Constructing uniform spaces

DAVID A. HERRON

Abstract. We exhibit geometric conditions that ensure a metric space is uniform.

Sisätieyhtenäisten avaruuksien rakentaminen

Tiivistelmä. Esitämme joukon geometrisia ehtoja, jotka takaavat metrisen avaruuden sisätieyhtenäisyyden.

1. Introduction

Throughout this section X is a rectifiably connected non-complete locally complete metric space. These are the minimal requirements for X to support a *quasihy*perbolic distance $k = k_X$, and we dub X a *quasihyperbolic metric space*; see Section 2 for precise definitions.

Roughly speaking, such an X is a *uniform metric space* provided each pair of points can be joined by a path that moves away from the boundary of X and whose length is comparable to the distance between the points. See §2.B for a precise definition.

The class of Euclidean uniform domains was introduced by Martio and Sarvas in [MS79] and has proven to be invaluable in geometric function theory, potential theory, geometric group theory, and especially for the "analysis in metric spaces" program; e.g., see [Geh87, Väi88, Jon81, Aik04, Aik06, BS07, CT95, CGN00, Gre01, BHK01, HSX08]. A finitely connected proper subdomain of the plane is uniform if and only if each boundary component is either a point or a quasicircle, but in general there are no such simple geometric criterion for uniformity.

Given their fundamental importance, it seems worthwhile to investigate two questions.

- When can we "poke holes" in a uniform space and still have a uniform space?
- + When can we "fill in" some boundary points of a unifom space and keep uniformity?

As a warm up, we have the following result, similar to [Her11, Prop. 2.3]. While surely not surprising to those well versed in uniform space theory, our discussion employs some tools that may not be well known. Again, see §2.B for definitions.

Theorem A. Let X be a quasihyperbolic metric space. Let $o \in X$ be a fixed point and put $X_* := X \setminus \{o\}$. If X_* is C_* -uniform, then for any $C > C_*$

(1.1) X is C-uniform and C₁-annular quasiconvex at o

where $C_1 = 2(C_* + 1)$. Conversely, if (1.1) holds, then X_* is C_* -uniform with $C_* = C_*(C, C_1)$.

https://doi.org/10.54330/afm.120938

²⁰²⁰ Mathematics Subject Classification: Primary 30L99; Secondary 51F99, 30C65, 30F45.

Key words: Uniform spaces, quasihyperbolic metric.

^{© 2022} The Finnish Mathematical Society

An open subspace Ω of X is uniformly collared provided X is uniform and there are disjointed open sets U_i such that

$$B := X \setminus \Omega = \bigcup_i B_i \quad \text{where } B_i := B \cap U_i$$

and such that each collar $\Omega_i := \Omega \cap U_i$ is a uniform space.¹ This terminology was introduced in the Euclidean setting by Astala and Heinonen in [AH88]; see also [HK91]. We say that Ω is uniformly collared with fat collars provided it is uniformly collared and there is a positive constant Φ such that

(1.2)
$$\frac{1}{\Phi} \operatorname{diam}(B_i) \le \operatorname{dist}(B_i, \partial X) \le \Phi \operatorname{dist}(B_i, \operatorname{bd} U_i).$$

Theorem B. Let Ω be an open subspace of a C_0 -uniform space X. Suppose Ω is uniformly collared with C_1 -uniform Φ -fat collars. Then Ω is C-uniform with $C = C(C_0, C_1, \Phi)$.

As an application of the above, we establish the following.

Theorem C. Let X be a quasihyperbolic metric space. Let $\Omega := X \setminus A$ where $A \subset X$. Assume there is a constant $\kappa \in (0, 1)$ such that

(1.3)
$$\forall a \neq b \text{ in } A, \quad k(a,b) \geq \kappa.$$

If Ω is C-uniform, then for any $C_0 > C$

(1.4) X is C_0 -uniform and C_1 -annular quasiconvex at each $a \in A$

with $C_1 = 2(C+1)$. Conversely, if both (1.4) and

(1.5)
$$\forall a \in A, \quad \mathsf{B}\left(a; \frac{\kappa}{4C_0} \operatorname{dist}(a, \partial X)\right) \text{ is } C_2\text{-uniform}$$

hold, then Ω is C-uniform with $C = C(C_0, C_1, C_2, \kappa)$.

