Constructing uniform spaces

David A. Herron

Abstract

We exhibit geometric conditions that ensure a metric space is uniform.

\section*{Sisätieyhtenäisten avaruuksien rakentaminen}

Tiivistelmä. Esitämme joukon geometrisia ehtoja, jotka takaavat metrisen avaruuden sisätieyhtenäisyyden.

1. Introduction

Throughout this section X is a rectifiably connected non-complete locally complete metric space. These are the minimal requirements for X to support a quasihyperbolic distance $k=k_{X}$, and we dub X a quasihyperbolic metric space; see Section 2 for precise definitions.

Roughly speaking, such an X is a uniform metric space provided each pair of points can be joined by a path that moves away from the boundary of X and whose length is comparable to the distance between the points. See $\S 2 . \mathrm{B}$ for a precise definition.

The class of Euclidean uniform domains was introduced by Martio and Sarvas in [MS79] and has proven to be invaluable in geometric function theory, potential theory, geometric group theory, and especially for the "analysis in metric spaces" program; e.g., see [Geh87, Väi88, Jon81, Aik04, Aik06, BS07, CT95, CGN00, Gre01, BHK01, HSX08]. A finitely connected proper subdomain of the plane is uniform if and only if each boundary component is either a point or a quasicircle, but in general there are no such simple geometric criterion for uniformity.

Given their fundamental importance, it seems worthwhile to investigate two questions.

- When can we "poke holes" in a uniform space and still have a uniform space?
+ When can we "fill in" some boundary points of a unifom space and keep uniformity?
As a warm up, we have the following result, similar to [Her11, Prop. 2.3]. While surely not surprising to those well versed in uniform space theory, our discussion employs some tools that may not be well known. Again, see $\S 2 . \mathrm{B}$ for definitions.

Theorem A. Let X be a quasihyperbolic metric space. Let $o \in X$ be a fixed point and put $X_{\star}:=X \backslash\{o\}$. If X_{\star} is C_{\star}-uniform, then for any $C>C_{\star}$

$$
\begin{equation*}
X \text { is } C \text {-uniform and } C_{1} \text {-annular quasiconvex at o } \tag{1.1}
\end{equation*}
$$

where $C_{1}=2\left(C_{\star}+1\right)$. Conversely, if (1.1) holds, then X_{\star} is C_{\star}-uniform with $C_{\star}=C_{\star}\left(C, C_{1}\right)$.
https://doi.org/10.54330/afm. 120938
2020 Mathematics Subject Classification: Primary 30L99; Secondary 51F99, 30C65, 30F45.
Key words: Uniform spaces, quasihyperbolic metric.
(c) 2022 The Finnish Mathematical Society

An open subspace Ω of X is uniformly collared provided X is uniform and there are disjointed open sets U_{i} such that

$$
B:=X \backslash \Omega=\bigcup_{i} B_{i} \quad \text { where } B_{i}:=B \cap U_{i}
$$

and such that each collar $\Omega_{i}:=\Omega \cap U_{i}$ is a uniform space. ${ }^{1}$ This terminology was introduced in the Euclidean setting by Astala and Heinonen in [AH88]; see also [HK91]. We say that Ω is uniformly collared with fat collars provided it is uniformly collared and there is a positive constant Φ such that

$$
\begin{equation*}
\frac{1}{\Phi} \operatorname{diam}\left(B_{i}\right) \leq \operatorname{dist}\left(B_{i}, \partial X\right) \leq \Phi \operatorname{dist}\left(B_{i}, \operatorname{bd} U_{i}\right) \tag{1.2}
\end{equation*}
$$

Theorem B. Let Ω be an open subspace of a C_{0}-uniform space X. Suppose Ω is uniformly collared with C_{1}-uniform Φ-fat collars. Then Ω is C-uniform with $C=C\left(C_{0}, C_{1}, \Phi\right)$.

As an application of the above, we establish the following.
Theorem C. Let X be a quasihyperbolic metric space. Let $\Omega:=X \backslash A$ where $A \subset X$. Assume there is a constant $\kappa \in(0,1)$ such that

$$
\begin{equation*}
\forall a \neq b \text { in } A, \quad k(a, b) \geq \kappa . \tag{1.3}
\end{equation*}
$$

If Ω is C-uniform, then for any $C_{0}>C$

$$
\begin{equation*}
X \text { is } C_{0} \text {-uniform and } C_{1} \text {-annular quasiconvex at each } a \in A \tag{1.4}
\end{equation*}
$$

with $C_{1}=2(C+1)$. Conversely, if both (1.4) and

$$
\begin{equation*}
\forall a \in A, \quad \mathrm{~B}\left(a ; \frac{\kappa}{4 C_{0}} \operatorname{dist}(a, \partial X)\right) \text { is } C_{2} \text {-uniform } \tag{1.5}
\end{equation*}
$$

hold, then Ω is C-uniform with $C=C\left(C_{0}, C_{1}, C_{2}, \kappa\right)$.
A special case of Theorem C , with $\kappa=1 / 2$ and $A \subset X$ a countable subset of a Banach space ${ }^{2}$ uniform domain X, was proved in [HVW17]. Theorems B and C were established in the Euclidean setting in [Her89]; see also [Her87].

We can replace (1.3) by the (a priori stronger, but here equivalent) condition that for some positive constant v,

$$
\forall a \neq b \text { in } A, \quad|a-b| \geq v \operatorname{dist}(a, \partial X) .
$$

The condition (1.5) can be relaxed, e.g., to asking that there exist an $\varepsilon \in\left(0, \kappa / 4 C_{0}\right]$ such that for each $a \in A$ there is a C_{2}-uniform ball $\mathrm{B}\left(a ; r_{a}\right)$ with $r_{a} / \operatorname{dist}(a, \partial X) \in$ $\left[\varepsilon, \kappa / 4 C_{0}\right]$.

Our results inspire some natural questions.
(A) When is a metric space annular quasiconvex?
(B) What properties of a metric space ensure that its balls are uniform spaces?
(C) Which properties of Euclidean uniformly collared spaces (e.g., see [HK91]) have metric space analogs?
Theorems A, B, C are established in $\S \S 3 . \mathrm{A}, 3 . \mathrm{B}, 3 . \mathrm{C}$ respectively.

[^0]
2. Metric space definitions

Our notation is relatively standard. We write $C=C(D, \ldots)$ to indicate a constant C that depends only on the data D, \ldots. For real numbers r and s,

$$
r \wedge s:=\min \{r, s\} \quad \text { and } \quad r \vee s:=\max \{r, s\} .
$$

2.A. Metric space notation and terminology. Throughout this section X is an arbitrary metric space with distance denoted $|x-y|$; this is not meant to imply that X possesses any sort of linear or group structure. In this setting, all topological notions refer to the metric topology; here $\mathrm{cl}(A), \operatorname{bd}(A), \operatorname{int}(A)$ are the topological closure, boundary, interior (respectively) of $A \subset X$.

