence of E,|g, can be obtained by using the
Pohozaev constraint approach (see [5, 15, 27, 28]). That is to say, we can construct
a special Palais-Smale sequence {u,} C HL (R?) for E,|g, with

(1.11) Pu(un) = al|Vua|l3 + bl Vuallz — pdqllunllg — dpllunlly = 0n(1),
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then {u,} is bounded in H'(R?®). Once proving u, — u # 0 in H'(R?) for some
u € H(R?), we can define

(1.12) B = lim ||Vu,||2 > ||Vul2 >0
n—o0

and hence (1.10) follows in a standard way if p, ¢ € (2,6) (see Proposition 3.1 below).
However, the Sobolev critical case ¢ € (2,6) and p = 6 is much different from the
case where p, ¢ € (2,6). The proof of (1.12) depends on solving a quartic polynomial
equation. We develop a perturbed Pohozaev constraint approach to prove (1.10).
Briefly speaking, the main observation is to rewrite P, (u,) = 0,(1) (see (1.11)) as

(1.13) 0n(1) = Py (un) = (a+ BY)||Vun|l3 — udy|lull] — llualls + on(1),

where B is defined in (1.12). The revision (1.13) is the key point in proving (1.10),
since it possesses the splitting properties of the Brézis-Lieb lemma (see [2]). Then,
a subtle compactness analysis of {u,} leads to (1.10) (see Proposition 3.2 below).

It remains to search a suitable Palais-Smale sequence {u,} C HL (R?) for E,|s..
To this end, we need to know a clear picture of the corresponding fiber map V¥ (s)
(see (2.6) below). This process is quite different from that adopted in [27, 28] since
the appearance of the nonlocal term ( [gs |Vu|?)Au. We reach this goal by a careful
analysis of the profile of some polynomials (see Lemma 4.3 and Lemma 5.1).

The rest is standard as in |27, 28|. In the case of 2 < ¢ < % and % <p<6, we
first study a local minimization problem m(c, u) := infuea, B (u) for some Ry > 0.
By using rearrangement technique and the Ekeland’s variational principle, we get
a desired Palais-Smale sequence {u,} for E,|s. at energy level m(c, ) < 0. The
compactness of {u,} guarantees the existence of a local minimizer for £, |4, if 2 <
q< % and 1—; < p < 6. Utilizing m(c, ) and a min-max principle (see Lemma 2.7),
we also get a Mountain Pass type critical point for £,|s.. If 2 < ¢ < 13—0 and p = 6,
we recover the compactness of {u,} by using p < g™ and m(c, u) < 0.

In the case of % < g < p < 6, we obtain a Mountain Pass critical point for
E,|s, at energy level o(c,p) by a min-max principle. The selected Palais-Smale
sequence {u,} for E,|s. is compact provided % < ¢ < p < 6. However, we need
the extra energy estimate o(c, p) < %34 + b8122A2 to recover the compactness of {u,,}

when %4 < q < 6 and p=6. Since b > 0 and the min-max procedure is confined by
aSA 4 bS?A?
3 12

the L?-constraint, the proof of o(c, ) <
below).

This paper is organized as follows, in Section 2, we give some preliminaries. In
Section 3, we give the compactness analysis of Palais-Smale sequences for £,,| S,
In Section 4, we consider the mixed critical case and prove Theorems 1.1-1.2. In
Section 5, we study the purely L?-supercritical case and prove Theorems 1.3-1.4.

is very delicate (see Lemma 5.5

Notations. Throughout this paper, we use standard notations. The integral
Jgs fdx is simply denoted by [ps f. For 1 < p < oo and u € LP(R?), we denote

1

[ull, := (Jgs [ul")7. The Hilbert space H'(R?) is defined as
H'(R?) := {u € L*(R*): Vu € L*(R*)}

with the inner product (u, v) == [o3 VaVu+ [os uv and norm |Jul| := (||Vau|3+|ul3)>.
H~1(R3) is the dual space of H'(R3). The space D?(R?) is defined as

D' (R?) = {u € L(R?): Vu € L*(R?)},
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which is in fact the completion of C§°(R?) under the norm |jul|pregsy) = ||Vull,.
For N > 1, HL ((RY) := {u(z) € H'R"Y): u(z) = u(|z|)}, HLRY) = {u(x) €
HYRM): u(z) > 0} and S, :== H., NS, = {u € H. (R): ||lul; = ¢*}. We use
“— 7 and “ — 7 to denote the strong and weak convergence in the related function
spaces respectively. C' and C; will denote positive constants. (-,-) denote the dual
pair for any Banach space and its dual space. X <— Y means X embeds into Y.
on(1) and O, (1) mean that |0,(1)] — 0 and |O,(1)| < C as n — +o0, respectively.

2. Preliminaries

In this Section, we give some preliminaries. The next lemma is the Sobolev
embedding.

Lemma 2.1. [29] There exists a constant S > 0 such that
2
[Vully
ueDL2(R3)\{0} ||l

Lemma 2.2. (Gagliardo—Nirenberg inequality, [30]) Let p € (2,6). Then there
1

(2.1) S =

exists a constant C, = <72||Wpllp,g) * > 0 such that
P2
(2.2) lull, < Cp [Vl ulls ™, Vue H'(R?)
where 6, = 3(’;—;2) and W, is the unique positive solution of —AW + (é - )W =

2|2
Pdp

For any u € S,, (2.2) indicates that inf,cg, E,(u) > —o0 if p,q € (2,%). On the
contrary, we have inf,cg, E,(u) = —oo for % <qg<6or % < p < 6, and therefore
the global minimization method used in [32] does not work any more. Naturally,
we would hope to overcome this difficulty by using the Pohozaev constraint method
adopted in [27, 28|. To this end, we need the following lemma which is related to the
Pohozaev identity.

Lemma 2.3. Let a > 0, b > 0, p,q € (2,6] and u, A € R. If u € H'(R3) is a
weak solution of

(2.3) —(a +b |Vu|2)Au = Au+ |u[P"2u + plu)?u in R?,
R3

then the Pohozaev identity P, (u) := al|Vul[3 40| Vull5 — pdyllul|2 — 6p[|ull? = 0 holds.

Proof. If u = 0, then P,(u) = 0. If uw # 0, (2.3) becomes —(a + bB)Au =
A+ [ulP~2u + plul?u for B = [, |Vu|?, then the elliptic regularity theory implies
that v € C%(R?). The rest is standard as in [25]. O

When inf,cg, E,(u) = —oo, we introduce the Pohozaev set:
(24)  Pey={u € S.: 0= Pu(w) = al|Vull3 + b Vulli — ud, lullg = 5, ulls}

Lemma 2.3 implies that any critical point of E,|g, is contained in P.,. For u € S,
and s € R, we define

(2.5) (s*xu)(x):= ey (e°x).
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Then, sxu € S, and that the map (s,u) € Rx H(R?) — sxu € H'(R?) is continuous
(see Lemma 3.5 in [3]). Let u € S, and p € RT be fixed, we define the fiber map

(2.6)
a o o, b 4 4 9a ePors
W(s) i= By (s wu) = STl + et Tuld -

fully = [l ¥s€R.

Direct calculation gives
(2.7) (W) (s) = ae®||Vull3 + be™ || Vully — pde®*[fullf — 5,e™* [ully = Pu(s ).

Therefore, (U*)' (s) = 0 if and only if s xu € P,,. From (2.7), we see immediately
that:

Corollary 2.4. Let u € S. and € R*. Then s € R is a critical point for U* if
and only if sxu € P,,.

To determine the exact location and types of some critical points for E,|s., we
observe that P, can be split into the disjoint union P, , = P7* U Py* U P, where

P = {u € Py (W)” ) >0}, P i={ueP.,: (¥ (0) <0},
i={u € Pey: (¥4)"(0)=0} for
(‘I"J)" (0) = 2al|Vull; + 4bHVUHQ — padgllullg — papllull}.
We also need the following lemma.

Lemma 2.5. [3, Lemma 3.6] For u € S. and s € R, the map ¢ — s* ¢
from T,S. to TswS. is a linear isomorphism with inverse 1 — (—s) * 1, where
T.Sc :={p € Set [ps up = 0}.

Definition 2.6. Let X be a topological space and B be a closed subset of X.
We shall say that a class F of compact subsets of X is a homotopy-stable family with
extended boundary B if for any set A in F and any n € C([0, 1] x X; X) satisfying
n(t,x) = x for all (t,z) € ({0} x X)U([0,1] x B) we have that n({1} x A) € F.

The following Lemma 2.7 is a min-max principle obtained by Ghoussoub [11].

