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There are no exotic ladder surfaces

Ara Basmajian and Nicholas G. Vlamis

Abstract. It is an open problem to provide a characterization of quasiconformally homoge-
neous Riemann surfaces. We show that given the current literature, this problem can be broken
into four open cases with respect to the topology of the underlying surface. The main result is
a characterization in one of these open cases; in particular, we prove that every quasiconformally
homogeneous ladder surface is quasiconformally equivalent to a regular cover of a closed surface (or,
in other words, there are no exotic ladder surfaces).

Eksoottisia tikapuupintoja ei ole

Tiivistelmä. Kvasikonformisesti tasalaatuisten Riemannin pintojen kuvaileminen on avoin on-
gelma. Osoitamme, että olemassa olevia tuloksia käyttäen tämä kysymys voidaan hajottaa neljään
avoimeen tapaukseen kyseessä olevan pinnan topologian suhteen. Päätuloksemme antaa yhdelle
näistä avoimista tapauksista tarkan kuvailun; erityisesti osoitamme, että jokainen kvasikonformises-
ti tasalaatuinen tikapuupinta on kvasikonformisesti yhtäpitävä suljetun pinnan säännöllisen peitteen
kanssa (eli, toisin sanoen, eksoottisia tikapuupintoja ei ole).

1. Introduction

A Riemann surface X is K-quasiconformally homogeneous, or K-QCH, if given
any two points x, y ∈ X there exists aK-quasiconformal homeomorphism f : X → X
such that f(x) = y. We say a Riemann surface is quasiconformally homogeneous,
or QCH, if it is K-QCH for some K (note: this definition diverges from the lit-
erature, where such a surface is usually referred to as uniformly quasiconformally
homogeneous). For a survey of the work on QCH surfaces see [6].

For example, the Riemann sphere, the unit disk, and any Riemann surface whose
universal cover is isomorphic to the complex plane are all 1-QCH, or conformally
homogeneous. In fact, this is a complete characterization of conformally homogeneous
Riemann surfaces, which leads us to the problem with which this paper is concerned:

Characterize all QCH Riemann surfaces.
Given the characterization of 1-QCH Riemann surfaces above, all the remain-

ing cases to consider are hyperbolic Riemann surfaces (i.e. Riemann surfaces whose
universal cover is isomorphic to the unit disk).

The starting point for such a characterization comes from higher dimensions.
The notion of being K-QCH readily extends to the setting of hyperbolic manifolds
of any dimension. In dimension at least three, it was shown in [4, Theorem 1.3]
that a hyperbolic manifold is QCH if and only if it is a (geometric) regular cover of
a closed hyperbolic orbifold. Naturally, such a result relies on rigidity phenomena
in higher dimensions that do not occur in dimension two; in particular, as being
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QCH is invariant under quasiconformal deformations, it is not too difficult to find
a hyperbolic QCH surface that does not regularly cover a closed hyperbolic orbifold
(see [4, Lemma 5.1]).

This leads one to wonder—maybe naively—if every hyperbolic QCH surface is
quasiconformally equivalent to a cover of a closed hyperbolic orbifold? Interestingly,
this is not the case: in [5, Theorem 1.1] the existence of quasiconformally exotic QCH
surfaces (i.e. QCH surfaces that are not quasiconformally equivalent to regular covers
of closed orbifolds) is shown. However, all the exotic QCH surfaces constructed in [5]
are homeomorphic; in particular, they are homeomorphic to the one-ended infinite-
genus surface (affectionately referred to as the Loch Ness monster surface).

Our first theorem establishes that all QCH surfaces (and, in particular, exotic
QCH surfaces) are topological regular covers of closed surfaces, or in other words,
there are no topologically exotic QCH surfaces:

Theorem 5.1. Every quasiconformally homogeneous Riemann surface topolog-
ically covers a closed surface.

Note that every closed Riemann surface is QCH (see [4, Proposition 2.4] for a
bound), so in the characterization of all QCH surfaces it is only left to consider
non-compact surfaces. As a corollary to Theorem 5.1, we see that, up to homeomor-
phism, there are only a finite of number cases to consider. In particular, combining
Theorem 5.1 with the classification of non-simply connected, infinite sheeted, regular
covers of closed surfaces (Proposition 5.2 below), we have:

Corollary 1.1. Up to homeomorphism, there are six non-compact QCH Rie-
mann surfaces, namely the plane, the annulus, the Cantor tree surface, the blooming
Cantor tree surface, the Loch Ness monster surface, and the ladder surface1.

As an immediate consequence of Corollary 1.1, we can strengthen a result of
Kwakkel–Markovic [13, Proposition 2.6]:

Corollary 1.2. A Riemann surface of positive, finite genus is quasiconformally
homogeneous if and only if it is closed.

Consider the non-hyperbolic cases in Corollary 1.1: we know that (1) every Rie-
mann surface homeomorphic to the plane is QCH and (2) that a Riemann surface
homeomorphic to the annulus is QCH if and only if its universal cover is isomorphic
to C (this follows from the discussion of 1-QCH surfaces, Theorem 5.1, and the fact
that the fundamental group of a closed hyperbolic Riemann surface does not have a
cyclic normal subgroup—this also follows from [4, Theorem 1.1]). This leaves only
four topological cases to consider.

In this article, we give a characterization in one of the four cases: the ladder
surface, that is, the two-ended infinite-genus surface with no planar ends. In this
case, our main theorem shows that there are no exotic QCH ladder surfaces, yielding
a complete classification of QCH ladder surfaces:

Theorem 4.1. A hyperbolic ladder surface is quasiconformally homogeneous if
and only if it is quasiconformally equivalent to a regular cover of a closed hyperbolic
surface.

