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On the full regularity of the free boundary for
minima of Alt–Caffarelli functionals in Orlicz spaces

J. Ederson M. Braga and Patrícia R.P. Regis

Abstract. In this paper, we discuss two issues about the full regularity of the free boundary
for overdetermined Bernoulli-type problems in Orlicz spaces. First, we show that in dimension
n = 2 there are no singular points on the free boundary F (u) := ∂{u > 0} ∩Ω of minimizers of the
Alt–Caffarelli functional

JG(u) :=

ˆ

Ω

(
G(|∇u|) + λχ{u>0}

)
dx

for suitable N-functions G. Next, we prove as a consequence of our main results that there exist a

critical dimension 5 ≤ n0 ≤ 7 and a universal constant ε0 ∈ (0, 1) such that if G(t) is “ε0-close” of

t2, then for 2 ≤ n < n0, F (u) is a real analytic hypersurface.

Altin–Caffarellin funktionaalin minimoijien

vapaan reunan täyssäännöllisyys Orliczin avaruuksissa

Tiivistelmä. Tässä työssä tarkastelemme kahta ylimääritettyjen Bernoullin-tyyppisten on-
gelmien vapaan reunan täyssäännöllisyyttä koskevaa kysymystä Orliczin avaruuksissa. Ensinnäkin
osoitamme, että Altin–Caffarellin funktionaalin

JG(u) :=

ˆ

Ω

(
G(|∇u|) + λχ{u>0}

)
dx

minimoijien vapaalla reunalla F (u) := ∂{u > 0} ∩Ω ei sopivilla N-funktioilla G ole lainkaan singu-

laarisia pisteitä ulottuvuudessa n = 2. Päätuloksemme seurauksena todistamme, että on olemassa

sellainen kriittinen ulottuvuus 5 ≤ n0 ≤ 7 ja yleinen vakio ε0 ∈ (0, 1), että F (u) on reaalianalyytti-

nen hypertaso kaikissa ulottuvuuksissa 2 ≤ n < n0, jos G(t) on ”ε0-lähellä” funktiota t2.

1. Introduction

In [13], the authors consider the following optimization problem

(1.1) min
v∈Kϕ

JG(u),

where

JG(u) :=

ˆ

Ω

(
G(|∇u|) + λχ{u>0}

)
dx,

Ω ⊆ R
n (n ≥ 2) is a smooth and bounded domain, G is a suitable N-function, λ is

a positive constant, 0 ≤ ϕ ∈ W 1,G(Ω) ∩ L∞(∂Ω) and Kϕ := {v ∈ W 1,G(Ω) : v − ϕ ∈

W 1,G
0 (Ω)}. In this work was proved that if G satisfies the Lieberman’s conditions

(see [12]), i.e,

• Primitive Condition:

(PC) G′(t) = g(t), where g ∈ C0([0,+∞)) ∩ C1((0,+∞));
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• Quotient Condition: for 0 < δ ≤ g0 fixed constants,

(QC) 0 < δ ≤ Qg(t) :=
tg′(t)

g(t)
≤ g0, ∀ t > 0,

then any minimizer u of (1.1) is a bounded and nonnegative function, locally Lipschitz
continuous and satisfies (in some weak sense) the following one-phase Free Boundary
Problem (FBP)

(1.2)






∆gu = 0 in {u > 0} ∩ Ω,

|∇u| = λ∗ on F (u) := ∂{u > 0} ∩ Ω,

u = ϕ on ∂Ω,

where

∆gu := div

(
g(|∇u|)

|∇u|
∇u

)
, g = G′ and H(λ∗) := λ∗g(λ∗)−G(λ∗) = λ.

Besides, it was shown that the free boundary F (u) is locally of finite Hausdorff
Hn−1 measure, the measure-theoretic reduced boundary F (u)red := ∂red{u > 0} ∩
Ω is a union of C1,α hypersurfaces and the set of singular points of F (u) satisfies
Hn−1(F (u) \ F (u)red) = 0 (see Theorem 1.3 of [13]). The original purpose of this
paper was to extend the free boundary theory for minimizers developed by Alt–
Caffarelli in the pioneering work [2] (the Laplacian operator) and the paper [6] (the
p-Laplacian scenario).

Among the differences observed between the results presented in [2] and the
papers [6, 13], we can highlight that in two dimensions, if G(t) = t2, the free boundary
has no singular points (see Theorem 8.3 of [2]). Actually, it is well known that if
G(t) = t2, then the free boundary for any minimizer of (1.1) is also a full regular
surface for n = 3 and 4 (see for instance [5, 9]) and if n = 7 there exists a singular cone
u0 as an absolute minimizer (see [8]). By results of Weiss [16], we also know that there
exists a critical dimension n0 such that if u is a minimizer of (1.1), for G(t) = t2,
the set F (u) is full regular since n < n0. In the case where n = n0, the singular
set F (u) \ F (u)red consists of at most isolated points and has Hausdorff dimension
at most n − n0, if n > n0. Particularly, we have 5 ≤ n0 ≤ 7. Such information
reveals an interesting and curious parallel between FBPs and the theory of minimal
surfaces. For this reason, the problem of the full regularity of the free boundary of
the Bernoulli-type problem (1.2) has attracted the attention of specialists from both
areas of mathematics.

The issue about the full regularity of the free boundary for minimizers in the
p-Laplace case was investigated in [7]. In this work, the authors provided a partial
answer to this question. Precisely, they proved that in two dimensions, if u is an
absolute minimizer of (1.1), where G(t) = tp, then there exists a universal constant
0 < ε0 << 1 such that if p is in the range 2 − ε0 < p < ∞ necessarily F (u) is fully
regular. The fundamental step to prove this result was to show that any absolute
minimizer is sufficiently close to a halfspace solution1 near any free boundary point.
Very recently, a new geometric approach has been considered in [10] to study the
regularity of the free boundary in dimension two for more general weak solutions of
(1.2). These techniques work well in the presence of the finite Morse index solutions
when G(t) = tp with p ≥ 2, and there exists the curvature measure of F (u), and it

1A halfspace solution has the form u(x) = 〈x− x0, e〉+ for some free boundary point x0 and unit
vector e.
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is nonnegative. For the general case, uniform density property on the set {u = 0}
around points of the free boundary needs to be imposed, and the set F (u) needs to
have finitely connectivity.

