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Normalized solutions to a class of Kirchhoff
equations with Sobolev critical exponent

Gongbao Li, Xiao Luo and Tao Yang

Abstract. In this paper, we consider the existence and asymptotic properties of solutions to
the following Kirchhoff equation

−
(

a+ b

ˆ

R3

|∇u|2
)

∆u = λu+ |u|p−2u+ µ|u|q−2u in R
3

under the normalized constraint
´

R3 u
2 = c2, where a > 0, b > 0, c > 0, 2 < q < 14

3
< p ≤ 6 or

14

3
< q < p ≤ 6, µ > 0 and λ ∈ R appears as a Lagrange multiplier. In both cases for the range

of p and q, the Sobolev critical exponent p = 6 is involved and the corresponding energy functional

is unbounded from below on Sc = {u ∈ H1(R3) :
´

R3 u
2 = c2}. If 2 < q < 10

3
and 14

3
< p < 6, we

obtain a multiplicity result to the equation. If 2 < q < 10

3
< p = 6 or 14

3
< q < p ≤ 6, we get

a ground state solution to the equation. Furthermore, we derive several asymptotic results on the

obtained normalized solutions.

Our results extend the results of Soave (J. Differential Equations 2020 & J. Funct. Anal. 2020),

which studied the nonlinear Schrödinger equations with combined nonlinearities, to the Kirchhoff

equations. To deal with the special difficulties created by the nonlocal term (
´

R3 |∇u|2)∆u appearing

in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a

way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we

need some subtle energy estimates under the L2-constraint to recover compactness in the Sobolev

critical case.

Kirchhoffin yhtälöiden normitetut ratkaisut

kriittisen Sobolevin eksponentin tilanteessa

Tiivistelmä. Tässä työssä tarkastelemme R
3:ssa Kirchhoffin yhtälön

−
(

a+ b

ˆ

R3

|∇u|2
)

∆u = λu + |u|p−2u+ µ|u|q−2u

ratkaisujen olemassaoloa ja asymptoottisia ominaisuuksia, kun oletetaan normitusehto
´

R3 u
2 =

c2, missä a > 0, b > 0, c > 0, 2 < q < 14

3
< p ≤ 6 tai 14

3
< q < p ≤ 6, µ > 0 ja λ ∈

R on Lagrangen kerroin. Kummassakin eksponenttien p ja q arvojoukkoa koskevassa tapauksessa

on mukana kriittinen Sobolevin eksponentti p = 6, ja vastaava energiafunktionaali on alarajaton

pallolla Sc = {u ∈ H1(R3) :
´

R3 u
2 = c2}. Kun 2 < q < 10

3
ja 14

3
< p < 6, saamme ratkaisun

monikäsitteisyyttä koskevan tuloksen. Kun 2 < q < 10

3
< p = 6 tai 14

3
< q < p ≤ 6, löydämme

yhtälölle perustilaratkaisun. Lisäksi johdamme useita löydettyjä normitettuja ratkaisuja koskevia

asymptoottisia tuloksia.
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Tuloksemme laajentavat Kirchhoffin yhtälöihin Soaven (J. Differential Equations 2020 & J.

Funct. Anal. 2020) aiempia, useita epälineaarisia termejä sisältäviä Schrödingerin yhtälöitä koske-

via, tutkimuksia. Kirchhoffin-tyyppisissä yhtälöissä esiintyvän ei-paikallisen termin (
´

R3 |∇u|2)∆u

aiheuttamien vaikeuksien käsittelemiseksi kehitämme Pohozaevin rajoitemenetelmästä häiriöllisen

version ja saamme huolellisella analyysillä tarkan käsityksen säiekuvauksen muodosta. Tässä tar-

vitsemme joitakin L2-rajoitusehdon alaisia hienovaraisia energia-arvioita osoittaaksemme kompak-

tisuuden Sobolevin eksponentin kriittisellä arvolla.

1. Introduction and main result

This paper concerns the existence of solutions (u, λ) ∈ H1(R3)×R to the following
Kirchhoff equation

(1.1)λ −
(

a+ b

ˆ

R3

|∇u|2
)

∆u = λu+ |u|p−2u+ µ|u|q−2u in R
3

under the constraint

(1.2)

ˆ

R3

u2 = c2,

where a > 0, b > 0, c > 0, 2 < q < p ≤ 6 and µ > 0.
Letting λ ∈ R, we say that a function u ∈ H1(R3) is a weak solution to (1.1)λ if
(

a+ b

ˆ

R3

|∇u|2
)
ˆ

R3

∇u∇ϕ− µ

ˆ

R3

|u|q−2 uϕ−
ˆ

R3

|u|p−2 uϕ− λ

ˆ

R3

uϕ = 0,

for all ϕ ∈ H1(R3). For fixed λ, equation (1.1)λ has been extensively studied, see
e.g. [8, 12, 13, 20, 26] and the references therein.

Alternatively, letting c > 0 be fixed, we aim at finding a real number λ ∈ R and
a function u ∈ H1(R3) solving (1.1)λ with ‖u‖2 = c. Physicists call a solution u
of (1.1)λ with ‖u‖2 = c a normalized solution, and it can be obtained by searching
critical points of the energy functional

Eµ(u) =
a

2
‖∇u‖22 +

b

4
‖∇u‖42 −

1

p
‖u‖pp −

µ

q
‖u‖qq, µ ≥ 0,(1.3)

on the constraint

Sc :=
{

u ∈ H1(R3) : ‖u‖22 = c2
}

with Lagrange multipliers λ. We call 14
3

the L2-critical exponent for (1.1)λ, since

infu∈Sc Eµ(u) > −∞ if q, p ∈ (2, 14
3
) and infu∈Sc Eµ(u) = −∞ if 14

3
< q ≤ 6 or

14
3
< p ≤ 6.
Taking a = 1 and b = 0, then (1.1)λ reduces to the classical Schrödinger equation:

−∆u = λu+ |u|p−2u+ µ|u|q−2u in R
3.(1.4)

Cazenave and Lions [7] and the very recent works of Soave [27, 28], Jeanjean et al.
[16], Jeanjean and Le [17] are concerned with (1.4) in the more general cases

−∆u = λu+ |u|p−2u+ µ|u|q−2 u in R
N ,(1.5)

where N ≥ 1, µ ∈ R, p ∈ (2, 2∗], q ∈ (2, 2∗) and 2∗ := 2N
(N−2)+

. It is worth pointing

out that, Jeanjean and Le [17] solved an open question raised by Soave [28] if N ≥ 4.
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Some of their results on normalized solutions to (1.5) are summarized in the following
table:

N µ p and q classifications of solutions references

N ≥ 1 µ > 0 2 < q < p ≤ 2 + 4
N

a global minimizer [7, 27]

N ≥ 1 µ < 0 2 < q ≤ 2 + 4
N

< p < 2∗ a Mountain Pass solution [27]

N ≥ 1 µ > 0 2 < q < 2 + 4
N

< p < 2∗
a local minimizer;

a Mountain Pass solution
[27]

N ≥ 3 µ > 0 2 < q < 2 + 4
N

, p = 2∗ a local minimizer [28, 16]

N ≥ 3 µ > 0 2 + 4
N

≤ q < 2∗, p = 2∗ a Mountain Pass solution [28]

N ≥ 4 µ > 0 2 < q < 2 + 4
N

, p = 2∗
a local minimizer;

a Mountain Pass solution
[17].

Problem (1.1)λ also arises in the Kirchhoff type problem

−M
(

ˆ

Ω

|∇u|2
)

∆u = f(x, u) in Ω, u = 0 on ∂Ω,(1.6)

where Ω ⊂ R
3 is a smooth domain, M : R → R is some function and f : Ω× R → R

is some nonlinearity. Recalling that (1.6) with M(t) = a+ bt (a, b > 0) is related to
the stationary analogue of the equation

utt −
(

a+ b

ˆ

Ω

|∇u|2
)

∆u = f(x, u) in Ω× (0,+∞),

u(x, t) = 0 on ∂Ω× [0,+∞).

(1.7)

In [19], Kirchhoff introduced (1.7) as an extension of the D’Alembert wave equation

ρ
∂2u

∂t2
−
(

ρ0
h

+
E

2L

ˆ L

0

|∂u
∂x

|2 dx
)

∂2u

∂x2
= f(x, u)

for free vibrations of elastic strings, where ρ denotes the mass density, u the lateral
displacement, h the cross section area, ρ0 the initial axial tension, E the Young
modulus, L the length of the string and f the external force. In particular, (1.6)
with M(0) = 0 models a string with zero initial tension, and is called the degenerate
Kirchhoff equation, see [14, 24]. One can refer to [1, 6, 8, 12, 13, 20, 9] and the
references therein for more mathematical and physical background of (1.6).

In [32], Ye studied (1.1)λ–(1.2) with a > 0, b > 0, µ = 0 and p ∈ (2, 6). By
considering a global minimization problem

m(c, 0) := inf
u∈Sc

E0(u) > −∞,

she proved that m(c, 0) is attained if and only if p ∈ (2, 10
3
] and c > c∗ or p ∈ (10

3
, 14

3
)

and c ≥ c∗, where

c∗ :=











0, 2 < p < 10
3
;

a
3
4‖Wp‖2, p = 10

3
;

inf{c ∈ (0,+∞) : m(c, 0) < 0}, 10
3
< p < 14

3
,

where Wp is the unique positive solution of −∆W + ( 1
δp

− 1)W = 2
pδp

|W |p−2W and

δp = 3(p−2)
2p

. (see Lemma 2.2 below). When p = 14
3
, she showed that m(c, 0) has no

minimizers for any c > 0. Finally, she proved the existence of solutions to (1.1)λ–
(1.2) by using the Pohozaev constraint method if p ∈ (14

3
, 6). Later on, Guo et al. in
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[10] proved that

c∗ :=

[

2‖Wp‖p−2
2

(

2a

14− 3p

)
14−3p

4
(

b

3p− 10

)
3p−10

4

]

1
p(1−δp)

if
10

3
< p <

14

3
.

As subsequent works of [32], Ye in [33, 34] considered the existence and mass con-
centration of critical points for E0|Sc if p = 14

3
. She also studied (1.1)λ–(1.2) with

an extra potential V (x) in [21]. Zeng et al. in [35] proved the existence and unique-
ness of solutions to (1.1)λ–(1.2) with a > 0, b > 0, µ = 0 and p ∈ (2, 6) by using
some simple energy estimates rather than the concentration-compactness principles
adopted in [32].

To the best knowledge of ours, the existence of L2-normalized solutions to (1.1)λ
with a ≥ 0, b > 0, µ > 0, p, q ∈ (2, 6] and p 6= q is still unknown. Without loss
of generality, we set q < p and consider problem (1.1)λ in the following two cases,
respectively,

(i) the mixed critical case: a > 0, b > 0, c > 0, µ > 0 and 2 < q < 14
3
< p ≤ 6;

(ii) the purely L2-supercritical case: a > 0, b > 0, c > 0, µ > 0 and 14
3
< q < p ≤

6.

It is worth pointing out that in both (i) and (ii), we cover the Sobolev critical case
p = 6.

To state our main results, we say that ũ ∈ H1(R3) is a ground state of Eµ|Sc if

d Eµ|Sc
(ũ) = 0 and Eµ(ũ) = inf

{

Eµ(u) : d Eµ|Sc
(u) = 0, and u ∈ Sc

}

.

For p, q ∈ (2, 6], let

(1.8) δq =
3(q − 2)

2q
and δp =

3(p− 2)

2p
.

Notice that δq, δp ∈ (0, 1) and δ6 = 1. In addition, we see that

4 < qδq < pδp if
14

3
< q < p < 6; qδq < 2 < 4 < pδp if 2 < q <

10

3
and

14

3
< p < 6.

For 2 < q < 10
3

and 14
3
< p ≤ 6, we denote:

µ∗ :=









a
2

(

bp

4Cp
p

)

2−qδq
pδp−4

c
q(1−δq)+

p(1−δp)(2−qδq)

pδp−4

+
( b
4
)
pδp−qδq
pδp−4 ( p

Cp
p
)

4−qδq
pδp−4

c
q(1−δq)+

p(1−δp)(4−qδq)

pδp−4









qCp,q
Cq
q

;

µ∗ :=

[

q(pδp − 4)b

4(pδp − qδq)Cq
q

] [

p(4− qδq)b

4(pδp − qδq)Cp
p

]

4−qδq

pδp−4 1

c
q(1−δq)+

p(1−δp)(4−qδq)

pδp−4

;

µ∗∗ :=
2( b

δq
)
qδq
4

(6− qδq)Cq
q

·
[

12q

4− qδq

(aSΛ
3

+
bS2Λ2

12

)

]1− qδq
4 1

cq(1−δq)
,(1.9)

where

Cp,q :=
(

8(4− qδq)

pδp(pδp − 2)(pδp − qδq)

)

4−qδq
pδp−4

−
(

8(4− qδq)

pδp(pδp − 2)(pδp − qδq)

)

pδp−qδq
pδp−4

> 0,
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Λ = bS2

2
+
√

aS + b2S4

4
, the embedding constants S and Cp are given by

S = inf
u∈D1,2(R3)\{0}

‖∇u‖22
‖u‖26

,
1

Cp
= inf

u∈H1(R3)\{0}

‖∇u‖δp2 ‖u‖(1−δp)
2

‖u‖p
,

(see Section 2 below for details). Let u0 be the unique ground state of E0|Sc (see
Lemma 4.14). In the mixed critical case 2 < q < 14

3
< p ≤ 6, our main results are

the following Theorems 1.1–1.2.

