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Constructing uniform spaces

David A. Herron

Abstract. We exhibit geometric conditions that ensure a metric space is uniform.

Sisätieyhtenäisten avaruuksien rakentaminen

Tiivistelmä. Esitämme joukon geometrisia ehtoja, jotka takaavat metrisen avaruuden sisätie-

yhtenäisyyden.

1. Introduction

Throughout this section X is a rectifiably connected non-complete locally com-
plete metric space. These are the minimal requirements for X to support a quasihy-
perbolic distance k = kX , and we dub X a quasihyperbolic metric space; see Section 2
for precise definitions.

Roughly speaking, such an X is a uniform metric space provided each pair of
points can be joined by a path that moves away from the boundary of X and whose
length is comparable to the distance between the points. See §2.B for a precise
definition.

The class of Euclidean uniform domains was introduced by Martio and Sarvas
in [MS79] and has proven to be invaluable in geometric function theory, potential
theory, geometric group theory, and especially for the “analysis in metric spaces”
program; e.g., see [Geh87, Väi88, Jon81, Aik04, Aik06, BS07, CT95, CGN00, Gre01,
BHK01, HSX08]. A finitely connected proper subdomain of the plane is uniform if
and only if each boundary component is either a point or a quasicircle, but in general
there are no such simple geometric criterion for uniformity.

Given their fundamental importance, it seems worthwhile to investigate two ques-
tions.

− When can we “poke holes” in a uniform space and still have a uniform space?

+ When can we “fill in” some boundary points of a unifom space and keep unifor-

mity?

As a warm up, we have the following result, similar to [Her11, Prop. 2.3]. While
surely not surprising to those well versed in uniform space theory, our discussion
employs some tools that may not be well known. Again, see §2.B for definitions.

Theorem A. Let X be a quasihyperbolic metric space. Let o ∈ X be a fixed

point and put X⋆ := X \ {o}. If X⋆ is C⋆-uniform, then for any C > C⋆

(1.1) X is C-uniform and C1-annular quasiconvex at o

where C1 = 2(C⋆ + 1). Conversely, if (1.1) holds, then X⋆ is C⋆-uniform with

C⋆ = C⋆(C,C1).
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An open subspace Ω of X is uniformly collared provided X is uniform and there
are disjointed open sets Ui such that

B := X \ Ω =
⋃

i

Bi where Bi := B ∩ Ui

and such that each collar Ωi := Ω ∩ Ui is a uniform space.1 This terminology was
introduced in the Euclidean setting by Astala and Heinonen in [AH88]; see also
[HK91]. We say that Ω is uniformly collared with fat collars provided it is uniformly
collared and there is a positive constant Φ such that

(1.2)
1

Φ
diam(Bi) ≤ dist(Bi, ∂X) ≤ Φ dist(Bi, bdUi).

Theorem B. Let Ω be an open subspace of a C0-uniform space X. Suppose

Ω is uniformly collared with C1-uniform Φ-fat collars. Then Ω is C-uniform with

C = C(C0, C1,Φ).

As an application of the above, we establish the following.

Theorem C. Let X be a quasihyperbolic metric space. Let Ω := X \ A where

A ⊂ X. Assume there is a constant κ ∈ (0, 1) such that

(1.3) ∀ a 6= b in A, k(a, b) ≥ κ.

If Ω is C-uniform, then for any C0 > C

(1.4) X is C0-uniform and C1-annular quasiconvex at each a ∈ A

with C1 = 2(C + 1). Conversely, if both (1.4) and

(1.5) ∀ a ∈ A, B

(

a;
κ

4C0
dist(a, ∂X)

)

is C2-uniform

hold, then Ω is C-uniform with C = C(C0, C1, C2, κ).

A special case of Theorem C, with κ = 1/2 and A ⊂ X a countable subset of a
Banach space2 uniform domain X, was proved in [HVW17]. Theorems B and C were
established in the Euclidean setting in [Her89]; see also [Her87].

We can replace (1.3) by the (a priori stronger, but here equivalent) condition
that for some positive constant υ,

∀ a 6= b in A, |a− b| ≥ υ dist(a, ∂X).

The condition (1.5) can be relaxed, e.g., to asking that there exist an ε ∈ (0, κ/4C0]
such that for each a ∈ A there is a C2-uniform ball B(a; ra) with ra/ dist(a, ∂X) ∈
[ε, κ/4C0].