The critical dimension results for the p-Laplacian operators has been considered
in [14]. Again the partial result was obtained. In fact, it was shown that if 1 < p <∞
belongs to in a small (universal) interval around 2, then the free boundary of a
minimizer in dimension 2 ≤ n < n0 is an analytic hypersurface.

In this paper, we use a similar method as in [2, 7, 14] to study the full regularity
of the free boundary for minimizers of (1.1) under Liberman’s conditions (PC) and
(QC). From now on, the minimization problem (1.1) and the Lieberman’s conditions
are associated. In this point, an important fact that should be noted in the papers
[7, 14]. In most results, arguments of compactness are crucial, especially in the ranges
p ∈ (1, 2) and p ∈ (2 − ǫ, 2 + ǫ). In the specific cases, the authors rely on indirect
arguments and compactness results. Unfortunately, classes of N-functions that meet
Lieberman’s conditions are weak to provide compactness (see examples in [3, 4]). As
pointed in [4], the main reason for this failure is the absence of a uniform modulus of
continuity for the quotient Qg. To address this lack of compactness in more general
cases, we assume that Qg satisfies the following Dini type control

(DTC)

ˆ L−l

0

ωl,Lg (t)

t
dt ≤ C(δ, g0)ξ1

(
L

l

)
· ξ2

(
L− l

l

)
,

for a modulus of continuity ωl,Lg of Qg and some functions ξi : (0,∞) → (0,∞) (for
more details see Definition 2.1).

Inspired by works [2, 7, 14], we provide the following improvement of the men-
tioned results above.

Theorem 1.1. Let n = 2 and u be an absolute minima of (1.1). If δ ≥ 1, then
F (u) is fully regular. For δ ∈ (0, 1) we have two possibilities:

i) There exists a universal constant ̺ ∈ (0, 1) such that if

1− ̺ < δ ≤ g0 < 1 + ̺,

then F (u) is fully regular;
ii) If additionally Qg satisfies a Dini type control (DTC), then F (u) is a smooth

surface provided

1− µ < δ ≤ g0 <∞,

for some universal (small) constant µ > 0.

Indeed, we will provide a result that has a more general statement than Theo-
rem 1.1. The above theorem will be established in terms of classes of minimizers (see
Theorem 6.1).

To state our next theorem we establish the following definition.

Definition 1.1. Fixed the constants 2 ≤ n ∈ N, λ > 0 and η ∈ (0, 1], we define
G(n, λ, η) be the set of pairs (δ, g0) with 0 < δ ≤ g0 <∞ such that any minimizer of
(1.1) with η ≤ G(1) ≤ η−1 on any open subset Ω ⊂ R

n has no singular free boundary
points.

If we consider only N-functions G such that Qg satisfies (DTC) we replace
G(n, λ, η) by Gξ1,ξ2(n, λ, η). Clearly, Gξ1,ξ2(n, λ, η) ⊆ G(n, λ, η), for any functions
ξ1, ξ2 satisfying the conditions of Definition 2.1. We know that (1, 1) 6∈ G(7, λ, η)
and by Corollary 1.3 of [14], there exists a universal constant ε0 > 0 such that if
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1− ε0 < p < 1 + ε0, then

(p, p) ∈ G(n, λ, η), 2 ≤ n < n0.

Theorem 1.2. Consider the following constants 2 ≤ n ∈ N, 0 < δ∗ ≤ g∗0 < ∞,
λ > 0 and η ∈ (0, 1]. Then,

i) If δ∗ = g∗0 and (δ∗, δ∗) ∈ G(n, λ, η), there exists a constant ̺0 = ̺0(n, δ
∗, η, λ) >

0 such that ∀ (δ, g0) with

δ∗ − ̺0 < δ ≤ g0 < δ∗ + ̺0,

we have (δ, g0) ∈ G(n, λ, η).
ii) If (δ∗, g∗0) ∈ Gξ1,ξ2(n, λ, η), there exists a universal constant µ0 = µ0(n, δ

∗, g∗0,
η, λ, ξ1, ξ2) > 0 such that ∀ (δ, g0) with

δ∗ − µ0 < δ ≤ g0 < g∗0 + µ0,

holds (δ, g0) ∈ Gξ1,ξ2(n, λ, η).

The following corollary is an immediate consequence of Theorem 1.2.

Corollary 1.1. Let u be a minimizer of (1.1) in dimension 2 ≤ n < n0. There
exists a universal constant ε0 = ε0(n,G(1), λ) ∈ (0, 1) such that if

1− ε0 < δ ≤ g0 < 1 + ε0,

then the free boundary F (u) is an analytic hypersurface.

We observe that if G(t) = tp for some 1 < p < ∞, then Qg satisfies trivially
(DTC), in particular, Theorem 1.1 and Theorem 1.2 extend the results obtained in
[7, 14] for more general singular/degenerate elliptic equations.

2. Background results and main definitions

In this section, we present some background results that will be used throughout
the paper. In this point we remember that G is a N-function if G(t) =

´ t

0
g(s)ds,

where g : [0,∞) → R is a positive nondecreasing function such that g(0) = 0,
limt→∞ g(t) = ∞ and g is right continuous, that is, if t ≥ 0 then lims→t+ g(s) = g(t).
Basics properties and results in Orlicz Spaces theory can be found in [1]. Here we
also present part of the theory of Orlicz–Sobolev spaces and the regularity theory of
singular/degenerate elliptic equations of the type ∆gu = B(x, u,∇u). Some proofs
can be found in [12, 13]. Here we use freely the definitions, results, and properties of
the N-functions obtained in Section 2 of [13].

Initially, we observe that the conditions (PC) and (QC) imply the properties
below.