A special case of Theorem C, with $\kappa = 1/2$ and $A \subset X$ a countable subset of a Banach space² uniform domain X, was proved in [HVW17]. Theorems B and C were established in the Euclidean setting in [Her89]; see also [Her87].

We can replace (1.3) by the (*a priori* stronger, but here equivalent) condition that for some positive constant v,

$$\forall a \neq b \text{ in } A, |a-b| \geq v \operatorname{\mathsf{dist}}(a, \partial X).$$

The condition (1.5) can be relaxed, e.g., to asking that there exist an $\varepsilon \in (0, \kappa/4C_0]$ such that for each $a \in A$ there is a C_2 -uniform ball $\mathsf{B}(a; r_a)$ with $r_a/\mathsf{dist}(a, \partial X) \in [\varepsilon, \kappa/4C_0]$.

Our results inspire some natural questions.

- (A) When is a metric space annular quasiconvex?
- (B) What properties of a metric space ensure that its balls are uniform spaces?
- (C) Which properties of Euclidean uniformly collared spaces (e.g., see [HK91]) have metric space analogs?

Theorems A, B, C are established in §§3.A, 3.B, 3.C respectively.

¹There should be a single uniformity constant for the collars.

²Banach spaces are annular quasiconvex at each point and balls are 2-uniform.

2. Metric space definitions

Our notation is relatively standard. We write C = C(D,...) to indicate a constant C that depends only on the data D,... For real numbers r and s,

$$r \wedge s := \min\{r, s\}$$
 and $r \vee s := \max\{r, s\}.$

2.A. Metric space notation and terminology. Throughout this section X is an arbitrary metric space with distance denoted |x - y|; this is not meant to imply that X possesses any sort of linear or group structure. In this setting, all topological notions refer to the metric topology; here cl(A), bd(A), int(A) are the topological closure, boundary, interior (respectively) of $A \subset X$.

The open ball, sphere, closed ball of radius r centered at the point $a \in X$ are

$$\begin{split} \mathsf{B}(a;r) &:= \{ \, x \colon \ | \, x - a | < r \, \} \,, \quad \mathsf{S}(a;r) := \{ \, x \colon \ | \, x - a | = r \, \} \,, \\ \mathsf{B}[a;r] &:= \mathsf{B}(a;r) \cup \mathsf{S}(a;r). \end{split}$$

The closed annular ring centered at a with inner radius r and outer radius s is

$$A[a; r, s] := B[a; s] \setminus B(a; r) = \{ x \colon r \le |x - a| \le s \}.$$

Recall that every metric space can be isometrically embedded into a complete metric space. We let \bar{X} denote the metric completion of the metric space X; thus \bar{X} is the closure of the image of X under such an isometric embedding. We call $\partial X := \bar{X} \setminus X$ the metric boundary of X. When X is non-complete, $\delta(x) = \delta_X(x) := \text{dist}(x, \partial X)$ is the distance from a point $x \in X$ to the boundary ∂X of X. Note that ∂X is closed in \bar{X} if and only if $\delta(x) > 0$ for all $x \in X$; e.g., this holds when X is locally compact.

When $A \subset X$, there is a natural embedding $\overline{A} \hookrightarrow \overline{X}$ and $\mathsf{bd}(A) \subset \partial A$. Here if $A \subset X$ is open and X complete, then $\partial A = \mathsf{bd}(A)$, but in general $\overline{A} = \overline{\mathsf{cl}}(A)$ and $\partial A = \overline{\mathsf{bd}}(A) \setminus A$ where $\overline{\mathsf{cl}}$ and $\overline{\mathsf{bd}}$ denote topological closure and boundary in \overline{X}

A metric space X is *locally complete* provided each point has an open neighborhood which is complete. When X is non-complete, this is equivalent to requiring that $\delta(x) > 0$ for all $x \in X$, or, ∂X is closed in \overline{X} , or, X is open in \overline{X} .

