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On the Hausdorff dimension distortions
of quasi-symmetric homeomorphisms

Shengjin Huo

Abstract. In this paper, we first prove that for a Fuchsian group G of divergence type

and non-lattice, if h is a quasi-symmetric homeomorphism of the real axis R corresponding to a

quasi-conformal compact deformation of G, then h is not strongly singular for divergence groups.

This generalizes a result of Bishop and Steger (1993). Furthermore, we show that Bishop and

Steger’s result does not hold for the covering groups of all d-dimensional ‘Jungle Gyms’ (d is any

positive integer) which generalizes Gönye’s results (2007) where the author discussed the case of

1-dimensional ‘Jungle Gym’.

Hausdorffin ulottuvuuden vääristymät kvasisymmetrisissä homeomorfismeissa

Tiivistelmä. Tässä työssä todistamme ensinnäkin, että jos h on hajaantumistyyppisen, ei-

hilamaisen Fuchsin ryhmän G kvasikonformista kompaktia muodonmuutosta vastaava reaaliakse-

lin R kvasisymmetrinen homeomorfismi, niin h ei ole vahvasti singulaarinen hajaantumisryhmien

suhteen. Tämä yleistää Bishopin ja Stegerin tulosta (1993). Lisäksi todistamme, että Bishopin ja

Stegerin tulos ei päde kaikkien d-ulotteisten ”kiipeilytelineiden” peiteryhmille (d on mikä tahan-

sa positiivinen kokonaisluku). Tämä yleistää Gönyen tuloksia (2007), joissa kirjoittaja tarkasteli

1-ulotteisen ”kiipeilytelineen” tapausta.

1. Introduction

Let G be a non-elementary torsion free discrete Möbius transformations group
acting on R̄n = Rn ∪ ∞ or Sn = ∂Bn; the action of G can extend to the (n + 1)-
dimension hyperbolic upper half plane Hn+1 = {(x1, · · ·, xn+1) ∈ Rn+1 : xn+1 > 0}
or the hyperbolic unit ball Bn+1. A discrete group G is called a Kleinian group if
n = 2 and a Fuchsian group if n = 1. In this paper, we mainly focus our attention
on Fuchsian groups.

Let Λ(G) be the accumulation set of any orbit. A Fuchsian group G is said to
be of the first kind if the limit set Λ(G) is the entire circle. Otherwise, it is of the
second kind. A point x ∈ R̄ is a conical limit point or radial limit point of G if
there is a sequence (gi)i≥1 of elements gi ∈ G such that for any z ∈ H, there exists a
constant C and a hyperbolic line L with endpoint x such that the hyperbolic distance
between gi(z) and L are bounded by C. Denote by Λc(G) the set of all the conical
limit points and Λe(G) the set of all the escaping limit points. Let S = H/G be
the corresponding surface of G. The points in Λc(G) are just corresponding to the
geodesics in S which return to some compact set infinitely often and the points in
Λe(G) are corresponding to the geodesics in S which eventually leave every compact
subset of S. An important subset of the escaping limit set Λe(G) is the linear escaping
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limit set which contains all the linear escaping limit points. Parameterize geodesics
γ by hyperbolic arclength by γ(t) and for any 0 < δ < 1, let Λδ(G) correspond to
the set of geodesics γ such that

distS(γ(t), γ(0)) ≥ δt

for t sufficiently large and let ΛL(G) =
⋃

0<δ<1 Λδ(G) denote the linear escaping limit
set.

For g in G, we denote by Dz(g) the closed hyperbolic half plane containing
z, bounded by the perpendicular bisector of the segment [z, g(z)]h. The Dirichlet
fundamental domain Fz(G) of G centered at z is the intersection of all the sets Dz(g)
with g in G\{id}. For simplicity, in this paper we use the notation F for the Dirichlet
fundamental domain Fz(G) of G centered at z = 0. A Fuchsian group Γ is called
a lattice if the area of its one Dirichlet fundamental domain is finite. Moreover, a
lattice is said to be uniform if each of its Dirichlet fundamental domain is compact,
for more details, see [12].