Our results inspire some natural questions.

(A) When is a metric space annular quasiconvex?
(B) What properties of a metric space ensure that its balls are uniform spaces?
(C) Which properties of Euclidean uniformly collared spaces (e.g., see [HK91]) have

metric space analogs?

Theorems A, B, C are established in §§3.A, 3.B, 3.C respectively.

1There should be a single uniformity constant for the collars.
2Banach spaces are annular quasiconvex at each point and balls are 2-uniform.
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2. Metric space definitions

Our notation is relatively standard. We write C = C(D, . . . ) to indicate a
constant C that depends only on the data D, . . . . For real numbers r and s,

r ∧ s := min{r, s} and r ∨ s := max{r, s}.

2.A. Metric space notation and terminology. Throughout this section X
is an arbitrary metric space with distance denoted |x− y|; this is not meant to imply
that X possesses any sort of linear or group structure. In this setting, all topological
notions refer to the metric topology; here cl(A), bd(A), int(A) are the topological
closure, boundary, interior (respectively) of A ⊂ X.

The open ball, sphere, closed ball of radius r centered at the point a ∈ X are

B(a; r) := { x : | x− a| < r } , S(a; r) := { x : | x− a| = r } ,

B[a; r] := B(a; r) ∪ S(a; r).

The closed annular ring centered at a with inner radius r and outer radius s is

A[a; r, s] := B[a; s] \ B(a; r) = { x : r ≤ |x− a| ≤ s } .

Recall that every metric space can be isometrically embedded into a complete
metric space. We let X̄ denote the metric completion of the metric space X; thus
X̄ is the closure of the image of X under such an isometric embedding. We call
∂X := X̄ \X the metric boundary of X. When X is non-complete, δ(x) = δX(x) :=
dist(x, ∂X) is the distance from a point x ∈ X to the boundary ∂X of X. Note that
∂X is closed in X̄ if and only if δ(x) > 0 for all x ∈ X; e.g., this holds when X is
locally compact.

When A ⊂ X, there is a natural embedding Ā →֒ X̄ and bd(A) ⊂ ∂A. Here if
A ⊂ X is open and X complete, then ∂A = bd(A), but in general Ā = cl(A) and
∂A = bd(A) \ A where cl and bd denote topological closure and boundary in X̄

A metric space X is locally complete provided each point has an open neighbor-
hood which is complete. When X is non-complete, this is equivalent to requiring
that δ(x) > 0 for all x ∈ X, or, ∂X is closed in X̄, or, X is open in X̄.

2.A.1. Paths, arcs, & length. A path in X is a continuous map R ⊃ I
γ
−→ X

where I = Iγ is an interval (called the parameter interval for γ) that may be closed
or open or neither and finite or infinite. The trajectory of such a path γ is |γ| := γ(I)
which we call a curve and often denote by just γ. When I is closed and I 6= R,
∂γ := γ(∂I) denotes the set of endpoints of γ and consists of one or two points
depending on whether or not I is compact. For example, if Iγ = [u, v] ⊂ R, then
∂γ = {γ(u), γ(v)}. When ∂γ = {a, b}, we write γ : a y b (in X) to indicate that γ
is a path (in X) with initial point a and terminal point b; this notation is meant to
imply an orientation—a precedes b on γ.

We call γ a compact path if its parameter interval I is compact. An arc α is
an injective compact path. Given points a, b ∈ |α|, there are unique u, v ∈ I with
α(u) = a, α(v) = b and we write α[a, b] := α|[u,v]. We also use this notation for a
general path γ, but here γ[a, b] denotes the unique injective subpath of γ that joins
a, b obtained by using the last time γ is at a up to the first time γ is at b.

When α : a y b and β : b y c are paths that join a to b and b to c respectively, α⋆β
denotes the concatenation of α and β; so α ⋆ β : a y c. Of course, |α ⋆ β| = |α| ∪ |β|.
Also, the reverse of γ is the path γ̃ defined by γ̃(t) := γ(1− t) (when Iγ = [0, 1]) and
going from γ(1) to γ(0). Of course, |γ̃| = |γ|.
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Every compact path contains an arc with the same endpoints; see [Väi94].