The open ball, sphere, closed ball of radius r centered at the point $a \in X$ are

$$
\begin{aligned}
\mathrm{B}(a ; r) & :=\{x:|x-a|<r\}, \quad \mathrm{S}(a ; r):=\{x:|x-a|=r\}, \\
\mathrm{B}[a ; r] & :=\mathrm{B}(a ; r) \cup \mathrm{S}(a ; r) .
\end{aligned}
$$

The closed annular ring centered at a with inner radius r and outer radius s is

$$
\mathrm{A}[a ; r, s]:=\mathrm{B}[a ; s] \backslash \mathrm{B}(a ; r)=\{x: r \leq|x-a| \leq s\} .
$$

Recall that every metric space can be isometrically embedded into a complete metric space. We let \bar{X} denote the metric completion of the metric space X; thus \bar{X} is the closure of the image of X under such an isometric embedding. We call $\partial X:=\bar{X} \backslash X$ the metric boundary of X. When X is non-complete, $\delta(x)=\delta_{X}(x):=$ $\operatorname{dist}(x, \partial X)$ is the distance from a point $x \in X$ to the boundary ∂X of X. Note that ∂X is closed in \bar{X} if and only if $\delta(x)>0$ for all $x \in X$; e.g., this holds when X is locally compact.

When $A \subset X$, there is a natural embedding $\bar{A} \hookrightarrow \bar{X}$ and $\operatorname{bd}(A) \subset \partial A$. Here if $A \subset X$ is open and X complete, then $\partial A=\operatorname{bd}(A)$, but in general $\bar{A}=\overline{\mathrm{cl}}(A)$ and $\partial A=\overline{\mathrm{bd}}(A) \backslash A$ where $\overline{\mathrm{cl}}$ and $\overline{\mathrm{bd}}$ denote topological closure and boundary in \bar{X}

A metric space X is locally complete provided each point has an open neighborhood which is complete. When X is non-complete, this is equivalent to requiring that $\delta(x)>0$ for all $x \in X$, or, ∂X is closed in \bar{X}, or, X is open in \bar{X}.
2.A.1. Paths, arcs, \& length. A path in X is a continuous map $\mathrm{R} \supset I \xrightarrow{\gamma} X$ where $I=I_{\gamma}$ is an interval (called the parameter interval for γ) that may be closed or open or neither and finite or infinite. The trajectory of such a path γ is $|\gamma|:=\gamma(I)$ which we call a curve and often denote by just γ. When I is closed and $I \neq \mathrm{R}$, $\partial \gamma:=\gamma(\partial I)$ denotes the set of endpoints of γ and consists of one or two points depending on whether or not I is compact. For example, if $I_{\gamma}=[u, v] \subset \mathrm{R}$, then $\partial \gamma=\{\gamma(u), \gamma(v)\}$. When $\partial \gamma=\{a, b\}$, we write $\gamma: a \curvearrowright b($ in $X)$ to indicate that γ is a path (in X) with initial point a and terminal point b; this notation is meant to imply an orientation - a precedes b on γ.

We call γ a compact path if its parameter interval I is compact. An arc α is an injective compact path. Given points $a, b \in|\alpha|$, there are unique $u, v \in I$ with $\alpha(u)=a, \alpha(v)=b$ and we write $\alpha[a, b]:=\left.\alpha\right|_{[u, v]}$. We also use this notation for a general path γ, but here $\gamma[a, b]$ denotes the unique injective subpath of γ that joins a, b obtained by using the last time γ is at a up to the first time γ is at b.

When $\alpha: a \curvearrowright b$ and $\beta: b \curvearrowright c$ are paths that join a to b and b to c respectively, $\alpha \star \beta$ denotes the concatenation of α and β; so $\alpha \star \beta: a \curvearrowright c$. Of course, $|\alpha \star \beta|=|\alpha| \cup|\beta|$. Also, the reverse of γ is the path $\tilde{\gamma}$ defined by $\tilde{\gamma}(t):=\gamma(1-t)$ (when $I_{\gamma}=[0,1]$) and going from $\gamma(1)$ to $\gamma(0)$. Of course, $|\tilde{\gamma}|=|\gamma|$.

Every compact path contains an arc with the same endpoints; see [Väi94].
The length of a compact path $[0,1] \xrightarrow{\gamma} X$ is defined in the usual way by

$$
\ell(\gamma):=\sup \left\{\sum_{i=1}^{n}\left|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right| \mid 0=t_{0}<t_{1}<\cdots<t_{n}=1\right\}
$$

γ is rectifiable when $\ell(\gamma)<\infty$, and X is rectifiably connected provided each pair of points in X can be joined by a rectifiable path. Every rectifiable path can be parametrized with respect to its arclength [Väi71, p.5]. When γ is a rectifiable path, we tacitly assume its parameter interval is $I_{\gamma}=[0, \ell(\gamma)]$ unless specifically stated otherwise.

Every rectifiably connected metric space X admits a natural intrinsic distance, its so-called (inner) length distance given by

$$
l(a, b):=\inf \{\ell(\gamma) \mid \gamma: a \curvearrowright b \text { a rectifiable path in } X\} .
$$

A metric space $(X,|\cdot|)$ is a length space provided for all points $a, b \in X,|a-b|=$ $l(a, b)$; it is also common to call such a $|\cdot|$ an intrinsic distance function. Notice that an l-geodesic $[x, y]_{l}$ is a shortest curve joining x and y.

There are two useful properties of length spaces that we use repeatedly. First, for any open set U in a length space X, we always have $\operatorname{dist}(x, \operatorname{bd} U)=\operatorname{dist}(x, X \backslash U)$ for all points $x \in U$. Second, \bar{X} is also a length space. In fact, for all $x \in X, \xi \in \partial X, \varepsilon>0$ there is a path $\gamma: x \curvearrowright \xi$ in $X \cup\{\xi\}$ with $\ell(\gamma)<|x-\xi|+\varepsilon$.
2.A.2. Quasihyperbolic distance. Recall that X is a quasihyperbolic metric space if it is non-complete, locally complete, and rectifiably connected. In such a space, $\delta(x)=\delta_{X}(x):=\operatorname{dist}(x, \partial X)>0$ for all $x \in X$, so $\delta^{-1} d s$ is a conformal metric that we call the quasihyperbolic metric on X. The length distance induced by the quasihyperbolic metric $\delta^{-1} d s$ is dubbed the quasihyperbolic distance $k=k_{X}$ in X. In a locally compact quasihyperbolic space, this is a geodesic distance: there are always k-geodesics joining any two points in X.