Theorem 1.1. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p < 6 and 0 < µ <

min{µ∗, µ
∗}. Then

(1) Eµ|Sc has a critical point ũc,µ at some energy level m(c, µ) < 0, which is a
local minimizer of Eµ on the set

AR0 := {u ∈ Sc : ‖∇u‖2 < R0}
for a suitable R0 = R0(c, µ) > 0. Moreover, ũc,µ is a ground state of Eµ|Sc ,
and any ground state of Eµ|Sc is a local minimizer of Eµ on AR0 ;

(2) Eµ|Sc has a second critical point of Mountain Pass type ûc,µ at some energy
level σ(c, µ) > 0;

(3) ũc,µ solves (1.1)λ̃c,µ
and ûc,µ solves (1.1)λ̂c,µ

for some λ̃c,µ, λ̂c,µ < 0. Both
ũc,µ and ûc,µ are positive and radially symmetric. Moreover, ũc,µ is radially
deceasing;

(4) If ũc,µ ∈ Sc is a ground state for Eµ|Sc , then m(c, µ) → 0−, ‖∇ũc,µ‖2 → 0 as
µ → 0+;

(5) σ(c, µ) → m(c, 0) and ûc,µ → u0 inH1(R3) as µ → 0+, wherem(c, 0) = E0(u0)
and u0 is the unique ground state of E0|Sc .

Theorem 1.2. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, p = 6 and 0 < µ <

min{µ∗, µ
∗, µ∗∗}. Then

(1) Eµ|Sc has a critical point ũc,µ at some energy level m(c, µ) < 0, which is a
local minimizer of Eµ on the set

AR0 := {u ∈ Sc : ‖∇u‖2 < R0}
for a suitable R0 = R0(c, µ) > 0. Moreover, ũc,µ is a ground state of Eµ|Sc ,
and any ground state of Eµ|Sc is a local minimizer of Eµ on AR0 ;

(2) ũc,µ solves (1.1)λ̃c,µ
for some λ̃c,µ < 0. Moreover, ũc,µ is positive and radially

deceasing;
(3) If ũc,µ ∈ Sc is a ground state for Eµ|Sc , then m(c, µ) → 0−, ‖∇ũc,µ‖2 → 0 as

µ → 0+.

In the purely L2-supercritical case 14
3
< q < p ≤ 6, we have the following results.

Theorem 1.3. Let a > 0, b > 0, c > 0, 14
3
< q < p < 6 and µ > 0. Then

(1) Eµ|Sc has a critical point of Mountain Pass type ûc,µ at a positive level
σ(c, µ) > 0;

(2) ûc,µ is a positive radial solution to (1.1)λ̂c,µ
for suitable λ̂c,µ < 0. In addition,

ûc,µ is a ground state of Eµ|Sc;
(3) σ(c, µ) → m(c, 0) and ûc,µ → u0 inH1(R3) as µ → 0+, wherem(c, 0) = E0(u0)

and u0 is the unique ground state of E0|Sc .

Theorem 1.4. Let a > 0, b > 0, c > 0, 14
3
< q < 6, p = 6 and µ > 0. Then
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(1) Eµ|Sc has a critical point of Mountain Pass type ûc,µ at level σ(c, µ) ∈ (0, aSΛ
3
+

bS2Λ2

12
);

(2) ûc,µ is a positive radial solution to (1.1)λ̂c,µ
for suitable λ̂c,µ < 0. In addition,

ûc,µ is a ground state of Eµ|Sc;

(3) σ(c, µ) → aSΛ
3

+ bS2Λ2

12
, ‖ûµ‖26 → Λ, ‖∇ûc,µ‖22 → SΛ as µ → 0+, where

Λ = bS2

2
+
√

aS + b2S4

4
.

Remark 1.1 Our results extend the results of Soave [27, 28], which studied
nonlinear Schrödinger equations with combined nonlinearities, to the Kirchhoff equa-
tions. Compared with the cases a+b > 0 and ab = 0, our case a > 0 and b > 0 is more
difficult since the corresponding fiber map Ψµ

u(s) has four different terms (see (2.6)
below). In fact, it is delicate to precisely determine the numbers and types of critical
points to Ψµ

u(s); in the meantime, the compactness analysis and energy estimates
involving Sobolev critical exponent are very technical, since b > 0 brings in the non-
local term (

´

R3 |∇u|2)∆u. If a = 1 and b = 0, our results cover the existence results

of [27, 28] in 3-dimensional case; in particular, we see that aSΛ
3

+ bS2Λ2

12
= S

3
2

3
, which is

nothing but the well-known critical energy threshold corresponding to 3-dimensional
Schrödinger equation. For the degenerate case a = 0, the gap 10

3
< q < 14

3
in Theo-

rems 1.1–1.2 can be filled, since Ψµ
u(s) has only three different terms and its critical

points are easily determined.

Remark 1.2 If 2 < q < 10
3

and 14
3
< p < 6, we obtain two critical points for Eµ|Sc

in Theorem 1.1 because Eµ admits a convex-concave geometry provided 0 < µ < µ∗.
The additional condition µ < µ∗ guarantees the Pohozaev manifold Pc,µ is a natural
constraint, on which the critical points of Eµ are indeed critical points for Eµ|Sc (see
Lemma 4.2 below). The condition µ < µ∗∗ in Theorem 1.2 is crucial in compactness
analysis of the Palais–Smale sequences corresponding to Eµ|Sc . If 2 < q < 14

3
and

p = 6, it is still a pending issue on how to obtain the second critical point for Eµ|Sc

even in the case b = 0 (an open question raised by Soave [28]). For b = 0, Jeanjean
and Le [17] solved this open question if the dimension N of the work space satisfies
N ≥ 4. Therefore, the method of [17] is not applicable to our case since N = 3.
When it comes to the range 14

3
< q < p ≤ 6, the convex-concave geometry of Eµ

disappears, we get at least one critical point for Eµ|Sc in Theorems 1.3–1.4 because
Eµ admits a Mountain Pass geometry.

The proofs of Theorems 1.1–1.4 are motivated by [5, 15, 27, 28], which studied
the Schrödinger equations. In the L2-supercritical regime, the global minimization
method adopted in [32] does not work and it is difficult to prove the boundedness of
a Palais–Smale sequence corresponding to Eµ|Sc. Furthermore, the main obstacle for
Kirchhoff-type problems is that we can not deduce

(1.10) lim
n→∞

‖∇un‖22
ˆ

R3

∇un∇φ dx = ‖∇u‖22
ˆ

R3

∇u∇φ dx, ∀φ ∈ H1(R3)

only by un ⇀ u weakly in H1(R3).
Usually, a bounded Palais–Smale sequence of Eµ|Sc can be obtained by using the

Pohozaev constraint approach (see [5, 15, 27, 28]). That is to say, we can construct
a special Palais–Smale sequence {un} ⊂ H1

rad(R
3) for Eµ|Sc with

(1.11) Pµ(un) = a‖∇un‖22 + b‖∇un‖42 − µδq‖un‖qq − δp‖un‖pp = on(1),
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then {un} is bounded in H1(R3). Once proving un ⇀ u 6≡ 0 in H1(R3) for some
u ∈ H1(R3), we can define

(1.12) B := lim
n→∞

‖∇un‖22 ≥ ‖∇u‖22 > 0

and hence (1.10) follows in a standard way if p, q ∈ (2, 6) (see Proposition 3.1 below).
However, the Sobolev critical case q ∈ (2, 6) and p = 6 is much different from the

case where p, q ∈ (2, 6). The proof of (1.12) depends on solving a quartic polynomial
equation. We develop a perturbed Pohozaev constraint approach to prove (1.10).
Briefly speaking, the main observation is to rewrite Pµ (un) = on(1) (see (1.11)) as

(1.13) on(1) = Pµ (un) = (a +Bb)‖∇un‖22 − µδq‖u‖qq − ‖un‖66 + on(1),

where B is defined in (1.12). The revision (1.13) is the key point in proving (1.10),
since it possesses the splitting properties of the Brézis–Lieb lemma (see [2]). Then,
a subtle compactness analysis of {un} leads to (1.10) (see Proposition 3.2 below).

It remains to search a suitable Palais–Smale sequence {un} ⊂ H1
rad(R

3) for Eµ|Sc .
To this end, we need to know a clear picture of the corresponding fiber map Ψµ

u(s)
(see (2.6) below). This process is quite different from that adopted in [27, 28] since
the appearance of the nonlocal term (

´

R3 |∇u|2)∆u. We reach this goal by a careful
analysis of the profile of some polynomials (see Lemma 4.3 and Lemma 5.1).

The rest is standard as in [27, 28]. In the case of 2 < q < 10
3

and 14
3
< p ≤ 6, we

first study a local minimization problem m(c, µ) := infu∈AR0
Eµ(u) for some R0 > 0.

By using rearrangement technique and the Ekeland’s variational principle, we get
a desired Palais–Smale sequence {un} for Eµ|Sc at energy level m(c, µ) < 0. The
compactness of {un} guarantees the existence of a local minimizer for Eµ|AR0

if 2 <

q < 10
3

and 14
3
< p < 6. Utilizing m(c, µ) and a min-max principle (see Lemma 2.7),

we also get a Mountain Pass type critical point for Eµ|Sc . If 2 < q < 10
3

and p = 6,
we recover the compactness of {un} by using µ < µ∗∗ and m(c, µ) < 0.

In the case of 14
3
< q < p ≤ 6, we obtain a Mountain Pass critical point for

Eµ|Sc at energy level σ(c, µ) by a min-max principle. The selected Palais–Smale
sequence {un} for Eµ|Sc is compact provided 14

3
< q < p < 6. However, we need

the extra energy estimate σ(c, µ) < aSΛ
3

+ bS2Λ2

12
to recover the compactness of {un}

when 14
3
< q < 6 and p = 6. Since b > 0 and the min-max procedure is confined by

the L2-constraint, the proof of σ(c, µ) < aSΛ
3

+ bS2Λ2

12
is very delicate (see Lemma 5.5

below).
This paper is organized as follows, in Section 2, we give some preliminaries. In

Section 3, we give the compactness analysis of Palais–Smale sequences for Eµ|Sc
.

In Section 4, we consider the mixed critical case and prove Theorems 1.1–1.2. In
Section 5, we study the purely L2-supercritical case and prove Theorems 1.3–1.4.

Notations. Throughout this paper, we use standard notations. The integral
´

R3 f dx is simply denoted by
´

R3 f . For 1 ≤ p < ∞ and u ∈ Lp(R3), we denote

‖u‖p := (
´

R3 |u|p)
1
p . The Hilbert space H1(R3) is defined as

H1(R3) := {u ∈ L2(R3) : ∇u ∈ L2(R3)}

with the inner product (u, v) :=
´

R3 ∇u∇v+
´

R3 uv and norm ‖u‖ := (‖∇u‖22+‖u‖22)
1
2 .

H−1(R3) is the dual space of H1(R3). The space D1,2(R3) is defined as

D1,2(R3) := {u ∈ L6(R3) : ∇u ∈ L2(R3)},
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which is in fact the completion of C∞
0 (R3) under the norm ‖u‖D1,2(R3) = ‖∇u‖2.

For N ≥ 1, H1
rad(R

N) := {u(x) ∈ H1(RN) : u(x) = u(|x|)}, H1
+(R

N) := {u(x) ∈
H1(RN) : u(x) ≥ 0} and Sc,r := H1

rad ∩ Sc = {u ∈ H1
rad(R

3) : ‖u‖22 = c2}. We use
“ → ” and “⇀ ” to denote the strong and weak convergence in the related function
spaces respectively. C and Ci will denote positive constants. 〈·, ·〉 denote the dual
pair for any Banach space and its dual space. X →֒ Y means X embeds into Y .
on(1) and On(1) mean that |on(1)| → 0 and |On(1)| ≤ C as n→ +∞, respectively.

2. Preliminaries

In this Section, we give some preliminaries. The next lemma is the Sobolev
embedding.

Lemma 2.1. [29] There exists a constant S > 0 such that

(2.1) S = inf
u∈D1,2(R3)\{0}

‖∇u‖22
‖u‖26

.

Lemma 2.2. (Gagliardo–Nirenberg inequality, [30]) Let p ∈ (2, 6). Then there

exists a constant Cp =
(

p

2‖Wp‖p−2
2

)
1
p

> 0 such that

(2.2) ‖u‖p ≤ Cp ‖∇u‖δp2 ‖u‖(1−δp)
2 , ∀ u ∈ H1(R3)

where δp = 3(p−2)
2p

and Wp is the unique positive solution of −∆W + ( 1
δp

− 1)W =
2
pδp

|W |p−2W .

For any u ∈ Sc, (2.2) indicates that infu∈Sc Eµ(u) > −∞ if p, q ∈ (2, 14
3
). On the

contrary, we have infu∈Sc Eµ(u) = −∞ for 14
3
< q ≤ 6 or 14

3
< p ≤ 6, and therefore

the global minimization method used in [32] does not work any more. Naturally,
we would hope to overcome this difficulty by using the Pohozaev constraint method
adopted in [27, 28]. To this end, we need the following lemma which is related to the
Pohozaev identity.

Lemma 2.3. Let a ≥ 0, b > 0, p, q ∈ (2, 6] and µ, λ ∈ R. If u ∈ H1(R3) is a
weak solution of

−
(

a+ b

ˆ

R3

|∇u|2
)

∆u = λu+ |u|p−2u+ µ|u|q−2u in R
3,(2.3)

then the Pohozaev identity Pµ(u) := a‖∇u‖22+b‖∇u‖42−µδq‖u‖qq−δp‖u‖
p
p = 0 holds.

Proof. If u ≡ 0, then Pµ(u) = 0. If u 6≡ 0, (2.3) becomes −(a + bB)∆u =

λu+ |u|p−2u+ µ|u|q−2u for B =
´

R3 |∇u|2, then the elliptic regularity theory implies
that u ∈ C2(R3). The rest is standard as in [25]. �

When infu∈Sc Eµ(u) = −∞, we introduce the Pohozaev set:

(2.4) Pc,µ =
{

u ∈ Sc : 0 = Pµ(u) = a‖∇u‖22 + b‖∇u‖42 − µδq‖u‖qq − δp‖u‖pp
}

.