Lemma 2.1. Let G a N-function satisfying the conditions (PC) and (QC). Then,
for all t, s > 0:

(g − 1) min{sδ, sg0}g(t) ≤ g(st) ≤ max{sδ, sg0}g(t);

(g − 2)
tg(t)

1 + g0
≤ G(t) ≤ tg(t);

(G− 1) G is convex and C2(0,∞);

(G− 2)
1

1 + g0
min{s1+δ, s1+g0}G(t) ≤ G(st) ≤ (1 + g0)max{s1+δ, s1+g0}G(t);

(G− 3) G(a+ b) ≤ 2g0(1 + g0)(G(a) +G(b)), ∀ a, b > 0.
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Proof. See Lemma 1.1 of [12], Lemma 2.1 and Remark 2.2 of [13]. �

The next lemma is an important tool to prove the Theorem 1.1.

Lemma 2.2. Let G a N-function satisfying the conditions (PC) and (QC). Then,
there exists a constant C0 = C0(δ, g0) > 0 such that

(2.3)

∣∣∣∣
g(|ξ|)

|ξ|
ξ −

g(|η|)

|η|
η

∣∣∣∣ ≤ C0 ·
g (|ξ|+ |η|)

|ξ|+ |η|
|ξ − η|, ∀ ξ, η ∈ R

n.

In particular, if δ ∈ (0, 1), then

(2.4)

∣∣∣∣
g(|ξ|)

|ξ|
ξ −

g(|η|)

|η|
η

∣∣∣∣ ≤ C0 · g(1) ·max
{
1, (|ξ|+ |η|)g0−δ

}
|ξ − η|δ.

Proof. For any (ξ, η) ∈ R
n × R

n define

Fg(ξ, η) :=

∣∣∣∣
g(|ξ|)

|ξ|
ξ −

g(|η|)

|η|
η

∣∣∣∣ and Hg(ξ, η) :=
g (|ξ|+ |η|)

|ξ|+ |η|
|ξ − η|.

In this case, it is enough to show that

Ψg(ξ, η) :=
Fg(ξ, η)

Hg(ξ, η)
≤ C, ∀ ξ 6= η.

Since for ξ = 0 we have Ψ(0, η) = 1, we can assume that ξ 6= 0. Still, because Ψ
is invariant by orthogonal transformations we can also assume that ξ = |ξ|e1 where
e1 = (1, 0, · · · , 0) ∈ R

n. Now, we notice that

(2.5) Ψg(|ξ|e1, η) = Ψg̃

(
e1,

η

|ξ|

)
,

for g̃(t) = g(|ξ|t). In particular, if

G̃(t) =

ˆ t

0

g̃(s) ds

we know that G̃ also satisfies the conditions (PC) and (QC). By (2.5), it is sufficient
to prove that Ψg̃ (e1, η) ≤ C. We divide the proof in two cases:

Case 1: Assume that |e1 − η| < 1
2
. By mean value theorem, (QC) and (g− 1) we

get

Fg̃(e1, η) ≤ g̃(1)|e1 − η|+

∣∣∣∣g̃(1)−
g̃(|η|)

|η|

∣∣∣∣ · |η|

≤ g̃(1)|e1 − η|+ g̃(1)C1|e1 − η| · |η| ≤ g̃(1)C2|e1 − η|.

Thus,

(2.6) Ψg̃ (e1, η) ≤
g̃(1)C2|e1 − η|
2g̃(1)
5

|e1 − η|
≤ C3.

Case 2: Suppose that |e1 − η| ≥ 1
2
. Since g̃ is increasing

(2.7) Ψg̃(e1, η) ≤
(1 + |η|) ·

(
g̃(1) + g̃(|η|)

)

|e1 − η| · g̃(1 + |η|)
≤ 2

(1 + |η|)

|e1 − η|
≤ C4.
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Combination of the estimates (2.6) and (2.7) assures (2.3). Finally, note that if
δ ∈ (0, 1), using (2.3),

∣∣∣∣
g(|ξ|)

|ξ|
ξ −

g(|η|)

|η|
η

∣∣∣∣ ≤ C · g(1) ·max
{
(|ξ|+ |η|)δ−1, (|ξ|+ |η|)g0−1

}
|ξ − η|

≤ C · g(1) ·max
{
1, (|ξ|+ |η|)g0−δ

}
|ξ − η|δ.

This proves (2.4). �

Now, we remember the definition of modulus of continuity. A modulus of conti-
nuity is a nondecreasing continuous function ω : [0,∞) → [0,∞) where ω(0) = 0 and
ω(t) > 0, ∀t > 0. Now, for G ∈ G(δ, g0), Qg as in (QC) and for any 0 < l < L < ∞,
we define

(2.8) ωl,Lg (t) := sup {|Qg(x)−Qg(y)| : l ≤ x, y ≤ L and |x− y| ≤ t} .

Definition 2.1. (A Dini modulus of continuity for Qg) Let G a N-function
satisfying (PC) and (QC). We say that Qg satisfies a Dini type control if, for the
nondecreasing functions ξ1, ξ2 : (0,∞) → [0,∞) with limt→0+ ξ2(t) = 0 and any
0 < l < L <∞, the following estimate holds

(DTC)

ˆ L−l

0

ωl,Lg (t)

t
dt ≤ C∗

1(δ, g0) · ξ1

(
L

l

)
· ξ2

(
L− l

l

)
.

In the sequence we present the main results about the regularity theory of weak
solutions to

∆gu = 0 in B1.

Theorem 2.1. Let G a N-function satisfying the conditions (PC) and (QC).
Suppose that

∆gu(x) = 0 x ∈ B1,

in the distributional sense. Then,

i) (Harnack inequality) There exists a constant C1 = C1(n, δ, g0) > 1 such that

sup
B1/2

u ≤ C inf
B1/2

u.

ii) (Regularity) There exist constants α ∈ (0, 1) and C2 > 0 depending only on
n, δ and g0 such that

||u||C1,α(B1/2) ≤ C2 · ||u||L∞(B1).

Proof. See Theorem 1.7 and Lemma 5.1 in [12] or Theorem 3.1 in [3]. �

3. Regularity and nondegeneracy of minimizers

We start this section with a definition.