The length of a compact path [0, 1]
γ
→ X is defined in the usual way by

ℓ(γ) := sup

{

n
∑

i=1

|γ(ti)− γ(ti−1)|
∣

∣

∣
0 = t0 < t1 < · · · < tn = 1

}

,

γ is rectifiable when ℓ(γ) < ∞, and X is rectifiably connected provided each pair
of points in X can be joined by a rectifiable path. Every rectifiable path can be
parametrized with respect to its arclength [Väi71, p.5]. When γ is a rectifiable path,
we tacitly assume its parameter interval is Iγ = [0, ℓ(γ)] unless specifically stated
otherwise.

Every rectifiably connected metric space X admits a natural intrinsic distance,
its so-called (inner) length distance given by

l(a, b) := inf{ℓ(γ) | γ : a y b a rectifiable path in X}.

A metric space (X, |·|) is a length space provided for all points a, b ∈ X, |a − b| =
l(a, b); it is also common to call such a |·| an intrinsic distance function. Notice that
an l-geodesic [x, y]l is a shortest curve joining x and y.

There are two useful properties of length spaces that we use repeatedly. First, for
any open set U in a length space X, we always have dist(x, bdU) = dist(x,X \U) for
all points x ∈ U . Second, X̄ is also a length space. In fact, for all x ∈ X, ξ ∈ ∂X, ε > 0
there is a path γ : x y ξ in X ∪ {ξ} with ℓ(γ) < |x− ξ|+ ε.

2.A.2. Quasihyperbolic distance. Recall that X is a quasihyperbolic metric
space if it is non-complete, locally complete, and rectifiably connected. In such a
space, δ(x) = δX(x) := dist(x, ∂X) > 0 for all x ∈ X, so δ−1ds is a conformal metric
that we call the quasihyperbolic metric on X. The length distance induced by the
quasihyperbolic metric δ−1ds is dubbed the quasihyperbolic distance k = kX in X. In
a locally compact quasihyperbolic space, this is a geodesic distance: there are always
k-geodesics joining any two points in X.

The following basic estimates for quasihyperbolic distance were first established
for Euclidean domains by Gehring and Palka [GP76, 2.1]. For all a, b ∈ X and any
rectifiable path γ : a y b in X

k(a, b) ≥ log

(

1 +
l(a, b)

δ(a) ∧ δ(b)

)

≥ log

(

1 +
|a− b|

δ(a) ∧ δ(b)

)

≥

∣

∣

∣

∣

log
δ(a)

δ(b)

∣

∣

∣

∣

(2.1a)

which is a special case of the more general inequality

ℓk(γ) ≥ log

(

1 +
ℓ(γ)

dist(|γ|, ∂X)

)

.(2.1b)

2.B. Quasiconvex, annular quasiconvex, and uniform spaces. A rectifi-
able path γ : a y b is C-quasiconvex, C ≥ 1, if its length is at most C times the
distance between its endpoints; i.e., if γ satisfies

ℓ(γ) ≤ C |a− b|.

A metric space is C-quasiconvex if each pair of points can be joined by a C-quasiconvex
path. A 1-quasiconvex metric space is a geodesic space, and a space is a length space
if and only if it is C-quasiconvex for all C > 1. By cutting out loops, we can always
replace a C-quasiconvex path with a C-quasiconvex arc having the same endpoints;
see [Väi94].
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The inequalities in (2.1a) yield the following ‘local’ estimates for quasihyperbolic
distances.

2.2. Fact. Let X be a C-quasiconvex quasihyperbolic metric space. Then for
all x, a ∈ X,

k(x, a) ≤ 1 or
|x− a|

δ(a)
≤

1

2C
=⇒

1

2

|x− a|

δ(a)
≤ k(x, a) ≤ 2C

|x− a|

δ(a)
.

2.B.1. Annular quasiconvexity. A metric space X is C-annular quasiconvex
at p ∈ X provided it is connected and for all r > 0, points in A[p; r, 2r] can be joined
by C-quasiconvex paths lying in A[p; r/C, 2Cr]. We call X C-annular quasiconvex if
it is C-annular quasiconvex at each point. Examples of quasiconvex and annular qua-
siconvex metric spaces include Banach spaces and upper regular Loewner spaces; the
latter includes Carnot groups and certain Riemannian manifolds with non-negative
Ricci curvature; see [HK98, 3.13,3.18, Section 6]. Korte [Kor07] proved that doubling
metric measure spaces that support a (1, p)-Poincaré inequality with sufficiently small
p are annular quasiconvex.