Lemma 2.3 implies that any critical point of Eµ|Sc is contained in Pc,µ. For u ∈ Sc

and s ∈ R, we define

(2.5) (s ⋆ u)(x) := e
3
2
su (esx) .
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Then, s⋆u ∈ Sc and that the map (s, u) ∈ R×H1(R3) 7→ s⋆u ∈ H1(R3) is continuous
(see Lemma 3.5 in [3]). Let u ∈ Sc and µ ∈ R

+ be fixed, we define the fiber map
(2.6)

Ψµ
u(s) := Eµ(s ⋆ u) =

a

2
e2s‖∇u‖22 +

b

4
e4s‖∇u‖42 − µ

eqδqs

q
‖u‖qq −

epδps

p
‖u‖pp, ∀ s ∈ R.

Direct calculation gives

(2.7) (Ψµ
u)

′ (s) = ae2s‖∇u‖22 + be4s‖∇u‖42 − µδqe
qδqs‖u‖qq − δpe

pδps‖u‖pp = Pµ(s ⋆ u).

Therefore, (Ψµ
u)

′ (s) = 0 if and only if s ⋆ u ∈ Pc,µ. From (2.7), we see immediately
that:

Corollary 2.4. Let u ∈ Sc and µ ∈ R
+. Then s ∈ R is a critical point for Ψµ

u if
and only if s ⋆ u ∈ Pc,µ.

To determine the exact location and types of some critical points for Eµ|Sc, we
observe that Pc,µ can be split into the disjoint union Pc,µ = Pc,µ

+ ∪Pc,µ
0 ∪Pc,µ

− , where

Pc,µ
+ :=

{

u ∈ Pc,µ : (Ψµ
u)

′′ (0) > 0
}

, Pc,µ
− :=

{

u ∈ Pc,µ : (Ψµ
u)

′′ (0) < 0
}

,

Pc,µ
0 :=

{

u ∈ Pc,µ : (Ψµ
u)

′′ (0) = 0
}

for

(Ψµ
u)

′′ (0) := 2a‖∇u‖22 + 4b‖∇u‖42 − µqδ2q‖u‖qq − pδ2p‖u‖pp.
We also need the following lemma.

Lemma 2.5. [3, Lemma 3.6] For u ∈ Sc and s ∈ R, the map ϕ 7→ s ⋆ ϕ
from TuSc to Ts⋆uSc is a linear isomorphism with inverse ψ 7→ (−s) ⋆ ψ, where
TuSc := {ϕ ∈ Sc :

´

R3 uϕ = 0}.
Definition 2.6. Let X be a topological space and B be a closed subset of X.

We shall say that a class F of compact subsets of X is a homotopy-stable family with
extended boundary B if for any set A in F and any η ∈ C([0, 1]×X ;X) satisfying
η(t, x) = x for all (t, x) ∈ ({0} ×X) ∪ ([0, 1]× B) we have that η({1} × A) ∈ F .

The following Lemma 2.7 is a min-max principle obtained by Ghoussoub [11].

Lemma 2.7. [11, Theorem 5.2] Let ϕ be a C1-functional on a complete con-
nected C1-Finsler manifold X and consider a homotopy-stable family F with an
extended closed boundary B. Set m = m(ϕ,F) and let F be a closed subset of X
satisfying

(1) (A ∩ F )\B 6= ∅ for every A ∈ F ,
(2) supϕ(B) ≤ m ≤ inf ϕ(F ).

Then, for any sequence of sets (An)n in F such that limn supAn
ϕ = m, there exists

a sequence (xn)n in X such that

lim
n→+∞

ϕ(xn) = m, lim
n→+∞

‖dϕ(xn)‖ = 0, lim
n→+∞

dist(xn, F ) = 0, lim
n→+∞

dist(xn, An) = 0.

3. Compactness analysis of Palais–Smale sequences for Eµ|Sc

In this Section, we give the compactness analysis of Palais–Smale sequences for
Eµ|Sc

. The next two propositions are motivated by [27, 28], which studied nonlinear
Schrödinger equations (a = 1, b = 0 in our cases). To deal with the special difficul-
ties created by the nonlocal term (

´

R3 |∇u|2)∆u, we develop a perturbed Pohozaev
constraint approach in proving Proposition 3.2.

In the Sobolev subcritical case p, q ∈ (2, 6), we have
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Proposition 3.1. Let a > 0, b > 0, c > 0, µ > 0, 2 < q < 14
3
< p < 6 or

14
3
< q < p < 6. Let {un} ⊂ Sc,r be a Palais–Smale sequence for Eµ|Sc

at energy level
m 6= 0 with Pµ (un) → 0 as n → ∞. Then up to a subsequence un → u strongly in
H1(R3) for some u ∈ H1(R3). Moreover, u ∈ Sc and u is a radial solution to (1.1)λ
for some λ < 0.

Proof. The proof is divided into four main steps.

(1) Boundedness of {un} inH1(R3). If 2 < q < 14
3
< p < 6, we have qδq < 4 < pδp

and

Eµ (un) =

(

a

2
− a

pδp

)

‖∇un‖22 +
(

b

4
− b

pδp

)

‖∇un‖42 −
µ

q

(

1− qδq
pδp

)

‖un‖qq + on(1)

by Pµ(un) = on(1). It results to

(

a

2
− a

pδp

)

‖∇un‖22 +
(

b

4
− b

pδp

)

‖∇un‖42

≤ (m+ 1) +
µ

q

(

1− qδq
pδp

)

Cq
q ‖∇un‖qδq2 cq(1−δq),

which gives ‖∇un‖2 ≤ C. If 14
3
< q < p < 6, we have 4 < qδq < pδp and Eµ (un) =

a
4
‖∇un‖22 + ( δp

4
− 1

p
)‖un‖pp + µ( δq

4
− 1

q
)‖un‖qq + on(1) ≤ (m + 1). So {un} is bounded

in H1(R3).

(2) ∃ Lagrange multipliers λn → λ ∈ R. Since H1
rad (R

3) →֒ Lr (R3) is compact
for r ∈ (2, 6), we deduce that there exists an u ∈ H1

rad such that, up to a subsequence,

un ⇀ u in H1(R3), un → u in Lr(R3), un → u a.e. on R
3.

Notice that {un} is a Palais–Smale sequence of Eµ|Sc
, by the Lagrange multipliers

rule there exists λn ∈ R such that

(

a+ b‖∇un‖22
)

ˆ

R3

∇un∇ϕ− µ

ˆ

R3

|un|q−2 unϕ−
ˆ

R3

|un|p−2 unϕ

− λn

ˆ

R3

unϕ = on(1)

(3.1)

for every ϕ ∈ H1(R3), where on(1) → 0 as n→ ∞. In particular, take ϕ = un, then

λnc
2 = a‖∇un‖22 + b‖∇un‖42 − µ‖un‖qq − ‖un‖pp + on(1).

The boundedness of {un} in H1 ∩ Lq ∩ Lp implies that λn → λ ∈ R, up to a
subsequence.

(3) λ < 0 and u 6≡ 0. Recalling that Pµ (un) → 0, we have

λnc
2 = µ(δq − 1)‖un‖qq + (δp − 1)‖un‖pp + on(1).

Letting n → +∞, then λc2 = µ(δq − 1)‖u‖qq + (δp − 1)‖u‖pp. Since µ > 0 and
0 < δq, δp < 1, we deduce that λ ≤ 0, with “ = ” if and only if u ≡ 0. If λn → 0,
we have limn→∞ ‖un‖pp = 0 = limn→∞ ‖un‖qq. Using again Pµ (un) → 0, we have
Eµ (un) → 0. A contradiction with Eµ (un) → m 6= 0 and thus λn → λ < 0 and
u 6≡ 0.
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(4) un → u in H1(R3). Since un ⇀ u 6≡ 0 in H1(R3), we get B := limn→∞ ‖∇un‖22
≥ ‖∇u‖22 > 0. Then, (3.1) implies that

(3.2) (a+ bB)

ˆ

R3

∇u∇ϕ− µ

ˆ

R3

|u|q−2 uϕ−
ˆ

R3

|u|p−2 uϕ− λ

ˆ

R3

uϕ = 0,

for all ϕ ∈ H1(R3). Test (3.1)–(3.2) with ϕ = un − u, we obtain (a + bB)‖∇(un −
u)‖22 − λ‖un − u‖22 → 0. �

The Sobolev critical case q ∈ (2, 6) and p = 6 is more difficult than the case
p, q ∈ (2, 6). We develop a perturbed Pohozaev constraint approach to prove Propo-
sition 3.2. The key point is a revision of Pµ (un) = on(1), which makes it possible to
split Pµ (un) = on(1) via the Brézis–Lieb lemma (see [2]).

Proposition 3.2. Let a > 0, b > 0, c > 0, µ > 0, 2 < q < 14
3
< p = 6 or

14
3
< q < p = 6. Let {un} ⊂ Sc,r be a Palais–Smale sequence for Eµ|Sc

at energy
level m 6= 0, with

m <
aSΛ
3

+
bS2Λ2

12
and Pµ (un) → 0 as n→ ∞,

where S = infv∈D1,2(R3)\{0}
‖∇v‖22
‖v‖26

and Λ = bS2

2
+
√

aS + b2S4

4
. Then, up to a subse-

quence, one of the following alternatives holds:

(i) either un ⇀ u 6≡ 0 weakly in H1(R3) but not strongly, where u solves

(3.4)λ −(a +Bb)∆u = λu+ |u|4u+ µ|u|q−2u in R
3

for some λ < 0, and m− (aSΛ
3

+ bS2Λ2

12
) ≥ Iµ(u) := (a

2
+ Bb

4
)‖∇u‖22 − 1

6
‖u‖66 −

µ

q
‖u‖qq for B := lim

n→∞
‖∇un‖22 > 0.

(ii) or un → u strongly in H1(R3) for some u ∈ H1(R3). Moreover, u ∈ Sc,
Eµ(u) = m and u solves (1.1)λ–(1.2) for some λ < 0.

Proof. The proof is divided into four main steps. Similar to the proof of Propo-
sition 3.1, we can easily get steps (1) and (2), that is,

(1) {un} is bounded in H1(R3) and un ⇀ u weakly in H1(R3) for some u ∈
H1(R3).

(2) ∃ Lagrange multipliers λn → λ ∈ R. Moreover, we have

(

a + b‖∇un‖22
)

ˆ

R3

∇un∇ϕ− µ

ˆ

R3

|un|q−2 unϕ−
ˆ

R3

|un|4 unϕ

− λn

ˆ

R3

unϕ = on(1)

(3.3)

for every ϕ ∈ H1(R3), where on(1) → 0 as n→ ∞. In particular, take ϕ = un, then

λnc
2 = a‖∇un‖22 + b‖∇un‖42 − µ‖un‖qq − ‖un‖66 + on(1).

(3) λ < 0 and u 6≡ 0. Recalling that Pµ (un) → 0, we have

λnc
2 = µ(δq − 1)‖un‖qq + on(1).

Letting n→ +∞, then λc2 = µ(δq − 1)‖u‖qq. Since µ > 0 and 0 < δq < 1, we deduce
that λ ≤ 0, with “=” if and only if u ≡ 0. If λn → 0, we have

lim
n→∞

(a‖∇un‖22 + b‖∇un‖42) = lim
n→∞

‖un‖66 = ℓ.
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So limn→∞ ‖∇un‖22 =
√

ℓ
b
+ a2

4b2
− a

2b
and by the Sobolev inequality ℓ ≥ bS2ℓ

2
3 +aSℓ 1

3 .

Since

0 6= m = lim
n→+∞

Eµ (un) = lim
n→+∞

[

a

2
‖∇un‖22 +

b

4
‖∇un‖42 −

1

6
‖un‖66

]

=
ℓ

12
+
a

4

√

ℓ

b
+

a2

4b2
− a2

8b
,

we get ℓ 6= 0 and ℓ ≥ Λ3, where Λ = bS2

2
+
√

aS + b2S4

4
. This leads to

m = lim
n→∞

Eµ (un) ≥
Λ3

12
+
a

4

√

Λ3

b
+

a2

4b2
− a2

8b
=

Λ3

12
+
aSΛ
4

=
aSΛ
3

+
bS2Λ2

12
,

which contradicts with our assumptions m < aSΛ
3

+ bS2Λ2

12
. So, we have λ < 0 and

u 6≡ 0.

(4) Conclusion. Since un ⇀ u 6≡ 0 in H1(R3), we get B := limn→∞ ‖∇un‖22 ≥
‖∇u‖22 > 0. Then, (3.3) implies that

(3.4) (a +Bb)

ˆ

R3

∇u∇ϕ− µ

ˆ

R3

|u|q−2 uϕ−
ˆ

R3

|u|4 uϕ− λ

ˆ

R3

uϕ = 0,

for all ϕ ∈ H1(R3). That is, u satisfies −(a+Bb)∆u = λu+ |u|4u+ µ|u|q−2u. So we
have the Pohozaev identity

Qµ(u) := (a+ Bb)‖∇u‖22 − µδq‖u‖qq − ‖u‖66 = 0.

Denote vn = un − u, then vn ⇀ 0 in H1 (R3) and ‖∇un‖22 = ‖∇u‖22 + ‖∇vn‖22 +
on(1). By the Brézis–Lieb lemma in [2], we have

‖un‖66 = ‖u‖66 + ‖vn‖66 + on(1), ‖un‖qq = ‖u‖qq + ‖vn‖qq + on(1).

Since vn → 0 strongly in Lq(R3), we have ‖un‖qq = ‖u‖qq + on(1). Rewrite Pµ (un) =
on(1) as

Pµ (un) = (a+Bb)‖∇un‖22 − µδq‖u‖qq − ‖un‖66 + on(1).