Definition 3.1. Let the constants 0 < δ ≤ g0 < +∞, η ∈ (0, 1], λ > 0 and
x0 ∈ Ω for some open set Ω ⊂ R

n. We say that u ∈ S(δ, g0, η, λ, x0,Ω) if:

(1) There exists a N-function G satisfying the conditions (PC) and (QC) with
η ≤ G(1) ≤ η−1;

(2) u ≥ 0 in Ω and u ∈ W 1,G(Ω) ∩ L∞(Ω);
(3) u is an absolute minimizer for (1.1) in Ω;
(4) x0 ∈ F (u).
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If g = G′ and Qg satisfies (DTC), then we say that u ∈ Sξ1,ξ2(δ, g0, η, λ, x0,Ω).
Observe still that

Sξ1,ξ2(δ, g0, η, λ, x0,Ω) ⊆ S(δ, g0, η, λ, x0,Ω).

For Ω = Br(x0) we use S(δ, g0, η, λ, Br(x0)) instead S(δ, g0, η, λ, x0,Ω). Finally, if
u ∈ S(δ, g0, η, λ, x0,Ω) for every open set Ω ⊂ R

n, then u is called a global minimizer.
We denote the class of global minimizers by S(δ, g0, η, λ, x0,R

n).

Remark 3.1. The class S(δ, g0, η, λ, Br(x0)) enjoys the following scaling and
translating property:

u ∈ S(δ, g0, η, λ, Br(x0)) =⇒ uρ,x0 ∈ S(δ, g0, η, λ, B r
ρ
(0)),

where

uρ,x0(x) =
u(x0 + ρx)

ρ
, ρ > 0.

More precisely, if u is an absolute minimizer of (1.1) in B1(0), then uρ,x0 is an abso-
lute minimizer of (1.1) in B 1

ρ
(x0). The same facts are true for the class Sξ1,ξ2(δ, g0,

η, λ, Br(x0)).

The next Theorem is a combination of the important results in [13].

Theorem 3.1. Let u ∈ S(δ, g0, η, λ, B1(0)). Then:

i) (Uniform Lipschitz regularity) There exists a universal constant C = C(n, δ,
g0, η, λ) > 0 such that

||∇u||L∞(B1/2(0)) ≤ C.

ii) (Nondegeneracy) There exists a positive and universal constant c = c(n, δ,
g0, η, λ) such that

(̂

Br(0)

u2 dx

) 1

2

≥ c · r, 0 < r ≤
1

2
.

iii) (Density property) There exists a universal constant c0 = c0(n, δ, g0, η, λ) ∈
(0, 1) such that

c0 ≤
|{u = 0} ∩ Br(0)|

|Br(0)|
≤ 1− c0, 0 < r <

1

2
.

Proof. Following the same strategy of [13], we observe that the proof of i) depends
in a crucial way of a variant on the Theorem 4.1 and Lemma 4.3 of [13]. Such results,
in turn, depend on the estimates in Theorem 2.1. However, we need these results
in the context of classes. Thanks to Theorem 6.1 of [3], we obtain direct proof to i)
via Theorem 2.1. For the proof of ii), we indicate Lemma 5.1 of [13]. Finally, the
proof of iii) follows similarly as in Theorem 5.1 of [13] (see still Theorem 7.1 and
Theorem 7.2 of [3]). �

Now, we present a gradient Hölder estimate for minimizers. Before, we consider
a useful remark.

Remark 3.2. (Non divergence structure of the g-Laplace operator) Denote Ag(x,

∇u) = g(|∇u|)
|∇u| ∇u. In this case, we have the g-Laplace operator

∆gu := div(Ag(x,∇u)).
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Thus,

Ag(x, ξ) :=





Hg(|ξ|) · ξ for ξ 6= 0;

0 for ξ = 0,

where Hg(t) =
g(t)
t

for t > 0. We observe that for any w ∈ C2(Ω) such that ∇w 6= 0
the non divergence structure of the g-Laplace operator is

∆gw(x) = Hg(|∇w(x)|) Tr(Aw(x) ·D
2w(x)) ∀x ∈ Ω,

where

Aw(x) :=

([
g′(|∇w(x)|)

g(|∇w(x)|)
|∇w(x)| − 1

]
·

(
∇w(x)

|∇w(x)|
⊗

∇w(x)

|∇w(x)|

)
+ In

)
, ∀x ∈ Ω.

In particular Aw is (λδ,Λg0)-elliptic where λδ := min{1, δ} and Λg0 := max{1, g0}.

Theorem 3.2. (Gradient Hölder estimate) Let u ∈ S(δ, g0, η, λ, B1(0)). Then,
there exist positive constants C = C(n, δ, g0, η, λ) and α = α(n, δ, g0, η, λ) < 1 such
that

sup
Br(0)

|∇u| ≤ λ∗ + Crα, 0 < r ≤
1

4
.

Proof. Let G the N-function satisfying the conditions of the Definition 3.1, λ∗ > 0
such that H(λ∗) = λ and ε ∈ (0, 1). We consider the function

vε(x) =
[
|∇u|2 − (λ∗)2 − ε

]+
.

By Lemma 7.4 of [13] it vanishes in a neighbourhood of the free boundary. Since
vε > 0 implies |∇u| > λ∗+ε the closure of {vε > 0} is contained in {|∇u| > λ∗+ε/2}.
By Remark 3.2, u satisfies

Tr(Au(x) ·D
2u(x)) = 0, ∀ x ∈ {|∇u| > λ∗ + ε/2} .

The proof now follows similarly as in Theorem 7.1 of [6]. �

A simple consequence of above theorem is the gradient bounds for global mini-
mizers.

Corollary 3.1. Suppose u ∈ S(δ, g0, η, λ, 0,R
n). Then,

|∇u| ≤ λ∗ in {u > 0}.

4. Flatness implies regularity

In this short section, we recall substantial results from [13] related to the regu-
larity of the free boundary. As in the previous section, we state the result based on
the classes of Definition 3.1. The proof can be obtained by small changes from the
corresponding results in [13]. First, we establish a definition of the flatness class.