Lemma 2.7. [11, Theorem 5.2] Let ¢ be a C'-functional on a complete con-
nected C'-Finsler manifold X and consider a homotopy-stable family F with an
extended closed boundary B. Set m = m(p,F) and let F' be a closed subset of X
satisfying

(1) (AN F)\B # 0 for every A € F,

(2) supp(B) < m < inf p(F).

Then, for any sequence of sets (A,), in F such that lim, sup, ¢ = m, there exists
a sequence (x,), in X such that
lim ¢(x,) =m, hm |lde(x,)|| =0, lim dist(z,, F) =0, lim dist(x,,A,) = 0.

n—-+o0o n— n—-+o0o n—-+o0o

3. Compactness analysis of Palais—Smale sequences for Eu|sc

In this Section, we give the compactness analysis of Palais—Smale sequences for
E,|g - The next two propositions are motivated by [27, 28|, which studied nonlinear
Schrodinger equations (a = 1, b = 0 in our cases). To deal with the special difficul-
ties created by the nonlocal term ( [gq |Vu|?)Au, we develop a perturbed Pohozaev
constraint approach in proving Proposition 3.2.

In the Sobolev subcritical case p,q € (2,6), we have
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PropositionS.l.Leta>0,b>0,c>0,,u>0,2<q<1—34<p<6or

% < q<p<6. Let {u,} C S., be a Palais-Smale sequence for EM|SC at energy level
m # 0 with P, (u,) — 0 as n — oo. Then up to a subsequence w, — u strongly in
H'(R?) for some u € H*(R?). Moreover, u € S. and u is a radial solution to (1.1),
for some A\ < 0.

Proof. The proof is divided into four main steps.

(1) Boundedness of {u,,} in H*(R?). If 2 < ¢ < & < p < 6, we have q0, < 4 < pd,
and

a a b b ] q0,
E,(u,)=[=—-— Vun2+<———> Vun4——(1——q) Un||2 + 0, (1
y (un) (2 pap)n I+ (5 = g ) I1Vualla = 5 (1= 5% ) Hunll + 0a(1)

@_ @ 2, (00 :
(5 o )19l + (§ - =5 ) 19l

)
<(m+1)+ K’ (1 _ %% q) & ||Vun||géq ¢1(1=%)
q Pop

which gives [|[Vu,|l; < C. If & < ¢ < p < 6, we have 4 < ¢0, < pd, and E, (u,) =
a 619 6q .
HIVunlld + (F = Plluallh + 1 — Dllwallf + 0n(1) < (m+1). So {u,} is bounded
in H'(R?).

(2) 3 Lagrange multipliers A, — A € R. Since H!; (R?) < L" (R?) is compact
for r € (2,6), we deduce that there exists an u € H! ; such that, up to a subsequence,

u, —uin H*(R*), wu, — uin L"(R?*), wu, — u a.e. on R®.

Notice that {u,} is a Palais-Smale sequence of E,[4 , by the Lagrange multipliers
rule there exists \,, € R such that

(a+b||VUn||§)/ VUnV<p—M/ |Un|q_2ung0—/ |Un|p_2uncp
R3 R3 R3

— )\n/ Unp = 0p(1)
R3

for every ¢ € HY(R?), where 0,(1) — 0 as n — oo. In particular, take ¢ = u,,, then

(3.1)

2 4
M = al|Vull3 + bl Vun Iy — plltnl|Z = [fun2 + 0n(1):

The boundedness of {u,} in H' N LY N LP implies that A\, — A € R, up to a
subsequence.

(3) A < 0 and u # 0. Recalling that P, (u,) — 0, we have
A€ = p(0g = Dllunll§ + (8 — 1)l[unll} + 0a(1).

Letting n — +o0, then A¢® = (6, — 1)[Jull? 4+ (6, — 1)[Juflp. Since p > 0 and
0 < 04,0, < 1, we deduce that A < 0, with “ =" if and only if u = 0. If \,, = 0,
we have lim, o [[up||) = 0 = limy, o [|un||g. Using again P, (u,) — 0, we have
E, (u,) = 0. A contradiction with E, (u,) = m # 0 and thus A, = A < 0 and

u # 0.
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(4) u,, — win H'(R?). Since u,, — u # 0 in H'(R?), we get B := lim,, oo ||V, ||3
> ||[Vul|3 > 0. Then, (3.1) implies that

(3.2) (a+bB) | VuVe — ,u/ || up — / P up — )\/ up = 0,
R3 R3 R3 R3

for all ¢ € H'(R?). Test (3.1)—(3.2) with ¢ = u,, — u, we obtain (a + bB)||V (u, —
w3 = Mlun — ufl3 = 0. [

The Sobolev critical case ¢ € (2,6) and p = 6 is more difficult than the case
p,q € (2,6). We develop a perturbed Pohozaev constraint approach to prove Propo-
sition 3.2. The key point is a revision of P, (u,) = 0,(1), which makes it possible to
split P, (u,) = 0,(1) via the Brézis-Lieb lemma (see [2]).

14

Proposition 3.2. Let a > 0,6 > 0,¢c >0, u > 0,2 < g < % <p=606or

3
%4 < q < p=6. Let {u,} C S., be a Palais-Smale sequence for EM|Sc at energy

level m # 0, with
aSA  bS%A?
—+

3 12

m < and P, (u,) — 0 asn — oo,

2
where S = inf,c p1.2®s)\ (0} % and A = % +41/aS + #. Then, up to a subse-
quence, one of the following alternatives holds:

(i) either u, — u # 0 weakly in H'(R?) but not strongly, where u solves

(3.4) —(a + Bb)Au = M + |ul*u + p|u|?*u in R?
for some A < 0, and m — (2% + beZAQ) > I,(u) = (% + %)HVUHé - %Huﬂg —

Ellully for B := lim |V, |3 > 0.
n—oo

(ii) or u, — u strongly in H'(R3) for some v € H'(R®). Moreover, u € S,,
E,(u) =m and u solves (1.1),—(1.2) for some A < 0.

Proof. The proof is divided into four main steps. Similar to the proof of Propo-
sition 3.1, we can easily get steps (1) and (2), that is,

(1) {u,} is bounded in H'(R?®) and u, — u weakly in H'(R3) for some u €
H(R3).
(2) 3 Lagrange multipliers A, = A € R. Moreover, we have

(a + bV 2) / Vi,V — / a2 o — / et i
R3 R3 R3

— )\n/ U = 0p(1)
R3

for every ¢ € HY(R?), where 0,(1) — 0 as n — oo. In particular, take ¢ = u,,, then

(3.3)

Anc? = al| Va3 + 0l Vel — pllwally = lluall + oa(1).
(3) A <0 and u # 0. Recalling that P, (u,) — 0, we have
Anc® = p1(0g = 1)Jun[§ + on(1).

Letting n — +o00, then Ac¢* = p(0 — 1)||ul|¢. Since p > 0 and 0 < §, < 1, we deduce
that A <0, with “=” if and only if u = 0. If A\, — 0, we have

. 2 4N s 6 _
JL%O(QI\Vun]\Q + 0| Vuyl;) = nh_fglo [unllg = €.
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S0 limy, o0 || V|2 = Vit @ — 5 and by the Sobolev inequality £ > bS205 +aS(s.
Since

0#m= tim_B, (u,) —nggl IVl + IVl - gl
! +a E a?
12 4V 4b2 8
we get £ # 0 and ¢ > A?, where A = % +y/aS + . This leads to
lim B, (1) > A3 + A3 N a®> AP N aSA  aSA N bS? A2
= lim g = — - —
=i =12 a4V 4b2 8 12 4 3 12

A 272
aS 4 bS

- S0, we have A < 0 and

which contradicts with our assumptions m <
u Z 0.

(4) Conclusion. Since u,, — u # 0 in HY{(R3), we get B := lim, . ||Vu,||3 >
|[Vul|2 > 0. Then, (3.3) implies that

(3.4) (a+ Bb) | VuVe — ,u/ || up — / lul* up — )\/ up = 0,
R3 R3 R3 R3

for all p € H'(R?). That is, u satisfies —(a + Bb)Au = Au + |u|*u + p|u]7?u. So we
have the Pohozaev identity
Qu(u) = (a + BY)||Vull3 — pd|[ull] — [[ulls = 0.