From Qµ (u) = 0, we have

ℓ = lim
n→∞

‖vn‖66 = lim
n→∞

(a +Bb)‖∇vn‖22 ≥ lim
n→∞

(a‖∇vn‖22 + b‖∇vn‖42).
The Sobolev inequality implies that

ℓ ≥ aSℓ 1
3 + bS2ℓ

2
3 , lim

n→∞
(a‖∇vn‖22 + b‖∇vn‖42) ≤ lim

n→∞
‖vn‖66 ≤

1

S3
lim
n→∞

‖∇vn‖62.

We get ℓ ≥ Λ3 and limn→∞ ‖∇vn‖22 ≥ SΛ or ℓ = 0 = limn→∞ ‖∇vn‖22. Two possible
cases may occur:

(i) ℓ ≥ Λ3 and lim
n→∞

‖∇vn‖22 ≥ SΛ. Then, we have

m = lim
n→+∞

Eµ (un) = Iµ(u) + lim
n→+∞

[

a

2
‖∇vn‖22 +

Bb

4
‖∇vn‖22 −

‖vn‖66
6

]

= Iµ(u) +
ℓ

12
+ lim

n→+∞

a

4
‖∇vn‖22 ≥ Iµ(u) +

aSΛ
3

+
bS2Λ2

12
,

where Iµ(u) := (a
2
+ Bb

4
)‖∇u‖22 − 1

6
‖u‖66 − µ

q
‖u‖qq. In this case, alternative (i) follows.

(ii) ℓ = 0. Then un → u inD1,2(R3) and L6(R3). Test (3.3)–(3.4) with ϕ = un−u,
we have (a+Bb)‖∇(un−u)‖22−λ‖un−u‖22 → 0. In this case, alternative (ii) holds. �
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4. Mixed critical case

In this Section, we always assume that 2 < q < 10
3

and 14
3
< p ≤ 6. Subsection 4.1

is devoted to locating the exact position of some critical points to Eµ|Sc . In Subsection
4.2, we prove Theorems 1.1–1.2. Under the setting 2 < q < 10

3
and 14

3
< p ≤ 6, Eµ|Sc

admits a convex-concave geometry if 0 < µ < µ∗, so we get a local minimizer and a
Mountain Pass type critical point for Eµ|Sc if p < 6. When it comes to 2 < q < 10

3
and p = 6, we only obtain a local minimizer for Eµ|Sc .

4.1. The exact location of some critical points to Eµ|Sc
for 2 < q < 10

3

and 14

3
< p ≤ 6. In this Subsection, we study the structure of Pc,µ and Eµ to

locate the position of critical points of Eµ|Sc. Since 2 < q < 10
3

and 14
3
< p ≤ 6, we

have qδq < 2 and 4 < pδp. Let Cp be given by (2.2) for p < 6, Cp = S− 1
2 for p = 6.

Observing Pc,µ = Pc,µ
+ ∪ Pc,µ

0 ∪ Pc,µ
− , we have:

Lemma 4.1. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and 0 < µ < µ∗.

Then Pc,µ
0 = ∅ and Pc,µ is a smooth manifold of codimension 2 in H1(R3). Here µ∗

was defined in (1.9).

Proof. Firstly, we claim that Pc,µ
0 = ∅. Otherwise, there exists u ∈ Pc,µ

0 . From
Pµ(u) = 0 and (Ψµ

u)
′′(0) = 0, we have

a‖∇u‖22+ b‖∇u‖42 = µδq‖u‖qq + δp‖u‖pp, 2a‖∇u‖22+4b‖∇u‖42 = µqδ2q‖u‖qq + pδ2p‖u‖pp.
By using (2.2), we have

(2− qδq)a‖∇u‖22 + (4− qδq)b‖∇u‖42 = δp(pδp − qδq)‖u‖pp
≤ δp(pδp − qδq)Cp

pc
p(1−δp)‖∇u‖pδp2 ,

(pδp − 2)a‖∇u‖22 + (pδp − 4)b‖∇u‖42 = µδq(pδp − qδq)‖u‖qq
≤ µδq(pδp − qδq)Cq

qc
q(1−δq)‖∇u‖qδq2 .

Then, the lower and upper bounds of ‖∇u‖2 are given by

[

(4− qδq)b

δp(pδp − qδq)Cp
pcp(1−δp)

]
1

pδp−4

≤ ‖∇u‖2 ≤
[

µδq(pδp − qδq)Cq
q c

q(1−δq)

(pδp − 4)b

]
1

4−qδq

.

This leads to

µ ≥ (pδp − 4)b

δq(pδp − qδq)Cq
q

[

(4− qδq)b

δp(pδp − qδq)Cp
p

]

4−qδq
pδp−4 1

c
q(1−δq)+

p(1−δp)(4−qδq)

pδp−4

> µ∗,

which contradicts to µ < µ∗. Here µ∗ was defined in (1.9). We also used the fact

that (pδp
4
)4−qδq( qδq

4
)pδp−4 < 1 and this can be proved by using the monotonicity of

lnx
x−1

. Similar to the proof of Lemma 5.2 in [27], we can check that Pc,µ is a smooth

manifold of codimension 2 in H1(R3). �

Since Pc,µ
0 = ∅, we get Pc,µ = Pc,µ

+ ∪ Pc,µ
− with Pc,µ

+ ∩ Pc,µ
− = ∅. We can prove

that Pc,µ is a natural constraint in the following sense:

Lemma 4.2. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and 0 < µ < µ∗.

If u ∈ Pc,µ is a critical point for Eµ|Pc,µ , then u is a critical point for Eµ|Sc . Here µ∗
was defined in (1.9).

Proof. We only prove the case p ∈ (14
3
, 6). For the case p = 6, the proof is much

easier since δp = 1. We deduce by Lemma 4.1 that Pc,µ is a smooth manifold of
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codimension 2 in H1 and Pc,µ
0 = ∅. If u ∈ Pc,µ is a critical point for Eµ|Pc,µ , then by

the Lagrange multipliers rule, there exists λ, ν ∈ R such that

〈E ′
µ(u), ϕ〉 − λ

ˆ

R3

uϕ− ν〈P ′
µ(u), ϕ〉 = 0, ∀ϕ ∈ H1(R3).

So u solves −
[

(1− 2ν)a + (1 − 4ν)b‖∇u‖22
]

∆u− λu+ µ(νqδq − 1)|u|q−2u+ (νpδp −
1)|u|p−2u = 0. Combined with the Pohozaev identity, we have

(1− 2ν)a‖∇u‖22 + (1− 4ν)b‖∇u‖42 + µδq(νqδq − 1)‖u‖qq + δp(νpδp − 1)‖u‖pp = 0.

Since u ∈ Pc,µ and u /∈ Pc,µ
0 , we deduce from ν(2a‖∇u‖22 + 4b‖∇u‖42 − µqδ2q‖u‖qq −

pδ2p‖u‖pp) = 0 that ν = 0. �

Next, we study the fiber map Ψµ
u(s) and determine the location and types of

some critical points for Eµ|Sc . Consider the constrained functional Eµ|Sc, by (2.2),
we have

Eµ(u) ≥
a

2
‖∇u‖22 +

b

4
‖∇u‖42 −

Cp
p

p
‖∇u‖pδp2 cp(1−δp) − µCq

q

q
‖∇u‖qδq2 cq(1−δq),(4.1)

∀ u ∈ Sc. To understand the geometry of Eµ|Sc , we introduce the function h : R+ →
R:

h(t) =
a

2
t2 +

b

4
t4 − Cp

p

p
cp(1−δp)tpδp − µCq

q

q
cq(1−δq)tqδq .(4.2)

Since µ > 0, qδq < 2 and 4 < pδp, we have that h(0+) = 0− and h(+∞) = −∞. If

p = 6, we have δp = 1, Cp = S− 1
2 and hence h(t) = a

2
t2 + b

4
t4 − µCq

q

q
cq(1−δq)tqδq − S−3

6
t6.

Lemma 4.3. Let ã, b̃, c̃, d̃, p̃, q̃ ∈ (0,+∞) and f(t) := ãt2 + b̃t4 − c̃tp̃ − d̃tq̃ for
t ≥ 0. If p̃ ∈ (4,+∞), q̃ ∈ (0, 2) and

[

(

8(4− q̃)

p̃(p̃− 2)(p̃− q̃)

)
4−q̃
p̃−4

−
(

8(4− q̃)

p̃(p̃− 2)(p̃− q̃)

)
p̃−q̃
p̃−4

]





ã

d̃

(

b̃

c̃

)
2−q̃
p̃−4

+
1

d̃

b̃
p̃−q̃
p̃−4

c̃
4−q̃
p̃−4



 > 1,

then f(t) has a local strict minimum at a negative level and a global strict maximum
at a positive level on [0,+∞).

Proof. Direct calculations give

f ′(t) = tq̃−1g(t) for g(t) = 2ãt2−q̃ + 4b̃t4−q̃ − p̃c̃tp̃−q̃ − q̃d̃;

g′(t) = t1−q̃w(t) for w(t) = 2(2− q̃)ã+ 4(4− q̃)b̃t2 − p̃(p̃− q̃)c̃tp̃−2;

w′(t) = 8(4− q̃)b̃t− p̃(p̃− 2)(p̃− q̃)c̃tp̃−3.

Let t∗ = ( 8(4−q̃)b̃
p̃(p̃−2)(p̃−q̃)c̃

)
1

p̃−4 , then we have w′(t) > 0 if t ∈ (0, t∗) and w′(t) < 0 if

t ∈ (t∗,+∞). Consequently, w(t) ր on [0, t∗) and ց on (t∗,+∞). Since w(0) > 0
and w(+∞) = −∞, w(t) possesses unique zero point at some t̄ with t̄ > t∗. So we
have g(t) ր on [0, t̄) and ց on (t̄,+∞). We deduce from

A2 −A3

d̃



ã

(

b̃

c̃

)
2−q̃
p̃−4

+
b̃

p̃−q̃
p̃−4

c̃
4−q̃
p̃−4



 > 1
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that

2A1ã

q̃d̃

(

b̃

c̃

)
2−q̃
p̃−4

+
(4A2 − p̃A3)

q̃d̃

b̃
p̃−q̃
p̃−4

c̃
4−q̃
p̃−4

>
A1ã

d̃

(

b̃

c̃

)
2−q̃
p̃−4

+
(A2 −A3)

d̃

b̃
p̃−q̃
p̃−4

c̃
4−q̃
p̃−4

> 1,

where A1 = ( 8(4−q̃)
p̃(p̃−2)(p̃−q̃)

)
2−q̃
p̃−4 , A2 = ( 8(4−q̃)

p̃(p̃−2)(p̃−q̃)
)
4−q̃
p̃−4 and A3 = ( 8(4−q̃)

p̃(p̃−2)(p̃−q̃)
)
p̃−q̃
p̃−4 . This

leads to g(t̄) > g(t∗) > 0 and f(t∗) > 0. Since g(0) < 0, g(t̄) > g(t∗) > 0 and
g(+∞) = −∞, there exists unique t1, t2 (0 < t1 < t∗ < t̄ < t2) such that g(t1) = 0 =
g(t2). Consequently, f ′(t) < 0 if t ∈ (0, t1) ∪ (t2,+∞) and f ′(t) > 0 if t ∈ (t1, t2).
This implies that f(t) ց on [0, t1), ր on (t1, t2) and ց on (t2,+∞). The conclusion
follows from f(0) = 0, f(t2) > f(t∗) > 0 and f(+∞) = −∞. �

Similar to Lemma 5.1 and Lemma 5.3 in [27], we can prove the following Lem-
mas 4.4–4.5.

Lemma 4.4. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and 0 < µ < µ∗.

Then the function h has a local strict minimum at a negative level and a global strict
maximum at a positive level. Moreover, there exist 0 < R0 < R1, both depending on
c and µ, such that h(R0) = 0 = h(R1) and h(t) > 0 if and only if t ∈ (R0, R1). Here
µ∗ was defined in (1.9).

Proof. Take ã = a
2
, b̃ = b

4
, c̃ =

Cp
p

p
cp(1−δp), d̃ = µ

q
Cq
qc

q(1−δq), q̃ = qδq and p̃ = pδp in
Lemma 4.3, then the conclusion follows provided 0 < µ < µ∗. �

Lemma 4.5. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and 0 <

µ < min{µ∗, µ
∗}, where µ∗, µ

∗ were defined in (1.9). For every u ∈ Sc, the function
Ψµ

u has exactly two critical points su < tu ∈ R and two zeros cu < du ∈ R, with
su < cu < tu < du. Moreover:

(1) su ⋆u ∈ Pc,µ
+ and tu ⋆u ∈ Pc,µ

− , and if s⋆u ∈ Pc,µ, then either s = su or s = tu;
(2) ‖∇(s ⋆ u)‖2 ≤ R0 for every s ≤ cu, and

Eµ (su ⋆ u) = min {Eµ(s ⋆ u) : s ∈ R and ‖∇(s ⋆ u)‖2 < R0} < 0;

(3) We have

Eµ (tu ⋆ u) = max{Eµ(s ⋆ u) : s ∈ R} > 0,

and Ψµ
u is strictly decreasing on (tu,+∞) ;

(4) The maps u ∈ Sc 7→ su ∈ R and u ∈ Sc 7→ tu ∈ R are of class C1.