To the best of our knowledge, the notion of annular quasiconvexity was introduced
in [Kor07] and [BHX08]; it was an essential ingredient in [HSX08]. A similar concept
was employed in [Mac10].

2.B.2. Uniformity. Roughly speaking, a metric space is uniform when points
in it can be joined by paths that are not “too long” and “move away” from the region’s
boundary. More precisely, a quasihyperbolic metric space X is C-uniform (for some
constant C ≥ 1) provided each pair of points can be joined by a C-uniform arc. Here
a rectifiable γ : a y b is a C-uniform arc if and only if it is both a C-quasiconvex arc
and a double C-cone arc; this latter condition means that

(2.3) ∀ x ∈ |γ|, ℓ(γ[x, a]) ∧ ℓ(γ[x, b]) ≤ Cδ(x).

Double cone arcs are often called cigar arcs. In [Väi88] Väisälä provides a description
of various possible double cone conditions (which he calls length cigars, diameter
cigars, distance cigars, and Möbius cigars). The work [Mar80] of Martio should also
be mentioned.

To simplify an argument, we prevail upon the following characterization for uni-
form spaces established in [Her11, Prop. C].

2.4. Fact. A quasihyperbolic metric space is uniform if and only if it is plump
and proximate points can be joined by uniform arcs. More precisely, if X is C-plump
and 3C-proximate points can be joined by B-uniform arcs, then X is 18B2C-uniform;
conversely, if X is C-uniform, then it is 4C-plump.

Two points x, y are C-proximate, for some constant C > 0, if |x− y| ≤ C[δ(x) ∧
δ(y)]. If this holds, then also (C + 1)−1 ≤ δ(x)/δ(y) ≤ C + 1. A non-complete
locally complete metric space U is C-plump, C ≥ 1, provided for each x ∈ U and all
r ∈ (0, diamU)

(2.5) ∃ z ∈ B[x; r] with dist(z, ∂U ) ≥ r/C .

This terminology was introduced by Väisälä in [Väi88] and perhaps is understood
best when U is an open subspace of a length space X, for then (2.5) asserts that
dist(z,X \ U) ≥ r/C, so the ball B(z; r/C), in X, is contained in U .
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3. Proofs

Here we establish Theorems A, B, C as stated in the Introduction. In each of
these, X is a given quasihyperbolic metric space.

3.A. Proof of Theorem A. Recall that o ∈ X and X⋆ := X \ {o}. We let δ⋆
denote distance to ∂X⋆, so δ⋆(x) := |x| ∧ δ(x) where |x| := |x− o|.

To utilize Fact 2.4, we first verify the following.

3.1. Lemma. Suppose X is C-uniform. Then X⋆ := X \ {o} is 12C-plump.

Proof. Let a ∈ X⋆ and r ∈ (0, diamX⋆). We seek a point z ∈ B[a; r] with
δ⋆(z) ≥ r/12C.

Pick b ∈ X⋆ with |a − b| ≥ 1
2
diam(X⋆). Let γ : a y b be a C-uniform arc in X.

Let z0 be the arclength midpoint of γ. Then

δ(z0) ≥
ℓ(γ)

2C
≥

|a− b|

2C
≥

r

4C
.

Assume |z0−a| ≤ r/2. If |z0| ≥ r/12C, then z0 is the sought after point. Suppose
|z0| < r/12C. By examining paths from z0 to ∂X, we obtain a point z1 ∈ S(z0; r/6C).
It follows that δ⋆(z1) ≥ r/12C, and that

|z1 − a| ≤ |z1 − z0|+ |z0 − a| ≤
r

6C
+

r

2
≤ r,

so z1 is the sought after point.
Assume |z0 − a| > r/2. Pick z2 ∈ γ[z0, a] ∩ S(a; r/2). Then δ(z2) ≥ r/2C.

Thus if |z2| ≥ r/6C, then z2 is the sought after point. Suppose |z2| < r/6C. By
examining paths from z2 to ∂X, we obtain a point z3 ∈ S(z2; r/3C). It follows that
δ⋆(z3) ≥ r/6C, and that

|z3 − a| ≤ |z3 − z2|+ |z2 − a| =
r

3C
+

r

2
≤ r,

so z3 is the sought after point. �

Now we establish Theorem A. When X⋆ is C⋆-uniform, it is not hard to check
that X is C-uniform for any C > C⋆ (this also follows from Theorem C) and the proof
of (c) =⇒ (a) in [Her11, Prop. 2.3] shows that X is 2(C⋆ + 1)-annular quasiconvex
at o.