The following basic estimates for quasihyperbolic distance were first established for Euclidean domains by Gehring and Palka [GP76, 2.1]. For all $a, b \in X$ and any rectifiable path $\gamma: a \curvearrowright b$ in X

$$
\begin{equation*}
k(a, b) \geq \log \left(1+\frac{l(a, b)}{\delta(a) \wedge \delta(b)}\right) \geq \log \left(1+\frac{|a-b|}{\delta(a) \wedge \delta(b)}\right) \geq\left|\log \frac{\delta(a)}{\delta(b)}\right| \tag{2.1a}
\end{equation*}
$$

which is a special case of the more general inequality

$$
\begin{equation*}
\ell_{k}(\gamma) \geq \log \left(1+\frac{\ell(\gamma)}{\operatorname{dist}(|\gamma|, \partial X)}\right) \tag{2.1b}
\end{equation*}
$$

2.B. Quasiconvex, annular quasiconvex, and uniform spaces. A rectifiable path $\gamma: a \curvearrowright b$ is C-quasiconvex, $C \geq 1$, if its length is at most C times the distance between its endpoints; i.e., if γ satisfies

$$
\ell(\gamma) \leq C|a-b| .
$$

A metric space is C-quasiconvex if each pair of points can be joined by a C-quasiconvex path. A 1-quasiconvex metric space is a geodesic space, and a space is a length space if and only if it is C-quasiconvex for all $C>1$. By cutting out loops, we can always replace a C-quasiconvex path with a C-quasiconvex arc having the same endpoints; see [Väi94].

The inequalities in (2.1a) yield the following 'local' estimates for quasihyperbolic distances.
2.2. Fact. Let X be a C-quasiconvex quasihyperbolic metric space. Then for all $x, a \in X$,

$$
k(x, a) \leq 1 \text { or } \frac{|x-a|}{\delta(a)} \leq \frac{1}{2 C} \Longrightarrow \frac{1}{2} \frac{|x-a|}{\delta(a)} \leq k(x, a) \leq 2 C \frac{|x-a|}{\delta(a)} .
$$

2.B.1. Annular quasiconvexity. A metric space X is C-annular quasiconvex at $p \in X$ provided it is connected and for all $r>0$, points in $\mathrm{A}[p ; r, 2 r]$ can be joined by C-quasiconvex paths lying in $\mathrm{A}[p ; r / C, 2 C r]$. We call $X C$-annular quasiconvex if it is C-annular quasiconvex at each point. Examples of quasiconvex and annular quasiconvex metric spaces include Banach spaces and upper regular Loewner spaces; the latter includes Carnot groups and certain Riemannian manifolds with non-negative Ricci curvature; see [HK98, 3.13,3.18, Section 6]. Korte [Kor07] proved that doubling metric measure spaces that support a $(1, p)$-Poincaré inequality with sufficiently small p are annular quasiconvex.

To the best of our knowledge, the notion of annular quasiconvexity was introduced in [Kor07] and [BHX08]; it was an essential ingredient in [HSX08]. A similar concept was employed in [Mac10].
2.B.2. Uniformity. Roughly speaking, a metric space is uniform when points in it can be joined by paths that are not "too long" and "move away" from the region's boundary. More precisely, a quasihyperbolic metric space X is C-uniform (for some constant $C \geq 1$) provided each pair of points can be joined by a C-uniform arc. Here a rectifiable $\gamma: a \curvearrowright b$ is a C-uniform arc if and only if it is both a C-quasiconvex arc and a double C-cone arc; this latter condition means that

$$
\begin{equation*}
\forall x \in|\gamma|, \quad \ell(\gamma[x, a]) \wedge \ell(\gamma[x, b]) \leq C \delta(x) \tag{2.3}
\end{equation*}
$$

Double cone arcs are often called cigar arcs. In [Väi88] Väisälä provides a description of various possible double cone conditions (which he calls length cigars, diameter cigars, distance cigars, and Möbius cigars). The work [Mar80] of Martio should also be mentioned.

To simplify an argument, we prevail upon the following characterization for uniform spaces established in [Her11, Prop. C].
2.4. Fact. A quasihyperbolic metric space is uniform if and only if it is plump and proximate points can be joined by uniform arcs. More precisely, if X is C-plump and $3 C$-proximate points can be joined by B-uniform arcs, then X is $18 B^{2} C$-uniform; conversely, if X is C-uniform, then it is $4 C$-plump.

Two points x, y are C-proximate, for some constant $C>0$, if $|x-y| \leq C[\delta(x) \wedge$ $\delta(y)]$. If this holds, then also $(C+1)^{-1} \leq \delta(x) / \delta(y) \leq C+1$. A non-complete locally complete metric space U is C-plump, $C \geq 1$, provided for each $x \in U$ and all $r \in(0, \operatorname{diam} U)$

$$
\begin{equation*}
\exists z \in \mathrm{~B}[x ; r] \text { with } \operatorname{dist}(z, \partial U) \geq r / C \tag{2.5}
\end{equation*}
$$

This terminology was introduced by Väisälä in [Väi88] and perhaps is understood best when U is an open subspace of a length space X, for then (2.5) asserts that $\operatorname{dist}(z, X \backslash U) \geq r / C$, so the ball $\mathrm{B}(z ; r / C)$, in X, is contained in U.

3. Proofs

Here we establish Theorems A, B, C as stated in the Introduction. In each of these, X is a given quasihyperbolic metric space.
3.A. Proof of Theorem A. Recall that $o \in X$ and $X_{\star}:=X \backslash\{o\}$. We let δ_{\star} denote distance to ∂X_{\star}, so $\delta_{\star}(x):=|x| \wedge \delta(x)$ where $|x|:=|x-o|$.

To utilize Fact 2.4, we first verify the following.
3.1. Lemma. Suppose X is C-uniform. Then $X_{\star}:=X \backslash\{o\}$ is $12 C$-plump.

Proof. Let $a \in X_{\star}$ and $r \in\left(0, \operatorname{diam} X_{\star}\right)$. We seek a point $z \in \mathrm{~B}[a ; r]$ with $\delta_{\star}(z) \geq r / 12 C$.