Denote v, = u,, — u, then v, — 0 in H* (R3) and ||Vu,|? = |Vu||% + || Vv, |3 +

on(1). By the Brézis—Lieb lemma in [2|, we have
lunllg = lllls + llvalls + 0n (1), lluallf = lullg + lvoall§ + 0n(1).
Since v, — 0 strongly in LY(R?), we have [|u,[|? = |[ul|¢ + 0,(1). Rewrite P, (u,) =
on(1) as
6
Py (un) = (a + Bb) [ Vunllz — pdgllully — l[unllg + 0a(1).
From @, (u) = 0, we have
0= lim [[v,]l§ = lim (a + Bb)||Vu, |13 > lim (a]|Vo,; + b Vouls)-
n—o0 n—oo n—oo

The Sobolev inequality implies that

0> aS0s + bS5, lim (al| Vo, || + b||[Vu|[3) < Tim [|o, g < @ lim || Vo,l5
n—o0
We get £ > A% and lim,, o | Von||3 > SA or £ = 0 = lim,, ., | Vv, ||5. Two possible
cases may occur:

(i) £ > A% and lim ||Vv,|5 > SA. Then, we have
n—oo

a Bb Un 6
m= T B, ()= L)+ tim |41V, [2+ 2w, - s

n——+4oo n——4oo 6

V4 SA  bSZA2
= Lu(w) + 5+ lm Vo3 > L(w) + =

12 3 i 12 7
where 1,,(u) := (§ + %)HVUHQ — %HUHG Ellullg- In this case, alternative (i) follows.
(ii) £ = 0. Then u,, — uin DV?(R?) and LG(R?’) Test (3.3)—(3.4) with ¢ = u,,—u,

we have (a+Bb)||V (u, —u)||5—A||u,—ul|3 — 0. In this case, alternative (ii) holds. [J
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4. Mixed critical case

In this Section, we always assume that 2 < ¢ < % and % < p < 6. Subsection 4.1
is devoted to locating the exact position of some critical points to £, |s,.. In Subsection
4.2, we prove Theorems 1.1-1.2. Under the setting 2 < g < % and % <p<6, E,ls,
admits a convex-concave geometry if 0 < p < p*, so we get a local minimizer and a
Mountain Pass type critical point for E,|s, if p < 6. When it comes to 2 < ¢ < %
and p = 6, we only obtain a local minimizer for E,|s,.

4.1. The exact location of some critical points to E,|s, for 2 < g < %
and % < p < 6. In this Subsection, we study the structure of P., and £, to
locate the position of critical points of E,|s.. Since 2 < ¢ < % and % <p <6, we
have ¢, < 2 and 4 < pd,. Let C, be given by (2.2) for p < 6, C, = S~2 for p = 6.
Observing P, = P{* U Py U P, we have:

10 14

Lemma 4.1. Let a >0,b>0,¢>0,2<qg< 3, 3 <p<6and0 < p < ..
Then P5* = 0 and P, is a smooth manifold of codimension 2 in H'(R®). Here p.
was defined in (1.9).

Proof. Firstly, we claim that Py* = (. Otherwise, there exists u € Py*. From
P,(u) =0 and (V%)"(0) = 0, we have

al|Vull3+ b Vully = pdgllull] +5,llullp,  2a]Vull5 + 40 Vulls = ngdy |ullg -+ pdy|lull?.
By using (2.2), we have
(2 — q8g)al| Vull3 + (4 — g3,)bl| Vullz = 6,(pd, — adq)[lull?
< 0p(pdp — qéq)cgcp(liép)”vu"gépa
(pdp — 2)al|Vull + (p3, — Dbl Vull; = pde(pd, — qdy)||ullf
< Néq(pcsp - q5q)cgcq(1_%)”vu”géq-
Then, the lower and upper bounds of ||[Vu||y are given by
1
1104 (pdy — q5q)C30q(1_6‘1) s
(pdp, —4)b .

(4 - qéq)b
p(Poy — q(sq)CzZ;Cp(l_ép)

This leads to

} < [Vulls <

= (pdp — 4)b { (4 — q0q)b 1 >

pop—4
~ 0g(pdy — q5q)Cg Op(pdp — qdq)cg} CQ(1—5q)+7p(176P)(4iq6q)

pop—14

which contradicts to p < .. Here p, was defined in (1.9). We also used the fact

that (%)4*‘1&1(%)?51’*4 < 1 and this can be proved by using the monotonicity of

%. Similar to the proof of Lemma 5.2 in 27|, we can check that P, is a smooth

manifold of codimension 2 in H*(RR?). O

Since Py* = 0, we get P., = P* U P with PY* NP = (). We can prove
that P, is a natural constraint in the following sense:

Lemma 4.2. Leta>0,b>0,c>0,2<q<%,%<p§6and0<u<u*.

Ifu € P, is a critical point for E,|p, ,, then u is a critical point for E,|s.. Here p,
was defined in (1.9).

Proof. We only prove the case p € (%4, 6). For the case p = 6, the proof is much
easier since 0, = 1. We deduce by Lemma 4.1 that P, , is a smooth manifold of
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codimension 2 in H' and Pg* = 0. If u € P, is a critical point for E,|p, ,, then by
the Lagrange multipliers rule, there exists A\, € R such that

(Eufu)o) =7 [ wo—viPlu) ) =0, Ve HIE)
R3
So u solves —[(1 — 2v)a + (1 — 4v)b||Vul|3] Au — Au + p(vgd, — 1)|u|"*u + (vpd, —
1)|u|P~2u = 0. Combined with the Pohozaev identity, we have
(1 —2v)a|[Vull3 + (1 - 4’/)bHVUH§ + 1104(vq8g — D)Jullg + Sp(vpdy — Dllull, = 0.
Since u € P, and u ¢ Pg*, we deduce from v(2a||Vull5 + 4b||Vull3 — pqdg|ul|} —
poa|ull?) = 0 that v = 0. O

Next, we study the fiber map VU#(s) and determine the location and types of
some critical points for E,|s.. Consider the constrained functional E,|s,, by (2.2),
we have

(4.1)  Eu(uw) 2 S[IVully + 7[[Vully = = [[Vull37 ¢ ||V 12
2 4 D q
Vu € S.. To understand the geometry of E,|g,, we introduce the function h: R* —

R:

P q
(4.2) h(t) = @42 + ét‘l _ C_Pcp(lfép)tpép _ M_chq(lftsq)tqéq_
2 4 P q

Since p > 0, ¢d, < 2 and 4 < pd,, we have that h(0T) = 0~ and h(+o0) = —o0. If
p =6, we have §, = 1, C, = S~ 2 and hence h(t) = 4> + 2t — u%ffcq(kaq)tng e

Lemma 4.3. Let le)
t>0.Ifp € (4,+00), q~€(0

() () [ () ]

then f(t) has a local strict minimum at a negative level and a global strict maximum
at a positive level on [0, +00).

& d,p,G € (0,+00) and f(t) == at® + bt* — &P — dtd for
2) and

Q|

Proof. Direct calculations give
() =t g(t) for g(t) = 2at>~9 + 4bt*~7 — petP~1 — §d;
g(t) =t"Tw(t) for w(t) =2(2— )i+ 4(4 — @)bt* — p(p — et
w'(t) = 8(4 — q)bt — p(p — 2)(p — Gt >,

Let t* = (%)ﬁ, then we have w'(t) > 0 if ¢ € (0,¢*) and w'(t) < 0 if
t € (t*,+00). Consequently, w(t) , on [0,t*) and N\, on (t*,+00). Since w(0) > 0
and w(+00) = —o0, w(t) possesses unique zero point at some ¢ with ¢ > t*. So we

have g(t) / on [0,%) and N\, on (¢,4+00). We deduce from

Ay — Ay | (BT b
Aot la (Y70

d
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that
~\ =4 ~p=q = 70=4
2400 (BN (4ds — A bt Awa (D)7 (Ay— Ay) bih
o~ - + = 4—g > ~ ~ + ~ 4—G > ]-7
gd \c¢ qd ¢4 d \c d Chia
_ 8(4—q) \:=4 _ 8(4—q) \:=% _ 8(4—q) \E=4 :
Where A1 = (WT)(Z_(D)Z’ 4, A2 = (WT)(Z_(D)P 4 and Ag = (MT)(;_(D)Z’ 4, ThlS

leads to g(t) > ¢(t*) > 0 and f(t*) > 0. Since g(0) < 0, g(t) > g(t*) > 0 and
g(+00) = —o0, there exists unique t,ty (0 < t; < t* <t < ty) such that g(t;) =0 =
g(t2). Consequently, f'(t) < 0if ¢t € (0,t1) U (t2,4+00) and f'(t) > 0if t € (t1,12).
This implies that f(t) N\ on [0,%1), / on (t1,t2) and N\, on (t9, +00). The conclusion
follows from f(0) =0, f(t2) > f(t*) > 0 and f(400) = —o0. O

Similar to Lemma 5.1 and Lemma 5.3 in [27], we can prove the following Lem-
mas 4.4-4.5.