For the converse, assume X is C-uniform and C1-annular quasiconvex at o. By
Lemma 3.1 we know that X⋆ is 12C-plump, so it suffices to show that there is a
constant B such that 36C-proximate points in X⋆ can be joined by B-uniform arcs;
then Fact 2.4 asserts that X⋆ is C⋆-uniform with C⋆ = 216B2C.

Let a, b ∈ X⋆ be 36C-proximate; so, |a− b| ≤ 36C
(

δ⋆(a) ∧ δ⋆(b)
)

. By relabeling,
if necessary, we may assume |a| ≤ |b|. Now |a − b| ≤ 36C|a|. Let γo : a y b be a
C-uniform arc in X. Put R := |a|/10CC1. Then ℓ(γo) ≤ C|a− b| ≤ 36C2|a|, so

R ≥
(

180C3C1

)

−1 ℓ(γo)

2
.

As |b| ≥ |a|, { a, b } ∩ B(o; |a|) = ∅. Suppose γo ∩ B(o;R) = ∅. Then for each
x ∈ γo, |x| ≥ R and we readily deduce that γo is a 180C3C1-uniform arc in X⋆.

Assume γo∩B(o;R) 6= ∅. Let ao, bo be the first, last points (respectively) of γo in
S(o;R). Put γ := α ⋆ σ ⋆ β where α := γo[a, ao], β := γo[bo, b] and where σ : ao y bo
is a C1-quasiconvex arc in A[o;R/2C1, C1R].

Note that as α, β both join the spheres S(o;R), S(o; |a|), they each have length
at least |a| −R = (10CC1 − 1)R ≥ 9CC1R. It follows that δ(ao) ∨ δ(bo) ≥ 9C1R.
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Evidently, ℓ(γ) ≤ C1ℓ(γo) ≤ CC1|a − b|, so to verify that γ is a uniform arc it
remains to corroborate the double cone arc condition. To begin, let x ∈ σ. Then

|x| ≥
R

2C1
≥

(

360C3C2
1

)

−1 ℓ(γo)

2
≥

(

360C3C3
1

)

−1 ℓ(γ)

2
.

Also,

9C1R ≤ δ(ao) ≤ δ(o) + |ao| = δ(o) +R

so

δ(x) ≥ δ(o)− C1R ≥
(

30C3C1

)

−1 ℓ(γ)

2
and we see that the double cone condition holds for points in σ with constant
360C3C3

1 .
It remains to examine points x ∈ α∪β. Evidently, |x| ≥ R ≥ (180C3C2

1)
−1ℓ(γ)/2.

Let zo be the arclength midpoint of γo; so, zo lies in α or β or γo \
(

α ∪ β
)

. If zo lies

in γo \
(

α ∪ β
)

, then α, β are both “short subarcs of γo” and we readily see that

x ∈ α =⇒ ℓ(γ[x, a]) = ℓ(γo[x, a]) ≤ Cδ(x)

and

x ∈ β =⇒ ℓ(γ[x, b]) = ℓ(γo[x, b]) ≤ Cδ(x)

and thus the double cone condition holds.
Suppose zo ∈ β. Here α is again a “short subarc” and we precede exactly as above

for points x ∈ α. Assume x ∈ β. When x ∈ β[zo, b] = γo[zo, b] we can–again–precede
as above. So, assume x ∈ β[bo, zo]. Here

δ(x) ≥
ℓ(γo[x, a])

C
≥

ℓ(α)

C
≥ 9C1R ≥

(

20C3C1

)

−1 ℓ(γ)

2
.

Thus the double cone condition holds for points in α∪β with constant 180C3C2
1 .

It now follows that γ is a B-uniform arc with B := 360C3C3
1 . �

3.B. Proof of Theorem B. Here we assume Ω is a uniformly collared subspace
of a C0-uniform space X with C1-uniform Φ-fat3 collars as described in the Intro-
duction. Also, since the associated hypotheses and conclusions are all bi-Lipschitz
invariant, we may and do assume that X is a length space.

To join points, we start with a uniform arc in X. If this arc gets near some Bi,
we replace (by “cutting and pasting”) an appropriate subarc with a uniform arc in
Ωi.