2.A.1. Paths, arcs, & length. A path in X is a continuous map $\mathbb{R} \supset I \xrightarrow{\gamma} X$ where $I = I_{\gamma}$ is an interval (called the *parameter interval for* γ) that may be closed or open or neither and finite or infinite. The *trajectory* of such a path γ is $|\gamma| := \gamma(I)$ which we call a *curve* and often denote by just γ . When I is closed and $I \neq \mathbb{R}$, $\partial \gamma := \gamma(\partial I)$ denotes the set of *endpoints of* γ and consists of one or two points depending on whether or not I is compact. For example, if $I_{\gamma} = [u, v] \subset \mathbb{R}$, then $\partial \gamma = \{\gamma(u), \gamma(v)\}$. When $\partial \gamma = \{a, b\}$, we write $\gamma : a \curvearrowright b$ (in X) to indicate that γ is a path (in X) with *initial point* a and *terminal point* b; this notation is meant to imply an orientation—a precedes b on γ .

We call γ a *compact path* if its parameter interval I is compact. An *arc* α is an injective compact path. Given points $a, b \in |\alpha|$, there are unique $u, v \in I$ with $\alpha(u) = a, \alpha(v) = b$ and we write $\alpha[a, b] := \alpha|_{[u,v]}$. We also use this notation for a general path γ , but here $\gamma[a, b]$ denotes the unique injective subpath of γ that joins a, b obtained by using the last time γ is at a up to the first time γ is at b.

When $\alpha: a \frown b$ and $\beta: b \frown c$ are paths that join a to b and b to c respectively, $\alpha \star \beta$ denotes the concatenation of α and β ; so $\alpha \star \beta: a \frown c$. Of course, $|\alpha \star \beta| = |\alpha| \cup |\beta|$. Also, the *reverse of* γ is the path $\tilde{\gamma}$ defined by $\tilde{\gamma}(t) := \gamma(1-t)$ (when $I_{\gamma} = [0,1]$) and going from $\gamma(1)$ to $\gamma(0)$. Of course, $|\tilde{\gamma}| = |\gamma|$. Every compact path contains an arc with the same endpoints; see [Väi94]. The length of a compact path $[0, 1] \xrightarrow{\gamma} X$ is defined in the usual way by

$$\ell(\gamma) := \sup \left\{ \sum_{i=1}^{n} |\gamma(t_i) - \gamma(t_{i-1})| \, \Big| \, 0 = t_0 < t_1 < \dots < t_n = 1 \right\},\,$$

 γ is rectifiable when $\ell(\gamma) < \infty$, and X is rectifiably connected provided each pair of points in X can be joined by a rectifiable path. Every rectifiable path can be parametrized with respect to its arclength [Väi71, p.5]. When γ is a rectifiable path, we tacitly assume its parameter interval is $I_{\gamma} = [0, \ell(\gamma)]$ unless specifically stated otherwise.

Every rectifiably connected metric space X admits a natural *intrinsic* distance, its so-called *(inner)* length distance given by

$$l(a,b) := \inf \{ \ell(\gamma) \mid \gamma \colon a \frown b \text{ a rectifiable path in } X \}.$$

A metric space $(X, |\cdot|)$ is a *length* space provided for all points $a, b \in X$, |a - b| = l(a, b); it is also common to call such a $|\cdot|$ an *intrinsic* distance function. Notice that an *l*-geodesic $[x, y]_l$ is a shortest curve joining x and y.

There are two useful properties of length spaces that we use repeatedly. First, for any open set U in a length space X, we always have $\operatorname{dist}(x, \operatorname{bd} U) = \operatorname{dist}(x, X \setminus U)$ for all points $x \in U$. Second, \overline{X} is also a length space. In fact, for all $x \in X, \xi \in \partial X, \varepsilon > 0$ there is a path $\gamma \colon x \curvearrowright \xi$ in $X \cup \{\xi\}$ with $\ell(\gamma) < |x - \xi| + \varepsilon$.

2.A.2. Quasihyperbolic distance. Recall that X is a quasihyperbolic metric space if it is non-complete, locally complete, and rectifiably connected. In such a space, $\delta(x) = \delta_X(x) := \operatorname{dist}(x, \partial X) > 0$ for all $x \in X$, so $\delta^{-1}ds$ is a conformal metric that we call the quasihyperbolic metric on X. The length distance induced by the quasihyperbolic metric $\delta^{-1}ds$ is dubbed the quasihyperbolic distance $k = k_X$ in X. In a locally compact quasihyperbolic space, this is a geodesic distance: there are always k-geodesics joining any two points in X.