Definition 4.1. Let 0 ≤ σ+, σ− ≤ 1 and τ > 0. We say that u is of the flatness
class F (σ+, σ−; τ) in the ball Br(0) if:

i) u ∈ S(δ, g0, η, λ, Br(0));
ii) u(x) = 0, for xn ≥ σ+r;
iii) u(x) ≥ −(xn + σ−r), for xn ≤ −σ−r;
iv) |∇u| ≤ 1 + τ , in Br(0).
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If u ∈ Sξ1,ξ2(δ, g0, η, λ, Br(0)), then we say that u is of the flatness class Fξ1,ξ2(σ+,
σ−; τ) in the ball Br(0). We observe that more generally, changing the direction en by
a unit vector ν and the origin by x0 in the definition above, we obtain definition of the
flatness classes F (σ+, σ−; τ) and Fξ1,ξ2(σ+, σ−; τ) in the ball Br(x0) in the direction
ν.

Lemma 4.1. (Improvement of flatness) Given u ∈ S(δ, g0, η, λ, B1(0)) and θ ∈
(0, 1), there exist positive constants σθ = σθ(n, θ), cθ = cθ(n, θ) and C = C(n, δ, g0)
such that

u ∈ F (σ, 1; τ) in Bρ(0) in direction ν

with σ ≤ σθ and τ ≤ σθσ
2, then

u ∈ F (θσ, θσ; θ2τ) in Br(0) in direction ν̃

for some cθρ < r ≤ 1
4
ρ and |ν̃ − ν| ≤ Cσ.

Proof. See Lemma 9.5 of [13]. �

Theorem 4.1. (Flatness implies regularity) Let u ∈ S(δ, g0, η, λ, B1(0)). There
exist positive constants α, β, σ0, τ0 depending on n, δ, g0, η and λ such that if u ∈

F (σ, 1;∞) in Br(0) where σ ≤ σ0 and r ≤ τ0σ
β/2
0 , then F (u) ∩ Br/4(0) is a C1,α

surface.

Proof. See Theorem 9.3 of [13]. �

Similar theorems holds if u is of the flatness class Fξ1,ξ2(σ, 1;∞) in B1(0).

5. Blowups and halfspace solutions

In the current section, we present convergence lemmas for absolute minimizers.
These results are easily applicable to blow-up sequences of minimizers. Let u a
minimum of (1.1) in B1(0) and ρk → 0+. We can define a blow-up sequence

uk(x) =
u(ρkx)

ρk
, x ∈ B1/ρk(0).

By previous results, we can assume that, up to a subsequence, uk is converging in
C0,α
loc (R

n) to a function u∞. The function u∞ will be called the blow-up limit. This
definition can be used in classes as in Definition 3.1.

Lemma 5.1. Suppose uk be an absolute minimizer of (1.1) in BRk
(0) for some

Rk → ∞. Then, there exists a Lipschitz continuous function u∞ in R
n such that, up

to subsequence, for any α ∈ (0, 1),

uk −→ u∞ in C0,α
loc (R

n)

∇uk −→ ∇u∞ a.e. in R
n.

Moreover, u∞ is a global minimizer, i.e., u is an absolute minimizer for (1.1) in BR(0)
for any R > 0.

The proof of Lemma 5.1 follows as in the lemma below put in the context of
classes.

Lemma 5.2. Suppose uk ∈ Sξ1,ξ2(δk, g0,k, η, λ, BRk
(0)) where Rk → ∞. Assume

still that there exist 0 < δ ≤ g0 < ∞ such that δ ≤ δk ≤ g0,k ≤ g0. Then, there
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exists a Lipschitz continuous function u∞ in R
n such that, up to subsequence, for

any α ∈ (0, 1),

uk −→ u∞ in C0,α
loc (R

n)

∇uk −→ ∇u∞ a.e. in R
n.

Moreover, u∞ ∈ S(δ, g0, η, λ, BR(0)), for any R > 0.

Proof. The convergences mentioned above follows similarly as in Lemma 4.1 of
[7] by using Theorem 2.1 and Theorem 3.1. We proof that u∞ ∈ S(δ, g0, η, λ, BR(0)),
for any R > 0. In fact, firstly we know that there exists k0 ∈ N such that Rk ≥ R
for any k ≥ k0. In this point, let ψ ∈ C∞

0 (BR(0)) where 0 ≤ ψ ≤ 1. Then, for any
v∞ with u∞ − v∞ ∈ C∞

0 (BR) we define

vk = v∞ + (1− ψ)(uk − u∞).

We note that vk = uk on ∂BR. Now, since uk ∈ Sξ1,ξ2(δk, g0,k, η, λ, BRk
(0)) there

exists Gk a N-function satisfying the conditions of Definition 3.1 related to uk. In
particular,

(5.9)

ˆ

BR(0)

(
Gk(|∇uk|) + λχ{uk>0}

)
dx ≤

ˆ

BR(0)

(
Gk(|∇vk|) + λχ{vk>0}

)
dx.

By Theorem 6.1 of [3] there exists a N-function G∞ satisfying the conditions (PC)
and (QC) such that Gk converges to G∞ in C2 topology on compact subsets of (0,∞)
and in the C1 topology on compact subsets of [0,∞). By i) of Theorem 3.1, definition
of vk, and since ∇uk → ∇u∞ a.e., we conclude by dominated convergence theorem
that

ˆ

BR(0)

Gk(|∇uk|) dx −→

ˆ

BR(0)

G∞(|∇u∞|)

and
ˆ

BR(0)

Gk(|∇vk|) dx −→

ˆ

BR(0)

G∞(|∇v∞|).

Still, as

χ{vk>0} ≤ χ{v∞>0} + χ{ψ<1}

we obtain by (5.9),
ˆ

BR(0)

(
G∞(|∇u∞|) + λχ{u∞>0}

)
dx

≤

ˆ

BR(0)

(
G∞(|∇v∞|) + λχ{v∞>0}

)
dx+ λ

ˆ

BR(0)

χ{ψ<1} dx.

Now, the proof of lemma follows by choosing a sequence of functions ψ such that
|{ψ < 1}| → 0 and by ii) of Theorem 3.1. �

By the proof of lemma above we obtain the following corollary.