Given Theorem 4.1, it is natural to ask if the distance (in the Teichmüller metric)
of a K-QCH ladder surface from a regular cover can be explicitly bounded as a
function of K. With this in mind, all of our proofs are written with the goal of

1This nomenclature is explained in Proposition 5.2
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providing explicit bounds in terms of K for all constants that appear; however, we
are unable to do this in one location, namely the constant A appearing in Lemma 4.3.
It would be interesting to find such a bound.

The first step in the proof of Theorem 4.1 is to choose a distance-minimizing
geodesic (that is, a proper embedding of R minimizing the distance between any two
of its points); however, to do so, we need to know such a geodesic exists. Our final
theorem provides a sufficient topological condition for such a geodesic to exist; in
addition, we show that there can be no topological condition that is both necessary
and sufficient for a distance-minimizing geodesic to exist.

Theorem 3.2. Every non-compact hyperbolic Riemann surface with at least two
topological ends contains a distance-minimizing geodesic. Moreover, if an orientable,
non-compact topological surface has a unique end, then it admits complete hyperbolic
structures containing distance-minimizing geodesics as well as complete hyperbolic
structures that do not admit such geodesics.

Despite the narrative arc of the results above, in what follows, the proofs of the
theorems will appear in reverse order.

Acknowledgements. The authors are grateful to Richard Canary and Hugo Parlier
for helpful conversations and to the referee for their careful reading and suggestions.
This project began several years ago during a visit of the second author to the first
(before they were at the same institution) that was funded by the GEAR Network
and so: the second author acknowledges support from U.S. National Science Foun-
dation grants DMS 1107452, 1107263, 1107367 ”RNMS: GEometric structures And
Representation varieties” (the GEAR Network). During that time the second author
was a postdoc at the University of Michigan and supported in part by NSF RTG
grant 1045119. The second author is currently supported in part by PSC-CUNY
Award #62571-00 50 and #63524-00 51. The first author is supported by a grant
from the Simons foundation (359956, A.B.).

2. Preliminaries

Every Riemann surface is Hausdorff, orientable, and second countable; hence we
will require these attributes of all topological surfaces in this note.

2.1. Hyperbolic geometry. We mention some facts in hyperbolic geometry
that will be used in the sequel. For more detailed information, see [7, 8, 9, 12, 15].

A homeomorphism f : U → V between domains U and V in C isK-quasiconformal
if

1

K
Mod(A) ≤ Mod(f(A)) ≤ K Mod(A)

for any annulus A in U , where Mod(A) is the modulus of A, that is, the unique real
positive numberM such that A is isomorphic to {z ∈ C : 1 < |z| < e2πM}. To extend
to Riemann surfaces, we say a homeomorphism f : X → Y is K-quasiconformal if
the restriction to any chart is K-quasiconformal.

A Riemann surface X is hyperbolic if its universal cover is isomorphic to the unit
disk D. We can then realize X as the quotient of D by the action of a Fuchsian group
Γ.

If we equip D with its unique Riemannian metric of constant curvature −1, then
Γ acts on D by isometries and this metric descends to a metric on X, which we will
generally denote by ρ. Given a closed geodesic γ in a hyperbolic Riemann surface
X, we let `X(γ) denote its length in (X, ρ).
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We first recall some basic geometric properties of quasiconformal maps. Before
doing so, we require some notation. Given two compact subsets C1 and C2 in a metric
space (M,d), let d(C1, C2) denote the distance between the two subsets, that is,

d(C1, C2) = min{d(x, y) : x ∈ C1, y ∈ C2},

and let H(C1, C2) denote the Hausdorff distance between C1 and C2, that is,

H(C1, C2) = max

{
sup
x∈C1

inf
y∈C2

d(x, y), sup
y∈C2

inf
x∈C1

d(y, x)

}
.

Finally, given two metric spaces (M1, d1) and (M2, d2), a surjection f : M → N
is an (A,B)-quasi-isometry if

1

A
d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B

for all x, y ∈M1.

Lemma 2.1. Let Z be a hyperbolic Riemann surface, let γ be a simple closed
geodesic in Z, let f : Z → Z be a K-quasiconformal homeomorphism, and let δ be
the geodesic homotopic to f(γ). Then,

(i) 1
K
`Z(γ) ≤ `Z(δ) ≤ K`Z(γ),

(ii) f is a (K,K log 4)-quasi-isometry, and
(iii) there exists a constant R depending only on K so that H(f(γ), δ) < R.

Throughout our arguments, we will require the use of the collar lemma:

Theorem 2.2. Let X be a hyperbolic Riemann surface and let η : R → R be
given by

η(`) = arcsinh

(
1

sinh(`/2)

)
.

If γ1 and γ2 are disjoint simple closed geodesics of length `1 and `2, respectively,
then the η(`i)-neighborhood of γi, that is, the set

Aη(`i)(γi) = {x ∈ X : ρ(x, γ) < η(`)}

is embedded in X and Aη(`1)(γ1) ∩ Aη(`2)(γ2) = ∅.
We end with a special property of compact hyperbolic surfaces with totally ge-

odesic boundary—that is, a compact surface arising as the quotient of a countable
intersection of pairwise-disjoint closed half planes in D by the action of a Fuchsian
group. In a hyperbolic surface with totally geodesic boundary, an orthogeodesic is a
geodesic arc whose end points meet the boundary of the surface orthogonally.

A pants decomposition of a topological surface is a collection of pairwise-disjoint
simple closed curves, called the cuffs, such that each complementary component
of their union is homeomorphic to a thrice-punctured sphere. It follows from the
classification of surfaces (see Theorem 2.4 below) that every orientable topological
surface with non-abelian fundamental group has a pants decomposition. Moreover,
in a compact hyperbolic surface (possibly with boundary), there always exists a pants
decomposition in which the curves are of bounded length, with the bound depending
only on the topology of the surface and the length of its boundary:

Theorem 2.3. (Bers pants decomposition theorem) Given positive real numbers
A and L, there exists a positive real number B—depending only on A and L—such
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that every compact hyperbolic surface with totally geodesic boundary whose bound-
ary length is less than L and whose area is less than A admits a pants decomposition
with cuff lengths bounded above by B.