A Fuchsian group G is said to be of divergence type if Σg∈G(1 − |g(0)|) = ∞.
Otherwise, we say it is of convergence type. All the second kind groups are of
convergence type but the converse is not true.

We call F a quasi-conformal deformation of G if it is a quasi-conformal homeo-
morphism of the upper half plane H such that

G′ = {g′ : g′ = F ◦ g ◦ F−1 for every g ∈ G}

is also a Fuchsian group and a compact quasi-conformal deformation of G if it is just
a lifted mapping of a quasi-conformal mapping f defined on the surface H/G whose
Beltrami coefficient is supported on a compact subset of H/G. Such an F will extend
unique to a homeomorphism of the real axis R̄, denoted by h. The homeomorphism
h is a quasi-symmetric mapping of R̄.

The quasi-symmetric mappings can be very singular in the measure theoretic
sense. It is known that the quasi-conformal mappings preserve the null-sets. However,
the quasi-symmetric mappings may be very singular, which will not preserve null-sets,
see [5].

In [21], Tukia showed that, for the unit interval I = [0, 1], there are a quasi-
symmetric self mapping of I and a set E ⊂ I such that the Hausdorff dimensions of
both I \ E and f(E) are less than 1. In [11], Bishop and Steger got the following
result: for a lattice group G (i.e. G is finitely generated of first kind), there is a set
E ⊂ R such that the Hausdorff dimensions of both E and h(R \ E) are less than 1,
where h is a quasi-symmetric conjugating homeomorphism of the real axis R. Bishop
and Steger’s result implies that any conjugation h of the real axis R of a lattice
group G must either be Möbius or strongly singular, i.e., h maps a set of Hausdorff
dimension < 1 to the complement of a set of Hausdorff dimension < 1.

Concerning the negative results we first give the definition of the d-dimensional
‘Jungle Gym’. Let S0 be a compact surface of genus d and G0 its covering group. Let
N0 be a normal subgroup of G0 such that G0/N0 is isomorphic to Z

d. The surface
S∗ = H/N0 is the so called infinite d-dimensional ’Jungle Gym’, that is, S∗ = H/N0

can be quasi-isometrically embedded into Rd as a surface S which is invariant under
translations tj , 1 ≤ j ≤ d, in d orthogonal directions. Moreover S0 is conformal
equivalent to S/〈t1, · · ·, td〉.

In [14], Gönye showed that Tukia–Bishop–Steger’s results do not hold for the
covering groups of 1-dimensional ‘Jungle Gyms’. Gonye constructed a conjugating
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map f between covering groups of two 1-dimensional ‘Jungle Gyms’ with the Beltrami
coefficient being compactly supported, for which

max(dim(E), dim f(R \ E)) = 1

for all E ⊂ R, where and in the following of the paper, dim(·) always denotes the
Hausdorff dimension of the set.

In this paper, we continue to investigate the range of validity of Tukia–Bishop–
Steger’s results. The divergence Fuchsian groups have Mostow’s rigidity property, so
if h is any quasi-symmetric homeomorphism which conjugates a divergence Fuchsian
group to another one, then h is either Möbius or singular (see, e.g., Agard [1], Tukia
[20] or Bishop [6]), i.e. h is continuous but the derivation of h vanishes almost every-
where in the real axis R. For the quasi-symmetric homeomorphisms corresponding
to a compact deformation of a divergence Fuchsian group, we have

Theorem 1.1. Let G be a Fuchsian group of divergence type and non-lattice.

If h is a homeomorphism of the real axis R corresponding to a compact deformation

of G, then for any E ⊂ R, we have

max(dim(E), dimh(R \ E)) = 1.

In other words, for the covering groups of the divergence surfaces of infinite area,
a non-Möbius conjugating homeomorphism of the real axis R must be singular in
the sense that it maps a set of zero Lebesgue measure to the complement of zero
measure, but can’t be strongly singular.