Pick $b \in X_{\star}$ with $|a-b| \geq \frac{1}{2} \operatorname{diam}\left(X_{\star}\right)$. Let $\gamma: a \curvearrowright b$ be a C-uniform arc in X. Let z_{0} be the arclength midpoint of γ. Then

$$
\delta\left(z_{0}\right) \geq \frac{\ell(\gamma)}{2 C} \geq \frac{|a-b|}{2 C} \geq \frac{r}{4 C} .
$$

Assume $\left|z_{0}-a\right| \leq r / 2$. If $\left|z_{0}\right| \geq r / 12 C$, then z_{0} is the sought after point. Suppose $\left|z_{0}\right|<r / 12 C$. By examining paths from z_{0} to ∂X, we obtain a point $z_{1} \in \mathrm{~S}\left(z_{0} ; r / 6 C\right)$. It follows that $\delta_{\star}\left(z_{1}\right) \geq r / 12 C$, and that

$$
\left|z_{1}-a\right| \leq\left|z_{1}-z_{0}\right|+\left|z_{0}-a\right| \leq \frac{r}{6 C}+\frac{r}{2} \leq r
$$

so z_{1} is the sought after point.
Assume $\left|z_{0}-a\right|>r / 2$. Pick $z_{2} \in \gamma\left[z_{0}, a\right] \cap \mathrm{S}(a ; r / 2)$. Then $\delta\left(z_{2}\right) \geq r / 2 C$. Thus if $\left|z_{2}\right| \geq r / 6 C$, then z_{2} is the sought after point. Suppose $\left|z_{2}\right|<r / 6 C$. By examining paths from z_{2} to ∂X, we obtain a point $z_{3} \in \mathrm{~S}\left(z_{2} ; r / 3 C\right)$. It follows that $\delta_{\star}\left(z_{3}\right) \geq r / 6 C$, and that

$$
\left|z_{3}-a\right| \leq\left|z_{3}-z_{2}\right|+\left|z_{2}-a\right|=\frac{r}{3 C}+\frac{r}{2} \leq r
$$

so z_{3} is the sought after point.
Now we establish Theorem A. When X_{\star} is C_{\star}-uniform, it is not hard to check that X is C-uniform for any $C>C_{\star}$ (this also follows from Theorem C) and the proof of $(\mathrm{c}) \Longrightarrow$ (a) in [Her11, Prop. 2.3] shows that X is $2\left(C_{\star}+1\right)$-annular quasiconvex at o.

For the converse, assume X is C-uniform and C_{1}-annular quasiconvex at o. By Lemma 3.1 we know that X_{\star} is $12 C$-plump, so it suffices to show that there is a constant B such that $36 C$-proximate points in X_{\star} can be joined by B-uniform arcs; then Fact 2.4 asserts that X_{\star} is C_{\star}-uniform with $C_{\star}=216 B^{2} C$.

Let $a, b \in X_{\star}$ be $36 C$-proximate; so, $|a-b| \leq 36 C\left(\delta_{\star}(a) \wedge \delta_{\star}(b)\right)$. By relabeling, if necessary, we may assume $|a| \leq|b|$. Now $|a-b| \leq 36 C|a|$. Let $\gamma_{o}: a \curvearrowright b$ be a C-uniform arc in X. Put $R:=|a| / 10 C C_{1}$. Then $\ell\left(\gamma_{o}\right) \leq C|a-b| \leq 36 C^{2}|a|$, so

$$
R \geq\left(180 C^{3} C_{1}\right)^{-1} \frac{\ell\left(\gamma_{o}\right)}{2}
$$

As $|b| \geq|a|,\{a, b\} \cap \mathrm{B}(o ;|a|)=\emptyset$. Suppose $\gamma_{o} \cap \mathrm{~B}(o ; R)=\emptyset$. Then for each $x \in \gamma_{o},|x| \geq R$ and we readily deduce that γ_{o} is a $180 C^{3} C_{1}$-uniform arc in X_{\star}.

Assume $\gamma_{o} \cap \mathrm{~B}(o ; R) \neq \emptyset$. Let a_{o}, b_{o} be the first, last points (respectively) of γ_{o} in $\mathrm{S}(o ; R)$. Put $\gamma:=\alpha \star \sigma \star \beta$ where $\alpha:=\gamma_{o}\left[a, a_{o}\right], \beta:=\gamma_{o}\left[b_{o}, b\right]$ and where $\sigma: a_{o} \curvearrowright b_{o}$ is a C_{1}-quasiconvex arc in $\mathrm{A}\left[o ; R / 2 C_{1}, C_{1} R\right]$.

Note that as α, β both join the spheres $\mathrm{S}(o ; R), \mathrm{S}(o ;|a|)$, they each have length at least $|a|-R=\left(10 C C_{1}-1\right) R \geq 9 C C_{1} R$. It follows that $\delta\left(a_{o}\right) \vee \delta\left(b_{o}\right) \geq 9 C_{1} R$.

Evidently, $\ell(\gamma) \leq C_{1} \ell\left(\gamma_{o}\right) \leq C C_{1}|a-b|$, so to verify that γ is a uniform arc it remains to corroborate the double cone arc condition. To begin, let $x \in \sigma$. Then

$$
|x| \geq \frac{R}{2 C_{1}} \geq\left(360 C^{3} C_{1}^{2}\right)^{-1} \frac{\ell\left(\gamma_{o}\right)}{2} \geq\left(360 C^{3} C_{1}^{3}\right)^{-1} \frac{\ell(\gamma)}{2}
$$

Also,

$$
9 C_{1} R \leq \delta\left(a_{o}\right) \leq \delta(o)+\left|a_{o}\right|=\delta(o)+R
$$

so

$$
\delta(x) \geq \delta(o)-C_{1} R \geq\left(30 C^{3} C_{1}\right)^{-1} \frac{\ell(\gamma)}{2}
$$

and we see that the double cone condition holds for points in σ with constant $360 C^{3} C_{1}^{3}$.

It remains to examine points $x \in \alpha \cup \beta$. Evidently, $|x| \geq R \geq\left(180 C^{3} C_{1}^{2}\right)^{-1} \ell(\gamma) / 2$. Let z_{o} be the arclength midpoint of γ_{o}; so, z_{o} lies in α or β or $\gamma_{o} \backslash(\alpha \cup \beta)$. If z_{o} lies in $\gamma_{o} \backslash(\alpha \cup \beta)$, then α, β are both "short subarcs of γ_{o} " and we readily see that

$$
x \in \alpha \Longrightarrow \ell(\gamma[x, a])=\ell\left(\gamma_{o}[x, a]\right) \leq C \delta(x)
$$

and

$$
x \in \beta \Longrightarrow \ell(\gamma[x, b])=\ell\left(\gamma_{o}[x, b]\right) \leq C \delta(x)
$$

and thus the double cone condition holds.
Suppose $z_{o} \in \beta$. Here α is again a "short subarc" and we precede exactly as above for points $x \in \alpha$. Assume $x \in \beta$. When $x \in \beta\left[z_{o}, b\right]=\gamma_{o}\left[z_{o}, b\right]$ we can-again-precede as above. So, assume $x \in \beta\left[b_{o}, z_{o}\right]$. Here

$$
\delta(x) \geq \frac{\ell\left(\gamma_{o}[x, a]\right)}{C} \geq \frac{\ell(\alpha)}{C} \geq 9 C_{1} R \geq\left(20 C^{3} C_{1}\right)^{-1} \frac{\ell(\gamma)}{2} .
$$

Thus the double cone condition holds for points in $\alpha \cup \beta$ with constant $180 C^{3} C_{1}^{2}$. It now follows that γ is a B-uniform arc with $B:=360 C^{3} C_{1}^{3}$.
3.B. Proof of Theorem B. Here we assume Ω is a uniformly collared subspace of a C_{0}-uniform space X with C_{1}-uniform Φ-fat ${ }^{3}$ collars as described in the Introduction. Also, since the associated hypotheses and conclusions are all bi-Lipschitz invariant, we may and do assume that X is a length space.