2.2. Topological ends. The notion of an end of a topological space was intro-
duced by Freudenthal and, in essence, encodes the topologically distinct “directions”
of going to infinity in a non-compact space.

More formally, for a non-compact second-countable surface S, fix an exhaustion
{Kn}n∈N of S by compact sets so that for each n ∈ N, Kn lies in the interior of
Kn+1 and such that each component of the complement of Kn is unbounded. We
then define a (topological) end of S to be a sequence e = {Un}n∈N, where Un is a
complementary component of Kn and Un ⊃ Un+1.

The space of ends of S, denoted E(S), is the set of ends of S equipped with
the topology generated by sets of the form Ûn = {e ∈ E(S) : Un ∈ e}. It is an
exercise to check that, up to homeomorphism, the definition of E(S) given does not
depend on the choice of compact exhaustion. We will say that an open subset V of
S with compact boundary is a neighborhood of an end e = {Un}n∈N if there exists
N ∈ N such that UN ⊂ V . We say a sequence {xm}m∈N in S converges to an end
e = {Un} ∈ E(S) if, for each n ∈ N, only finitely many of the xm are contained in
the set S r Un.

We say an end e = {Un}n∈N is planar if, for some N ∈ N, UN is planar (i.e.
homeomorphic to a subset of R2). We denote the set of non-planar ends by Enp(S),
which is a closed subset of E(S). Note that Enp(S) is non-empty if and only if S has
infinite genus.

Theorem 2.4. (Classification of surfaces (see [14])) Two orientable surfaces
without boundary, S1 and S2, of the same (possibly infinite) genus are homeomorphic
if and only if there is a homeomorphism E(S1)→ E(S2) sending Enp(S1) onto Enp(S2).

3. Distance-minimizing geodesics and rays

In a hyperbolic surfaceX, a distance-minimizing geodesic is a unit-speed geodesic
curve α : R → X such that dX(γ(a), γ(b)) = |b − a| for all a, b ∈ R. Recall that a
map is proper if the inverse image of a compact set is compact.

Lemma 3.1. Every distance-minimizing geodesic in a hyperbolic Riemann sur-
face is proper.

Proof. LetX be a hyperbolic Riemann surface and let α : R→ X be a continuous
non-proper map. Then, there exists a compact set K such that α−1(K) is closed and
not compact; in particular, α−1(K) is unbounded while K is bounded. Hence, α
cannot be a distance-minimizing geodesic. �

As an easy consequence of Lemma 3.1, no compact hyperbolic Riemann surface
can have a distance-minimizing geodesic. In Theorem 3.2, we give a topologically suf-
ficient condition for distance-minimizing geodesics to exist in a non-compact hyper-
bolic Riemann surface; however, in addition, we see that there cannot be a necessary
topological condition for the existence of such a geodesic.

Theorem 3.2. Every non-compact hyperbolic Riemann surface with at least
two topological ends contains a distance-minimizing geodesic. Moreover, if an ori-
entable, non-compact non-planar topological surface has a unique end, then it admits
complete hyperbolic structures containing distance-minimizing geodesics as well as
complete hyperbolic structures that do not admit such geodesics.
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We split the proof into three lemmas covering the separate cases. Let us first
consider the multi-ended case.

Lemma 3.3. Let X be a hyperbolic Riemann surface. If X has at least two
topological ends, then X contains a distance-minimizing geodesic with distinct ends.

Proof. Let e1 and e2 be distinct topological ends of X and let η be a separating,
simple, closed geodesic separating e1 and e2. Label the two components ofXrη by U1

and U2 so that Ui is a neighborhood of ei. For i ∈ {1, 2}, choose a sequence {xin}n∈N
in Ui such that limxin = ei. Observe that any minimal-length geodesic between x1n
and x2n must intersect η exactly once. Let γn : In → X be the minimal-length unit-
speed geodesic curve between x1n and x2n parameterized so that γn(0) ∈ η. By the
compactness of the lift of η to the unit tangent bundle of X, the sequence {γ′n(0)}n∈N
accumulates, and by passing to a subsequence we can assume it converges; let v be
the limit. Let α : R→ X be the unit-speed geodesic satisfying α′(0) = v.

Now, by convergence in the unit tangent bundle, we have that for each ε > 0
and T > 0, there exists N ∈ N such that γn|[−T,T ] is contained in the ε-neighborhood
of α(R) for all n > N . From this, together with the fact that the γn are distance-
minimizing geodesic curves, we can deduce that α is proper (in a similar fashion as
in Lemma 3.1). It follows that there exists (not necessarily distinct) ends e+ and e−
of X such that limt→±∞ ρ(t) = e±. But, since the xin enter every neighborhood of ei,
the same must be true of α(R), and hence we can conclude that {e+, e−} = {e1, e2}.

We claim α is a distance-minimizing geodesic: assume not and let w and z be
points on α such that there exists a distance-minimizing path δ of length strictly less
than that of the segment of α connecting w and z. Let β denote the segment of α
connecting w and z and let ∆ = `(β)− `(δ). Choose a positive real number ε so that
ε < ∆ and such that the ε

2
-neighborhood Q of β (that is, Q = {x ∈ X : ρ(x, β) < ε

2
})

is isometric to the ε
2
-neighborhood of a geodesic segment in H of length `(β). Let

ηw and ηz be the geodesic segments of length ε
2
that are orthogonal to β and pass

through w and z, respectively, and note that both are embedded in Q.
Now there exists N ∈ N such that γN ∩ Q is connected and intersects each of

ηw and ηz in a single point, which we label wN and zN , respectively. If δw and δz
are the shortest curves in Q connecting wN to w and zN to z, respectively, then, as
δw ∪ δ ∪ δz is a path connecting wN and zN , it follows that

`(δw) + `(δ) + `(δz) > `(γN ∩Q) > `(β),

where the first inequality follows from the fact that γN is distance minimizing and
the second follows from β being the orthogonal connecting the geodesic sides of Q.
But, at the same time, we have

`(δw) + `(δ) + `(δz) < `(δ) + ε < `(δ) + ∆ = `(β).