Before immersing ourselves in the details, we discuss some basic immediate prop-
erties. First, since the open sets Ui are disjointed, each Bi is closed and, e.g.,
bd(B) = ∪i bd(Bi). Also, while ∂B ⊂ ∂X may be empty or non-empty, for each
i,

di := dist(Bi, ∂X) > 0.

It’s not difficult to check that Ωi := Ω∩Ui = Ui\Bi, and that bd(Ωi) = bd(Bi)∪bd(Ui)
and this is a disjoint union.

Next, as Ω is open in X and X is open in X̄, we (eventually) see that

∂Ω = bd(B) ∪ ∂X (and this is a disjoint union)

3We assume Φ ≥ 2.
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from which we deduce that for each x ∈ Ω,

dist(x, ∂Ω) = dist(x,B) ∧ dist(x, ∂X) = inf
i
dist(x,Bi) ∧ dist(x, ∂X).

It also follows that for each x ∈ Ω:

If ∃ i with dist(x,Bi) ≤ di/2, then dist(x, ∂Ω) = dist(x,B).(3.2a)

If ∃ i with dist(x,Bi) ≤ di/2Φ, then dist(x, ∂Ω) = dist(x,Bi).(3.2b)

If x ∈ Ωi, then dist(x, ∂Ω) ≥ dist(x, ∂Ωi).(3.2c)

Now define

Ai :=

{

x ∈ X \Bi | dist(x,Bi) <
di
10Φ

}

and A :=
⋃

i

Ai.

From (3.2b) we see that

x ∈ cl(Ai) =⇒ dist(x, ∂Ω) = dist(x,Bi)

and similarly

dist(x, ∂Ω) = dist(x, ∂X) =⇒ x 6∈ cl(A).

Let a, b ∈ Ω and let γo : a y b be a C0-uniform arc in X. Suppose γo ∩ A = ∅.
Let x ∈ γo. Then for all i,

dist(x, ∂X) ≤ dist(x,Bi) + diam(Bi) + dist(Bi, ∂X) ≤ dist(x,Bi) + (Φ + 1)di

≤
(

10Φ(Φ + 1) + 1
)

dist(x,Bi) ≤ 20Φ2
dist(x,Bi),

so dist(x, ∂Ω) ≥ (20Φ2)−1 dist(x, ∂X) and we deduce that γo is a 20C0Φ
2-uniform arc

in Ω.
Suppose γo ∩ A 6= ∅ and, for a moment, assume { a, b } ∩ A = ∅. Let J denote

the set of all indeces i with γo ∩ Ai 6= ∅. For each j ∈ J : let aj , bj be the first, last
points of γo in bd(Aj); let σj : aj y bj be a C1-uniform arc in Ωj ; and, replace each
subarc γo[aj , bj] with the corresponding σj .

If a ∈ A, say a ∈ Aio : let aio be the last point of γo in bd(Aio); let α : a y aio
be a C1-uniform arc in Ωio ; and, replace the subarc γo[a, aio ] with α. Similarly, if
b ∈ Ajo, we get a C1-uniform β : bjo y b in Ωjo that replaces γo[bjo, b], where bjo is
the first point of γo in bd(Ajo).

We now have an arc γ : a y b in Ω that has been obtained by replacing certain
subarcs of γo with appropriate subarcs σj or α or β. As each of these new subarcs is
C1-quasiconvex, we see that

ℓ(γ) ≤ C1ℓ(γo) ≤ C0C1|a− b|,

so γ is a C0C1-quasiconvex arc. It remains to verify the double cone condition.
Let x ∈ γ. Suppose x 6∈ α ∪ β ∪

⋃

j σj . As above, where γo ∩ A = ∅, we again

see that dist(x, ∂Ω) ≥ dist(x, ∂X)/20Φ2 and the double cone condition holds with
C = 20C0C1Φ

2.
Suppose x ∈ α. If ℓ(γ[x, a]) = ℓ(α[x, a]) ≤ ℓ(α[x, ao]), then dist(x, ∂Ω) ≥

dist(x, ∂Ωio) ≥ C−1
1 ℓ(γ[x, a]) and the double cone condition holds with constant

C = C1.
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Assume ℓ(α[x, a]) > ℓ(α[x, ao]). Now

ℓ(γ[x, a]) = ℓ(α[x, a]) ≤ ℓ(α) ≤ C1|a− ao|

≤ C1

(

dist(a, Bio) + diam(Bio) + dist(ao, Bio)
)

≤ C1(Φ + 1)dio ≤ 2C1Φdio .