The following basic estimates for quasihyperbolic distance were first established for Euclidean domains by Gehring and Palka [GP76, 2.1]. For all $a, b \in X$ and any rectifiable path $\gamma: a \sim b$ in X

(2.1a)
$$k(a,b) \ge \log\left(1 + \frac{l(a,b)}{\delta(a) \land \delta(b)}\right) \ge \log\left(1 + \frac{|a-b|}{\delta(a) \land \delta(b)}\right) \ge \left|\log\frac{\delta(a)}{\delta(b)}\right|$$

which is a special case of the more general inequality

(2.1b)
$$\ell_k(\gamma) \ge \log\left(1 + \frac{\ell(\gamma)}{\mathsf{dist}(|\gamma|, \partial X)}\right).$$

2.B. Quasiconvex, annular quasiconvex, and uniform spaces. A rectifiable path $\gamma: a \curvearrowright b$ is *C*-quasiconvex, $C \ge 1$, if its length is at most *C* times the distance between its endpoints; i.e., if γ satisfies

$$\ell(\gamma) \le C |a - b|.$$

A metric space is C-quasiconvex if each pair of points can be joined by a C-quasiconvex path. A 1-quasiconvex metric space is a geodesic space, and a space is a length space if and only if it is C-quasiconvex for all C > 1. By cutting out loops, we can always replace a C-quasiconvex path with a C-quasiconvex arc having the same endpoints; see [Väi94].

The inequalities in (2.1a) yield the following 'local' estimates for quasihyperbolic distances.

2.2. Fact. Let X be a C-quasiconvex quasihyperbolic metric space. Then for all $x, a \in X$,

$$k(x,a) \le 1 \text{ or } \frac{|x-a|}{\delta(a)} \le \frac{1}{2C} \implies \frac{1}{2} \frac{|x-a|}{\delta(a)} \le k(x,a) \le 2C \frac{|x-a|}{\delta(a)}.$$

2.B.1. Annular quasiconvexity. A metric space X is C-annular quasiconvex at $p \in X$ provided it is connected and for all r > 0, points in A[p; r, 2r] can be joined by C-quasiconvex paths lying in A[p; r/C, 2Cr]. We call X C-annular quasiconvex if it is C-annular quasiconvex at each point. Examples of quasiconvex and annular quasiconvex metric spaces include Banach spaces and upper regular Loewner spaces; the latter includes Carnot groups and certain Riemannian manifolds with non-negative Ricci curvature; see [HK98, 3.13,3.18, Section 6]. Korte [Kor07] proved that doubling metric measure spaces that support a (1, p)-Poincaré inequality with sufficiently small p are annular quasiconvex.

To the best of our knowledge, the notion of annular quasiconvexity was introduced in [Kor07] and [BHX08]; it was an essential ingredient in [HSX08]. A similar concept was employed in [Mac10].

2.B.2. Uniformity. Roughly speaking, a metric space is *uniform* when points in it can be joined by paths that are not "too long" and "move away" from the region's boundary. More precisely, a quasihyperbolic metric space X is *C*-uniform (for some constant $C \ge 1$) provided each pair of points can be joined by a *C*-uniform arc. Here a rectifiable $\gamma: a \curvearrowright b$ is a *C*-uniform arc if and only if it is both a *C*-quasiconvex arc and a *double C*-cone arc; this latter condition means that

(2.3)
$$\forall x \in |\gamma|, \quad \ell(\gamma[x,a]) \land \ell(\gamma[x,b]) \le C\delta(x).$$

Double cone arcs are often called *cigar arcs*. In [Väi88] Väisälä provides a description of various possible double cone conditions (which he calls *length cigars, diameter cigars, distance cigars, and Möbius cigars*). The work [Mar80] of Martio should also be mentioned.

To simplify an argument, we prevail upon the following characterization for uniform spaces established in [Her11, Prop. C].

2.4. Fact. A quasihyperbolic metric space is uniform if and only if it is plump and proximate points can be joined by uniform arcs. More precisely, if X is C-plump and 3C-proximate points can be joined by B-uniform arcs, then X is $18B^2C$ -uniform; conversely, if X is C-uniform, then it is 4C-plump.