Proof. Again we prove the case p ∈ (14
3
, 6). Letting u ∈ Sc, then ut(x) =

t
3
2u (tx) ∈ Sc for t > 0. Consider the functional

f(t) = Eµ(ut) =
a

2
t2‖∇u‖22 +

b

4
t4‖∇u‖42 − µ

tqδq

q
‖u‖qq −

tpδp

p
‖u‖pp, ∀ t > 0

and take ã = a
2
‖∇u‖22, b̃ = b

4
‖∇u‖42, c̃ = 1

p
‖u‖pp, d̃ = µ

q
‖u‖qq, q̃ = qδq and p̃ = pδp in

Lemma 4.3. By the following estimates

‖∇u‖22
‖u‖qq

[‖∇u‖42
‖u‖pp

]

2−qδq
pδp−4

≥ ‖∇u‖2−qδq
2

Cq
q cq(1−δq)

[

‖∇u‖4−pδp
2

Cp
pcp(1−δp)

]

2−qδq
pδp−4

=
1

Cq
qcq(1−δq)

[

1

Cp
pcp(1−δp)

]

2−qδq
pδp−4
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and

1

‖u‖qq
[‖∇u‖42]

pδp−qδq
pδp−4

[‖u‖pp]
4−qδq
pδp−4

≥ 1

Cq
q‖∇u‖qδq2 cq(1−δq)

‖∇u‖qδq2

[Cp
pcp(1−δp)]

4−qδq
pδp−4

=
1

Cq
q cq(1−δq)

[

1

Cp
pcp(1−δp)

]

4−qδq
pδp−4

,

we deduce that f(t) has a local strict minimum at a negative level and a global
strict maximum at a positive level on [0,+∞) provided µ < µ∗. By monotonicity
of composite functions, we derive that Ψµ

u(s) := Eµ(s ⋆ u) = f(es) has a local strict
minimum at a negative level and a global strict maximum at a positive level on
(−∞,+∞).

From (4.1), we have

Ψµ
u(s) = Eµ(s ⋆ u) ≥ h (‖∇(s ⋆ u)‖2) = h (es‖∇u‖2) .

Thus, the C2 function Ψµ
u is positive on (log R0

‖∇u‖2 , log
R1

‖∇u‖2 ), and clearly Ψµ
u(−∞) =

0−, Ψµ
u(+∞) = −∞. It follows that Ψµ

u has exactly two critical points su < tu,
with su local minimum point on (−∞, log R0

‖∇u‖2 ) at negative level, and tu > su global

maximum point at positive level. By Corollary 2.4, we have su ⋆ u, tu ⋆ u ∈ Pc,µ,
s ⋆ u ∈ Pc,µ implies s ∈ {su, tu}. By minimality (Ψµ

su⋆u
)′′(0) = (Ψµ

u)
′′ (su) ≥ 0,

and “ = ” can not hold, since Pc,µ
0 = ∅; namely su ⋆ u ∈ Pc,µ

+ . Similarly, we have
tu ⋆u ∈ Pc,µ

− . By monotonicity and the behavior at infinity, Ψµ
u has exactly two zeros

cu < du, with su < cu < tu < du.
It remains to show that u 7→ su and u 7→ tu are of class C1. Consider the C1

function Φ(s, u) := (Ψµ
u)

′(s). By the facts that Φ (su, u) = 0, ∂sΦ (su, u) > 0, and it
is not possible to pass with continuity from Pc,µ

+ to Pc,µ
− (since Pc,µ

0 = ∅), then the
implicit function theorem applied on Φ(s, u) gives the desired result. Similarly, we
have u 7→ tu is C1. �

For k > 0, let us set

Ak := {u ∈ Sc : ‖∇u‖2 < k} , and m(c, µ) := inf
u∈AR0

Eµ(u).

Corollary 4.6. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and

0 < µ < min{µ∗, µ
∗}, where µ∗, µ

∗ were defined in (1.9). Then the set Pc,µ
+ is

contained in AR0 = {u ∈ Sc : ‖∇u‖2 < R0}, and supPc,µ
+
Eµ ≤ 0 ≤ infPc,µ

−

Eµ.

Proof. It is a direct conclusion of Lemma 4.5. Indeed, ∀ u ∈ Pc,µ
+ , Lemma 4.5

implies that su = 0, Eµ(u) ≤ 0 and ‖∇u‖2 < R0. Similarly, u ∈ Pc,µ
− implies that

tu = 0 and Eµ(u) ≥ 0. �

Let AR0 be the closure of AR0 and AR0 \AR0−ρ = {u ∈ AR0 : u 6∈ AR0−ρ} for some
R0 and ρ.

Lemma 4.7. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and 0 < µ <

min{µ∗, µ
∗}, where µ∗, µ

∗ were defined in (1.9). It holds that m(c, µ) ∈ (−∞, 0) and

m(c, µ) = inf
Pc,µ

Eµ = inf
Pc,µ
+

Eµ.

Moreover, there exists a constant ρ > 0 (independent of c and µ) small enough such
that

m(c, µ) < inf
AR0

\AR0−ρ

Eµ.
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Proof. For u ∈ AR0 , we have Eµ(u) ≥ h (‖∇u‖2) ≥ mint∈[0,R0] h(t) > −∞, and
hence m(c, µ) > −∞. Moreover, for any u ∈ Sc we have ‖∇(s ⋆ u)‖2 < R0 and
Eµ(s ⋆ u) < 0 for s≪ −1, and hence m(c, µ) < 0.

By Corollary 4.6, we have m(c, µ) ≤ infPc,µ
+
Eµ since Pc,µ

+ ⊂ AR0 . On the other

hand, if u ∈ AR0 , we have su ⋆ u ∈ Pc,µ
+ ⊂ AR0 and

Eµ (su ⋆ u) = min {Eµ(s ⋆ u) : s ∈ R and ‖∇(s ⋆ u)‖2 < R0} ≤ Eµ(u),

which implies that infPc,µ
+
Eµ ≤ m(c, µ). To prove that infPc,µ

+
Eµ = infPc,µ Eµ, it is

sufficient to recall that Eµ ≥ 0 on Pc,µ
− , see Corollary 4.6.

Finally, by continuity of h there exists ρ > 0 (independent of c and µ) such that

h(t) ≥ m(c,µ)
2

if t ∈ [R0 − ρ, R0]. Therefore Eµ(u) ≥ h (‖∇u‖2) ≥ m(c,µ)
2

> m(c, µ) for
every u ∈ Sc with ‖∇u‖2 ∈ [R0 − ρ, R0]. �

Lemma 4.8. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and 0 < µ <

min{µ∗, µ
∗}. Suppose that Eµ(u) < m(c, µ). Then the value tu defined by Lemma 4.5

is negative. Here µ∗, µ
∗ were defined in (1.9).

Proof. Let su < cu < tu < du be defined by Lemma 4.5. If du ≤ 0, then
tu < 0, and hence we can assume by contradiction that du > 0. If 0 ∈ (cu, du),
then Eµ(u) = Ψµ

u(0) > 0, which is impossible since Eµ(u) < m(c, µ) < 0. Therefore
cu > 0, and by Lemma 4.5-(2)

m(c, µ) > Eµ(u) = Ψµ
u(0) ≥ inf

s∈(−∞,cu]
Ψµ

u(s)

≥ inf {Eµ(s ⋆ u) : s ∈ R and ‖∇(s ⋆ u)‖2 < R0} = Eµ (su ⋆ u) ≥ m(c, µ)

which is again a contradiction. �

Lemma 4.9. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p ≤ 6 and 0 < µ <

min{µ∗, µ
∗}, where µ∗, µ

∗ were defined in (1.9). It holds that

σ̃(c, µ) := inf
u∈Pc,µ

−

Eµ(u) > 0.

Proof. Let tmax be the strict maximum of the function h at positive level, see
Lemma 4.4. For every u ∈ Pc,µ

− , there exists τu ∈ R such that ‖∇ (τu ⋆ u) ‖2 = tmax.
Moreover, since u ∈ Pc,µ

− we also have by Lemma 4.5 that the value 0 is the unique
strict maximum of the function Ψµ

u. Therefore

Eµ(u) = Ψµ
u(0) ≥ Ψµ

u (τu) = Eµ (τu ⋆ u) ≥ h (‖∇ (τu ⋆ u) ‖2) = h (tmax) > 0.

Since u ∈ Pc,µ
− was arbitrarily chosen, we deduce that infPc,µ

−

Eµ ≥ maxR h > 0. �

4.2. The existence and asymptotic results for 2 < q < 10

3
and 14

3
< p ≤

6. In this Subsection, we first prove the existence results, i.e. Theorem 1.1-(1)(2)(3)
and Theorem 1.2-(1)(2). The proof of Theorem 1.1 is divided into two parts. To
begin with, we prove the existence of a local minimizer for Eµ|Sc

. Next, we construct
a Mountain Pass type critical point for Eµ|Sc

. Finally, we prove the asymptotic
results, i.e. Theorem 1.1-(4)(5) and Theorem 1.2-(3).

Proof of Theorem 1.1-(1),(2),(3). (i) Existence of a local minimizer. Let {vn}
be a minimizing sequence for m(c, µ) := infu∈AR0

Eµ(u). From Section 3.3 and

Lemma 7.17 in [23], we have Eµ (|vn|∗) ≤ Eµ (vn), since

‖∇|vn|∗‖2 ≤ ‖∇|vn|‖2, ‖vn‖p = ‖|vn|∗‖p, ‖vn‖q = ‖|vn|∗‖q,(4.3)
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where |vn|∗ is the symmetric decreasing rearrangement of |vn|. So we can assume
that vn ∈ Sc is nonnegative and radially decreasing for every n. By using Lemma 4.5
and Corollary 4.6, we have svn ⋆ vn ∈ Pc,µ

+ , ‖∇ (svn ⋆ vn) ‖2 < R0 and that

Eµ (svn ⋆ vn) = min {Eµ(s ⋆ vn) : s ∈ R and ‖∇(s ⋆ vn)‖2 < R0} ≤ Eµ (vn) .

Consequently, we obtain a new minimizing sequence {wn = svn ⋆ vn} for m(c, µ), with

wn ∈ Sc,r ∩ Pc,µ
+ and Pµ(wn) = 0

for every n. By Lemma 4.7, we have ‖∇wn‖2 < R0 − ρ for every n. Hence, the
Ekeland’s variational principle guarantees the existence of a new minimizing sequence
{un} ⊂ AR0 for m(c, µ) < 0, with the property that ‖un − wn‖H1 → 0 as n → +∞,
which is also a Palais–Smale sequence for Eµ on Sc. The condition ‖un−wn‖H1 → 0
implies

‖∇un‖2 ≤ R0 − ρ and Pµ(un) → 0 as n→ ∞
and hence {un} satisfies all the assumptions of Proposition 3.1. Therefore, up to a
subsequence un → ũµ strongly in H1, ũµ is an interior local minimizer for Eµ|AR0

,

and solves (1.1)λ̃ for some λ̃ < 0. It is easy to know that ũµ is nonnegative and
radially deceasing. The strong maximum principle implies that ũµ > 0.

Since any critical point of Eµ|Sc lies in Pc,µ and m(c, µ) = infPc,µ Eµ (see Lem-
ma 4.7), we see that ũµ is a ground state for Eµ|Sc

. It only remains to prove that any
ground state of Eµ|Sc is a local minimizer of Eµ in AR0 . Let then u be a critical point
of Eµ|Sc with Eµ(u) = m(c, µ) = infPc,µ Eµ. Since Eµ(u) < 0 < infPc,µ

−

Eµ, necessarily

u ∈ Pc,µ
+ . Then Corollary 4.6 implies that Pc,µ

+ ⊂ AR0 . This leads to ‖∇u‖2 < R0,
and as a consequence u is a local minimizer for Eµ|AR0

.
(ii) Existence of a Mountain Pass type solution. We focus now on the existence

of a second critical point for Eµ|Sc
. Denote Em

µ = {u ∈ Sc : Eµ(u) ≤ m}. Motivated

by [15], we define the augmented functional Ẽµ : R×H1 → R

Ẽµ(s, u) := Eµ(s ⋆ u) =
a

2
e2s‖∇u‖22 +

b

4
e4s‖∇u‖42 − µ

eqδqs

q
‖u‖qq −

epδps

p
‖u‖pp

and study Ẽµ|R×Sc . Notice that Sc,r = H1
rad∩Sc and Ẽµ is of class C1. Theorem 1.28

in [31] indicates that a critical point for Ẽµ|R×Sc,r is a critical point for Ẽµ|R×Sc .
We introduce the minimax class

Γ := {γ(τ) = (ζ(τ), β(τ)
)

∈ C([0, 1],R× Sc,r); γ(0) ∈ (0,Pc,µ
+ ), γ(1) ∈ (0, E2m(c,µ)

µ )},
then Γ 6= ∅. Indeed, ∀ u ∈ Sc,r, by Lemma 4.5 we know that there exists s1 ≫ 1 such
that

(4.4) γu : τ ∈ [0, 1] 7→
(

0, ((1− τ)su + τs1) ⋆ u
)

∈ R× Sc,r

is a path in Γ (recall that s ∈ R 7→ s ⋆ u ∈ Sc,r is continuous, su ⋆ u ∈ Pc,µ
+ and

Eµ(s ⋆ u) → −∞ as s→ +∞). Thus, the minimax value

σ(c, µ) := inf
γ∈Γ

max
(s,u)∈γ([0,1])

Ẽµ(s, u)

is a real number. We claim that

(4.5) ∀ γ ∈ Γ there exists τγ ∈ (0, 1) such that ζ(τγ) ⋆ β(τγ) ∈ Pc,µ
− .
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Indeed, since γ(0) =
(

ζ(0), β(0)
)

∈ (0,Pc,µ
+ ), by Corollary 2.4 and Lemma 4.5,

we have tζ(0)⋆β(0) = tβ(0) > sβ(0) = 0; since Eµ(β(1)) = Ẽµ(γ(1)) ≤ 2m(c, µ), by
Lemma 4.8, we have

tζ(1)⋆β(1) = tβ(1) < 0,

and moreover the map tζ(τ)⋆β(τ) is continuous in τ (we refer again to Lemma 4.5 and
recall that s ∈ R 7→ s ⋆ u ∈ Sc,r is continuous). It follows that for every γ ∈ Γ there
exists τγ ∈ (0, 1) such that tζ(τγ )⋆β(τγ ) = 0, and so ζ(τγ) ⋆ β(τγ) ∈ Pc,µ

− . Thus (4.5)
holds.