Combine with Bishop and Steger’s result [11], we have

Theorem 1.2. Let G be a Fuchsian group and h a quasi-symmetric homeomor-

phism of the real axis R corresponding to a compact deformation of G. Then there

exists a subset E ⊂ R, such that

(1.1) max(dim(E), dimh(R \ E)) < 1

if and only if G is a lattice.

Concerning the ‘Jungle Gyms’, note that the area of a ‘Jungle Gym’ is infinite
and by Theorem 1.2, we can easily generalize Gönye’s result to d-dimensional ‘Jungle
Gyms’, where d is any positive integer number.

Corollary 1.3. For any positive integer number d, suppose G is a covering

group of a d-dimensional ‘Jungle Gym’ and h a homeomorphism of the real axis R

corresponding to a compact deformation of G, for any E ⊂ R, we have

(1.2) max(dim(E), dimh(R \ E)) = 1.

Remark. By [2] we know that when d = 1 or 2, the covering groups of ’d-
dimensional ‘Jungle Gyms’ are of divergence type and when d ≥ 3, the covering
group of d-dimensional ‘Jungle Gyms’ are of convergence type.

The remainder of the paper is organized as follows: In Section 2, we recall some
definitions. In Section 3, we give some results about the differentiability of quasi-
conformal mappings at escaping limit points and give some applications. In Section 4,
we prove Theorem 1.1 and in Section 5, we prove Theorem 1.2.

2. Preliminaries

Before giving the proofs of the above results, we first recall some definitions.
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2.1. Quasi-conformal mapping. Let H be the upper half-plane in the complex
plane C. We denote by M(H) the unit ball of the space L∞(H) of all essentially
bounded Lebesgue measurable functions in H. For a given µ ∈ M(H), there exists a
unique quasi-conformal self-mapping fµ of H fixing 0, 1 and ∞, and satisfying the
following equation

∂

∂z̄
fµ(z) = µ(z)

∂

∂z
fµ(z), a.e. z ∈ H.

We call µ the Beltrami coefficient of fµ. It is well known that fµ can be extended
continuously to the real axis R such that fµ restricted to R is a quasi-symmetric
homeomorphism.

Similarly, there exists a unique quasi-conformal homeomorphism fµ of the com-
plex plane C which is holomorphic in the lower half plane, fixing 0, 1 and ∞ and
satisfying

∂

∂z̄
fµ(z) = µ(z)

∂

∂z
fµ(z), a.e. z ∈ H.

2.2. Poincaré exponent. The critical exponent (or Poincaré exponent) of a
Fuchsian group G is defined as

δ(G) = inf

{

t :
∑

g∈G

exp(−tρ(0, g(0))) < ∞

}

(2.1)

= inf

{

t :
∑

g∈G

(1− |g(0)|)t < +∞

}

,(2.2)

where ρ denotes the hyperbolic metric. It has been proven in[8] that for any non-
elementary group G, δ(G) equals to dim(Λc(G)), the Hausdorff dimension of the
conical limit set.

2.3. Hausdorff dimension. Let E be a subset of the complex plane C. Suppose
ϕ is an nonnegative increasing homeomorphism of [0,∞). For ϕ and 0 < δ ≤ ∞, we
define

Hϕ
δ (E) = inf

{

∞
∑

i=1

ϕ(|Bi|) : E ⊂
∞
⋃

i=1

Bi, |Bi| ≤ δ

}

,

where Bi ⊂ C is a set and |Bi| denotes its diameter, the infimum is taken over all
open coverings of E. Then the Hausdorff measure of E to be

Hϕ(E) = lim
δ→0

Hϕ
δ (E) = sup

δ>0
Hϕ

δ (E)

and the Hausdorff content of E is Hϕ
∞(E).

If ϕ(t) = tα, α ∈ [0, 2], we denote Hϕ(E) by Hα(E). Then one defines the
α-dimensional Hausdorff measure of E to be

Hα(E) = lim
δ→0

Hα
δ (E) = sup

δ>0
Hα

δ (E).