Two points x, y are *C*-proximate, for some constant C > 0, if $|x - y| \leq C[\delta(x) \land \delta(y)]$. If this holds, then also $(C + 1)^{-1} \leq \delta(x)/\delta(y) \leq C + 1$. A non-complete locally complete metric space U is *C*-plump, $C \geq 1$, provided for each $x \in U$ and all $r \in (0, \operatorname{diam} U)$

(2.5)
$$\exists z \in \mathsf{B}[x;r] \text{ with } \mathsf{dist}(z,\partial U) \ge r/C.$$

This terminology was introduced by Väisälä in [Väi88] and perhaps is understood best when U is an open subspace of a length space X, for then (2.5) asserts that $\operatorname{dist}(z, X \setminus U) \geq r/C$, so the ball $\mathsf{B}(z; r/C)$, in X, is contained in U.

3. Proofs

Here we establish Theorems A, B, C as stated in the Introduction. In each of these, X is a given quasihyperbolic metric space.

3.A. Proof of Theorem A. Recall that $o \in X$ and $X_* := X \setminus \{o\}$. We let δ_* denote distance to ∂X_* , so $\delta_*(x) := |x| \wedge \delta(x)$ where |x| := |x - o|.

To utilize Fact 2.4, we first verify the following.

3.1. Lemma. Suppose X is C-uniform. Then $X_{\star} := X \setminus \{o\}$ is 12C-plump.

Proof. Let $a \in X_{\star}$ and $r \in (0, \operatorname{diam} X_{\star})$. We seek a point $z \in \mathsf{B}[a; r]$ with $\delta_{\star}(z) \geq r/12C$.

Pick $b \in X_{\star}$ with $|a - b| \geq \frac{1}{2} \operatorname{diam}(X_{\star})$. Let $\gamma : a \curvearrowright b$ be a *C*-uniform arc in *X*. Let z_0 be the arclength midpoint of γ . Then

$$\delta(z_0) \ge \frac{\ell(\gamma)}{2C} \ge \frac{|a-b|}{2C} \ge \frac{r}{4C}.$$

Assume $|z_0 - a| \leq r/2$. If $|z_0| \geq r/12C$, then z_0 is the sought after point. Suppose $|z_0| < r/12C$. By examining paths from z_0 to ∂X , we obtain a point $z_1 \in S(z_0; r/6C)$. It follows that $\delta_*(z_1) \geq r/12C$, and that

$$|z_1 - a| \le |z_1 - z_0| + |z_0 - a| \le \frac{r}{6C} + \frac{r}{2} \le r,$$

so z_1 is the sought after point.

Assume $|z_0 - a| > r/2$. Pick $z_2 \in \gamma[z_0, a] \cap \mathsf{S}(a; r/2)$. Then $\delta(z_2) \geq r/2C$. Thus if $|z_2| \geq r/6C$, then z_2 is the sought after point. Suppose $|z_2| < r/6C$. By examining paths from z_2 to ∂X , we obtain a point $z_3 \in \mathsf{S}(z_2; r/3C)$. It follows that $\delta_{\star}(z_3) \geq r/6C$, and that

$$|z_3 - a| \le |z_3 - z_2| + |z_2 - a| = \frac{r}{3C} + \frac{r}{2} \le r,$$

so z_3 is the sought after point.

Now we establish Theorem A. When X_{\star} is C_{\star} -uniform, it is not hard to check that X is C-uniform for any $C > C_{\star}$ (this also follows from Theorem C) and the proof of (c) \implies (a) in [Her11, Prop. 2.3] shows that X is $2(C_{\star} + 1)$ -annular quasiconvex at o.

For the converse, assume X is C-uniform and C_1 -annular quasiconvex at o. By Lemma 3.1 we know that X_* is 12C-plump, so it suffices to show that there is a constant B such that 36C-proximate points in X_* can be joined by B-uniform arcs; then Fact 2.4 asserts that X_* is C_* -uniform with $C_* = 216B^2C$.

Let $a, b \in X_{\star}$ be 36*C*-proximate; so, $|a - b| \leq 36C(\delta_{\star}(a) \wedge \delta_{\star}(b))$. By relabeling, if necessary, we may assume $|a| \leq |b|$. Now $|a - b| \leq 36C|a|$. Let $\gamma_o: a \frown b$ be a *C*-uniform arc in *X*. Put $R := |a|/10CC_1$. Then $\ell(\gamma_o) \leq C|a - b| \leq 36C^2|a|$, so

$$R \ge \left(180C^3C_1\right)^{-1} \frac{\ell(\gamma_o)}{2}.$$

As $|b| \ge |a|$, $\{a, b\} \cap \mathsf{B}(o; |a|) = \emptyset$. Suppose $\gamma_o \cap \mathsf{B}(o; R) = \emptyset$. Then for each $x \in \gamma_o, |x| \ge R$ and we readily deduce that γ_o is a $180C^3C_1$ -uniform arc in X_{\star} .