However, this is a contradiction as both inequalities cannot hold. �

We now move to the one-ended case. For Lemma 3.4 and Lemma 3.5 below,
we remind the reader that, up to homeomorphism, there is a unique one-ended,
orientable surface whose end is non-planar, namely, the Loch Ness monster surface.

Lemma 3.4. If S is a non-planar, one-ended, orientable surface, then there
exists a hyperbolic Riemann surface X homeomorphic to S that does not contain a
distance-minimizing geodesic.

Proof. There are two cases: either the end of S is planar or not. Since S has
positive genus, if the end of S is planar, we can choose a hyperbolic Riemann surface
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X homeomorphic to S in which the end of S corresponds to a cusp on X. Let
α : R → X be a continuous function. If α fails to be proper, then it is not distance
minimizing by Lemma 3.1, so we may assume that α is proper. In this case, the two
unbounded components of the intersection of α with a cusp neighborhood become
arbitrarily close; hence, α cannot be a distance-minimizing geodesic.

Now suppose that the end of S is non-planar. Let c1 be any separating, simple
closed curve in S. We inductively build a sequence of disjoint, separating, simple
closed curves {cn}n∈N by requiring that cn+1 separates cn from the end of S. Let X
be a hyperbolic Riemann surface such that there exists L > 0 so that the length of
the geodesic representative γn of cn has length less than L.

Now let α : R → X be a geodesic in X; as before, we may assume that α
is proper. By the choice of the cn, there exists N ∈ N such that α ∩ γN 6= ∅. Let
M ∈ N such thatM > N+L/(2η(L))+1. Then, by the collar lemma (Theorem 2.2),
ρ(γM , γN) > 2(M −N − 1)η(L) > L. By construction, there must be a subsegment
β of α with endpoints on γM that passes through γN . However, there is a geodesic
segment in γM connecting the endpoints of β of length at most L

2
; hence, α cannot

be a distance-minimizing geodesic. �

Lemma 3.5. If S is a borderless one-ended, orientable surface, then there exists a
hyperbolic Riemann surface X homeomorphic to S containing a distance-minimizing
geodesic.

Proof. Again we split into two cases: first, suppose that the end of S is planar.
In this case, let X be a hyperbolic Riemann surface homeomorphic to S such that
the end of S corresponds to a funnel on X. All funnels have distance-minimizing
geodesics.

b

b

a

a

c
Pb

α

Figure 1. On the left, P is a hyperbolic right-angled pentagon and four copies of P are glued
to form a square with a disk removed. On the right, these 1-holed squares are glued in a tiling
extending in all directions; the extension of the vertical geodesic α forms a proper geodesic arc.

Let us continue to the case where S has a non-planar end. Given a positive
number b, there exists a unique right-angled hyperbolic pentagon Pb having two
consecutive sides of length b; let the consecutive sides of Pb have lengths b, b, a, c, a
as in Figure 1. We can glue four copies of Pb to form a 1-holed squared with outer
boundary having length 8b and inner boundary 4c.

We now build a bordered hyperbolic surface inductively: let T 1
b be a copy of the

1-holed square above. For n ∈ N, we construct T n+1
b by pasting eight copies of T nb

to form a rectangle with 9n−1 holes. We identify T nb with the middle copy of T nb in
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T n+1
b . We then let Tb be the direct limit of the T nb . (Less formally, we obtain Tb by

tiling the plane with copies of the 1-holed square, see Figure 1.)
Let Rb be the hyperbolic Riemann surface obtained by identifying the bound-

ary components of Tb horizontally via an orientation-reversing isometry, so that a
(dashed) circle is identified with the (solid) circle to its right in Figure 1. Note that
Rb is infinite genus and one-ended and hence homeomorphic to S.

Now let α be a vertical geodesic as in Figure 1. We claim that α is a distance-
minimizing geodesic in Rb. It is enough to prove that α minimizes distances between
the corners of 1-holed squares for which it passes. Let x and y be two such corners
and let γ a distance-minimizing path between them. By construction, the shortest
path from one side of a 1-holed square to any other is at least 2b. It follows that
distance between two infinite horizontal geodesics in Tb is exactly 2b. The same is
true in Rb as the gluing of boundary components does not change height. Now if
α crosses through n − 1 horizontal geodesics from x to y, then γ must do the same
and in particular the length of γ is at least 2nb, which of course is the length of the
segment of α connecting x and y. �

Of course the difficulty in the one-ended case is that a proper arc needs to ap-
proach the unique end of the surface in both the forwards and backwards directions.
To capture this, we prove the existence of a distance-minimizing ray. Here, a ray is
the image of a continuous injective map of the half line [0,∞) ⊂ R.

Proposition 3.6. Every point on a non-compact hyperbolic Riemann surface is
the base point of some distance-minimizing ray.

Proof. We provide the sketch of the proof as the details are nearly identical
to those in the proof of Lemma 3.3. Let X be a non-compact hyperbolic Riemann
surface and let e be a topological end of X. Fix a sequence {xn}n∈N that limits to e.
Now let x be a point in X and, for n ∈ N, let γn denote a unit-speed, minimal-length,
geodesic curve starting at x and ending at xn. Let vn = γ′n(0), then we may choose a
unit vector v in the accumulation set of the sequence {vn}n∈N. Arguing as in Lemma
3.3, the geodesic ray based at x determined by v is distance minimizing. �

4. QCH ladder surfaces are regular covers

In this section, we prove our main theorem:

Theorem 4.1. A hyperbolic ladder surface is quasiconformally homogeneous if
and only if it is quasiconformally equivalent to a regular cover of a closed hyperbolic
surface.