Lemma 4.4. Leta >0,b>0,c¢>0,2<qg < 1 = 3 < p<6and0 < pu < p*.
Then the function h has a local strict minimum at a negative level and a global strict
maximum at a positive level. Moreover, there exist 0 < Ry < Ry, both depending on
¢ and p, such that h(Ry) =0 = h(Ry) and h(t) > 0 if and only if t € (R, Ry). Here
p* was defined in (1.9).

Proof. Takea——b—— :C p(1=3p) al—“(l'ch(l‘S , ¢ = q0q and p = pd, in
Lemma 4.3, then the conclus1on follows prov1ded 0 << pr UJ
Lemma 4.5. Let a > 0,5 > 0,¢>0,2<¢g< % & <p<6and0 <

p < min{ i, u*}, where ., p* were defined in (1.9). For every u € S,, the function
W has exactly two critical points s, < t, € R and two zeros ¢, < d,, € R, with
Su < ¢y < t, < d,. Moreover:

(1) sy*u € P and t,xu € P, and if sxu € P.,,, then either s = s, or s = t;
(2) ||[V(s*u)||2 < Ry for every s < ¢,, and
E, (sy*u)=min{E,(s*u): s € R and |V(s*u)|2 < Ry} < 0;

(3) We have
E, (t,*u) =max{E,(s*u): s € R} >0,
and W* is strictly decreasing on (t,,+00);
(4) The maps u € S, + s, € R and u € S, > t, € R are of class C*.
Proof. Again we prove the case p € (4,6). Letting u € S, then u(z) =

t2u (tz) € S, for t > 0. Consider the functional

F0) = Bu(ue) = 22192+ 2o vult = pf e = E g, ve s 0
- pu\4wt) — 2 2 4 2 ,u q q P p’

and take @ = £[Vull3, b = &|Vull3, & = LJull, d = £ful?, G = ¢b, and § = pd, in
Lemma 4.3. By the following estimates

2—qdq

—_—4d 2—qé
||VU||2 qdq [HV ||4 pdp ]pép—4 B 1 |: 1 :|p§pq_¢z1
)

[Vull3 [IIVHII‘*] e

[y [Talp ] = ity | Gat=r |~ cent=s [car—s
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and
4 Mg;qiq 9%
L [[Vullp] = 1 [Vl
4—q5 = 5 4—qs
[ ullg [”u”g]ipap{i C||Vu |2 ca(1=a) [Cgcp(l,gp)]ipépq,i

4—qdq

1 ]_ pdp—4
o qucq(l—éq) Cgcp(l_‘sp) ’

we deduce that f(t) has a local strict minimum at a negative level and a global
strict maximum at a positive level on [0, +o00) provided p < p*. By monotonicity
of composite functions, we derive that W!(s) := E,(sxu) = f(e®) has a local strict
minimum at a negative level and a global strict maximum at a positive level on
(—00, +00).

From (4.1), we have

Wii(s) = Eu(sxu) = h([V(sxu)ll2) = h(e*[Vull2)

Thus, the C? function ¥# is positive on (log ||V}%1?||2 ,log ||VRu1||2>’ and clearly V#(—o0) =

0, Ut(400) = —oo. It follows that W# has exactly two critical points s, < t,,
with s, local minimum point on (—oo, log ”VR%) at negative level, and ¢, > s, global
maximum point at positive level. By Corollary 2.4, we have s, x u, t, xu € P,
sxu € P, implies s € {sy,%,}. By minimality (V%  )"(0) = (¥4)"(s,) > 0,
and “ =7 can not hold, since Py* = 0; namely s, xu € P, Similarly, we have
ty*u € PS". By monotonicity and the behavior at infinity, U# has exactly two zeros
Cy < dy, With s, < ¢, < t, < d,.

It remains to show that v — s, and u — t, are of class C'. Consider the C!
function ®(s,u) := (V#)'(s). By the facts that ® (s,,u) = 0, 0sP (s, u) > 0, and it
is not possible to pass with continuity from P{* to PS* (since Py* = 0), then the
implicit function theorem applied on ®(s,u) gives the desired result. Similarly, we
have u +— ¢, is C*. [

For k > 0, let us set
Ap i ={ue S.:|Vuls <k}, and m(c,pu):= inf E,(u).
UEARO

Corollary4.6.Leta>O,b>0,c>0,2<q<13—0,%<p§6and

0 < p < min{pu., p*}, where p,, pu* were defined in (1.9). Then the set P{* is
contained in Ap, = {u € Sc: ||Vullzs < Ro}, and suppen By < 0 < infpen E,.

Proof. 1t is a direct conclusion of Lemma 4.5. Indeed, Vu € P{¥, Lemma 4.5
implies that s, = 0, E,(u) < 0 and ||[Vulls < Ry. Similarly, u € P2* implies that
t, =0and E,(u) > 0. O

Let Ag, be the closure of Ag, and Ag,\ Ag,—, = {u € Ag,: u & Ag,_,} for some
Ry and p.

Lemma 4.7. Leta>0,b>0,c>0,2<q<?,%<p§6and0<u<

min{ ., u*}, where p.,., u* were defined in (1.9). It holds that m(c, 1) € (—o0,0) and

m(c, p) = 7'1an E,=inf E,.
1

c,
Py

Moreover, there exists a constant p > 0 (independent of ¢ and 1) small enough such
that

m(c,p) < inf B,
ARQ\ARQ*P



Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent 911

Proof. For u € Ag,, we have E,(u) > h(||Vull2) > minep, g, h(t) > —oo, and
hence m(c, ) > —oo. Moreover, for any u € S. we have ||V(s *u)|ls < Ry and
E,(s+u) <0 for s < —1, and hence m(c, p) < 0.

By Corollary 4.6, we have m(c, p) < infper E,, since Pt C Ag,. On the other

hand, if v € Ag,, we have s, xu € P{" C Ap, and
E, (sy*u)=min{E,(s*u):s € Rand ||[V(sxu)|s < Ry} < E,(u),
which implies that infper E, < m(c,p). To prove that infpes E, = infp, , B, it is
sufficient to recall that £, > 0 on P2, see Corollary 4.6.
Finally, by continuity of h there exists p > 0 (independent of ¢ and p) such that

h(t) > w if t € [Ry — p, Ro]. Therefore E,(u) > h(||Vull2) > w > m(c, ) for

every u € S, with ||Vul|s € [Ry — p, Ro). O

Lemma 4.8. Leta > 0,b>0,¢c>0,2 < q< 2 U

5,3 <p<6and0 < pu <
min{ ., *}. Suppose that E, (u) < m(c, p). Then the valuet, defined by Lemma 4.5

is negative. Here ., " were defined in (1.9).

Proof. Let s, < ¢, < t, < d, be defined by Lemma 4.5. If d, < 0, then
t, < 0, and hence we can assume by contradiction that d, > 0. If 0 € (c,,d,),
then E,(u) = ¥#(0) > 0, which is impossible since E,,(u) < m(c, ) < 0. Therefore
¢y, > 0, and by Lemma 4.5-(2)
mic.n) > By(w) = WH(0) > _inf W)
se(—oo,cy

>inf{E,(sxu):s€Rand |[|[V(sxu)||a < Ry} = E, (s, xu) > m(c, p)
which is again a contradiction. O

Lemma 4.9. Leta > 0,b>0,¢>0,2<¢q < ¥, 3
min{ ., u*}, where ., p* were defined in (1.9). It holds that

<p<6and 0 < u<

a(e, p) = uégﬁ} E,(u) > 0.

Proof. Let t,,4, be the strict maximum of the function A at positive level, see
Lemma 4.4. For every u € P“", there exists 7, € R such that |V (7, xu) |2 = tmax-
Moreover, since u € P* we also have by Lemma 4.5 that the value 0 is the unique
strict maximum of the function W#. Therefore

E,(u) =WE(0) > UE (1,) = E, (Tu xu) > h(||V (T % u) ||2) = h (tmax) > 0.
Since u € P“* was arbitrarily chosen, we deduce that infpes E, > maxgh > 0. O

4.2. The existence and asymptotic results for 2 < g < % and % <p<
6. In this Subsection, we first prove the existence results, i.e. Theorem 1.1-(1)(2)(3)
and Theorem 1.2-(1)(2). The proof of Theorem 1.1 is divided into two parts. To
begin with, we prove the existence of a local minimizer for E,| g, Next, we construct
a Mountain Pass type critical point for £, g,- Finally, we prove the asymptotic
results, i.e. Theorem 1.1-(4)(5) and Theorem 1.2-(3).