For every γ ∈ Γ, by (4.5) we have

(4.6) max
γ([0,1])

Ẽµ ≥ Ẽµ (γ (τγ)) = Eµ(ζ(τγ) ⋆ β(τγ)) ≥ inf
Pc,µ
−

∩Sc,r

Eµ,

which gives σ(c, µ) ≥ infPc,µ
−

∩Sc,r
Eµ. On the other hand, if u ∈ Pc,µ

− ∩ Sc,r, then γu
defined in (4.4) is a path in Γ with

Eµ(u) = Ẽµ(0, u) = max
γu([0,1])

Ẽµ ≥ σ(c, µ),

which gives infPc,µ
−

∩Sc,r
Eµ ≥ σ(c, µ). This, Corollary 4.6 and Lemma 4.9 imply that

σ(c, µ) = inf
Pc,µ
−

∩Sc,r

Eµ > 0 ≥ sup
(

Pc,µ
+ ∪E2m(c,µ)

µ

)

∩Sc,r

Eµ

= sup
(

(0,Pc,µ
+ )∪(0,E2m(c,µ)

µ )
)

∩(R×Sc,r)

Ẽµ.
(4.7)

Let γn(τ) = (ζn(τ), βn(τ)) be any minimizing sequence for σ(c, µ) with the prop-
erty that ζn(τ) ≡ 0 and βn(τ) ≥ 0 a.e. in R

3 for every τ ∈ [0, 1] (Notice that, if
{γn = (ζn, βn)} is a minimizing sequence, then also {(0, ζn ⋆ |βn|)} has the same
property). Take

X = R× Sc,r, F = {γ([0, 1]) : γ ∈ Γ}, B = (0,Pc,µ
+ ) ∪ (0, E2m(c,µ)

µ ),

F = {(s, u) ∈ R× Sc,r | Ẽµ(s, u) ≥ σ(c, µ)}, A = γ([0, 1]), An = γn([0, 1])

in Lemma 2.7. We need to checked that F is a homotopy stable family of compact
subsets of X with extended closed boundary B, and that F is a dual set for F , in
the sense that assumptions (1) and (2) in Lemma 2.7 are satisfied.

Indeed, since σ(c, µ) = infPc,µ
−

∩Sc,r
Eµ, (4.6) ⇒ γ (τγ) = (ζ(τγ), β(τγ)) ∈ A ∩ F ,

(4.7) ⇒ F ∩ B = ∅ and (2) in Lemma 2.7, then A ∩ F 6= ∅ and F ∩ B = ∅ give

(1) in Lemma 2.7. For every γ ∈ Γ, since γ(0) ∈ (0,Pc,µ
+ ) and γ(1) ∈ (0, E

2m(c,µ)
µ ),

we have γ(0), γ(1) ∈ B. Then for any set A in F and any η ∈ C([0, 1] × X ;X)
satisfying η(t, x) = x for all (t, x) ∈ ({0}×X)∪ ([0, 1]×B), it holds that η(1, γ(0)) =
γ(0), η(1, γ(1)) = γ(1). So we have η({1} × A) ∈ F .

Consequently, by Lemma 2.7, there exists a Palais–Smale sequence {(sn, wn)} ⊂
R× Sc,r for Ẽµ|R×Sc,r at level σ(c, µ) > 0 such that

(4.8) ∂sẼµ (sn, wn) → 0 and
∥

∥

∥
∂uẼµ (sn, wn)

∥

∥

∥

(TwnSc,r)
∗

→ 0 as n→ ∞,

with the additional property that

(4.9) |sn|+ distH1 (wn, βn([0, 1])) → 0 as n→ ∞.
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From (4.8), we have Pµ (sn ⋆ wn) → 0 and that

ae2sn
ˆ

R3

∇wn∇ϕ+ be4sn‖∇wn‖22
ˆ

R3

∇wn∇ϕ− µeqδqsn
ˆ

R3

|wn|q−2wnϕ

− epδpsn
ˆ

R3

|wn|p−2wnϕ = o(1)‖ϕ‖H1, ∀ϕ ∈ TwnSc,r.

(4.10)

By using (4.9), we know that sn is bounded from above and from below. Conse-
quently,

(4.11) 〈E ′
µ (sn ⋆ wn) , sn ⋆ ϕ〉 = o(1)‖ϕ‖H1 = o(1) ‖sn ⋆ ϕ‖H1 as n→ ∞,

∀ϕ ∈ TwnSc,r. From (4.11) and Lemma 2.5, we see that {un := sn ⋆ wn} ⊂ Sc,r is a
Palais–Smale sequence for Eµ|Sc,r at level σ(c, µ) > 0, with Pµ(un) → 0. Therefore,
all the assumptions of Proposition 3.1 are satisfied, and we deduce that up to a
subsequence un → ûµ strongly in H1, with ûµ ∈ Sc,r nonnegative radial solution to

(1.1)λ̂ for some λ̂ < 0. The strong maximum principle implies that ûµ > 0. �

Proof of Theorem 1.2-(1),(2). Imitating the proof of Theorem 1.1-(1), we get a
Palais–Smale sequence {un} for Eµ|Sc with

‖∇un‖2 ≤ R0 − ρ and Pµ(un) → 0 as n→ ∞
and un is nonnegative and radially decreasing for every n. Hence {un} satisfies all
the assumptions of Proposition 3.2. We show that alternative (ii) in Proposition 3.2
occurs. Otherwise, up to a subsequence un ⇀ ũµ 6≡ 0 weakly in H1(R3) but not

strongly, where ũµ is a solution to (3.4)λ̃ for some λ̃ < 0, and

Iµ(ũµ) :=

(

a

2
+
Bb

4

)

‖∇ũµ‖22 −
1

6
‖ũµ‖66 −

µ

q
‖ũµ‖qq ≤ m(c, µ)− aSΛ

3
− bS2Λ2

12
,

where B := limn→∞ ‖∇un‖22 ≥ ‖∇ũµ‖22 > 0 and Λ = bS2

2
+
√

aS + b2S4

4
. Since ũµ

solves (3.4)λ̃, we get the Pohozaev identity Qµ(ũµ) := (a+Bb)‖∇ũµ‖22 − µδq‖ũµ‖qq −
‖ũµ‖66 = 0. By using ‖ũµ‖2 ≤ c and Iµ(ũµ) =

a
3
‖∇ũµ‖22+ Bb

12
‖∇ũµ‖22−µ(1q −

δq
6
)‖ũµ‖qq,

we have

m(c, µ) ≥ aSΛ
3

+
bS2Λ2

12
+
a

3
‖∇ũµ‖22 +

Bb

12
‖∇ũµ‖22 − µ

(

1

q
− δq

6

)

‖ũµ‖qq

≥ aSΛ
3

+
bS2Λ2

12
+

b

12
‖∇ũµ‖42 − µ

(

1

q
− δq

6

)

Cq
q c

q(1−δq)‖∇ũµ‖qδq2 .(4.12)

Denote g(t) = b
12
t4 − µ(1

q
− δq

6
)Cq

q c
q(1−δq)tqδq , ∀ t ≥ 0. By using µ < µ∗∗, we have

mint≥0 g(t) = − b
3
( 1
qδq

− 1
4
)t40 > −aSΛ

3
− bS2Λ2

12
for t0 =

[µδq(6−qδq)Cq
q c

q(1−δq)

2b

]

1
4−qδq

. Then

(4.12) implies that

0 > m(c, µ) ≥ aSΛ
3

+
bS2Λ2

12
+ g(‖∇ũµ‖2) ≥

aSΛ
3

+
bS2Λ2

12
+ min

t≥0
g(t) > 0.

Consequently, up to a subsequence un → ũµ strongly in H1, ũµ is an interior local

minimizer for Eµ|AR0
, and solves (1.1)λ̃ for some λ̃ < 0. Moreover, ũµ is nonnegative

and radially decreasing and the strong maximum principle implies that ũµ > 0. Since
any critical point of Eµ|Sc lies in Pc,µ and m(c, µ) = infPc,µ Eµ (see Lemma 4.7), we
see that ũµ is a ground state for Eµ|Sc

. Similar to the proof of Theorem 1.1-(1), we
can show that any ground state of Eµ|Sc is a local minimizer of Eµ in AR0 . �
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To obtain the asymptotic property of m(c, µ) and σ(c, µ) as µ → 0+, we need to
study equation (1.1)λ with µ = 0. Although it has been studied in [32, 35], we still
give a detailed proof as we obtain a ground state solution. Modify the arguments
in Section 2, especially Lemma 4.1 and Lemma 4.5, we can derive the following
Lemmas 4.10–4.11.

Lemma 4.10. Let a > 0, b > 0, c > 0, 14
3
< p < 6 and µ = 0. Then Pc,µ

0 = ∅,
and Pc,µ is a smooth manifold of codimension 2 in H1(R3).

Proof. The proof is similar to that of Lemma 4.1. �

Lemma 4.11. Let a > 0, b > 0, c > 0, 14
3
< p < 6 and µ = 0. For every u ∈ Sc,

there exists a unique tu ∈ R such that tu ⋆ u ∈ Pc,µ. tu is the unique critical point of
the function Ψµ

u, and is a strict maximum point at positive level. Moreover:

(1) Pc,µ = Pc,µ
− .

(2) Ψµ
u is strictly decreasing and concave on (tu,+∞).

(3) The maps u ∈ Sc 7→ tu ∈ R are of class C1.
(4) If Pµ(u) < 0, then tu < 0.

Proof. The proof is similar to that of Lemma 6.1 in [28]. �

Lemma 4.12. Let a > 0, b > 0, c > 0, 14
3
< p < 6 and µ = 0, then m(c, 0) :=

infu∈Pc,0 E0(u) > 0.

Proof. By (2.2) and P0(u) = 0, we have

a‖∇u‖22 + b‖∇u‖42 = δp‖u‖pp ≤ δpCp
p ‖∇u‖pδp2 cp(1−δp).

So we get infu∈Pc,0 ‖∇u‖2 ≥ C > 0 from pδp > 4. As P0(u) = 0, we have

inf
u∈Pc,0

E0(u) = inf
u∈Pc,0

{(

a

2
− a

pδp

)

‖∇u‖22 +
(

b

4
− b

pδp

)

‖∇u‖42
}

≥ C > 0. �

Lemma 4.13. Let a > 0, b > 0, c > 0, 14
3
< p < 6 and µ = 0. There exists

k > 0 sufficiently small such that

0 < sup
Ak

E0 < m(c, 0) and u ∈ Ak =⇒ E0(u) > 0, P0(u) > 0,

where Ak := {u ∈ Sc : ‖∇u‖2 < k}.
Proof. By using (2.2), we have

E0(u) ≥
b‖∇u‖42

4
−

Cp
pc

p(1−δp)

p
‖∇u‖pδp2 , P0(u) ≥ b‖∇u‖42 − δpCp

p‖∇u‖pδp2 cp(1−δp).

Therefore, for any u ∈ Ak with k small enough, we have

0 < sup
Ak

E0 and u ∈ Ak =⇒ E0(u) > 0, P0(u) > 0.

If necessary replacing k with a smaller quantity, we also have

E0(u) ≤
a

2
‖∇u‖22 +

b

4
‖∇u‖42 < m(c, 0), ∀ u ∈ Ak,

since m(c, 0) > 0 by Lemma 4.12. �
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Lemma 4.14. Let a > 0, b > 0, c > 0, 14
3
< p < 6 and µ = 0. Then, there exists

a positive radial critical point u0 for E0|Sc at a positive level

mr(c, 0) = m(c, 0) := inf
Pc,0

E0 = E0(u0)

and as a result u0 is the unique ground state of E0|Sc .

Proof. Utilising Lemmas 4.10–4.13 and by using the same arguments in Sec-
tion 7 in [27], we can drive that there exists a positive radial critical point u0 for
E0|Sc at a Mountain Pass level σ(c, 0) > 0 characterized by σ(c, 0) = infPc,0∩Sc,r E0.
By rearrangement technique and Lemma 4.11, we have mr(c, 0) := infPc,0∩Sc,r E0 =
infPc,0 E0. Following [22, 35], u0 is unique since u0 > 0. �

Lemma 4.15. Let a > 0, b > 0, c > 0, 2 < q < 10
3
, 14

3
< p < 6 and 0 < µ <

min{µ∗, µ
∗}, then

inf
Pc,µ
−

∩Sc,r

Eµ = inf
u∈Sc,r

max
s∈R

Eµ(s ⋆ u), and inf
Pc,0
−

∩Sc,r

E0 = inf
u∈Sc,r

max
s∈R

E0(s ⋆ u),

where µ∗, µ
∗ were defined in (1.9).

Proof. ∀ u ∈ Sc,r, by Lemma 4.5, there exists a unique tu ∈ R such that tu ⋆ u ∈
Pc,µ

− ∩ Sc,r. Thus, for any u ∈ Pc,µ
− ∩ Sc,r, we have tu = 0 and

Eµ(u) = max
s∈R

Eµ(s ⋆ u) ≥ inf
v∈Sc,r

max
s∈R

Eµ(s ⋆ v).

On the other hand, if u ∈ Sc,r, then tu ⋆ u ∈ Pc,µ
− ∩ Sc,r, and hence

max
s∈R

Eµ(s ⋆ u) = Eµ (tu ⋆ u) ≥ inf
Pc,µ
−

∩Sc,r

Eµ.

By using Lemma 4.11, we can similarly prove

inf
Pc,0
−

∩Sc,r

E0 = inf
u∈Sc,r

max
s∈R

E0(s ⋆ u). �

Lemma 4.16. Let a > 0, b > 0, c > 0, 2 < q < 10
3

and 14
3
< p < 6. For any

0 ≤ µ1 < µ2 < min{µ∗, µ
∗}, it holds that σ (c, µ2) ≤ σ (c, µ1) ≤ m(c, 0), where µ∗, µ

∗

were defined in (1.9).