One defines the Hausdorff dimension of E to be

dimE = inf{α : Hα(E) = 0}.
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3. Differentiability of quasi-conformal mappings

at escaping limit points revisited

It is well known that the quasi-conformal mappings of a domian Ω are differ-
entiable almost everywhere in Ω. In this paper we need the following criterion for
pointwise conformality, see ([4, 15, 18, 19, 22] or [16, Theorem 6.1]) (I would like to
thank Professor Liu Jinsong pointing reference [18] out to me).

Lemma 3.1. Let Ω and Ω′ be two domains in the complex plane C and 0 ∈ Ω,

and let f be a quasi-conformal mapping from Ω to Ω′ with Beltrami coefficient µ(z),
where |µ(z)| ≤ k < 1 almost everywhere in Ω. If µ(z) satisfies

(3.1)
1

2π

¨

|z|<r

|µ(z)|

|z|2
dx dy < ∞

for some r > 0, then f is conformal at z = 0.

Let G be non-lattice Fuchsian group of divergence type. Let f be a quasi-
conformal mapping on the surface S = H/G whose Beltrami coefficient µ is sup-
ported on a compact subset of S. Thus we can choose a point z0 ∈ S and a suffi-
ciently large r0 such that the support set of µ is contained in the disk B(z0, r0). Let
Sr0 = S \ B(z0, r0) and let Ωr0 be the lifting of Sr0 to the upper plane H. By the
definition of escaping limit points we know that an escaping geodesic eventually stays
inside in the region Ωr0 and far from the support of µ. We can lift f to the upper
half plane H and get a quasi-conformal homeomorphism F µ(z) : H → H. Induced by
the Beltrami coefficient of F µ we can get a quasi-conformal homeomorphism of the
complex plane C such that the Beltrami coefficient of Fµ is almost everywhere equal
to the one of F µ on the upper half plane H and vanishes almost every on the lower
half plane L.

In the set of finitely generated Kleinian groups, the differentiability of conjugating
maps at linear escaping limit points (where McMullen called them “deep points” of
the limit set) has been noted by McMullen [17]. Bishop and Jones [9] proved that
one only needs a logarithm escaping to infinity to get differentiability. For the quasi-
conformal mapping Fµ, we have

Theorem 3.2. Let G be a Fuchsian group of divergence type and non-lattice,

and let f be a quasi-conformal mapping on the surface S = H/G so that the Beltrami

coefficient µ of f is compactly supported on S. Let F µ be the lifted mapping of f
to the upper half plane H extended to the real axis R with 0, 1 and ∞ fixed. If Fµ

is the quasi-conformal homeomorphism of the complex C whose Beltrami coefficient

is equal to the one of F µ almost everywhere on the upper half plane H and vanishes

on the lower half plane L, then Fµ is conformal at the linear escaping limit points

x ∈ ΛL(G).

Proof. Under the assumptions in the theorem, we can choose a point p0 ∈ S
and a sufficiently large R0 such that the support set of f is contained in the disk
B(p0, R0). Let SR0

= S \ B(p0, R0) and let ΩR0
be the lifting of SR0

to the upper
half plane H. By the definition of escaping limit points, we know that an escaping
geodesic eventually stays inside the region ΩR0

and far from the support of µ.
Since the Möbius transformations which keep the upper half plane invariant do

not change the hyperbolic geometry properties(such as hyperbolic area of subset
of H and hyperbolic distance between two points) of the upper half plane, with
the conjugation of such Möbius transformations, we can suppose x = 0 and the
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initial point of the geodesic ray is i, denote the geodesic by γ(t), where t is the arc-
length parametrization with γ(0) = i and limt→∞ γ(t) = 0. By the definition of the
linear escaping geodesics, there is a region such that none of the lifted pre-images
of B(p0, R0) will hit the escaping geodesics eventually. Hence there is a sufficiently
large t0 (t0 > 1) and a δ ∈ (0, 1), for t > t0, dist(γ(t),H \ ΩR0

) > δt > R0, where
dist(·, ·) denotes the hyperbolic distance between two points.