Corollary 5.1. Suppose uk ∈ S(δk, g0,k, η, λ, BRk
(0)) where Rk → ∞. Assume

still that there exist 0 < δ ≤ g0 <∞ such that

δ ≤ δk ≤ g0,k ≤ g0 and gk − δk = o(k).
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Then, there exists a Lipschitz continuous function u∞ in R
n such that, up to subse-

quence, for any α ∈ (0, 1),

uk −→ u∞ in C0,α
loc (R

n)

∇uk −→ ∇u∞ a.e. in R
n.

Moreover, for some δ ≤ p ≤ g0, u∞ ∈ S(p, p, η, λ, BR(0)), for any R > 0.

Lemma 5.3. (Characterization of halfspace solutions) Let u∞ be as in Lemma 5.1,
Lemma 5.2 or Corollary 5.1. Suppose that

|∇u∞| = λ∗ a.e. in {u∞ > 0}.

Then, there exists a unit vector e such that

u∞(x) = λ∗〈x, e〉+

for any x ∈ R
n.

Proof. The proof follows the same guide lines of Lemma 4.2 of [7] by using the
non-divergence structure of g-Laplacian operators (Remark 3.2) and iii) of Theo-
rem 3.1. �

By Remark 3.1, the three lemmas above and the Corollary 5.1 we can state the
conditions that guarantee that the blowup limit is a halfspace solution. For a proof,
we indicate Lemma 4.3 of [7].

Lemma 5.4. Let uk be as in Lemma 5.1 or Corollary 5.1 and suppose that for
some sequence εk → 0 we have

(i) |∇uk| ≤ λ∗ + εk in BRk
;

(ii) for all 0 < r < Rk

1

r2

ˆ

Br∩{uk>0}

[
H(λ∗)−H(|∇uk|)

]
dx ≤ εk.

Then, there exists a unit vector e such that over a subsequence

uk −→ λ∗〈x, e〉+ in C0,α
loc (R

n).

A similar lemma holds in the context of classes. Precisely,

Lemma 5.5. Let uk is as in Lemma 5.2 or Corollary 5.1 and suppose that for
some sequence εk → 0 we have

(i) |∇uk| ≤ λ∗k + εk in BRk
;

(ii) for all 0 < r < Rk

1

r2

ˆ

Br∩{uk>0}

[
Hk(λ

∗
k)−Hk(|∇uk|)

]
dx ≤ εk,

where

Hk(λ
∗
k) = λ∗kgk(λ

∗
k)−Gk(λ

∗
k) = λ

with gk = G′
k and Gk is the N-function associated with uk according to

Definition 3.1.

Then, there exists a unit vector e and a positive constant λ∗ such that, up to a
subsequence, λ∗k → λ∗ and

uk −→ λ∗〈x, e〉+ in C0,α
loc (R

n).
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6. Full regularity of the free boundary

The proof of the main result will follow by three lemmas. First, we prove that
any absolute minimizer is sufficiently close to a halfspace solution in a small neigh-
bourhood of the origin.

Lemma 6.1. Let n = 2, u ∈ S(δ, g0, η, λ, B1(0)) and 0 < δ0 < δ ≤ g0 < g∗0 <∞.
Then, if δ ≥ 1,

(6.10) lim sup
rց0

1

r2

ˆ

Br∩{u>0}

[
H(λ∗)−H(|∇u|)

]
dx ≤ 0.

If δ ∈ (0, 1) there exist a positive constants C∗ depending only on δ0, g
∗
0, η and λ, and

γ = γ(δ) such that

(6.11) lim sup
rց0

1

r2

ˆ

Br∩{u>0}

[
H(λ∗)−H(|∇u|)

]
dx ≤ C∗ · γ.

In particular, γ → 0 when δ ր 1. Moreover, the both inequalities are uniform in the
sense that for every ε > 0 there exists r0 = r0(ε, δ) > 0 such that, for any 0 < r < r0

1

r2

ˆ

Br∩{u>0}

[
H(λ∗)−H(|∇u|)

]
dx ≤ C∗ · γ + ε,

where we assume γ = 0 in the case δ ≥ 1.

Proof. Let G the N-function associated to u by Definition 3.1. Still, consider
ψ ∈ C∞

0 (B 1

2

(0)), ψ ≥ 0 and ε > 0. Clearly, uε = max{u − εψ, 0} is an admissible

function. In particular,

JG(u) ≤ JG(uε).

Thus, by above inequality, convexity of G and ∆gu = 0 in {u > 0} we have
ˆ

{0<u≤εψ}
λ dx ≤ −

ˆ

{0<u≤εψ}
G(|∇u|) dx +

ˆ

{u>εψ}
[G(|∇uε|)−G(|∇u|)]dx

≤ −

ˆ

{0<u≤εψ}
G(|∇u|) dx −

ˆ

{u>εψ}

g(|∇uε|)

|∇uε|
∇uε(∇uε −∇u) dx

≤ −

ˆ

{0<u≤εψ}
G(|∇u|) dx −

ˆ

{u>εψ}

g(|∇uε|)

|∇uε|
∇uε · ∇(εψ) dx

+

ˆ

B1(0)

g(|∇u|)

|∇u|
∇u · ∇(min{εψ, u}) dx

≤

ˆ

{0<u≤εψ}
H(|∇u|) dx +

ˆ

{u>εψ}

[
g(|∇u|)

|∇u|
∇u−

g(|∇uε|)

|∇uε|
∇uε

]
· ∇(εψ) dx

Since λ = H(λ∗) we conclude that
ˆ

{0<u≤εψ}
[H(λ∗)−H(|∇u|)] dx

≤

ˆ

{u>εψ}

[
g(|∇u|)

|∇u|
∇u−

g(|∇uε|)

|∇uε|
∇uε

]
· ∇(εψ) dx.

(6.12)

We proceed with the proof by dividing it into two cases.
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Case 1: δ ≥ 1. By i) of Theorem 3.1 we know that there exists C = C(n, δ0, g
∗
0, η, λ) >

0 such that

u ≤ C · r, 0 < r < 1/2.

Thus, if we choose ε = C · r and

(6.13) ψ(x) :=





1 in Br(0),

log
(
R
|x|

)

log
(
R
r

) in BR(0) \Br(0),

0 in B1(0) \BR(0),

there exists C∗ = C∗(n, δ0, g
∗
0, η, λ) ≥ C where

max
{
|∇uε|, |∇(εψ)|

}
≤ C∗ in B1(0).