It is not difficult to see that being QCH is a quasi-conformal invariant and that
every regular cover of a closed hyperbolic surface is QCH (see [4, Proposition 2.7]);
hence, to prove Theorem 4.1, we only need to focus on the forwards direction.

The proof will be split into the lemmas in the subsections below. Throughout
the subsections below X denotes a K-QCH ladder surface. Let FK be the set of
K-quasiconformal homeomorphisms X → X. We say that a simple closed curve in
X separates the ends of X if its complement consists of two unbounded components.

4.1. Shiga pants decomposition. A Shiga pants decomposition of a hyperbolic
Riemann surface is a pants decompositions whose cuff lengths are uniformly bounded
from above. The goal of this subsection is to show that every QCH ladder surface
has a Shiga pants decomposition. It seems natural to expect a QCH surface to have
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such a pants decomposition, but, in fact, this is not always the case. For example,
the surface Rb constructed in the proof of Lemma 3.5 is QCH (it is a regular cover
of a closed hyperbolic surface), but does not have a Shiga pants decomposition [3].

The first step in the proof is to find a sequence of pairwise-disjoint simple closed
geodesics that separate the ends of X, that are of uniformly bounded length, and
that are “evenly” spaced throughout the surface (Lemma 4.2). We then show that the
subsurfaces in the complement of these curves have bounded topology (this will follow
from Lemma 4.3); the existence of a Shiga pants decomposition for X will follow by
taking a Bers pants decomposition for each of these complementary subsurfaces.

Two real-valued functions f(x) and g(x) are said to be comparable, denoted f � g,
if there exists positive constants A and B so that A ≤ f(x)

g(x)
≤ B, for all x.

Lemma 4.2. There exists a sequence of pairwise-disjoint simple separating geo-
desics {γn}n∈Z such that each γn separates the ends of X and so that

(1) ρ(γn, γm) � H(γn, γm) � |m− n|

for all n,m ∈ Z. Moreover, the constants in the comparisons depend only on K and
L = `X(γ0).

Proof. Choose any simple closed geodesic separating the ends of X and label it
γ0. Set L = `X(γ0). As X is two ended, by Lemma 3.3, we may choose a distance-
minimizing geodesic β on X with distinct ends. Identify β with a unit-speed param-
eterization β : R→ X such that β(0) ∈ γ0; set x0 = β(0).

Let R = R(K) be as in Lemma 2.1 and, for n ∈ Z, let xn = β(3n(R+KL)). As
X is K-QCH, we may choose fn ∈ FK such that fn(x0) = xn. Finally, let γn be the
geodesic in the homotopy class of fn(γ0). (Recall H(γn, fn(γ0)) ≤ R.)

We claim that the sequence {γn}n∈Z has the desired properties. To see this, first
observe, for every n ∈ Z, that `X(γn) ≤ KL and γn separates the ends of X. Next,
we compute the distance between γn and γn+1. Observe that we can construct a path
from xn to xn+1 of length less than KL

2
+R+ ρ(γn, γn+1) +R+ KL

2
, which must have

length at least 3(R +KL) as β is distance minimizing; hence,

ρ(γn, γn+1) ≥ 3(R +KL)− 2R−KL = R + 2KL.

Regarding an upper bound, we have

ρ(γn, γn+1) ≤ ρ(xn, xn+1) + 2R = 3(R +KL) + 2R = 5R + 3KL,

where the first inequality uses H(f(γn), γn) < R.
Assume m > n and recall that any path from γn to γm must pass through γk for

all n < k < m and hence

(2) ρ(γn, γm) ≥
m−1∑
k=n

ρ(γk, γk+1) ≥ (m− n)(R + 2KL).

It follows that ρ(γn, γm) > 0; in particular, γn ∩ γm = ∅ for all distinct n,m ∈ Z.
Now, as γn and γm are disjoint, ρ(γn, γm) is realized by an orthogeodesic between
them. For the upper bound, using the fact that the orthogeodesic from γn to γm
is shorter than the piecewise-continuous curve made up of orthogeodesics between
successive γk and arcs along the γk we have

(3) ρ(γn, γm) ≤
m−1∑
k=n

[
ρ(γk, γk+1) +

`X(γk)

2

]
≤ (m− n)

[
(5R + 3KL) +

KL

2

]
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where the last inequality uses the fact that `X(γk) ≤ KL. Combining (2) and (3),
we have shown

(4) (R + 2KL) ≤ ρ(γn, γm)

|m− n|
≤
(

5R +
7KL

2

)
implying ρ(γn, γm) � |n−m|.

To show that ρ(γn, γm) is comparable to H(γn, γm), we first consider the following
inequality:

(5) ρ(γn, γm) ≤ H(γn, γm) ≤ `X(γn)/2 + ρ(γn, γm) + `X(γm)/2 ≤ KL+ ρ(γn, γm)

Dividing the above inequality by ρ(γn, γm) we obtain

(6) 1 ≤ H(γn, γm)

ρ(γn, γm)
≤ KL

ρ(γn, γm)
+ 1

Whenever n 6= m, we have by (2) that ρ(γn, γm) ≥ R + 2KL, and hence,

(7) 1 ≤ H(γn, γm)

ρ(γn, γm)
≤ KL

R + 2KL
+ 1.

This finishes the proof of the lemma. �

We remark that putting together lines (4) and (7) yields the concrete comparison:

(8) (R + 2KL) ≤ H(γn, γm)

|m− n|
≤

(
KL

2η( L
K

)
+ 1

)(
5R +

7KL

2

)
Lemma 4.3. Let {γn}n∈N be the sequence of geodesics constructed in Lemma 4.2

and let Yn be the compact subsurface co-bounded by γn and γn+1. There exists a
positive real number A—depending on X—such that the area of Yn is at most A.