Let r0 = e−t0 and µF be the Beltrami coefficient of Fµ. In the following, we will
show that the integral

(3.2)
1

2π

¨

|z|<r0

|µF (z)|

|z|2
dx dy

is finite.
Since the Beltrami coefficient µF vanishes in the regions ΩR0

and the lower half
plane L, we need to show that the integral (3.2) is finite in a neighborhood of 0
outside the regions ΩR0

and L. We will use polar coordinate to estimate the integral
(3.2). We have

(3.3)
1

2π

¨

|z|<r0

|µF (z)|

|z|2
dx dy ≤

1

2π

ˆ r0

0

dr

ˆ θ1(r)

0

1

r
dθ +

1

2π

ˆ r0

0

dr

ˆ θ2(r)

0

1

r
dθ,

where θ1(r) and θ2(r) are the arguments of the points which are the intersction of the
hyperbolic circle dist(ir, z) = −δ ln r with the Euclidean circle |z| = r, where r < 1.
Since the region is symmetric with respect to γ(t), we only need to show that the
integral

(3.4)

ˆ r0

0

dr

ˆ θ1(r)

0

1

r
dθ

is finite. By some easy calculations or see [3, p. 131], we know that the hyperbolic
circle dist(ir, z) = −δ ln r is just the Euclidean circle

(3.5)

∣

∣

∣

∣

z − ir
rδ + r−δ

2

∣

∣

∣

∣

= r

(

r−δ − rδ

2

)

.

Let Q = x+ iy be the intersection points of the hyperbolic circle dist(ir, z) = −δ ln r
with the Euclidean circle |z| = r in the first quadrant. Combine (3.5), we have the
imaginary part of Q satisfies the equation

y =
2r

rδ + r−δ
.

Therefore

sin θ1(r) =
y

r
=

2

rδ + r−δ
≤ rδ.

Since for θ ∈ (0, π
2
), 2

π
θ ≤ sin θ, we have

(3.6) θ1(r) ≤
π

2
rδ.

Hence the integral
ˆ r0

0

dr

ˆ θ1(r)

0

1

r
dθ ≤

ˆ r0

0

π

2
rδ−1 dr

is finite. Furthermore, we have

(3.7)
1

2π

¨

|z|<r0

|µF (z)|

|z|2
dx dy < ∞.
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By Lemma 3.1, we know that Fµ is conformal at 0. �

For the quasi-conformal homeomorphism F µ of the upper half plane H, we have
the following results which is similar to Gönye’s result [14, Theorem 1.1] where Gönye
discussed the differentiability of the conjugating quasi-symmetric homeomorphisms
of the covering groups of 1-dimensional ‘Jungle Gyms’.

Theorem 3.3. Under the assumptions in Theorem 3.2, let h := F µ|R be the

quasi-symmetric homeomorphism of F µ extended and restricted to the real axis R.

Then h is differentiable at the linear escaping limit points x ∈ ΛL(G) with h′(x) 6= 0.

Proof. Let

F (z) =

{

F µ(z), z ∈ H;

F µ(z̄), z ∈ C \H.

By the symmetry of the Beltrami coefficient of F relative to the real axis R and (3.6),
we have that the quasi-symmetric homeomorphism h are differentiable at the linear
escaping points x ∈ ΛL(G). �

For a compact quasi-conformal deformation, in [8], Bishop and Jones use the
properties of Schwarzian derivative of Fµ to estimate the Hausdorff dimension of the
escaping limit set Λe(G) and Fµ(Λe(G)), they showed

Theorem 3.4. [8] Under the assumptions in Theorem 3.2, dimΛe(G) is equal

to dimFµ(Λe(G)).

As an application of Theorem 3.2, we show

Theorem 3.5. Under the assumptions in Theorem 3.2, dimΛL(G) is equal to

dimFµ(ΛL(G)).

Proof. By Theorem 3.2 we know

ΛL(G) = {x : F ′
µ(x) exists and non-zero, x ∈ ΛL(G)}.