Combining (2.3) of Lemma 2.2, (6.12), (g − 1) and (g − 2) of Lemma 2.1 we get
ˆ

{0<u≤εψ}
[H(λ∗)−H(|∇u|)] dx ≤ C0 ·

ˆ

{u>εψ}

g (|∇u|+ |∇uε|)

|∇u|+ |∇uε|
|∇(εψ)|2 dx

≤ C0 ·max
{
(C + C∗)

δ−1, (C + C∗)
g0−1

}
· g(1)

ˆ

{u>εψ}
|∇(εψ)|2 dx

≤ C1

ˆ

{u>εψ}
|∇(εψ)|2 dx,

where C0 = C0(δ0, g
∗
0) and C1 = C1(n, δ0, g

∗
0, η, λ) are positive constants.

Observing that Br ⊂ {0 < u ≤ εψ} and by direct computation of the integral of
ψ in the ring BR(0) \Br(0) we conclude that

lim sup
r→0

1

r2

ˆ

{0<u≤εψ}∩Br

[H(λ∗)−H(|∇u|)] dx ≤ C2 · lim sup
r→0

1

log
(
R
r

) = 0,

para some C2 > 0 with the same dependence of C1. This proves the Case 1 and
(6.10).

Case 2: δ ∈ (0, 1). By using estimates (6.12) and (2.4) of the Lemma 2.2, we
obtain similarly as in the previous case

(6.14)

ˆ

{0<u≤εψ}
[H(λ∗)−H(|∇u|)] dx ≤ C3r

1+δ ·

ˆ

{u>εψ}
|∇ψ|1+δ dx,

for some C3 = C3(n, δ0, g
∗
0, η, λ) > 0. Now, putting ψ(x) = ϕ(x/r), where

(6.15) ϕ(x) :=





1 in B1(0),

|x|
δ−1

δ − ρ
δ−1

δ

1− ρ
δ−1

δ

in Bρ(0) \B1(0),

0 elsewhere,

we remark that for 0 < r <

(
2

1

δ − 1

2
2−δ
δ

) δ
1−δ

,

(6.16) r1+δ ·

ˆ

BR(0)\Br(0)

|∇ψ|1+δ dx ≤ 4πr2
(
1− δ

δ

)δ
.
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Taking γ =
(
1−δ
δ

)δ
, observing that Br(0) ⊂ {0 < u ≤ εψ} and combining (6.14) and

(6.16), we obtain that

lim sup
r→0

ˆ

{u>0}∩Br(0)

[H(λ∗)−H(|∇u|)] dx ≤ C∗ · γ,

where C∗ = 4πC3. The proof is now complete. �

Lemma 6.2. Let n = 2 and u an absolute minimizer of (1.1). Assume still that
δ ≥ 1. Then, for any σ > 0 there exists ρ = ρ(σ, δ, g0, G(1), λ) > 0 such that u is of
the flatness class F (σ, 1;∞) in Bρ(0) in some direction ν.

Proof. Assume that the conclusion of the lemma is not true. Then there exists
σ > 0 and sequences ρk → 0 and uk absolute minimizers of (1.1) in B1(0) such that
uk is not of class F (σ, 1;∞) in Bρk(0) in any direction ν. Now, consider the following
rescaling

vk(x) =
uk(ρkx)

ρk
, x ∈ B 1

ρk

(0).

By Remark 3.1, Lemma 6.1, Theorem 3.2 and Lemma 5.4, up to subsequence, vk →
λ∗〈x, e〉+ uniformly on every compact subset of R2. By iii) of Theorem 3.1, we obtain
that for sufficiently large k, vk must vanish on B1(0) ∩ {λ∗〈x, e〉 ≤ −σ}. But, this
implies that vk is of the flatness class F (σ, 1;∞) in B1(0). In particular, uk is of the
flatness class F (σ, 1;∞) in Bρk(0), contrary to our assumption. The proof of lemma
is complete. �

Lemma 6.3. Let n = 2 and u ∈ S(δ, g0, η, λ, B1(0)) where δ ∈ (0, 1). For any
σ > 0 there exists a small and positive constant ̺0 = ̺0(σ, η, λ) ∈ (0, 1) such that if

1− ̺0 < δ ≤ g0 < 1 + ̺0,

then u will be of the flatness class F (σ, 1;∞) in Bρ(0) in some direction ν and
for some radius ρ = ρ(σ, η, λ) > 0. For u ∈ Sξ1,ξ2(δ, g0, η, λ, B1(0)) there exists
µ = µ(σ, g0, η, λ, ξ1, ξ2) ∈ (0, 1) such that if

1− µ < δ ≤ g0 <∞,

then u will be of the flatness class Fξ1,ξ2(σ, 1;∞) in Bρ(0) in some direction ν and
for some radius ρ = ρ(σ, g0, η, λ, ξ1, ξ2) > 0.

Proof. We prove the case where u ∈ S(δ, g0, η, λ, B1(0)) the other case follows
by a similar argument. Since we expect 1 − δ and g0 − δ close enough to zero, we
can choose without loss of generality that δ0 = 1/8 and g∗0 = 2 to use the Lemma
6.1. Thus, for 1/8 < δ ≤ g0 < 2 there exists rδ = rδ(δ) > 0 such that for any
u ∈ S(δ, g0, η, λ, B1(0)) and 0 < r < rδ we have

1

r2

ˆ

Br∩{u>0}

[
H(λ∗)−H(|∇u|)

]
dx ≤ (C∗ + 1) · γδ,

for some constant C∗ > 0 depending on η and λ. Still, γδ → 0 as δ ր 1. Besides, by
Theorem 3.2, we can assume that there exists εδ = εδ(g0, η, λ, δ) such that

|∇u| ≤ λ∗ + εδ in Br(0),

and εδ → 0 as δ ր 1. We claim that one can take ρδ = r2δ in the assertion of the
lemma. Assuming the contrary, there exist σ > 0, sequences g0,k and δk such that

δk ր 1 and g0,k − δk = o(k),
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and uk ∈ S(δk, g0,k, η, λ, B1(0)) such that uk does not belong to the flatness class
F (σ, 1;∞) in Bρδk

(0) in any direction ν. Similarly as in Lemma 5.3 of [7] we define

vk(x) =
uk(ρδkx)

ρδk
, in B1/√ρδk (0).