Proof. From (4.7), we have σ(c, µ) = infPc,µ
−

∩Sc,r
Eµ. By Lemmas 4.14–4.15, we

have

σ (c, µ1) = inf
u∈Sc,r

max
s∈R

Eµ1 (s ⋆ u) ≤ inf
u∈Sc,r

max
s∈R

E0 (s ⋆ u) = mr(c, 0) = m(c, 0),

σ (c, µ2) ≤ max
s∈R

Eµ2 (s ⋆ ûµ1) ≤ max
s∈R

Eµ1 (s ⋆ ûµ1) = Eµ1 (ûµ1) = σ (c, µ1) . �

Proof of Theorem 1.1-(4): convergence of ũµ. From Lemma 4.4, we know that
R0(c, µ) → 0 as µ→ 0+, and hence ‖∇ũµ‖2 < R0(c, µ) → 0 as well. Moreover

0 > m(c, µ) ≥ a

2
‖∇ũµ‖22 +

b

4
‖∇ũµ‖42 −

Cp
p

p
‖∇ũµ‖pδp2 cp(1−δp) − µCq

q

q
‖∇ũµ‖qδq2 cq(1−δq)

→ 0,

which implies that m(c, µ) → 0. �

We consider now the behavior of ûµ.
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Proof of Theorem 1.1-(5): convergence of ûµ. Let us consider {ûµ : 0 < µ < µ},
with µ small enough. Since ûµ ∈ Pc,µ, from Lemma 4.16, we have

m(c, 0) ≥ σ (c, µ) = Eµ (ûµ)

=

(

a

2
− a

pδp

)

‖∇ûµ‖22 +
(

b

4
− b

pδp

)

‖∇ûµ‖42 −
µ

q

(

1− qδq
pδp

)

‖ûµ‖qq

≥
(

a

2
− a

pδp

)

‖∇ûµ‖22 +
(

b

4
− b

pδp

)

‖∇ûµ‖42 −
µ

q

(

1− qδq
pδp

)

Cq
qc

q(1−δq) ‖∇ûµ‖qδq2 .

Hence {ûµ} is bounded in H1. Since each ûµ is a positive function in Sc,r, we deduce
that up to a subsequence ûµ ⇀ û ≥ 0 weakly in H1(R3), strongly in Lr for 2 < r < 6
and a.e. on R

3, as µ → 0+. Using the fact that ûµ solves

(4.13) −
(

a+ b‖∇ûµ‖22
)

∆ûµ = λ̂µûµ + |ûµ|p−2ûµ + µ|ûµ|q−2ûµ in R
3

for λ̂µ < 0 and Pµ (ûµ) = 0, we infer that λ̂µc
2 = µ(δq − 1)‖ûµ‖qq + (δp − 1)‖ûµ‖pp.

As µ > 0 and 0 < δq, δp < 1, we deduce that λ̂µ converges (up to a subsequence) to

some λ̂ ≤ 0 satisfying

λ̂c2 = (δp − 1)‖û‖pp,

with λ̂ = 0 if and only if û ≡ 0. We claim that λ̂ < 0. In fact, ûµ ⇀ û weakly in H1

implies that û is a weak radial solution to

(4.14) − (a+ bB)∆û = λ̂û+ |û|p−2û in R
3,

where B := lim
µ→0+

‖∇ûµ‖22 ≥ ‖∇û‖22. By Lemma 4.16, we have

− b

4
‖∇û‖42 +

(

δp
2
− 1

p

)

‖û‖pp

≥ lim
µ→0+

[

− b
4
‖∇ûµ‖42 +

(

δp
2
− 1

p

)

‖ûµ‖pp − µ

(

1

q
− δq

2

)

‖ûµ‖qq
]

= lim
µ→0+

Eµ (ûµ) = lim
µ→0+

σ(c, µ) ≥ σ(c, µ) > 0,

which gives ( δp
2
− 1

p
)‖û‖pp > b

4
‖∇û‖42. So we have û 6≡ 0, and in turn yields λ̂ < 0 and

B > 0. The strong maximum principle implies that û > 0. Test (4.13)–(4.14) with
ûµ − û, we have

(a+ bB)‖∇ (ûµ − û) ‖22 − λ̂‖ûµ − û‖22 → 0,

which implies that ûµ → û in H1 as µ → 0+. It results to m(c, 0) ≤ E0(û). Since

limµ→0+ ‖∇ûµ‖22 = ‖∇û‖22, we also have

E0(û) =
a

2
‖∇û‖22 +

b

4
‖∇û‖42 −

1

p
‖û‖pp = lim

µ→0+
Eµ (ûµ) = lim

µ→0+
σ(c, µ) ≤ m(c, 0).

Consequently, E0(û) = limµ→0+ σ(c, µ) = m(c, 0) and û is a positive solution to
(4.14). From [18, 22, 35], we know that (4.14) has a unique positive solution u0.
Thus û = u0. �
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Proof of Theorem 1.2-(3). From Lemma 4.4, we know that R0(c, µ) → 0 as
µ→ 0+, and hence ‖∇ũµ‖2 < R0(c, µ) → 0 as well. Moreover,

0 > m(c, µ) = Eµ (ũµ)

≥ a

2
‖∇ũµ‖22 +

b

4
‖∇ũµ‖42 −

S−3

6
‖∇ũµ‖62 −

µCq
q

q
‖∇ũµ‖qδq2 cq(1−δq) → 0,

which implies that m(c, µ) → 0. �

5. Purely L2-supercritical case

In this Section, we always assume that 14
3
< q < p ≤ 6. Under this setting, we

obtain one critical point for Eµ|Sc , since Eµ|Sc admits a Mountain Pass geometry.
Subsection 5.1 is devoted to locating the exact position of some critical points to
Eµ|Sc . In Subsection 5.2, we prove Theorems 1.3–1.4.

5.1. The exact location of some critical points to Eµ|Sc
for 14

3
< q < p ≤

6. In this Subsection, we study the structure of Pc,µ and Eµ to locate the position of
some critical points to Eµ|Sc . Since 14

3
< q < p ≤ 6, we have 4 < qδq < pδp. Similar

to the proof of Lemmas 4.1–4.2, we can prove that Pc,µ is a natural constraint and
Pc,µ

0 = ∅. Furthermore, we have

Lemma 5.1. Let ã, b̃, c̃, d̃, p̃, q̃ ∈ (0,+∞) and f(t) := ãt2 + b̃t4 − c̃tp̃ − d̃tq̃ for
t ≥ 0. If p̃, q̃ ∈ (4,+∞), f(t) has a unique maximum point at a positive level on
[0,+∞).

Proof. Direct calculations give

f ′(t) = tg(t) for g(t) = 2ã+ 4b̃t2 − p̃c̃tp̃−2 − q̃d̃tq̃−2;

g′(t) = tw(t) for w(t) = 8b̃− p̃(p̃− 2)c̃tp̃−4 − q̃(q̃ − 2)d̃tq̃−4;

w′(t) = −p̃(p̃− 2)(p̃− 4)c̃tp̃−5 − q̃(q̃ − 2)(q̃ − 4)d̃tq̃−5.

Since w′(t) < 0 for t > 0, we know that w(t) ց on [0,+∞). The fact that w(0) > 0
and w(+∞) = −∞ imply that there exists unique t∗ > 0 such that w(t∗) = 0,
w(t) > 0 if t ∈ (0, t∗) and w(t) < 0 if t ∈ (t∗,+∞). Consequently, g(t) ր on
[0, t∗) and ց on (t∗,+∞). The fact that g(0) > 0 and g(+∞) = −∞ imply that
there exists unique t̄ > t∗ such that g(t̄) = 0, g(t) > 0 if t ∈ (0, t̄) and g(t) < 0 if
t ∈ (t̄,+∞). We get f ′(t) > 0 if t ∈ (0, t̄) and f ′(t) < 0 if t ∈ (t̄,+∞), which implies
that f(t) ր on [0, t̄) and ց on (t̄,+∞). Since f(0) = 0, then f(t) has a unique
maximum point at t̄ and f(t̄) > 0. �

Lemma 5.2. Let a > 0, b > 0, c > 0, 14
3
< q < p ≤ 6 and µ > 0. For every

u ∈ Sc, Ψ
µ
u has a unique critical point tu ∈ R, which is a strict maximum point at a

positive level. Moreover:

(1) Pc,µ = Pc,µ
− .

(2) Ψµ
u is strictly decreasing on (tu,+∞), and tu < 0 implies Pµ(u) < 0.

(3) The maps u ∈ Sc 7→ tu ∈ R are of class C1.
(4) If Pµ(u) < 0, then tu < 0.

Proof. By using Lemma 5.1, we derive that Ψµ
u has a unique maximum point at

a positive level. The rest of the proof is similar to that of Lemma 6.1 in [28]. �
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Lemma 5.3. Let a > 0, b > 0, c > 0, 14
3
< q < p ≤ 6 and µ > 0. Then, we have

m(c, µ) := inf
u∈Pc,µ

Eµ(u) > 0.

Proof. The proof is similar to that of Lemma 4.12. �

Lemma 5.4. Let a > 0, b > 0, c > 0, 14
3
< q < p ≤ 6 and µ > 0. Then, there

exists k > 0 sufficiently small such that

0 < sup
Ak

Eµ < m(c, µ) and u ∈ Ak =⇒ Eµ(u) > 0, Pµ(u) > 0,

where Ak := {u ∈ Sc : ‖∇u‖22 < k}.
Proof. The proof is similar to that of Lemma 4.13. �

To apply Proposition 3.2 and recover compactness when p = 6, we need an
estimate from above on

mr(c, µ) := inf
u∈Pc,µ∩Sc,r

Eµ(u).

Lemma 5.5. Let a > 0, b > 0, c > 0, 14
3
< q < 6, p = 6 and µ > 0. Then

mr(c, µ) <
aSΛ
3

+ bS2Λ2

12
, where Λ = bS2

2
+
√

aS + b2S4

4
.

Proof. By Theorem 1.42 of [31], we know that S = infu∈D1,2(R3)\{0}
‖∇u‖22
‖u‖26

is

attained by

Uε(x) := 3
1
4

(

ε

ε2 + |x|2
)

1
2

, ∀ ε > 0.(5.1)

Furthermore, we have ‖∇Uε‖22 = ‖Uε‖66 = S 3
2 . Take a radially decreasing cut-off

function η ∈ C∞
c (R3) such that η ≡ 1 in B1(0), η ≡ 0 in Bc

2(0) := R
3 \B2(0), and let

uε(x) := η(x)Uε(x), and vε(x) := c
uε(x)

‖uε‖2
, ∀ ε ∈ (0, 1).

Clearly, vε ∈ Sc,r, by Lemma 5.2, there exists a unique tvε,µ ∈ R such that

mr(c, µ) = inf
Pc,µ∩Sc,r

Eµ ≤ Eµ (tvε,µ ⋆ vε) = max
s∈R

Eµ (s ⋆ vε) = max
s∈R

Ψµ
vε
(s), ∀ ε > 0.

So, it is sufficient to prove maxs∈RΨ
µ
vε
(s) = Eµ (tvε,µ ⋆ vε) <

aSΛ
3

+ bS2Λ2

12
.

To this end, we need some integral estimates. Similar to Lemma 1.46 in [31] or
Lemma A.1 in [28], we can derive that

‖∇uε‖22 = S 3
2 +O(ε), ‖uε‖66 = S 3

2 +O(ε3), ‖uε‖22 = O(ε), ‖uε‖qq = O(ε3−
q
2 ),

‖∇uε‖22 ≥ C1,
1

C2
≥ ‖uε‖66 ≥ C2, ‖uε‖22 ≥ C3ε(5.2)

for some constants Ci > 0 (i = 1, 2, 3), which are independent of ε, c and µ.

Next, we prove maxs∈RΨ
0
vε
(s) = E0 (tvε,0 ⋆ vε) =

aSΛ
3

+ bS2Λ2

12
+O(ε

1
2 ). Since

Ψ0
vε
(s) =

a

2
e2s‖∇vε‖22 +

b

4
e4s‖∇vε‖42 −

e6s

6
‖vε‖66,

we see that Ψ0
vε
(s) has a unique maximum point tvε,0 such that

e2tvε,0 =
b‖∇vε‖42
2‖vε‖66

+

√

a‖∇vε‖22
‖vε‖66

+
b2‖∇vε‖82
4‖vε‖126

.
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Then, we derive that

c2e2tvε,0

‖uε‖22
=
b‖∇uε‖42
2‖uε‖66

+

√

a‖∇uε‖22
‖uε‖66

+
b2‖∇uε‖82
4‖uε‖126

=
b(S 3

2 +O(ε))
2

2(S 3
2 +O(ε3))

+

√

√

√

√

a(S 3
2 +O(ε))

S 3
2 +O(ε3)

+
b2(S 3

2 +O(ε))
4

4(S 3
2 +O(ε3))2

=
bS 3

2

2
+

√

a +
b2S3

4
+O(ε) +O(ε)

≤ bS 3
2

2
+

√

a+
b2S3

4
+O(ε

1
2 ) =

Λ√
S

+O(ε
1
2 ),

where Λ = bS2

2
+
√

aS + b2S4

4
. This leads to that

sup
s∈R

Ψ0
vε
(s) = Ψ0

vε
(tvε,0)

=
a

2

c2e2tvε,0

‖uε‖22
‖∇uε‖22 +

b

4

c4e4tvε,0

‖uε‖42
‖∇uε‖42 −

c6e6tvε,0

‖uε‖62
‖uε‖66
6

=
a

2

c2e2tvε,0

‖uε‖22

(

S 3
2 +O(ε)

)

+
b

4

c4e4tvε,0

‖uε‖42

(

S 3
2 +O(ε)

)2

− c6e6tvε,0

‖uε‖62

(

S 3
2 +O(ε3)

)

6

≤ a

2

(

Λ√
S

+O(ε
1
2 )

)

(

S 3
2 +O(ε)

)

+
b

4

(

Λ√
S

+O(ε
1
2 )

)2
(

S3 +O(ε)
)

−
(

bS 3
2

2
+

√

a +
b2S3

4
+O(ε) +O(ε)

)3
(

S 3
2 +O(ε3)

)

6

≤ aΛS
2

+
bΛ2S2

4
+O(ε

1
2 )−

(

bS 3
2

2
+

√

a+
b2S3

4

)3
S 3

2

6

=
aΛS
2

+
bΛ2S2

4
− Λ3

6
+O(ε

1
2 ) =

aSΛ
3

+
bS2Λ2

12
+O(ε

1
2 ).(5.3)

Finally, we estimate tvε,µ. From (Ψµ
vε
)′(tvε,µ) = Pµ(tvε,µ ⋆ vε) = 0, we have

ae2tvε,µ‖∇vε‖22 + be4tvε,µ‖∇vε‖42 = µδqe
qδqtvε,µ‖vε‖qq + e6tvε,µ‖vε‖66 ≥ e6tvε,µ‖vε‖66.