If ℓ(α[x, ao]) ≥ dio/20Φ, then

dist(x, ∂Ω) ≥ dist(x, ∂Ωio) ≥ C−1
1 ℓ(α[x, ao]) ≥

dio
20C1Φ

≥
ℓ(γ[x, a])

40C2
1Φ

2
.

On the other hand, if ℓ(α[x, ao]) < dio/20Φ, then

dio
10Φ

= dist(ao, Bio) = dist(ao, ∂Ω) ≤ |x− ao|+ dist(x, ∂Ω)

≤ ℓ(α[x, ao]) + dist(x, ∂Ω)

and so now

dist(x, ∂Ω) ≥
dio
20Φ

≥
ℓ(γ[x, a])

40C1Φ2
.

Thus in all cases, when x ∈ α, the double cone condition holds with constant C =
40C2

1Φ
2.

A similar argument applies if x ∈ β.
Finally, suppose x ∈ σj for some j ∈ J . We demonstrate that

ℓ(γ[x, a]) ∧ ℓ(γ[x, b]) ≤ 3C0C1Φdj and dj ≤ 20C1Φ dist(x, ∂Ω)

which gives the double cone condition with constant C = 60C0C
2
1Φ

2.
First, if

ℓ(σj [x, aj ]) ∧ ℓ(σj[x, bj ]) ≥
dj
20Φ

,

then dist(x, ∂Ω) ≥ dist(x, ∂Ωj) ≥ dj/20C1Φ. Suppose

ℓ(σj [x, z]) <
dj
20Φ

for some z ∈ { aj, bj }.

Then

dj
10Φ

= dist(z, Bj) = dist(z, ∂Ω) ≤ |x− z| + dist(x, ∂Ω) ≤ ℓ(σj [x, z]) + dist(x, ∂Ω)

whence again dist(x, ∂Ω) ≥ dj/20C1Φ.
Next, ℓ(γ[x, a]) ≤ ℓ(σj) + ℓ(γ[aj , a]) and ℓ(γ[x, b]) ≤ ℓ(σj) + ℓ(γ[bj , b]), so

ℓ(γ[x, a]) ∧ ℓ(γ[x, b]) ≤ ℓ(σj) + ℓ(γ[aj , a]) ∧ ℓ(γ[bj , b])

≤ ℓ(σj) + C1

(

ℓ(γo[aj , a]) ∧ ℓ(γo[bj , b])
)

.

Now

ℓ(σj) ≤ C1|aj − bj | ≤ C1

(

dist(aj , Bj) + diam(Bj) + dist(bj , Bj)
)

≤ C1

(

Φ +
1

5Φ

)

dj.

Also, for z ∈ { aj , bj },

dist(z, ∂X) ≤ dist(z, Bj) + diam(Bj) + dist(Bj, ∂X) ≤

(

Φ+ 1 +
1

10Φ

)

dj.
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If ℓ(γo[aj , a]) ≤ ℓ(γo[bj , b]), then

ℓ(γo[aj, a]) = ℓ(γo[aj , a]) ∧ ℓ(γo[aj , b]) ≤ C0 dist(aj, ∂X)

and similarly if ℓ(γo[bj , b]) ≤ ℓ(γo[aj , a]), then

ℓ(γo[bj , b]) = ℓ(γo[bj , a]) ∧ ℓ(γo[bj , b]) ≤ C0 dist(bj , ∂X).

Therefore

ℓ(γo[aj , a]) ∧ ℓ(γo[bj , b]) ≤ C0

(

Φ+ 1 +
1

10Φ

)

dj.

It now follows that

ℓ(γ[x, a]) ∧ ℓ(γ[x, b]) ≤ C1

(

Φ+
1

5Φ

)

dj + C0C1

(

Φ + 1 +
1

10Φ

)

dj ≤ 3C0C1Φdj .

Examining all our various constants we see that γ : a y b is a C0C1-quasiconvex
double 60C0C

2
1Φ

2-cone arc in Ω. �

3.C. Proof of Theorem C. Here Ω = X \A and (1.3) holds for some constant
κ ∈ (0, 1).