Proof of Theorem 1.1-(1),(2),(3). (i) Existence of a local minimizer. Let {v,}
be a minimizing sequence for m(c,u) = infyca, E,u(u). From Section 3.3 and

Lemma 7.17 in [23], we have E, (|v,|") < E,, (v,,), since

(4.3) IVIoal" 2 < IV[vnlllz, Mloally = loal" oy llnlla = [lloal"llg,
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where |v,|" is the symmetric decreasing rearrangement of |v,|. So we can assume
that v, € S. is nonnegative and radially decreasing for every n. By using Lemma 4.5
and Corollary 4.6, we have s, x v, € PY", ||V (sy, * vn) |2 < Ro and that

E, (sy, *v) =min{E, (s xv,): s € Rand ||V(s*v,)|l2 < Ro} < E, (vy,) -
Consequently, we obtain a new minimizing sequence {w,, = s,, * v, } for m(c, p), with
wy, € S, VPP and  P,(w,) =0

for every n. By Lemma 4.7, we have [|[Vw,||s < Ry — p for every n. Hence, the
Ekeland’s variational principle guarantees the existence of a new minimizing sequence
{un} C Ag, for m(c, ) < 0, with the property that ||u, — wy| g1 — 0 as n — +o0,
which is also a Palais-Smale sequence for E,, on S.. The condition ||u,, —wy|/z1 — 0
implies

|Vuplla < Ry—p and P,(u,) -0 as n— o0

and hence {u,} satisfies all the assumptions of Proposition 3.1. Therefore, up to a
subsequence u, — @, strongly in H', @, is an interior local minimizer for E,,| Ap
0

and solves (1.1); for some A < 0. It is easy to know that 4, is nonnegative and
radially deceasing. The strong maximum principle implies that u, > 0.

Since any critical point of E,|s, lies in P, , and m(c, u) = infp,, E, (see Lem-
ma 4.7), we see that 7, is a ground state for £,| g,- 1t only remains to prove that any
ground state of E,|g, is a local minimizer of £, in Ag,. Let then u be a critical point
of E,|s, with E,(u) = m(c, u) = infp, , E,. Since E, (u) < 0 < infper E,, necessarily
u € PY¥. Then Corollary 4.6 implies that P* C Ag,. This leads to | Vull2 < Ry,
and as a consequence u is a local minimizer for £, |a, .

(ii) Existence of a Mountain Pass type solution. We focus now on the existence
of a second critical point for E,|g . Denote B = {u € S.: E,(u) < m}. Motivated

by [15], we define the augmented functional E,: R x H' — R

qéqs epéps
lullg =

a o b 4. e
Ey(s,u) = Ey(s xu) = 5e* | Vull3 + 2¢[|Vullz — p

o el

and study E~M|Rxgc. Notice that S, = H! NS, and Eu is of class C''. Theorem 1.28
in [31] indicates that a critical point for E,|rxs,, is a critical point for E,|rxs. .
We introduce the minimax class

= {y(r) = (¢(r), B(1)) € C([0,1],R x S, ); 7(0) € (0, P5"),7(1) € (0, B2 )},

then I" # ). Indeed, Yu € S.,, by Lemma 4.5 we know that there exists s; > 1 such
that

(4.4) Yu: T €[0,1] = (0,((1 = 7)sy +7s1) xu) € R x S,

is a path in I' (recall that s € R — s*u € S., is continuous, s, x u € P" and
E,(s*u) = —o0 as s = +00). Thus, the minimax value

= inf E
ofe, p) = inf e u(s, u)

is a real number. We claim that

(4.5) V~ €I there exists 7, € (0,1) such that {(7,) * 5(7,) € PZ*.
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Indeed, since 7(0) = (¢(0),5(0)) € (0,P5"), by Corollary 2.4 and Lemma 4.5,
we have teons0) = Lao) > spo) = 0; since E,(5(1)) = Eu(y(1)) < 2m(c, p), by
Lemma 4.8, we have

teapms) = taay <0,

and moreover the map f¢(r).g(r) is continuous in 7 (we refer again to Lemma 4.5 and
recall that s € R +— s*u € S, is continuous). It follows that for every v € I" there
exists 7, € (0,1) such that tc(- ).s(-) = 0, and so ((7,) * B(7y) € P>*. Thus (4.5)
holds.

For every v € ', by (4.5) we have

(@6 mox B, > B,((5) = BC(r) <AER) 2 _inf B,

which gives o(c, ) > infperng,  E,. On the other hand, if u € P2* N S, then 7,
defined in (4.4) is a path in I" with

E,(u) = E,(0,u) = max E, > o(c,p),
Yu([0,1])

which gives infpenng B, > o(c,p). This, Corollary 4.6 and Lemma 4.9 imply that
olc,p)= inf E,>0> sup E

C 1 H
PNSerr (PErUEL™ ) NS s
(4.7) 5
= sup E,.
(PO, ) ) R xSe.r)

Let v, (7) = (Gu(7), Bn(7)) be any minimizing sequence for o(c, ) with the prop-
erty that (,(7) = 0 and 3,(7) > 0 a.e. in R? for every 7 € [0,1] (Notice that, if
{7 = (s, Bn)} is a minimizing sequence, then also {(0,(, * |f,])} has the same
property). Take

X=RxS,, F={(01):7€el}, B=(0P) U0 E" ),
F= {<S7u> eR X Sc,r | Eﬂ(57u> ZO'<C,,U)}, AI’Y([O, 1]), An:f)/n([o, 1])

in Lemma 2.7. We need to checked that F is a homotopy stable family of compact
subsets of X with extended closed boundary B, and that F' is a dual set for F, in
the sense that assumptions (1) and (2) in Lemma 2.7 are satisfied.

Indeed, since o(c, p) = infpenng, By, (4.6) = v (1) = (((19),B(7y)) € ANF,
(47) = FNB = and (2) in Lemma 2.7, then ANF # () and F N B = () give

(1) in Lemma 2.7. For every v € I, since (0) € (0, P$") and (1) € (0, B c“))
we have v(0),v(1) € B. Then for any set A in F and any n € C([0,1] x X;X)
satisfying n(t, ) = z for all (¢t,z) € ({0} x X)U([0,1] x B), it holds that n(1 7(0)) =
v(0),  7n(1,7(1)) =~(1). So we have n({1} x A) € F.

Consequently, by Lemma 2.7, there exists a Palais-Smale sequence {(s,,w,)} C
R x S., for E)\Rxsw at level o(c, 1) > 0 such that

— 0 asn— oo,

u ~ﬂ (Sm wn) (TwnSc,'r)*

(4.8) 0sE, (p,w,) — 0 and ‘

with the additional property that
(4.9) |sn| 4+ distzr (wn, 5,([0,1])) = 0 as n — oo.
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From (4.8), we have P, (s, x w,) — 0 and that

ot [ VYot b Vunl [ ViV perte [ g
(4.10) R? RS
_ ersn / [wa 2 wap = o)l plli, ¥ € T Ser
R

By using (4.9), we know that s, is bounded from above and from below. Conse-
quently,

(4.11) (EL (Sn* wy) , 8p* @) = o(1)||pl|l g = o(1) [|sy * || ;1 as n — oo,

Vo €T, Ser. From (4.11) and Lemma 2.5, we see that {u, := s, xw,} C S, is a
Palais-Smale sequence for E,|s,, at level o(c, ) > 0, with P,(u,) — 0. Therefore,
all the assumptions of Proposition 3.1 are satisfied, and we deduce that up to a
subsequence u, — 1, strongly in H', with 4, € S., nonnegative radial solution to

(1.1)4 for some A < 0. The strong maximum principle implies that 4, > 0. U

Proof of Theorem 1.2-(1),(2). Imitating the proof of Theorem 1.1-(1), we get a
Palais-Smale sequence {u,} for E,|g, with

|Vup|ls <Ry—p and P,(u,) -0 asn— oo

and w, is nonnegative and radially decreasing for every n. Hence {u,} satisfies all
the assumptions of Proposition 3.2. We show that alternative (ii) in Proposition 3.2
occurs. Otherwise, up to a subsequence u, — @, # 0 weakly in H '(R?) but not
strongly, where 4, is a solution to (3 4)5 for some \ < 0, and