Proof. Denote the lower bound of (4) by a and the upper bound of (8) by b. Let
C = K log 4 and let m,n ∈ N, then, as f ∈ FK is a (K,C)-quasi-isometry,

ρ(f(z), f(w)) ≥ 1

K
ρ(z, w)− C ≥ 1

K
ρ(γn, γm)− C

for all z ∈ γn and w ∈ γm. It follows that

(9) ρ(f(γn), f(γm)) ≥ 1

K
ρ(γn, γm)− C

for all n,m ∈ Z.
Choose m ∈ N satisfying m > K

a
(b + C + R), where R is as in Lemma 2.1, and

consider the geodesic subsurface Z bounded by the geodesics γ−m and γm. We set A
to be the area of Z.

Let fn ∈ Fk be as defined as in the proof of Lemma 4.2. We claim that Yn ⊂ fn(Z)
for all n ∈ Z. Before proving our claim, note that the area of fn(Z) is bounded above
independent of n ∈ Z—the bound only depends on K and the area of Z. This follows
from [2], but we give a short (less precise) argument: let Zn denote the subsurface
with totally geodesic boundary that is homotopic to fn(Z), so that the area of Zn
agrees with that of Z. It must be that fn(Z) is in the R-neighborhood of Zn. The
area of the R-neighborhood of Zn is bounded above by the area of Zn and R. As R
only depends on K, we see that the area of fn(Z) is bounded as a function of K and
the area of Z.

Now to prove the claim, first note that using (9) we have:

(10) ρ(γn, fn(γm)) ≥ ρ(fn(γ0), fn(γm))−R ≥ 1

K
ρ(γ0, γm)−C−R ≥ ma

K
−C−R > b,
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where the last inequality follows from replacing m with the assumed lower bound in
the choice of m.

On the other hand, H(γn, γn+1) < b and thus, ρ(γn, fn(γm)) > H(γn, γn+1); in
particular, fn(γm) must be disjoint from Yn. Observe that (10) holds with m replaced
by −m; hence, Yn and fn(γ−m) are disjoint. Thus Yn ⊂ fn(Z) and hence the area of
Yn is less than A. �

Remark 4.4. Note that m can be explicitly chosen to be a function of K and L.

A Bers pants decomposition of each Yn together with {γn}n∈Z yields a pants
decomposition for X with bounded cuff lengths, establishing:

Proposition 4.5. Every QCH ladder surface admits a Shiga pants decomposi-
tion. �

Aside: coarse geometry. We take a short tangent from the proof of Theo-
rem 4.1 to discuss the coarse geometry of QCH ladder surfaces.

Note that as X is K-QCH, there is a lower bound on the injectivity radius
of X depending only on K [4, Theorem 1.1]. In particular, the diameter of Yn is
bounded above independent of n. Now let β be the distance-minimizing geodesic
from Lemma 4.2. Define r : X → β by sending a point x of X to any point y ∈ β
satisfying ρ(x, y) = ρ(x, β). It then follows that r is a quasi-isometry and hence β
is a quasi-retract of X. Note that in the proof of Lemma 4.2, we could have chosen
any distance-minimizing curve, establishing:

Proposition 4.6. If X is a QCH ladder surface, then every distance-minimizing
geodesic in X is a quasi-retract of X. �

Corollary 4.7. Every QCH ladder surface is quasi-isometric to R equipped with
the standard Euclidean metric. �

Let us show that Proposition 4.5 and Proposition 4.6 do not characterize the
property of being QCH amongst hyperbolic ladder surfaces. First, we note again
that there exist QCH surfaces that do not admit a Shiga pants decomposition.

Proposition 4.8. There exists a hyperbolic ladder surface R and distance-
minimizing geodesic β in R such that β is a quasi-retract of R, R admits a Shiga
pants decomposition, and R is not QCH.

Proof. Let S be a topological ladder surface and let {an, bn, cn}n∈Z be a pants
decomposition for S as in Figure 2. Let R a hyperbolic surface such that `(an) =
`(bn) = 1 and `(cn) =

∣∣ 1
n

∣∣ for all n ∈ Z, and such that the geodesic arc in the
homotopy class of β is distance minimizing.

By construction, R has a Shiga pants decomposition and moreover the nearest
point projection r : R → β is a quasi-isometry. However, the injectivity radius of R
goes to 0 and hence R cannot be QCH. �

c0 a0

b0

c1 a1 c2 a2c−1 a−1c−2 a−2 c3

b1 b2b−1b−2

β

Figure 2. A pants decomposition for a (topological) ladder surface.
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Proposition 4.9. There exists a hyperbolic ladder surface with a Shiga pants
decomposition that is not quasi-isometric to Z (and hence not QCH).

Proof. Let Γ be the two-ended graph shown here:

For i ∈ {1, 2, 3}, let Vi be a hyperbolic i-holed torus with each boundary compo-
nent of length 1. Let R be a hyperbolic surface obtained from Γ by taking a copy of
Vi for each valence i vertex and identifying boundary components according to the
edge relations in Γ. The resulting surface R is quasi-isometric to Γ; in particular, it
is a ladder surface with a Shiga pants decomposition. However, Γ and hence R is not
quasi-isometric to Z. �

These propositions leads us to the follow question, which we end the aside with:

Question 4.10. If a hyperbolic ladder surface has positive injectivity radius and
is quasi-isometric to R, then is it QCH?

4.2. Preferred Shiga pants decomposition. In the previous section, we
showed that X admits a Shiga pants decomposition; however, this is just an exis-
tence statement and does not give us enough information to directly construct the
desired covering map. The goal of this subsection is to modify the Shiga pants de-
composition from Proposition 4.5 into a (topological) form we can use to build a deck
transformation (the desired form is shown in Figure 2).