Define the set
Λn = {x : 1

n
≤ |F ′

µ(x)| ≤ n, x ∈ ΛL(G)},

it is easy to see ΛL(G) =
⋃∞

n=1Λn and Λn ⊂ Λn+1. Hence ΛL(G) = limn→∞ Λn.
For x ∈ Λn, we can choose a δx such that, for |z − x| < δx,

1

2n
≤

|Fµ(z)− Fµ(x)|

|z − x|
≤ 2n.

This means that for each x ∈ Λn, there exists a constant δx, such that for all neigh-
borhood Bx of x with |Bx| < δx,

(3.8)
1

2n
|Bx| ≤ Fµ(|Bx|) ≤ 2n|Bx|.

Note that for a fixed number n, the choice of constant δx depends on the points x.
To get rid of the dependence on x, define the set

(3.9) Λn,k =

{

x : x ∈ Λn, ∀|Bx| with |Bx| <
1

k
,

1

2n
|Bx| ≤ Fµ(|Bx|) ≤ 2n|Bx|

}

.

It is easy to see that Λn,k ⊂ Λn,k+1 and Λn = limk→∞ Λn,k.
In the following, we will show that for α ∈ (0, 2), the Hausdorff measures of

Hα(Fµ(Λn,k)) and Hα(Λn,k) satisfy

(3.10)

(

1

2n

)α

Hα(Λn,k) ≤ Hα(Fµ(Λn,k)) ≤ (2n)αHα(Λn,k).
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We first show that the second inequality of (3.10) holds.
For fixed n and k, suppose {Bi} is a cover of Λn,k with |Bi| <

1
2nj

, where j ≥ k.

Then by the definition of Λn,k, we know that the sequence (Fµ(Bi))i≥1 is a cover of
Fµ(Λn,k) with

|Fµ(Bi)| <
1

j
.

For any α ∈ (0, 2), we have

(3.11) Hα
1/j(Fµ(Λn,k)) ≤

∞
∑

i=1

|Fµ(Bi)|
α ≤

∞
∑

i=1

(2n|Bi|)
α.

Take the infimum of the right of (3.10), we obtain

Hα
1/j(Fµ(Λn,k)) ≤ (2n)αHα

1/2nj(Λn,k).

Let j tend to infinity, the α-dimensional Hausdorff measures of Fµ(Λn,k) and Λn,k

satisfy

(3.12) Hα(Fµ(Λn,k)) ≤ (2n)αHα(Λn,k).

On the other hand, take a covering {Vi} of the set Fµ(Λn,k) with

|Vi| <
1

2nj
,

where j > 2k. Without loss of generality we may suppose Vi ∩ Fµ(Λn,k) 6= ∅. By the
definition of the set Λn,k, we can choose a point x ∈ F−1

µ (Vi) ∩ Λn,k and a neighbor-

hood Bx of it with 1
k
> |Bx| >

2
j
, for which

(3.13)
1

2n
|Bx| ≤ Fµ(|Bx|) ≤ 2n|Bx|.

Hence |F−1
µ (Vi)| < |Bx|. So we can suppose F−1

µ (Vi) ⊂ Bx and

(3.14) Hα(Λn,k) ≤
∑

|F−1
µ (Vi)|

α ≤
∑

(2n|Vi|)
α.

Note that F−1
µ (Vi) is a covering of Λn,k and take the infimum of the covering {Vi} we

have

Hα(Λn,k) ≤ (2n)αHα
1/2nj(Fµ(Λn,k)).

Let j tend to infinity, we can get that the first inequality of (3.9) also holds. By the
definition of Hausdorff dimension, the inequalities (3.10) show that, for fixed n, k,
the Hausdorff dimension of Λn,k is the same as its image under the map Fµ. Since
the dimension is preserve for every n and k, hence we have

dimFµ(ΛL) = dim(ΛL).

This completes the proof of this theorem. �

Note that in [7], the Hausdorff dimension of the linear escaping limit points of
a Fuchsian group G is always equal to the dimenson of the geodesics that escape to
infinity at linear speed, by Theorem 3.5, this can give a new proof of Bishop and
Jones’ result of Theorem 3.4.