) o Bb ) aSA  bS%A?
Lmn:(a )wum gl = {1l < mie.n) - 5= = =5

where B := lim, .o [|[Vu,||2 > |[Va,|? > 0 and A = 22 + /a8 + 2%, Since @
2 pllo 2 1 p
solves (3.4)5, we get the Pohozaev identity Q,(4,) := (a + Bb)||Va,||3 — 1164 T 17 —
~ 2 ) ~
Il = 0. By using [|%,/l2 < ¢ and L(@,) = §1Vaull, + IV all; — 1(; — ),
we have

aSA  bS*A?  a _ . Bb, _ . 1 9,
e = %5+ P IV + IV - (3 - ) Ll

-3 12 6
aSA  bS*A* b . 4 1 9, _ 14
412 2 SR vl - (5 - ) cpet v
Denote g(t) = &t* — ,u(% — %‘I)Cgcq(l*‘sq)tq%, Vt > 0. By using p < u**, we have
mintZO g(t) = _%(ﬁ — i)t‘ol > _% . b8122A2 for tq = [qu(ﬁ q5q2)l§jqc¢Z(1 6q)] - q6q  Then
(4.12) implies that
aSA  bS*A? _ aSA  bS*A?
0> mien) > O 4 T (v, > S8+ B i (1) > 0

Consequently, up to a subsequence u, — 1, strongly in H', @, is an interior local
minimizer for E,| Ang? and solves (1.1)5 for some A < 0. Moreover, i, is nonnegative
and radially decreasing and the strong maximum principle implies that @, > 0. Since
any critical point of E,[g, lies in P, , and m(c, ) = infp,, E, (see Lemma 4.7), we
see that 1, is a ground state for E,[¢ . Similar to the proof of Theorem 1.1-(1), we
can show that any ground state of E,|g, is a local minimizer of E, in Ag,. O
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To obtain the asymptotic property of m(c, u) and o(c, ) as p — 0", we need to
study equation (1.1), with x = 0. Although it has been studied in [32, 35|, we still
give a detailed proof as we obtain a ground state solution. Modify the arguments
in Section 2, especially Lemma 4.1 and Lemma 4.5, we can derive the following
Lemmas 4.10-4.11.

Lemma 4.10. Let a >0, b > 0, ¢ > 0, %<p<6anduz(), Then Py* = 0,
and P.,, Is a smooth manifold of codimension 2 in H'(R?).

Proof. The proof is similar to that of Lemma 4.1. O
Lemma 4.11. Let a > 0,b >0, ¢ > 0, %4 <p<6andpu=0. For every u € S,,

there exists a unique t,, € R such that t, xu € P,,. t, Is the unique critical point of
the function V¥, and is a strict maximum point at positive level. Moreover:

(1) P, =P

(2) W# is strictly decreasing and concave on (t,,+00).
(3) The maps u € S, + t,, € R are of class C'.

(4) If P,(u) <0, then t, < 0.

Proof. The proof is similar to that of Lemma 6.1 in [28]. O

Lemma 4.12. Let a > 0,b >0, ¢ > 0, % < p <6 and p =0, then m(c,0) :=
infuepc’o Ey (u) > 0.

Proof. By (2.2) and Py(u) = 0, we have
a||Vull3 + bl Vulls = G lully < 6,C8 [ Vulfs 22,

So we get infyep, , |Vulls > C > 0 from pd, > 4. As Py(u) = 0, we have

a a b b
inf F = inf - — — 2 - — — Al > .0
it Bl = inf { (5 - ) Ivul+ (3 - ) 19t f = ¢ >0
Lemma 4.13. Let a > 0, b > 0, ¢ > 0, 1—34 < p < 6 and p = 0. There exists
k > 0 sufficiently small such that

0 <supEy <m(c,0) and u€ A, = Ey(u) >0, Py(u) >0,
s

where Ay, == {u € S.: ||Vu|s < k}.
Proof. By using (2.2), we have

4 1-4
L WIVully  Gpert )

Bolu) 2 == IVully,  Po(u) > b Vully — 8,C2[Vul[p =)

Therefore, for any u € Ay with k small enough, we have

0<supEy and wu€ Ay = Ey(u) >0, Py(u) > 0.
Ay

If necessary replacing k with a smaller quantity, we also have
a b —
Eo(u) < 5||vu||§ + Z||vu||;% <m(c,0), Yue A,

since m(c,0) > 0 by Lemma 4.12. O
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Lemma 4.14. Leta > 0,b>0,c> 0, % < p < 6 and = 0. Then, there exists
a positive radial critical point uq for Ey|g, at a positive level

m,(c,0) =m(c,0) := 7ijnf Ey = Ey(uo)
c,0

and as a result ug is the unique ground state of Ey|g,.

Proof. Utilising Lemmas 4.10-4.13 and by using the same arguments in Sec-
tion 7 in [27]|, we can drive that there exists a positive radial critical point wug for
Ey|s. at a Mountain Pass level o(c,0) > 0 characterized by o(c,0) = infp, ns., Eo.
By rearrangement technique and Lemma 4.11, we have m,(c,0) := infp_ s, , Eo =
infp, , Ey. Following [22, 35|, ug is unique since ug > 0. O

Lemma 4.15. Let a > 0,b>0,¢>0,2<¢< 2, & <p<b6and0<p<
min{ ., u*}, then

inf F,= inf maxF,(sxu), and inf  FEy= inf max Fy(s*u)
. 7 1 ; ,
P,’“OSC,T ueSc,r seR Pi’OﬂSc ” ueSc,r seR

where pu., ;i* were defined in (1.9).

Proof. Vu € S.,, by Lemma 4.5, there exists a unique ¢, € R such that ¢, xu €
PN S, Thus, for any v € P2* N S.,, we have ¢, = 0 and

= > i .
E,(u) max E,(s*xu)> vélblyfm max E,(s*wv)

On the other hand, if u € S.,, then t, xu € PE* N S,,, and hence

max E,(sxu)=E, (t,*u) > Pi’yrlwgc,r E,.

By using Lemma 4.11, we can similarly prove

inf  Ey= inf max Fy(s*u). O
’Pi’OmSCT UESC,T seR

Lemma 4.16. Let a > 0,b>0,¢>0,2< ¢ < % and & < p < 6. For any
0 < 1 < pg < min{ ., p*}, it holds that o (¢, ua) < o (¢, p1) < m(c,0), where pi,, p*
were defined in (1.9).

Proof. From (4.7), we have o(c, ) = infpenng,  F,. By Lemmas 4.14-4.15, we
have

o(c, ) = inf maxE, (sxu) < inf maxEy(s+u)=m,(c,0) =m(c,0),

u€Se,r s€R u€Se,r s€R
o (¢, p2) < max By, (5% ty,) < max By (s 5ty ) = Epy (Gy,) = 0 (¢, ). O

Proof of Theorem 1.1-(4): convergence of i,. From Lemma 4.4, we know that
Ro(c,p) = 0 as pp — 07, and hence ||Vl < Ro(c, 1) — 0 as well. Moreover

0 > ¢ Vi 2 év~ 4_% Vi, |7 p(1—5p)_’u_cg Vil || (a(1=dq)
> (e, ) 2 GIVEE + 71V - 2 [ Valgre <A
— 0,

which implies that m(c, u) — 0. O

We consider now the behavior of .
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Proof of Theorem 1.1-(5): convergence of 4,. Let us consider {a,: 0 < p < Ji},
with 7z small enough. Since 4, € P, ,, from Lemma 4.16, we have

m(c,0) > o (c,n) = E,, ()

(v Y waz e (2o LY wantt = M (1 Do) e
= (5 -5 ) IVl + (5 - = ) 19l - = (1- )

a a ) b b . W q0, _ ~ 1146,
> (= — — 2 - - 4 P12 ea.a(1-5) @dq
= <2 p5p> Va2 + <4 p5p) 1V, [[2 ) ( p5p> q€ [V,

Hence {4, } is bounded in H'. Since each 1, is a positive function in S, ,, we deduce
that up to a subsequence 4, — 4 > 0 weakly in H'(R?), strongly in L" for 2 <r < 6
and a.e. on R?, as g — 0T. Using the fact that 4, solves

(413) (DY) Ay = Ay + [0, 20, + pli |20, in B

for A, < 0 and P, (@1,) = 0, we infer that \,c® = u(J, — Df[t,l[E + (6, — D[a,lp.
As > 0and 0 < 9,9, < 1, we deduce that j‘u converges (up to a subsequence) to
some A < 0 satisfying

A = (8, — Dl

with A = 0 if and only if & = 0. We claim that A < 0. In fact, @, — @ weakly in H"
implies that « is a weak radial solution to

(4.14) — (a+bB)AG = Mi+ |a[""*0  in R,

where B := lim+ Vi3 > || Va3 By Lemma 4.16, we have
pn—0

b, . 0 1\ .
- vl + (% - 2) nai;

‘ b a0 1Y\, L 04\ -
> i (=309, (% - D) hadg - u (5 - 2) laal

= lim E, (4,) = lim o(e,p) > o(e, ) >0,

u—0t u—0

bp 1

which gives (3 — o)l > b||val|3. So we have @ # 0, and in turn yields A < 0 and

B > 0. The strong maximum principle implies that @ > 0. Test (4.13)—(4.14) with
u, — U, we have