It is not difficult to show the existence of the desired pants decomposition using
a continuity and compactness argument in moduli space; however, it is not possi-
ble to extract explicit length bounds from such an argument. With a little extra
effort, we proceed in a fashion allowing for effective constants—this is the content of
Lemma 4.11.

a

b

b′

Figure 3. The elementary move up to homeomorphism in a once-punctured torus switching b
and b′.

b

b′

b

b′

Figure 4. The two possible types of elementary moves up to homeomorphism in a 4-holed
sphere.
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Let Σ be a compact surface with non-abelian fundamental group. The pants
graph associated to Σ, written P(Σ), is the graph whose vertices correspond to pants
decompositions of Σ (up to isotopy) and where two vertices are adjacent if they differ
by an elementary move. An elementary move corresponds to removing a single curve
α from the pants decomposition and replacing α with a curve that is disjoint from
all remaining curves of the pants decomposition and intersecting α minimally (see
Figures 3 and 4).

Define an equivalence relation ∼ on the vertices of P(Σ) by setting two pants
decompositions to be equivalent if they differ by a homeomorphism of Σ. Themodular
pants graph, writtenMP(Σ), is the graph whose vertices correspond to equivalence
classes of pants decompositions of Σ; two vertices are connected by an edge if they
have representatives in P(Σ) that are adjacent.

As P(Σ) is connected [10], we have thatMP(Σ) is connected; moreover,MP(Σ)
has finitely many vertices and hence finite diameter (in the graph metric). Observe
that, up to homeomorphism, there are at most two ways to replace a single curve in
a given pants decomposition; in particular, none of the edges in the modular pants
graph correspond to the elementary move shown in Figure 3.

Let σ be a hyperbolic metric on Σ. Given a vertex v ∈MP(Σ), define

Mσ(v) = min{M : there exists {c1, . . . , cξ} ∈ P(Σ) such that
[{c1, . . . , cξ}] = v and `σ(ci) ≤M for all i ∈ {1, . . . , ξ}},

where ξ = ξ(Σ) = 3g − 3 + b is the topological complexity of Σ (g is the genus of Σ
and b the number of boundary components of Σ).

Lemma 4.11. Let Σ be a compact surface possibly with boundary and with
ξ(Σ) > 0. Let σ be a hyperbolic metric on Σ with injectivity radius m, let v ∈
MP(Σ), and let M ∈ R such that Mσ(v) ≤ M . Then, for all w ∈ MP(Σ), Mσ(w)
is bounded above by a function of ξ,m, and M .

Proof. Let P be a pair of pants representing v with cuff lengths all bounded above
by M . If ` is the length of any orthogeodesic connecting a boundary component to
itself, then

sinh(`/2) ≤ cosh(M/2)

sinh(m/2)

(this follows from standard formulas for right-angled hyperbolic pentagons, see [8,
Formula 2.3.4(1)]).

Now choose a representative pants decomposition ṽ = {c1, . . . , cξ} for v such
that `σ(ci) ≤ M for all i ∈ {c1, . . . , cξ}. Let w ∈ MP(Σ) be adjacent to v. Up to
relabelling, we can assume that there exists a representative w̃ = {c′1, c2, . . . , cξ} of
w adjacent to ṽ.

Let R denote the 4-holed sphere component of Σ r
⋃ξ
i=2 ci and let P1 and P2

be the two pairs of pants in R sharing c1 as a common boundary component. Let
α1 and α2 be the orthogeodesics in P1 and P2, respectively, connecting c1 to itself.
Up to Dehn twisting about c1, there exists a curve homotopic to c′1 obtained by the
taking the union of α1, α2, and two subarcs of c1. It follows that

Mσ(w) ≤M + arccosh

(
cosh(M/2)

sinh(m/2)

)
.

The result now follows by the fact that MP(Σ) is connected with finite diameter,
which only depends on ξ. �
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Let S be a ladder surface and fix a pants decomposition P = {ak, bk, ck}k∈Z as in
Figure 2.

Lemma 4.12. If X is a QCH ladder surface, then there exists a homeomorphism
f : S → X such that f(P) is a Shiga pants decomposition for X.

Proof. Let {γn}n∈Z be the collection of curves guaranteed by Lemma 4.2. By
Lemma 4.3, the complexity of the surface bounded by γn and γn+1, denoted Yn, is
bounded. By Proposition 4.5, this guarantees the existence of a Shiga pants decom-
position for X containing the collection of curves {γn}; let M be an upper bound for
the lengths of the cuffs in this decomposition. Before continuing, we recall that there
is a lower bound on the injectivity radius of any K-QCH surface, which only depends
on K [4, Theorem 1.1]; so, let K > 1 such that X is K-QCH and let m = m(K)
denote this lower bound.

Fix a homeomorphism f : S → X such that for every n ∈ Z there exists kn ∈ Z
with f(ckn) = γn. Then, Pn = f(P) ∩ Yn is a pants decomposition of Yn. As the Yn
have bounded area and hence bounded topological complexity,

ξ = max{ξ(Yn) : n ∈ Z},

is finite. Therefore, by Lemma 4.11, MYn([Pn]) is bounded above by a function of
ξ,m, and M . In particular, by pre-composing f with a homeomorphism of S, we
may assume that f(P) is a Shiga pants decomposition for X. �

4.3. Proof of Theorem 4.1. We can now prove every QCH ladder surface is
quasiconformally equivalent to a regular cover of a closed surface, finishing the proof
of Theorem 4.1. Before giving the proof, we recall a definition from Teichmüller
theory.

Let S be a (topological) ladder surface and let P = {ak, bk, ck}k∈Z be the pants
decomposition of S given in Figure 2. Given a hyperbolic surface Z and a homeo-
morphism h : S → Z, define the Fenchel–Nielsen coordinates of the marked surface
(S, h) be the collection of sextuplets

FN((S, h)) = {[`Z(h(ak)), θak(h), `Z(h(bk)), θbk(h), `Z(h(ck)), θck(h)]}k∈Z,

where θak , θbk , and θck are the twist parameters associated to the curves ak, bk, and
ck, respectively, with respect to a collection of seams {dk}k∈Z as in Figure 5. The
twist parameters are given as an angle (as opposed to an arc length).