It results to that e2tvε,µ ≤ e2tvε,0 , so we have

e2tvε,µ ≤ b‖∇vε‖42
2‖vε‖66

+

√

a‖∇vε‖22
‖vε‖66

+
b2‖∇vε‖82
4‖vε‖126

≤ b‖∇vε‖42
‖vε‖66

+

√
a‖∇vε‖2
‖vε‖36

.(5.4)
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On the other hand, we have

e4tvε,µ =
a‖∇vε‖22
‖vε‖66

+
b‖∇vε‖42
‖vε‖66

e2tvε,µ − µδq
‖vε‖qq
‖vε‖66

e(qδq−2)tvε,µ

≥ b‖∇vε‖42
‖vε‖66

e2tvε,µ − µδq
‖vε‖qq
‖vε‖66

e(qδq−2)tvε,µ.

By the inequality (ℓ1 + ℓ2)
qδq−4

2 ≤ ℓ
qδq−4

2
1 + ℓ

qδq−4

2
2 for ℓ1, ℓ2 ≥ 0 and (5.4), we have

e2tvε,µ ≥ b||∇vε||42
||vε||66

−µδq
||vε||qq
||vε||66

e(qδq−4)tvε,µ

=
b||uε||22
c2

||∇uε||42
||uε||66

− µδq
||uε||6−q

2

c6−q

||uε||qq
||uε||66

e(qδq−4)tvε,µ

≥ b||uε||22
c2

||∇uε||42
||uε||66

− µδq
||uε||6−q

2

c6−q

||uε||qq
||uε||66

[

b||∇vε||42
||vε||66

+

√
a||∇vε||2
||vε||36

]

qδq−4

2

≥ b||uε||22
c2

||∇uε||42
||uε||66

− µδq
||uε||6−q

2

c6−q

||uε||qq
||uε||66

[(

b||∇vε||42
||vε||66

)

qδq−4

2

+

(√
a||∇vε||2
||vε||36

)

qδq−4

2
]

=
b||uε||22
c2

||∇uε||42
||uε||66

− µδq
||uε||2−q(1−δq)

2

c2−q(1−δq)

||uε||qq
||uε||66

[(

b||∇uε||42
||uε||66

)

qδq−4

2

+

(√
a||∇uε||2
||uε||36

)

qδq−4

2
]

=
||uε||22
c2

{

b||∇uε||42
||uε||66

− µδqc
q(1−δq)

||uε||66
||uε||qq

||uε||q(1−δq)
2

[(

b||∇uε||42
||uε||66

)

qδq−4

2

+

(√
a||∇uε||2
||uε||36

)

qδq−4

2
]}

≥ ||uε||22
c2

{

C4 − µδqc
q(1−δq)C5

||uε||qq
||uε||q(1−δq)

2

}

,

where C4 = C4(b,S) > 0 and C5 = C5(a, b, q,S) > 0. Utilizing (5.2), we have
‖uε‖qq

‖uε‖q(1−δq )
2

= O(ε
6−q
4 ). Consequently, we get

e2tvε,µ ≥ ‖uε‖22
c2

{

C4 −O(ε
6−q
4 )µδqc

q(1−δq)C5

}

≥ ‖uε‖22
c2

C4

4
(5.5)

for ε > 0 sufficiently small. Then (5.5) gives etvε,µ ≥ C
‖uε‖2

c
for some constant

C =
√
C4

2
. Since q ∈ (14

3
, 6), we get

sup
s∈R

Ψµ
vε
(s) = Ψµ

vε
(tvε,µ) = Ψ0

vε
(tvε,µ)− µ

eqδqtvε,µ

q
‖vε‖qq

≤ sup
s∈R

Ψ0
vε
(s)− µ

eqδqtvε,µ

q
‖vε‖qq = Ψ0

vε
(tvε,0)− µ

eqδqtvε,µ

q
‖vε‖qq

≤ aSΛ
3

+
bS2Λ2

12
+O(ε

1
2 )− µCqδqcq(1−δq)

q

‖uε‖qq
‖uε‖q(1−δq)

2
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≤ aSΛ
3

+
bS2Λ2

12
+O(ε

1
2 )− O(ε

6−q
4 ) <

aSΛ
3

+
bS2Λ2

12
. �

5.2. The existence and asymptotic results for 14

3
< q < p ≤ 6. In

this Subsection, we first prove the existence results, i.e. Theorem 1.3-(1),(2) and
Theorem 1.4-(1),(2). Then, we prove the asymptotic results, i.e. Theorem 1.3-(3)
and Theorem 1.4-(3).

To prove the asymptotic results in Theorem 1.4, we need the following lemma.

Lemma 5.6. Let a > 0, b > 0, c > 0, p = 6 and µ = 0. Then,

mr(c, 0) = m(c, 0) := inf
Pc,0

E0 = inf
u∈Sc

max
s∈R

E0(s ⋆ u) =
aSΛ
3

+
bS2Λ2

12
,(5.6)

where Λ = bS2

2
+
√

aS + b2S4

4
.

Proof. Imitate the proof of Lemma 4.15, we get infPc,0 E0 = infu∈Sc maxs∈RE0(s⋆

u). Now, we prove that infu∈Sc maxs∈RE0(s ⋆ u) = aSΛ
3

+ bS2Λ2

12
. In fact, direct

calculation implies that maxs∈RE0(s ⋆ u) = Ψ0
u(tu,0) with

e2tu,0 =
b‖∇u‖42
2‖u‖66

+

√

a‖∇u‖22
‖u‖66

+
b2‖∇u‖82
4‖u‖126

.

We claim that

inf
u∈Sc

e2tu,0‖∇u‖22 = inf
u∈Sc

{b‖∇u‖62
2‖u‖66

+

√

a‖∇u‖62
‖u‖66

+
b2‖∇u‖122
4‖u‖126

}

= SΛ.(5.7)

On the one hand, by density of H1(R3) in D1,2(R3) (see [28]), we get

inf
u∈Sc

e2tu,0‖∇u‖22 = inf
u∈H1(R3)\{0}

e2tu,0‖∇u‖22 = inf
u∈D1,2(R3)\{0}

e2tu,0‖∇u‖22

≥ inf
u∈D1,2(R3)\{0}

b‖∇u‖62
2‖u‖66

+

√

inf
u∈D1,2(R3)\{0}

a‖∇u‖62
‖u‖66

+ inf
u∈D1,2(R3)\{0}

b2‖∇u‖122
4‖u‖126

=
bS3

2
+

√

aS3 +
b2S6

4
= SΛ.

On the other hand, since S = infu∈D1,2(R3)\{0}
‖∇u‖22
‖u‖26

is attained by Uε(x) = 3
1
4 ( ε

ε2+|x|2 )
1
2

for ε > 0, we have

bS3

2
+

√

aS3 +
b2S6

4
=
b‖∇Uε‖62
2‖Uε‖66

+

√

a‖∇Uε‖62
‖Uε‖66

+
b2‖∇Uε‖122
4‖Uε‖126

= e2tUε,0‖∇Uε‖22 ≥ inf
u∈D1,2(R3)\{0}

e2tu,0‖∇u‖22.

Then (5.7) is true. Similarly, we can prove infu∈Sc e
2tu,0‖u‖26 = Λ. These facts imply

that

inf
u∈Sc

Ψ0
u(tu,0) = inf

u∈Sc

{

a

2
e2tu,0‖∇u‖22 +

b

4
e4tu,0‖∇u‖42 −

e6tu,0

6
‖u‖66

}

=
aSΛ
3

+
bS2Λ2

12
.

Finally, we show that infPc,0 E0 = infPc,0∩Sc,r E0. Otherwise, there exists u ∈ Pc,0 \
Sc,r with E0(u) < infPc,0∩Sc,r E0. Then we let v := |u|∗, the symmetric decreasing
rearrangement of |u|, which lies in Sc,r. Then, we have E0 (v) ≤ E0 (u) and P0 (v) ≤
P0 (u) = 0. If P0(v) = 0, then E0(u) < infPc,0∩Sc,r E0 ≤ E0(v), a contradiction,
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and hence we get P0(v) < 0. By Lemma 5.2, we have tv < 0. However, we get a
contradiction that

E0(u) < inf
Pc,0∩Sc,r

E0 ≤ E0 (tv ⋆ v) =
a

4
e2tv‖∇v‖22 +

1

12
e6tv‖v‖66

≤ a

4
‖∇u‖22 +

1

12
‖u‖66 = E0 (u) ,

where we used the fact that tv ⋆ v and u lies in Pc,0. This proves that mr(c, 0) =
m(c, 0). �

Based on Lemmas 5.2-5.4 and Proposition 3.1, we can prove Theorem 1.3.

Proof of Theorem 1.3. The proof is different from that of Theorem 1.1-(2), we
should revise the minimax class as

Γ :=
{

γ(τ) =
(

ζ(τ), β(τ)
)

∈ C ([0, 1],R× Sc,r) ; γ(0) ∈ (0, Āk), γ(1) ∈ (0, E0
µ)
}

.

Then, it is standard as the proof of Theorem 1.6 in [27] that Eµ|Sc has a critical point

ûc,µ at Mountain Pass level σ(c, µ) > 0 and ûc,µ solves (1.1)λ̂c,µ
for some λ̂c,µ < 0.

Similar to Lemma 5.6, we get infPc,µ Eµ = infPc,µ∩Sc,r Eµ, then ûc,µ is a ground state
of Eµ|Sc. The proof of the asymptotic result is similar to that of Theorem 1.1-(5). �

Theorem 1.4 is concerned with the Sobolev critical case p = 6. Proposition 3.2
and Lemma 5.5 are crucial in the analysis. We first prove the existence results.

Proof of Theorem 1.4-(1),(2). Lemma 5.5 gives mr(c, µ) <
aSΛ
3

+ bS2Λ2

12
, the rest

of the proof is the same as that of Theorem 1.3, but we shall replace Proposition 3.1
by Proposition 3.2. �

Proof of Theorem 1.4-(3). Let us consider {ûµ : 0 < µ < µ}, with µ small enough.
From Theorem 1.4-(1)(2) and Lemma 5.6, we know that

(5.8)
aSΛ
3

+
bS2Λ2

12
> Eµ (ûµ) =

a

4
‖∇ûµ‖22 + µ

(

δq
4
− 1

q

)

‖ûµ‖qq +
1

12
‖ûµ‖66,

This leads to ‖∇ûµ‖22 ≤ C. So {ûµ} is bounded in H1. Since each ûµ is a positive
radial function in Sc, we deduce that up to a subsequence ûµ ⇀ û weakly in H1,
strongly in Lr for 2 < r < 6 and a.e. on R

3, as µ→ 0+. Using the fact that ûµ solves

(5.9) −
(

a+ b‖∇ûµ‖22
)

∆ûµ = λ̂µûµ + |ûµ|4ûµ + µ|ûµ|q−2ûµ in R
3

for λ̂µ < 0 and Pµ (ûµ) = 0, we infer that

λ̂µc
2 = a‖∇ûµ‖22 + b‖∇ûµ‖42 − µ‖ûµ‖qq − ‖ûµ‖66 = µ(δq − 1)‖ûµ‖qq → 0 as µ→ 0+.

Therefore, we have limµ→0+{a‖∇ûµ‖22 + b‖∇ûµ‖42} = limµ→0+ ‖ûµ‖66 = ℓ ≥ 0 and

λ̂µ → 0. So limn→∞ ‖∇ûµ‖22 =
√

ℓ
b
+ a2

4b2
− a

2b
and by the Sobolev inequality ℓ ≥

bS2ℓ
2
3 + aSℓ 1

3 .
If ℓ = 0, then we have ûµ → 0 strongly in D1,2(R3) and so Eµ (ûµ) → 0 as

µ → 0+. Imitate Lemma 4.16, we can prove that σ(c, µ) is monotone decreasing in
µ and

lim
µ→0+

Eµ (ûµ) = lim
µ→0+

σ(c, µ) ≥ σ(c, µ) > 0,
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the contradiction implies that ℓ 6= 0 and so we have ℓ ≥ Λ3. By using the mono-
tonicity of σ(c, µ) and (5.6), we also have

aSΛ
3

+
bS2Λ2

12
≤ ℓ

12
+
a

4

(

√

ℓ

b
+

a2

4b2
− a

2b

)

= lim
µ→0+

[

a

4
‖∇ûµ‖22 +

1

12
‖ûµ‖66 + µ

(

δq
4
− 1

q

)

‖ûµ‖qq
]

= lim
µ→0+

Eµ (ûµ) = lim
µ→0+

σ(c, µ) ≤ mr(c, 0) =
aSΛ
3

+
bS2Λ2

12
,

which implies that ℓ = Λ3, ‖ûµ‖66 → Λ3 and ‖∇ûµ‖22 → SΛ as µ → 0+. �
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