Now, since we can assume that ρδk → 0 as δk ր 1 follows by Lemma 5.5 there exists a
unit vector e and a positive constant λ∗ such that over a subsequence, vk → λ∗〈x, e〉+
uniformly on every compact subset of R2. By iii) of Theorem 3.1, for k sufficiently
large,

vk = 0 on {λ∗〈x, e〉 ≤ −σ}.

We conclude that vk is of the flatness class F (σ, 1;∞) in B1(0). Thus, uk is of the
flatness class F (σ, 1;∞) in Bρk(0), contrary to our assumption. The proof of the
second part of the lemma is analogous to the first part. �

The proof of Theorem 1.1 is an immediate consequence of theorem below.

Theorem 6.1. Let n = 2, constants η ∈ (0, 1], λ > 0 and 0 < δ ≤ g0 < ∞.
Consider still functions ξ1, ξ2 as in Definition 2.1. If δ ≥ 1, the free boundary of any
u ∈ S(δ, g0, η, λ, B1(0)) is real analytic. If δ ∈ (0, 1) two possibilities can occur:

i) There exists a universal constant ̺ = ̺(η, λ) ∈ (0, 1) such that if

1− ̺ < δ ≤ g0 < 1 + ̺,

then the free boundary of any u ∈ S(δ, g0, η, λ, B1(0)) is real analytic;
ii) There exists a small constant µ = µ(g0, η, λ, ξ1, ξ2) ∈ (0, 1) such that if

1− µ < δ ≤ g0 <∞,

then the free boundary of any u ∈ Sξ1,ξ2(δ, g0, η, λ, B1(0)) is an analytic hy-
persurface.

Proof. Suppose initially δ ≥ 1 and consider u ∈ S(δ, g0, η, λ, B1(0)). There exists
a N-function G associated to u by Definition 3.1 satisfying conditions (PC) and (QC)
and η ≤ G(1) ≤ η−1 such that u is an absolute minimizer of (1.1). By Lemma 6.2,
for any σ > 0, there exists ρ = ρ(σ, δ, g0, G(1), λ) > 0 such that u is of the flatness

class F (σ, 1;∞) in some direction ν. Thus, choosing 0 < σ ≤ σ0 and 0 < ρ ≤ τ0σ
β/2
0

as in Theorem 4.1 we conclude that F (u)∩Bρ/4(0) is a C1,α surface. The analyticity
of F (u) follows by [11]. The proof of the case δ ∈ (0, 1) follows the same guide lines
of the previous case by Lemma 6.3 and Theorem 4.1. �

7. The critical dimension result

In the last section we establish the proof of Theorem 1.2 that will follow by two
lemmas. First, we state a Bernstein type result similarly as in the minimal surface
theory [15]. The proof is analogous to Theorem 3.1 of [14] by using Theorem 3.1,
Lemma 4.1 and Corollary 3.1.

Lemma 7.1. (Bernstein Lemma) Let u ∈ S(δ, g0, η, λ, 0,R
n). Suppose that

(δ, g0) ∈ G(n, λ, η). Then, there exists a direction e such that

u(x) = λ∗〈x, e〉+, ∀ x ∈ R
n.

The next lemma is the core of Theorem 1.2, and the statement and the proof
keep the same spirit of the Lemma 6.3. In fact, the proof follows by a contradiction
argument similar to Lemma 6.3, where the use of Lemma 5.4 is replaced by the use
of Lemma 7.1.
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Lemma 7.2. Consider the following constants 0 < δ∗ ≤ g∗0 < ∞, λ > 0, η ∈
(0, 1] and 2 ≤ n ∈ N, and some functions ξ1, ξ2 as in Definition 2.1. Then, for any
σ > 0,

i) If δ∗ = g∗0 and (δ∗, δ∗) ∈ G(n, λ, η), there exist small and positive constants

̺0 = ̺0(n, σ, δ
∗, η, λ) and r0 = r0(n, σ, δ

∗, η, λ)

such that for every u ∈ S(δ, g0, η, λ, B1(0)) we have

u ∈ F (σ, 1;∞) in Br(0) in some direction ν,

provided

δ∗ − ̺0 < δ ≤ g0 < δ∗ + ̺0 and 0 < r ≤ r0.

ii) If (δ∗, g∗0) ∈ Gξ1,ξ2(n, λ, η), there exist positive constants

µ0 = µ0(n, σ, δ
∗, g∗0, η, λ, ξ1, ξ2) and r0 = r0(n, σ, δ

∗, g∗0, η, λ, ξ1, ξ2)

such that for every u ∈ Sξ1,ξ2(δ, g0, η, λ, B1(0)) we have

u ∈ F (σ, 1 : ∞) in Br(0) in some direction ν,

provided

δ∗ − µ0 < δ ≤ g0 < g∗0 + µ0 and 0 < r ≤ r0.

Proof of Theorem 1.2. We prove i). The proof of ii) is analogous. For (δ∗, δ∗) ∈
G(n, λ, η) we take β, σ0 and τ0 as in Theorem 4.1 and choose 0 < σ1 < σ0. Now, let

̺0 = ̺0(n, σ1, δ
∗, η, λ) and r0 = r0(n, σ1, δ

∗, η, λ)

as in previous lemma. Define

r1 = min
{
r0, τ0σ

β/2
0

}
.

Again by Lemma 7.2, for every u ∈ S(δ, g0, η, λ, B1(0)) we have

u ∈ F (σ, 1;∞) in Br(0) in some direction ν,

provided

δ∗ − ̺0 < δ ≤ g0 < δ∗ + ̺0 and 0 < r ≤ r1.

Then, by Theorem 4.1, there exists a universal α ∈ (0, 1) such that F (u) ∩ B r1
4
(0)

is a C1,α surface. By results of [11] and scaling properties we conclude that (δ, g0) ∈
G(n, λ, η). �
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