For a non-lattice divergence type Fuchsian group G, Fernandez and Melian proved

Theorem 3.6. [13] Let G be a non-lattice divergence type Fuchsian group. Then

Λe(G) has zero Lebesgue measure, but its Hausdorff dimension is 1.
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For the convenience of the reader to better understand the distribution of the
escaping limit set Λe(G) , appendix 1 reproduces a sketch proof of this theorem.

As a subset of the escaping limit set Λe(G), the linear escaping limit set ΛL(G)
satisfies:

Theorem 3.7. Let G be a non-lattice divergence type Fuchsian group. Then

ΛL(G) has zero 1-dimensional Hausdorff measure, but its Hausdorff dimension is 1.

Proof. Let G be a non-lattice divergence Fuchsian group and f be a quasi-
conformal mapping of the surface S = H/G whose Beltrami coefficient is compactly
supported on S. As the statements of Theorem 3.2, let Fµ be a quasi-conformal
mapping of the complex plane C which has the same Beltrami coefficient with the
lifted mapping F µ of f to the upper half plane H and is conformal on the lower half
plane L. By [10, Theorem 1.3], we know that the 1-dimensional Hausdorff measure
of Fµ(ΛL(G)) is zero. Hence, as the notations in the proof of Theorem 3.2, for fixed
numbers n and k, the Hausdorff measure of the subset Fµ(Λn,k) is zero. By (3.10) in
the proof of Theorem 3.2, we know, for fixed n and k, the 1-dimensional Hausdorff
measure of Λn,k is also zero. Furthermore the 1-dimensional Hausdorff measure of
ΛL(G) is zero.

By Theorem 3.6, the Hausdorff dimension of Λe(G) is 1. By [7], we know that
the Hausdorff dimension of the linear escaping limit set ΛL(G) is always equal to the
dimension of the escaping limit set Λe(G). �

4. Proof of Theorem 1.1

To prove this theorem, we need the following lemma which is essentially due to
Gönye, see [14, p. 29].

Lemma 4.1. Let F be a quasi-symmetric homeomorphism of the real axis R

and A be a subset of R with Hausdorff dimension equal to 1. If for any x ∈ A, F ′(x)
exists and is non-zero, then the Hausdorff dimension of F (A) is also 1.

Now we give the proof of Theorem 1.1.

Proof. Let G be a Fuchsian group of divergence type and not a lattice. Let f be
a quasi-conformal mapping on the surface H/G. The lifting mapping F µ of f to the
upper half plane H can extend to the real axis R naturally. We denote by h = F µ|R.
The mapping h is a quasi-symmetric homeomorphism of R. By Theorem 3.3, the
quasi-symmetric homeomorphism h is differentiable at x in ΛL(G) with |h′(x)| 6= 0.
By Theorem 3.7, we know that the Hausdorff dimension of the escaping limit set
ΛL(G) is 1. By Lemma 4.1, we know, for any E ⊂ R,

max(dim(E ∩ ΛL(G)), dim(ΛL(G) \ E)) = 1.

Hence

max(dim(E), dim f(R \ E)) = 1

and the theorem holds. �

5. Proof of Theorem 1.2

Proof. The necessity of the equivalence is from [11, Theorem 4].
For the sufficient condition, by Theorem 1.1, we only need to show the case when

G is a Fuchsian group of the convergence type.
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If G is a Fuchsian group of the second kind, the boundary of any one Dirichlet
fundamental domain F contains at least an arc (denoted by α∗) in R. It is easy to
see that the homeomorphism is smooth on α∗. Hence the sufficient condition holds.
If G is a Fuchsian group of the convergence type and of the first kind, we need to
show that the Hausdorff dimension of the escaping limit set Λe(G) is 1, actually it
has positive 1-dimensional Hausdorff measure.