First, suppose Ω is C-uniform. The proof of (c) =⇒ (a) in [Her11, Prop. 2.3]
shows that X is 2(C + 1)-annular quasiconvex at all points a ∈ A. Let ε ∈ (0, 1).
We verify that X is (C + ε)-uniform.

Since A ⊂ ∂Ω, X = Ω ∪ A is C ′-quasiconvex for any C ′ > C which permits use
of Fact 2.2.

Let a, b ∈ X. Since we can join points in Ω with C-uniform arcs, we may assume
a, b ∈ A; the case where one point lies in A and one in Ω is similar and easier. We
select ao, bo ∈ Ω sufficiently near a, b, pick quasiconvex arcs α : a y ao, β : bo y b and
a uniform arc γo : ao y bo in Ω, and then check that γ := α⋆γo⋆β is (C+ε)-uniform.

For each a ∈ A, set ρa := υδ(a) where υ := κ/10C. Employing (1.3) in conjunc-
tion with Fact 2.2 we see that that the balls B(a; ρa), with a ∈ A, are disjointed.

Fix points ao ∈ B(a; ερa/10C
2), bo ∈ B(b; ερb/10C

2) and let α : a y ao, β : bo y b
be (C + ε)-quasiconvex arcs. Note that

ℓ(α) ≤ (C + ε)|a− ao| ≤
C + ε

10C2
ερa ≤

ε

5C
ρa

and similarly ℓ(β) ≤ ερb/5C.
Let γo : ao y bo be a C-uniform arc in Ω. Put γ := α ⋆ γo ⋆ β; then γ : a y b in

Ω∪ { a, b }. Since |a− b| ≥ ρa + ρb and |ao − bo| ≤ |a− ao|+ |a− b|+ |b− bo|, we see
that

ℓ(γ) ≤ (C + ε)
(

|a− ao|+ |b− bo|
)

+ C|ao − bo|

≤ (2C + ε)
(

|a− ao|+ |b− bo|
)

+ C|a− b|

≤ ε
2C + ε

10C2

(

ρa + ρb
)

+ C|a− b|

≤ (C + ε)|a− b|

and so γ is (C + ε)-quasiconvex.
To establish the double cone condition, let x ∈ γ, and let zo be the arclength

midpoint of γo. If x ∈ α, it is not difficult to check that δ(x) ≥ ℓ(α) ≥ ℓ(γ([x, a]);
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similarly for x ∈ β. Assume x ∈ γo, say x ∈ γo[ao, zo]. Here

δ(x) ≥ dist(x, ∂Ω) ≥ C−1ℓ(γo[x, ao]).

If ℓ(γo[x, ao]) ≥ ρa/5, then ℓ(α) ≤ (C/ε)ℓ(γo[x, ao]), so

ℓ(γ[x, a]) = ℓ(γo[x, ao]) + ℓ(α) ≤

(

1 +
C

ε

)

ℓ(γo[x, ao]) ≤ (C + ε)δ(x).

Finally, if ℓ(γo[x, ao]) ≤ ρa/5, then

|x− a| ≤
ρa
5

+
ερa
10C2

≤
2C2 + ε

10C2
υδ(a) ≤

3υ

10
δ(a)

so

δ(x) ≥

(

1−
3υ

10

)

δ(a)

whence

ℓ(γ[x, a]) ≤
ρa
5

+
ερa
5C

=
C + ε

5C
υδ(a) ≤

C + ε

C

2υ

10− 3υ
≤ (1 + ε)δ(x).

For the converse, suppose X is C0-uniform and C1-annular quasiconvex at each
point of A. We show that Ω := X \ A is uniformly collared with fat collars and
appeal to Theorem B.

For each a ∈ A, set ρa := υ0δ(a) where υ0 := κ/4C0. Employing Fact 2.2 and
(1.3) we see that the balls B(a; ρa), with a ∈ A, are disjointed. By assumption,
each B(a; ρa) is C2-uniform and X is C1-annularly quasiconvex at a; by the proof of
Theorem A, B⋆(a; ρa) := B(a; ρa) \ {a} is C⋆-uniform. Since A = X \ Ω =

⋃

a∈A{a}
with {a} = {a} ∩B(a; ρa), we see that Ω is uniformly collared. Evidently, the collars
B⋆(a; ρa) are Φ-fat with Φ := 1/υ0 = 4C0/κ. �
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