Proof of Theorem 4.1. Let X be a QCH ladder surface and let f : S → X be the
homeomorphism given by Lemma 4.12, so that f(P) is a Shiga pants decomposition
for X. By precomposing f with a (possibly infinite) product of Dehn twists about
the cuffs of P , we may assume that the twist parameters for X = (S, f) are between
0 and 2π.

c0 a0

b0

c1 a1 c2 a2c−1 a−1c−2 a−2 c3

b1 b2b−1b−2

d0

d1d−1

d−2

Figure 5. The pants decomposition P along with the seams {dk}k∈Z determine Fenchel–Nielsen
coordinates for hyperbolic structures on S.
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Now fix the marked surface (S, h : S → Z) such that

FN((S, h)) = {[1, 0, 1, 0, 1, 0]}k∈Z.
Since the cuff lengths and twist parameters of f(P) are bounded from above and
below, we can conclude that the map h ◦ f−1 : X → Z is quasiconformal [1, Theo-
rem 8.10].

To finish, we show that Z is a regular cover of a closed genus-3 hyperbolic surface:
let τ : S → S be the horizontal translation determined, up to isotopy, by requiring
that

τ((ak, bk, ck, dk)) = (ak+2, bk+2, ck+2, dk+2)

for all k ∈ Z. Observe that

FN((S, h ◦ τ−1)) = FN((S, h))

and hence τh = h ◦ τ ◦ h−1 : Z → Z is isotopic to an isometry of Z. It follows that
〈τh〉\Z is a closed hyperbolic genus-3 surface. �

5. Topology of QCH surfaces

The goal of this section is to prove that there are no topologically exotic QCH
surfaces, that is:

Theorem 5.1. Every QCH surface is homeomorphic to a regular cover of a
closed surface.

Before proving Theorem 5.1, we need to understand the topology of a regular
cover of a closed surface. The proposition below is stronger than we require, but
with little extra work we state a more complete picture. Also, recall that, for the
purpose of this article, surfaces are orientable and second countable.

Proposition 5.2. A regular cover of a closed surface is either compact or home-
omorphic to one of the following six surfaces:

(1) R2,
(2) R2 r 0,
(3) the Cantor tree surface, i.e. the planar surface whose space of ends is a Cantor

space,
(4) the blooming Cantor tree surface, i.e. the infinite-genus surface with no planar

ends and whose space of ends is a Cantor space,
(5) the Loch Ness Monster surface, i.e. the one-ended infinite-genus surface, or
(6) the ladder surface, i.e. the two-ended infinite-genus surface with no planar

ends.
Moreover, the torus is the only closed surface regularly covered by R2 r 0.

Proof. Let B be a closed surface and let π : S → B be a regular cover. It is not
difficult to show that the end space of a regular cover of a closed manifold is either
empty, discrete with 1 or 2 points, or a Cantor space (this is a classical theorem of
Hopf [11]). If the end space of S is empty, then S is compact; in the other cases,
S is non-compact. If S is non-planar, then the co-compactness of the action of the
deck group associated to π on S will guarantee that every end of S is non-planar.
Therefore, either S is compact; S is planar with 1, 2, or a Cantor space of ends; or
S is infinite genus with 1, 2, or a Cantor space of ends, all of which are non-planar.
Using the classification of surfaces, we see that—up to homeomorphism—there are
only six non-compact surfaces that meet these criteria, namely the ones listed above.
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We leave it as an exercise to show that, with the exception of R2 r 0, each of the
listed surfaces covers a closed genus-2 surface.

Finally, R2 r 0 is a regular cover of the torus; moreover, no surface of genus at
least two can be regularly covered by R2 r 0: indeed, π1(R2 r 0) is cyclic and the
fundamental group of a hyperbolic surface cannot have a normal cyclic subgroup. �

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Let X be a K-QCH surface. Further, for the sake of
arguing by contradiction, assume that X is not a regular cover of a closed surface.
If X is closed, then it is trivially a regular cover of a closed surface, namely itself.
So, we may assume that X is non-compact. Note that under these assumptions, X
is necessarily hyperbolic.

First, assume that X has positive (possibly infinite) genus and has at least one
planar end. We can then choose a non-planar compact subsurface Y of X and an
unbounded planar subsurface U of X such that ∂U is compact. Let {xn}n∈N be
a sequence in U such that every compact subset of X contains only finitely many
of the xn. Fix x ∈ Y and let fn : X → X be a K-quasiconformal map such that
fn(x) = xn. Note that as fn is a (K,K log 4)-quasi-isometry (see Lemma 2.1), the
diameter of fn(Y ) is bounded as a function ofK and the diameter of Y . In particular,
as ρ(xn, ∂Y ) → ∞ as n → ∞, it must be that fn(Y ) ⊂ U for large n, but this is
impossible as every subsurface of a planar surface is planar.

We can now conclude that X is either (i) planar or (ii) has infinite genus and no
planar ends. In either case, as we are assuming X is not a regular cover of a closed
surface, by Proposition 5.2, X has at least three ends, one of which is isolated, call it
e. (Note: if the end space does not contain an isolated point, then it is necessarily a
Cantor space.) Let P be a compact subsurface inX with three boundary components,
each of which is separating, and such that each component of X r P is unbounded
and such that there exists a component U of X r P with U a neighborhood of e.
The argument now proceeds nearly identically to the previous case. Let {xn}n∈N be
a sequence in U such that every compact subset of X contains only finitely many
of the xn. Fix x ∈ P and let fn : X → X be a K-quasiconformal map such that
fn(x) = xn. Again, as fn is a (K,K log 4)-quasi-isometry, the diameter of fn(P ) is
bounded as a function of K and the diameter of P . In particular, ρ(xn, P )→∞ as
n → ∞, it must be that fn(P ) ⊂ U for large n, but this is impossible as it would
require X r fn(P ) to have a bounded component. �
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