(a +bB)|IV (@, — ) |5 = M@, — all; = 0,

which implies that 4, — @ in H' as p — 0%. It results to m(c,0) < Ep(a). Since
. 2 112
lim,, o+ || Va,||; = [[Vi||;, we also have

b

. . . 1, ) . )
Eo(a) = 5194l + 71 7al = llal = lim, By (3,) = lim o(c,p0) < m(c,0)

u—0t

Consequently, Eo(@) = lim, o+ o(c,u) = m(c,0) and @ is a positive solution to
(4.14). From [18, 22, 35|, we know that (4.14) has a unique positive solution uy.
Thus @ = ug. O
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Proof of Theorem 1.2-(3). From Lemma 4.4, we know that Ry(c,p) — 0 as
p — 07, and hence ||Vi,||s < Ro(c, 1) — 0 as well. Moreover,
0>m(c,pu) = Ey, (u)
a ~ b - 4 S 3 MC Sy
> IVl + IVl — = [Vl — — Vi[5 ) — o,

which implies that m(c, u) — 0. O

5. Purely Lz-supercritical case

In this Section, we always assume that i < ¢ < p < 6. Under this setting, we
obtain one critical point for E,|s,, since E | s, admits a Mountain Pass geometry.
Subsection 5.1 is devoted to locating the exact position of some critical points to
. In Subsection 5.2, we prove Theorems 1.3-1.4.

wlS

5.1. The exact location of some critical points to E,,|g, for 2 <g<p<
6. In this Subsection, we study the structure of P., and £, to locate the position of
some critical points to E,|g,. Since % <qg<p<6,we have 4 < gy < pbp. Similar
to the proof of Lemmas 4.1-4.2, we can prove that P, , is a natural constraint and
Py* = (). Furthermore, we have

Lemma 5.1. Let @,b,¢,d,p,G € (0,400) and f(t) := at® + bt* — &P — dt? for
t > 0. If p,G§ € (4,400), f(t) has a unique maximum point at a positive level on

[0, +00).

Proof. Direct calculations give
F(8) =tg(t) for g(t) = 2a+ 4bt* — petP~2 — Gdti2;
g'(t) = tw(t) for w(t)=8b—p(p—2)et"* - §(q— 2)dt"*;
w'(t) = —p(p — 2)( — 4" — §(G — 2)(§ — 4)dtT".

Since w'(t) < 0 for t > 0, we know that w(t) \, on [0, +00). The fact that w(0) > 0
and w(+o00) = —oo imply that there exists unique t* > 0 such that w(t*) = 0,
w(t) > 01if t € (0,t") and w(t) < 0if t € (t*,4+00). Consequently, g(t)  on
[0,¢*) and \, on (t*,4+00). The fact that g(0) > 0 and g(+o00) = —oo imply that
there exists unique ¢ > t* such that g(t) = 0, g(t) > 0if t € (0,¢) and g(t) < 0 if

€ (t,+00). We get f'(t) > 0ift € (0,¢) and f'(t) < 0if ¢t € (¢, +00), which implies
that f(t) /" on [0,f) and ~\, on (¢,400). Since f(0) = 0, then f(¢) has a unique
maximum point at ¢ and f(f) > 0. O

Lemma 5.2. Leta>0,b>0,c>0,%<q<p§6andu>0. For every
u € S, Y¥ has a unique critical point t,, € R, which is a strict maximum point at a

positive level. Moreover:

(1> PC,,U, = Pf“

(2) W is strictly decreasing on (t,,+00), and t, < 0 implies P,(u) < 0.

(3) The maps u € S, — t, € R are of class C".

(4) If P,(u) <0, then t, < 0.

Proof. By using Lemma 5.1, we derive that U# has a unique maximum point at
a positive level. The rest of the proof is similar to that of Lemma 6.1 in [28§]. U
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Lemma 5.3. Leta >0,b>0, c> 0, 1—34 <qg<p<6andp>0. Then, we have
m(c,p) == inf E,(u) > 0.

uGPc,u

Proof. The proof is similar to that of Lemma 4.12. 0

Lemma 5.4. Let a > 0,b > 0, ¢ > 0, % < q<p<6and pu > 0. Then, there
exists k > 0 sufficiently small such that

0 <sup E, <mf(c,n) and wu€ Ay = E,(u) >0, P,(u)>0,

A
where Ay, := {u € S.: ||Vul]3 < k}.
Proof. The proof is similar to that of Lemma 4.13. U
To apply Proposition 3.2 and recover compactness when p = 6, we need an
estimate from above on
. = inf FE )
m(c, 1) . . u(u)

Lemma 5.5. Leta>0,b>0,c>0,%<q<6,p:6and,u>0. Then

A 2A2 2 2 Q4
my(c, p) < S8 4 5 where A = %= + 4 /aS + 5
IVl

Proof. By Theorem 1.42 of [31], we know that S = inf,cp12(ms) (o} lIIUT is
6
attained by

(5.1) U.(z) == 3% (L) . Ve>o0.

€2 + |z|?
Furthermore, we have |[VU.||5 = ||U.[|¢ = S2. Take a radially decreasing cut-off
function n € C° (R3) such that n = 1 in By(0), n = 0 in BS(0) := R3\ By(0), and let
ue()

us(z) :=n(z)U(x), and v (x):

Vee (0,1).

e
Clearly, v. € S, by Lemma 5.2, there exists a unique ¢,_, € R such that
my(c, 1) = Pc,irrlwgw E,<E,(ty. ,*v:) = max E, (s*v.) = max U (s), Ve>0.

o, . . 272
So, it is sufficient to prove max,eg V4 (s5) = E, (ty, u xv:) < % + A

To this end, we need some integral estimates. Similar to Lemma 1.46 in [31] or
Lemma A.1 in [28], we can derive that

q

[Vuli3 = 8%+ 0(e), ey = 58+ 0, [uclly = 0(). Jully = OE"H),
1
(5.2) |Vu.|3 > Cy, & 2 lucl|® > Co,  ue|l2 > Cse

for some constants C; > 0 (i = 1,2, 3), which are independent of ¢, ¢ and p.

Next, we prove max,eg W9_(s) = Ep (ty, 0 % v:) = 232 + beQAQ + O(e2). Since

0 a 9 o, b 4 4 e 6
W () = SVl + 3¢ IVoulld — el

Ve
we see that U9 (s) has a unique maximum point ¢,_g such that

4 2 8
P\ \/anmng | BIvu

2][ve 15 loells Allvellg®
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Then, we derive that

20 bV} \/anmn; | BlIvuls

el 2lluellg lucllg 4lluell?

b(S? + O(e))’ L a8t 0E) | st o))"

2(S7 + O(e3)) S2 4+ 0(e3) 482 + 0(e3))?
bS> b2S3

= +\/a—|— n + O(e) + O(e)
bS3 h2S3 . A )

< 2 [ 2

< +1/a+ 1 +O(e2) = \/§+O(e ),

where A = % +4/aS + #. This leads to that

sup Uy, (s) = Uy, (tu. o)

seR

a c?e?tve0 b ctettveo , BeSteo |lu ||

= Vel + - —— I Vuels —
T2 2R 6
2 2ty 0

_ac’e i (8% —i—O(a)) N éc4e4tvg,0 (S% +O(s)>2

4
2 3 4 luell,

[

6 6t o (52 L O(e ))
||ue||2 6

(\% + O(e%)) (3 + 0(5)) + Z ( + O(a%))2 (S*+0(c))
B (b‘;‘% . \/a+ b2f3 + 00 + O(€)>3 S +6O(€3))

aAS  bA2S? . bS3 1283\ S>3
< — 2 b
< + 1 + O(e2) — < i +41/a+ 1 ) 5
aAS  BA2S? A3 |
= +t—F &5+ O(e?) =

a
< Z
-2

&=

Njw

N

aSA  bS%A?

(5.3) 3 + B

—l—O(a%).