To join points, we start with a uniform arc in X. If this arc gets near some B_{i}, we replace (by "cutting and pasting") an appropriate subarc with a uniform arc in Ω_{i}.

Before immersing ourselves in the details, we discuss some basic immediate properties. First, since the open sets U_{i} are disjointed, each B_{i} is closed and, e.g., $\mathrm{bd}(B)=\cup_{i} \mathrm{bd}\left(B_{i}\right)$. Also, while $\partial B \subset \partial X$ may be empty or non-empty, for each i,

$$
d_{i}:=\operatorname{dist}\left(B_{i}, \partial X\right)>0
$$

It's not difficult to check that $\Omega_{i}:=\Omega \cap U_{i}=U_{i} \backslash B_{i}$, and that $\operatorname{bd}\left(\Omega_{i}\right)=\operatorname{bd}\left(B_{i}\right) \cup \mathrm{bd}\left(U_{i}\right)$ and this is a disjoint union.

Next, as Ω is open in X and X is open in \bar{X}, we (eventually) see that

$$
\partial \Omega=\mathrm{bd}(B) \cup \partial X \quad \text { (and this is a disjoint union })
$$

[^1]from which we deduce that for each $x \in \Omega$,
$$
\operatorname{dist}(x, \partial \Omega)=\operatorname{dist}(x, B) \wedge \operatorname{dist}(x, \partial X)=\inf _{i} \operatorname{dist}\left(x, B_{i}\right) \wedge \operatorname{dist}(x, \partial X)
$$

It also follows that for each $x \in \Omega$:

$$
\begin{align*}
& \text { If } \exists i \text { with } \operatorname{dist}\left(x, B_{i}\right) \leq d_{i} / 2 \text {, then } \operatorname{dist}(x, \partial \Omega)=\operatorname{dist}(x, B) . \tag{3.2a}\\
& \text { If } \exists i \text { with } \operatorname{dist}\left(x, B_{i}\right) \leq d_{i} / 2 \Phi \text {, then } \operatorname{dist}(x, \partial \Omega)=\operatorname{dist}\left(x, B_{i}\right) . \tag{3.2b}\\
& \text { If } x \in \Omega_{i} \text {, then } \operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}\left(x, \partial \Omega_{i}\right) . \tag{3.2c}
\end{align*}
$$

Now define

$$
A_{i}:=\left\{x \in X \backslash B_{i} \left\lvert\, \operatorname{dist}\left(x, B_{i}\right)<\frac{d_{i}}{10 \Phi}\right.\right\} \quad \text { and } \quad A:=\bigcup_{i} A_{i} .
$$

From (3.2b) we see that

$$
x \in \operatorname{cl}\left(A_{i}\right) \Longrightarrow \operatorname{dist}(x, \partial \Omega)=\operatorname{dist}\left(x, B_{i}\right)
$$

and similarly

$$
\operatorname{dist}(x, \partial \Omega)=\operatorname{dist}(x, \partial X) \Longrightarrow x \notin \operatorname{cl}(A)
$$

Let $a, b \in \Omega$ and let $\gamma_{o}: a \curvearrowright b$ be a C_{0}-uniform arc in X. Suppose $\gamma_{o} \cap A=\emptyset$. Let $x \in \gamma_{o}$. Then for all i,

$$
\begin{aligned}
\operatorname{dist}(x, \partial X) & \leq \operatorname{dist}\left(x, B_{i}\right)+\operatorname{diam}\left(B_{i}\right)+\operatorname{dist}\left(B_{i}, \partial X\right) \leq \operatorname{dist}\left(x, B_{i}\right)+(\Phi+1) d_{i} \\
& \leq(10 \Phi(\Phi+1)+1) \operatorname{dist}\left(x, B_{i}\right) \leq 20 \Phi^{2} \operatorname{dist}\left(x, B_{i}\right)
\end{aligned}
$$

so $\operatorname{dist}(x, \partial \Omega) \geq\left(20 \Phi^{2}\right)^{-1} \operatorname{dist}(x, \partial X)$ and we deduce that γ_{o} is a $20 C_{0} \Phi^{2}$-uniform arc in Ω.

Suppose $\gamma_{o} \cap A \neq \emptyset$ and, for a moment, assume $\{a, b\} \cap A=\emptyset$. Let J denote the set of all indeces i with $\gamma_{o} \cap A_{i} \neq \emptyset$. For each $j \in J$: let a_{j}, b_{j} be the first, last points of γ_{o} in $\operatorname{bd}\left(A_{j}\right)$; let $\sigma_{j}: a_{j} \curvearrowright b_{j}$ be a C_{1}-uniform arc in Ω_{j}; and, replace each subarc $\gamma_{o}\left[a_{j}, b_{j}\right]$ with the corresponding σ_{j}.

If $a \in A$, say $a \in A_{i_{o}}$: let $a_{i_{o}}$ be the last point of γ_{o} in $\operatorname{bd}\left(A_{i_{o}}\right)$; let $\alpha: a \curvearrowright a_{i_{o}}$ be a C_{1}-uniform arc in $\Omega_{i_{o}}$; and, replace the subarc $\gamma_{o}\left[a, a_{i_{o}}\right]$ with α. Similarly, if $b \in A_{j_{o}}$, we get a C_{1}-uniform $\beta: b_{j_{o}} \curvearrowright b$ in $\Omega_{j_{o}}$ that replaces $\gamma_{o}\left[b_{j_{o}}, b\right]$, where $b_{j_{o}}$ is the first point of γ_{o} in $\operatorname{bd}\left(A_{j_{o}}\right)$.