Suppose γ be a closed geodesic on the surface S = H/G. Consider the lifting
of the closed geodesic γ in the upper half plane H. It consists of a nested set Σ of
hyperbolic lines: the one intersecting the Dirichlet fundamental domain F cuts it
into two parts and we may assume that the point i belongs to a part that has infinite
(hyperbolic) area. The hyperbolic lines in Σ of the first generation define a two-by-
two disjoint family (Ij) of intervals of the real axis R. Suppose

⋃

i=1 Ij is equal to R

except a zero Lebesgue measure set, then almost every geodesic issued from i would
visit γ infinitely often, contradicting of [13, Theorem 1]. Thus the set of geodesics
from i that never visit γ has positive measure. It follows that the escaping limit set
of S has positive Lebesgue measure.

Hence if F µ corresponding to a compact quasi-conformal deformation of G, we
always have, for any E ⊂ R, max(dim(E), dim f(R \ E)) = 1. �

6. Appendix 1: Proof of Theorem 3.6

Since G is non-lattice, the area of the surface S and the generators of G are
both infinity. The method we used here is from [13]. We first recall the definition
of geodesic domain. A domain D ⊂ S is called a geodesic domain if its relative
boundary consists of finitely many non-intersecting closed simple geodesics and its
area is finite. Fix a point P0 ∈ S, by [13, Theorem 4.1], we know that there exists
a family {Di}

∞
i=0 of pairwise disjoint (except the boundary) geodesic domains in S

satisfying that the boundary of Di and Di+1 have at least a simple closed geodesic
in common and limi→∞ dist (P0, Di) = ∞, where dist(·, ·) denotes the hyperbolic
distance of the surface S.

Let {Di}
+∞
i=0 be the family of geodesic domains of S constructed as above. For

any i, let Si be the Riemann surface obtained from Di by gluing a funnel along each
one of the simple closed geodesics of its boundary. For each i, we choose a simple
closed geodesic γi from the common boundary Di ∩ Di+1 and a point Pi ∈ γi. By
[13, Theorem 4.1], we have δi → 1 when i tends to infinity, where δi is the Poincare
exponent of the surface Si.

For θ ∈ (0, 1
2
π), by ([13], Theorem 5.1), we can choose a collection Bi of geodesics

in Si with initial and final endpoint Pi such that

Li ≤ length(γ) ≤ Li + C(Pi), γ ∈ Bi,

where Li is a constant such that Li → ∞ as i → ∞, C(Pi) is a constant depending
only on the length of the geodesic γi, and σi < δ(Si), σi → 1 as i → ∞. The number
of geodesic arcs in Bi is at least eLiσi , and both the absolute value of the angles
between γ and the closed geodesic γi are less than or equal to θ.

Note that for each i, Di is the convex core of Si, implying that every geodesic arc
γ ∈ Bi is contained in the convex core Di. Furthermore, for each i, we may choose a
geodesic arcs γ∗

i with initial point Pi and final endpoint Pi+1 such that

Li ≤ length(γ∗
i ) ≤ Li + C(Pi+1),
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and both the absolute value of the angles between γi, γ
∗
i , and γ∗

i , γi+1 are less than
or equal to θ.

In order to show the distribution of geodesics on S, we are going to construct a
tree T consisting of oriented geodesic arcs in the unit disk ∆.

Let us first lift γ∗
0 to the unit disk starting at 0 (without loss of generality we may

suppose that 0 projects onto P0). From the endpoint of the lifted γ∗
0 (which project

onto P1), lift the family B1; from each of the end points of these liftings (which still
project onto P1), lift again B1. Keep lifting B1 in this way a total of M1 times.

Next, from each one of the endpoints obtained in the process above, we lift γ∗
1 ,

and from each one of the endpoints of the liftings of γ∗
1 (which project onto P2),

we lift the collection B2 sucessively M2 times as above. Continuously this process
indefinitely we obtain a tree T.

It is easy to see that T contains uncountably many branches. The tips of the
branches of T are contained in the escaping limit set Λe(G) of the covering group
of S. For suitably choosing the sequence {Mi} of repetitions, the dimension of the
rims of tree T is 1. By the construction of the tree T, we see that the tree T is a
unilaterally connected graph. Hence the geodesic corresponding to any branch of T
does not tend to the funnel with boundary γ. Hence the dimension of the escaping
limit set Λe(G) of the covering group G is 1.
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