Finally, we estimate t,, ,. From (W% )'(t,, ) = P,(ty. . * v-) = 0, we have

athUE e

Vo [+ bete [V [ = pugerites

va”g + Sen USHg > 66%8’“””6”2'

It results to that e?ven < e%v0 50 we have

) et < UVl \/aumuz PIVely  bIVerly | Val el

= 2ffeelg loellg Alleelle® = lloellg ve
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On the other hand, we have

Qoo _ al| Vee|3 | bl Vel oPvews _

5 1lls s,

6
HUEHG ”U€H6 ” 6”6
q
bHVUeHQ o2tven _ HUs”q (a5g—2)tve
||UE||6 ||UE||6
qéq—4 qéq—4

By the inequality (¢; + 62) t < 0% +4y % for ly, 0y >0 and (5.4), we have

q
62tvs m> b| |VUE| |2 ‘ ‘U€| |q 6(q6q—4)tvs,u
- q 6
[|vellg |[vellg
oblfuclly [Vuells ey el e
- 6 q _
c? ||u6||6 c-a ||u€||6

qdq—4

o lully [IVeel 3 Ml lp el [buwé ﬁnweugl 2

A luelfg B [ A | A | [lve 1§

qéq—4

qdq—4
6— q 4
b||ue||z||VUa||z 5||u5||2qHUqu O[Vely | 7 (VallVelly |
= 2 — MO, 6 6 + 3
¢ ||u5||6 ¢ e[ | ve 8 | ve I3
q(Sq*

gdéqg—4
4 2
bl Ve[
1
4
Ve ’
(AT,
e 5

qéq—4
_ Hu€||§{b||Vu€||‘2l N(chq(l_(SQ) ||u6||g <b||vu€“§> |

| el [luellg  Tucllg™ =" [\ [uells

qdq—4
\/5||Vu5||2 ’ ||u€||§ (1-6,) ||u€||g
U el e R =
cll6 e l]3

where Cy = Cy(b,8) > 0 and C5 = Cs(a,b,q,S) > 0. Utilizing (5.2), we have
e Il

W = 0(5%). Consequently, we get

B A L | o 0 |
S (A PO

C

6
el lg

Jul3 Cs

2 4
for ¢ > 0 sufficiently small. Then (5.5) gives elv=r > C’@ for some constant
C = @ Since ¢ € (%,6), we get

(5.5) e*en > el {c O T )byt %)05} >

c?

0 6q5qt’067# q
Slel]g \Di(s) = Ul (t ( 'U57M) v, ( 'U57M) 1% Hvqu
eqéqtvg,u eqéqtvs,u
< sup Y (s) — p [0l = W _(to.0) — 1 (ke
se
aSA  bS2A? CWaca1=0a)  |ju||?
<=4 +O(er) - & —
3 12 q Jucl[3



922 Gongbao Li, Xiao Luo and Tao Yang

aSA  bS*A? | o-q, aSA  DS%A\?

< == )0 1) < — .
S5t +0(e2) -0 7)) < ST

5.2. The existence and asymptotic results for % <qg<p<6.1In

this Subsection, we first prove the existence results, i.e. Theorem 1.3-(1),(2) and

Theorem 1.4-(1),(2). Then, we prove the asymptotic results, i.e. Theorem 1.3-(3)
and Theorem 1.4-(3).

To prove the asymptotic results in Theorem 1.4, we need the following lemma.

Lemma 5.6. Let a >0,b>0,¢c>0,p=06 and u = 0. Then,

aSA  bS?A?
(5.6) my(c,0) = m(c,0) == 713111; Ey = ulgbfc max Eo(sxu) = 3 DI

O

where A = % +4/aS + bzfl.

Proof. Imitate the proof of Lemma 4.15, we get infp_, Ey = inf,cg, max,cr Fo(s*
u). Now, we prove that inf,cg, maxser Eo(s x u) = % + %

calculation implies that max.er Fo(s*u) = V0(t,0) with

4 2 8
s _ VIV \/a|rw\2 | PlIvuls

2[ullg lullg Allulls® -

In fact, direct

e

We claim that

6 6 9 12
57 g eorvult = g (AT \/a|rwu2+buwuz Lo
uUESe

2| ullg ullg Alulls?
On the one hand, by density of H'(R?) in D'?(R3) (see [28]), we get

inf €20Vl = inf o || Vul = inf 20 || V|3
uESe ueH' (R3)\{0} ueDV2(R3)\ {0}

R 21 odvals L RVl
= 6 6 12
ueDL2(R3\{0} 2ul|g ueDL2(®I\{0} ||ul|g ueDL2(®3\(0}  4ul|g

— @ + aS3 + b286

= SA.

N

On the other hand, since § = inf e p1.2(r3)\ {0} HH ””2 is attained by U.(x) = 31

62 |$|2

bt [ PS_bVUS \/anwang AT
T 17T A T7A A

VU] > inf 20 || V|3

— GQtUE’O ||
- 2°
ueDL2Z(R3)\{0}

Then (5.7) is true. Similarly, we can prove inf,cg, €20 |u||§ = A. These facts imply
that

a o, b 4. 4 aSA | bS*A?
I Wt0) = i { SVl + Seroull - St = 450 2
Finally, we show that infp,, Ey = infp, s, Eo. Otherwise, there exists u € P.p \
Se, with Ey(u) < infp,,ns,, Eo. Then we let v := |u|", the symmetric decreasing

rearrangement of |u|, which lies in S, ,. Then, we have Ey (v) < Ep (u) and Py (v) <
FPy(u) = 0. If Py(v) = 0, then Ey(u) < infp_ns., o < Eo(v), a contradiction,
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and hence we get Py(v) < 0. By Lemma 5.2, we have t, < 0. However, we get a
contradiction that

1
Ep(u) < inf By < By (o v) = 7™ [ Vo] + 75 ol

a 1
< 2IVul + sllullg = Fo (w),

where we used the fact that ¢, x v and w lies in P.o. This proves that m,(c,0) =
m(c,0). O

Based on Lemmas 5.2-5.4 and Proposition 3.1, we can prove Theorem 1.3.

Proof of Theorem 1.3. The proof is different from that of Theorem 1.1-(2), we
should revise the minimax class as

[i={y(r) = (C(7),B(7)) € C([0,1], R x S.p) 5 (0) € (0, Ap), ¥(1) € (0, E)} .

Then, it is standard as the proof of Theorem 1.6 in [27] that E,
i, at Mountain Pass level o(c, u) > 0 and 4, solves (1.1)5  for some Aoy < 0.
Similar to Lemma 5.6, we get infp, , B, = infp, s, , E,, then 4., is a ground state
of E,|s.. The proof of the asymptotic result is similar to that of Theorem 1.1-(5). [

s. has a critical point

Theorem 1.4 is concerned with the Sobolev critical case p = 6. Proposition 3.2
and Lemma 5.5 are crucial in the analysis. We first prove the existence results.

- aSA | bSZA
Proof of Theorem 1.4-(1),(2). Lemma 5.5 gives m,(c, ) < 3= + >3, the rest

of the proof is the same as that of Theorem 1.3, but we shall replace Proposition 3.1
by Proposition 3.2. U

Proof of Theorem 1.4-(3). Let us consider {u,: 0 < u < i}, with 7z small enough.
From Theorem 1.4-(1)(2) and Lemma 5.6, we know that

aSA  bS2A2 a o, 1 1
5.8 S B (i) = 21iva |2 % _ 2N 16 le - 116118
(5.8) TRRT w () = 7 u“H2+“(4 q) Il + 73 1 ulls

This leads to |Va,|3 < C. So {a,} is bounded in H'. Since each 4, is a positive
radial function in S., we deduce that up to a subsequence 4, — 4 weakly in H',
strongly in L" for 2 < r < 6 and a.e. on R?, as u — 0T. Using the fact that 4, solves

(5.9) — (a +0||Va,|3) Aty = Ny, + ] 0, + pld,) %0, in R
for j‘u < 0 and P, (q,) =0, we infer that
N ~ 112 ~ 14 ~ ~ 116 ~
Auc® = al| V|l + b Vi, — pllnllg = llls = 10 = i@l =0 as p— 0"

Therefore, we have lim, .o+ {al|Va, | + ||V} = lim, o+ [|@,]0 = ¢ > 0 and
j‘u — 0. So lim, e ||Vﬂu||§ =\/i+ % — 5; and by the Sobolev inequality ¢ >
bS5 + aSts.

If £ = 0, then we have @, — 0 strongly in D"?(R?®) and so E, (4,) — 0 as

p — 0%, Imitate Lemma 4.16, we can prove that o(c, 1) is monotone decreasing in
(1 and

lim E, (u,) = lim o(c,p) > o(e, i) > 0,

u—0t u—0t
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the contradiction implies that ¢ # 0 and so we have ¢ > A3. By using the mono-
tonicity of o(c, 1) and (5.6), we also have

aSA  bS?A? - ¢ a (a2 a

5 T Snti\Wrtm

. a,_ . 1, . ) 1 )
= tim [SIVa -+ ol + o (5= ) il
aSA  bS?A?
— lim B, (@) = < - =
Jim B, (@) = lim, o(c, p) < mi(c,0) = — T
which implies that £ = A%, [|@,[|S — A® and ||V, |5 — SA as u — 0. O
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