We now have an arc $\gamma: a \curvearrowright b$ in Ω that has been obtained by replacing certain subarcs of γ_{o} with appropriate subarcs σ_{j} or α or β. As each of these new subarcs is C_{1}-quasiconvex, we see that

$$
\ell(\gamma) \leq C_{1} \ell\left(\gamma_{o}\right) \leq C_{0} C_{1}|a-b|,
$$

so γ is a $C_{0} C_{1}$-quasiconvex arc. It remains to verify the double cone condition.
Let $x \in \gamma$. Suppose $x \notin \alpha \cup \beta \cup \bigcup_{j} \sigma_{j}$. As above, where $\gamma_{o} \cap A=\emptyset$, we again see that $\operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}(x, \partial X) / 20 \Phi^{2}$ and the double cone condition holds with $C=20 C_{0} C_{1} \Phi^{2}$.

Suppose $x \in \alpha$. If $\ell(\gamma[x, a])=\ell(\alpha[x, a]) \leq \ell\left(\alpha\left[x, a_{o}\right]\right)$, then $\operatorname{dist}(x, \partial \Omega) \geq$ $\operatorname{dist}\left(x, \partial \Omega_{i_{o}}\right) \geq C_{1}^{-1} \ell(\gamma[x, a])$ and the double cone condition holds with constant $C=C_{1}$.

Assume $\ell(\alpha[x, a])>\ell\left(\alpha\left[x, a_{o}\right]\right)$. Now

$$
\begin{aligned}
\ell(\gamma[x, a]) & =\ell(\alpha[x, a]) \leq \ell(\alpha) \leq C_{1}\left|a-a_{o}\right| \\
& \leq C_{1}\left(\operatorname{dist}\left(a, B_{i_{o}}\right)+\operatorname{diam}\left(B_{i_{o}}\right)+\operatorname{dist}\left(a_{o}, B_{i_{o}}\right)\right) \\
& \leq C_{1}(\Phi+1) d_{i_{o}} \leq 2 C_{1} \Phi d_{i_{o}} .
\end{aligned}
$$

If $\ell\left(\alpha\left[x, a_{o}\right]\right) \geq d_{i_{o}} / 20 \Phi$, then

$$
\operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}\left(x, \partial \Omega_{i_{o}}\right) \geq C_{1}^{-1} \ell\left(\alpha\left[x, a_{o}\right]\right) \geq \frac{d_{i_{o}}}{20 C_{1} \Phi} \geq \frac{\ell(\gamma[x, a])}{40 C_{1}^{2} \Phi^{2}}
$$

On the other hand, if $\ell\left(\alpha\left[x, a_{o}\right]\right)<d_{i_{o}} / 20 \Phi$, then

$$
\begin{aligned}
\frac{d_{i_{o}}}{10 \Phi} & =\operatorname{dist}\left(a_{o}, B_{i_{o}}\right)=\operatorname{dist}\left(a_{o}, \partial \Omega\right) \leq\left|x-a_{o}\right|+\operatorname{dist}(x, \partial \Omega) \\
& \leq \ell\left(\alpha\left[x, a_{o}\right]\right)+\operatorname{dist}(x, \partial \Omega)
\end{aligned}
$$

and so now

$$
\operatorname{dist}(x, \partial \Omega) \geq \frac{d_{i_{o}}}{20 \Phi} \geq \frac{\ell(\gamma[x, a])}{40 C_{1} \Phi^{2}}
$$

Thus in all cases, when $x \in \alpha$, the double cone condition holds with constant $C=$ $40 C_{1}^{2} \Phi^{2}$.

A similar argument applies if $x \in \beta$.
Finally, suppose $x \in \sigma_{j}$ for some $j \in J$. We demonstrate that

$$
\ell(\gamma[x, a]) \wedge \ell(\gamma[x, b]) \leq 3 C_{0} C_{1} \Phi d_{j} \quad \text { and } \quad d_{j} \leq 20 C_{1} \Phi \operatorname{dist}(x, \partial \Omega)
$$

which gives the double cone condition with constant $C=60 C_{0} C_{1}^{2} \Phi^{2}$.
First, if

$$
\ell\left(\sigma_{j}\left[x, a_{j}\right]\right) \wedge \ell\left(\sigma_{j}\left[x, b_{j}\right]\right) \geq \frac{d_{j}}{20 \Phi},
$$

then $\operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}\left(x, \partial \Omega_{j}\right) \geq d_{j} / 20 C_{1} \Phi$. Suppose

$$
\ell\left(\sigma_{j}[x, z]\right)<\frac{d_{j}}{20 \Phi} \quad \text { for some } z \in\left\{a_{j}, b_{j}\right\}
$$

Then

$$
\frac{d_{j}}{10 \Phi}=\operatorname{dist}\left(z, B_{j}\right)=\operatorname{dist}(z, \partial \Omega) \leq|x-z|+\operatorname{dist}(x, \partial \Omega) \leq \ell\left(\sigma_{j}[x, z]\right)+\operatorname{dist}(x, \partial \Omega)
$$

whence again $\operatorname{dist}(x, \partial \Omega) \geq d_{j} / 20 C_{1} \Phi$.
Next, $\ell(\gamma[x, a]) \leq \ell\left(\sigma_{j}\right)+\ell\left(\gamma\left[a_{j}, a\right]\right)$ and $\ell(\gamma[x, b]) \leq \ell\left(\sigma_{j}\right)+\ell\left(\gamma\left[b_{j}, b\right]\right)$, so

$$
\begin{aligned}
\ell(\gamma[x, a]) \wedge \ell(\gamma[x, b]) & \leq \ell\left(\sigma_{j}\right)+\ell\left(\gamma\left[a_{j}, a\right]\right) \wedge \ell\left(\gamma\left[b_{j}, b\right]\right) \\
& \leq \ell\left(\sigma_{j}\right)+C_{1}\left(\ell\left(\gamma_{o}\left[a_{j}, a\right]\right) \wedge \ell\left(\gamma_{o}\left[b_{j}, b\right]\right)\right) .
\end{aligned}
$$

Now

$$
\ell\left(\sigma_{j}\right) \leq C_{1}\left|a_{j}-b_{j}\right| \leq C_{1}\left(\operatorname{dist}\left(a_{j}, B_{j}\right)+\operatorname{diam}\left(B_{j}\right)+\operatorname{dist}\left(b_{j}, B_{j}\right)\right) \leq C_{1}\left(\Phi+\frac{1}{5 \Phi}\right) d_{j}
$$

Also, for $z \in\left\{a_{j}, b_{j}\right\}$,

$$
\operatorname{dist}(z, \partial X) \leq \operatorname{dist}\left(z, B_{j}\right)+\operatorname{diam}\left(B_{j}\right)+\operatorname{dist}\left(B_{j}, \partial X\right) \leq\left(\Phi+1+\frac{1}{10 \Phi}\right) d_{j} .
$$

If $\ell\left(\gamma_{o}\left[a_{j}, a\right]\right) \leq \ell\left(\gamma_{o}\left[b_{j}, b\right]\right)$, then

$$
\ell\left(\gamma_{o}\left[a_{j}, a\right]\right)=\ell\left(\gamma_{o}\left[a_{j}, a\right]\right) \wedge \ell\left(\gamma_{o}\left[a_{j}, b\right]\right) \leq C_{0} \operatorname{dist}\left(a_{j}, \partial X\right)
$$

and similarly if $\ell\left(\gamma_{o}\left[b_{j}, b\right]\right) \leq \ell\left(\gamma_{o}\left[a_{j}, a\right]\right)$, then

$$
\ell\left(\gamma_{o}\left[b_{j}, b\right]\right)=\ell\left(\gamma_{o}\left[b_{j}, a\right]\right) \wedge \ell\left(\gamma_{o}\left[b_{j}, b\right]\right) \leq C_{0} \operatorname{dist}\left(b_{j}, \partial X\right) .
$$

Therefore

$$
\ell\left(\gamma_{o}\left[a_{j}, a\right]\right) \wedge \ell\left(\gamma_{o}\left[b_{j}, b\right]\right) \leq C_{0}\left(\Phi+1+\frac{1}{10 \Phi}\right) d_{j} .
$$

It now follows that

$$
\ell(\gamma[x, a]) \wedge \ell(\gamma[x, b]) \leq C_{1}\left(\Phi+\frac{1}{5 \Phi}\right) d_{j}+C_{0} C_{1}\left(\Phi+1+\frac{1}{10 \Phi}\right) d_{j} \leq 3 C_{0} C_{1} \Phi d_{j}
$$

Examining all our various constants we see that $\gamma: a \curvearrowright b$ is a $C_{0} C_{1}$-quasiconvex double $60 C_{0} C_{1}^{2} \Phi^{2}$-cone arc in Ω.
3.C. Proof of Theorem C. Here $\Omega=X \backslash A$ and (1.3) holds for some constant $\kappa \in(0,1)$.

First, suppose Ω is C-uniform. The proof of $(\mathrm{c}) \Longrightarrow(\mathrm{a})$ in [Her11, Prop. 2.3] shows that X is $2(C+1)$-annular quasiconvex at all points $a \in A$. Let $\varepsilon \in(0,1)$. We verify that X is $(C+\varepsilon)$-uniform.

Since $A \subset \partial \Omega, X=\Omega \cup A$ is C^{\prime}-quasiconvex for any $C^{\prime}>C$ which permits use of Fact 2.2.

Let $a, b \in X$. Since we can join points in Ω with C-uniform arcs, we may assume $a, b \in A$; the case where one point lies in A and one in Ω is similar and easier. We select $a_{o}, b_{o} \in \Omega$ sufficiently near a, b, pick quasiconvex $\operatorname{arcs} \alpha: a \curvearrowright a_{o}, \beta: b_{o} \curvearrowright b$ and a uniform arc $\gamma_{o}: a_{o} \curvearrowright b_{o}$ in Ω, and then check that $\gamma:=\alpha \star \gamma_{o} \star \beta$ is $(C+\varepsilon)$-uniform.

For each $a \in A$, set $\rho_{a}:=v \delta(a)$ where $v:=\kappa / 10 C$. Employing (1.3) in conjunction with Fact 2.2 we see that that the balls $\mathrm{B}\left(a ; \rho_{a}\right)$, with $a \in A$, are disjointed.

Fix points $a_{o} \in \mathrm{~B}\left(a ; \varepsilon \rho_{a} / 10 C^{2}\right), b_{o} \in \mathrm{~B}\left(b ; \varepsilon \rho_{b} / 10 C^{2}\right)$ and let $\alpha: a \curvearrowright a_{o}, \beta: b_{o} \curvearrowright b$ be $(C+\varepsilon)$-quasiconvex arcs. Note that

$$
\ell(\alpha) \leq(C+\varepsilon)\left|a-a_{o}\right| \leq \frac{C+\varepsilon}{10 C^{2}} \varepsilon \rho_{a} \leq \frac{\varepsilon}{5 C} \rho_{a}
$$

and similarly $\ell(\beta) \leq \varepsilon \rho_{b} / 5 C$.
Let $\gamma_{o}: a_{o} \curvearrowright b_{o}$ be a C-uniform arc in Ω. Put $\gamma:=\alpha \star \gamma_{o} \star \beta$; then $\gamma: a \curvearrowright b$ in $\Omega \cup\{a, b\}$. Since $|a-b| \geq \rho_{a}+\rho_{b}$ and $\left|a_{o}-b_{o}\right| \leq\left|a-a_{o}\right|+|a-b|+\left|b-b_{o}\right|$, we see that

$$
\begin{aligned}
\ell(\gamma) & \leq(C+\varepsilon)\left(\left|a-a_{o}\right|+\left|b-b_{o}\right|\right)+C\left|a_{o}-b_{o}\right| \\
& \leq(2 C+\varepsilon)\left(\left|a-a_{o}\right|+\left|b-b_{o}\right|\right)+C|a-b| \\
& \leq \varepsilon \frac{2 C+\varepsilon}{10 C^{2}}\left(\rho_{a}+\rho_{b}\right)+C|a-b| \\
& \leq(C+\varepsilon)|a-b|
\end{aligned}
$$

and so γ is $(C+\varepsilon)$-quasiconvex.
To establish the double cone condition, let $x \in \gamma$, and let z_{o} be the arclength midpoint of γ_{o}. If $x \in \alpha$, it is not difficult to check that $\delta(x) \geq \ell(\alpha) \geq \ell(\gamma([x, a])$;
similarly for $x \in \beta$. Assume $x \in \gamma_{o}$, say $x \in \gamma_{o}\left[a_{o}, z_{o}\right]$. Here

$$
\delta(x) \geq \operatorname{dist}(x, \partial \Omega) \geq C^{-1} \ell\left(\gamma_{o}\left[x, a_{o}\right]\right)
$$

If $\ell\left(\gamma_{o}\left[x, a_{o}\right]\right) \geq \rho_{a} / 5$, then $\ell(\alpha) \leq(C / \varepsilon) \ell\left(\gamma_{o}\left[x, a_{o}\right]\right)$, so

$$
\ell(\gamma[x, a])=\ell\left(\gamma_{o}\left[x, a_{o}\right]\right)+\ell(\alpha) \leq\left(1+\frac{C}{\varepsilon}\right) \ell\left(\gamma_{o}\left[x, a_{o}\right]\right) \leq(C+\varepsilon) \delta(x)
$$

Finally, if $\ell\left(\gamma_{o}\left[x, a_{o}\right]\right) \leq \rho_{a} / 5$, then

$$
|x-a| \leq \frac{\rho_{a}}{5}+\frac{\varepsilon \rho_{a}}{10 C^{2}} \leq \frac{2 C^{2}+\varepsilon}{10 C^{2}} v \delta(a) \leq \frac{3 v}{10} \delta(a)
$$

so

$$
\delta(x) \geq\left(1-\frac{3 v}{10}\right) \delta(a)
$$

whence

$$
\ell(\gamma[x, a]) \leq \frac{\rho_{a}}{5}+\frac{\varepsilon \rho_{a}}{5 C}=\frac{C+\varepsilon}{5 C} v \delta(a) \leq \frac{C+\varepsilon}{C} \frac{2 v}{10-3 v} \leq(1+\varepsilon) \delta(x)
$$

For the converse, suppose X is C_{0}-uniform and C_{1}-annular quasiconvex at each point of A. We show that $\Omega:=X \backslash A$ is uniformly collared with fat collars and appeal to Theorem B.

For each $a \in A$, set $\rho_{a}:=v_{0} \delta(a)$ where $v_{0}:=\kappa / 4 C_{0}$. Employing Fact 2.2 and (1.3) we see that the balls $\mathrm{B}\left(a ; \rho_{a}\right)$, with $a \in A$, are disjointed. By assumption, each $\mathrm{B}\left(a ; \rho_{a}\right)$ is C_{2}-uniform and X is C_{1}-annularly quasiconvex at a; by the proof of Theorem A, $\mathrm{B}_{\star}\left(a ; \rho_{a}\right):=\mathrm{B}\left(a ; \rho_{a}\right) \backslash\{a\}$ is C_{\star}-uniform. Since $A=X \backslash \Omega=\bigcup_{a \in A}\{a\}$ with $\{a\}=\{a\} \cap \mathrm{B}\left(a ; \rho_{a}\right)$, we see that Ω is uniformly collared. Evidently, the collars $\mathrm{B}_{\star}\left(a ; \rho_{a}\right)$ are Φ-fat with $\Phi:=1 / v_{0}=4 C_{0} / \kappa$.

References

[Aik04] Aikawa, H.: Potential-theoretic characterizations of nonsmooth domains. - Bull. London Math. Soc. 36:4, 2004, 469-482.
[Aik06] Aikawa, H.: Characterization of a uniform domain by the boundary Harnack principle. - In: Harmonic analysis and its applications, Yokohama Publ., Yokohama, 2006, 1-17.
[AH88] Astala, K., and J. Heinonen: On quasiconformal rigidity in space and plane. - Ann. Acad. Sci. Fenn. Ser. A I Math. 13, 1988, 81-92.
[BS07] Björn, J., and N. Shanmugalingam: Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces. - J. Math. Anal. Appl. 332:1, 2007, 190-208.
[BHK01] Bonk, M., J. Heinonen, and P. Koskela: Uniformizing Gromov hyperbolic spaces. Astérisque 270, 2001, 1-99.
[BHX08] Buckley, S. M., D. A. Herron, and X. Xie: Metric space inversions, quasihyperbolic distance and uniform spaces. - Indiana Univ. Math. J. 57:2, 2008, 837-890.
[CGN00] Capogna, L., N. Garofalo, and D.-M. Nhieu: Examples of uniform and NTA domains in Carnot groups. - In: Proceedings on Analysis and Geometry (Novosibirsk), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., 2000, (Novosibirsk Akad., 1999), 103-121.
[CT95] Capogna, L., and P. TANG: Uniform domains and quasiconformal mappings on the Heisenberg group. - Manuscripta Math. 86:3, 1995, 267-281.
[Geh87] Gehring, F. W.: Uniform domains and the ubiquitous quasidisk. - Jahresber. Deutsch. Math.-Verein 89, 1987, 88-103.
[GP76] Gehring, F. W., and B. P. Palka: Quasiconformally homogeneous domains. - J. Anal. Math. 30, 1976, 172-199.
[Gre01] Greshnov, A. V.: On uniform and NTA-domains on Carnot groups. - Sibirsk. Mat. Zh. 42:5, 2001, 1018-1035.
[HK98] Heinonen, J., and P. Koskela: Quasiconformal maps in metric spaces with controlled geometry. - Acta Math. 181, 1998, 1-61.
[Her87] Herron, D. A.: The geometry of uniform, quasicircle, and circle domains. - Ann. Acad. Sci. Fenn. Ser. A I Math. 12:1, 1987, 217-228.
[Her89] Herron, D. A.: Uniform domains: sufficient conditions. - Proceedings Rolf Nevanlinna Institute, 1989, 57-69.
[Her11] Herron, D. A.: Uniform metric spaces, annular quasiconvexity, and pointed tangent spaces. - Math. Scand. 108, 2011, 115-145.
[HK91] Herron, D. A., and P. Koskela: Uniform, Sobolev extension and quasiconformal circle domains. - J. Anal. Math. 57, 1991, 172-202.
[HSX08] Herron, D. A., N. Shanmugalingham, and X. Xie: Uniformity from Gromov hyperbolicity. - Illinois J. Math. 52:4, 2008, 1065-1109.
[HVW17] Huang, M., M. Vuorinen, and X. Wang: On removability properties of ψ-uniform domains in Banach spaces. - Complex Anal. Oper. Theory 11, 2017, 33-55.
[Jon81] Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. - Acta Math. 147, 1981, 71-88.
[Kor07] Korte, R.: Geometric implications of the Poincaré inequality. - Results Math. 50:1-2, 2007, 93-107.
[Mac10] Mackay, J.: Spaces with conformal dimension greater than one. - Duke Math. J. 153:2, 2010, 211-227.
[Mar80] Martio, O.: Definitions for uniform domains. - Ann. Acad. Sci. Fenn. Ser. A I Math. 5:1, 1980, 197-205.
[MS79] Martio, O., and J. Sarvas: Injectivity theorems in plane and space. - Ann. Acad. Sci. Fenn. Ser. A I Math. 4:2, 1978/79, 383-401.
[Väi71] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. - Lecture Notes in Math. 229, Springer-Verlag, Berlin, 1971.
[Väi88] VÄISÄLÄ, J.: Uniform domains. - Tôhoku Math. J. 40, 1988, 101-118.
[Väi94] VäIsÄlë, J.: Exhaustions of John domains. - Ann. Acad. Sci. Fenn. Math. 19, 1994, 47-57.

Received 30 March 2022 • Accepted 10 July 2022 • Published online 15 August 2022

David A. Herron

University of Cincinnati
Department of Mathematical Sciences
PO Box 210025, Cincinnati OH 45221-0025, USA
David.Herron@UC.edu

[^0]: ${ }^{1}$ There should be a single uniformity constant for the collars.
 ${ }^{2}$ Banach spaces are annular quasiconvex at each point and balls are 2-uniform.

[^1]: ${ }^{3}$ We assume $\Phi \geq 2$.