Assume $\gamma_o \cap \mathsf{B}(o; R) \neq \emptyset$. Let a_o, b_o be the first, last points (respectively) of γ_o in $\mathsf{S}(o; R)$. Put $\gamma := \alpha \star \sigma \star \beta$ where $\alpha := \gamma_o[a, a_o], \beta := \gamma_o[b_o, b]$ and where $\sigma : a_o \frown b_o$ is a C_1 -quasiconvex arc in $\mathsf{A}[o; R/2C_1, C_1R]$.

Note that as α, β both join the spheres $\mathsf{S}(o; R), \mathsf{S}(o; |a|)$, they each have length at least $|a| - R = (10CC_1 - 1)R \ge 9CC_1R$. It follows that $\delta(a_o) \lor \delta(b_o) \ge 9C_1R$.

Evidently, $\ell(\gamma) \leq C_1 \ell(\gamma_o) \leq C C_1 |a - b|$, so to verify that γ is a uniform arc it remains to corroborate the double cone arc condition. To begin, let $x \in \sigma$. Then

$$|x| \ge \frac{R}{2C_1} \ge \left(360C^3C_1^2\right)^{-1} \frac{\ell(\gamma_o)}{2} \ge \left(360C^3C_1^3\right)^{-1} \frac{\ell(\gamma)}{2}$$

Also,

$$9C_1R \le \delta(a_o) \le \delta(o) + |a_o| = \delta(o) + R$$

 \mathbf{SO}

$$\delta(x) \ge \delta(o) - C_1 R \ge (30C^3C_1)^{-1} \frac{\ell(\gamma)}{2}$$

and we see that the double cone condition holds for points in σ with constant $360C^3C_1^3$.

It remains to examine points $x \in \alpha \cup \beta$. Evidently, $|x| \ge R \ge (180C^3C_1^2)^{-1}\ell(\gamma)/2$. Let z_o be the arclength midpoint of γ_o ; so, z_o lies in α or β or $\gamma_o \setminus (\alpha \cup \beta)$. If z_o lies in $\gamma_o \setminus (\alpha \cup \beta)$, then α, β are both "short subarcs of γ_o " and we readily see that

$$x \in \alpha \implies \ell(\gamma[x, a]) = \ell(\gamma_o[x, a]) \le C\delta(x)$$

and

$$x \in \beta \implies \ell(\gamma[x, b]) = \ell(\gamma_o[x, b]) \le C\delta(x)$$

and thus the double cone condition holds.

Suppose $z_o \in \beta$. Here α is again a "short subarc" and we precede exactly as above for points $x \in \alpha$. Assume $x \in \beta$. When $x \in \beta[z_o, b] = \gamma_o[z_o, b]$ we can-again-precede as above. So, assume $x \in \beta[b_o, z_o]$. Here

$$\delta(x) \ge \frac{\ell(\gamma_o[x,a])}{C} \ge \frac{\ell(\alpha)}{C} \ge 9C_1R \ge \left(20C^3C_1\right)^{-1}\frac{\ell(\gamma)}{2}.$$

Thus the double cone condition holds for points in $\alpha \cup \beta$ with constant $180C^3C_1^2$. It now follows that γ is a *B*-uniform arc with $B := 360C^3C_1^3$.

3.B. Proof of Theorem B. Here we assume Ω is a uniformly collared subspace of a C_0 -uniform space X with C_1 -uniform Φ -fat³ collars as described in the Introduction. Also, since the associated hypotheses and conclusions are all bi-Lipschitz invariant, we may and do assume that X is a length space.

To join points, we start with a uniform arc in X. If this arc gets near some B_i , we replace (by "cutting and pasting") an appropriate subarc with a uniform arc in Ω_i .

Before immersing ourselves in the details, we discuss some basic immediate properties. First, since the open sets U_i are disjointed, each B_i is closed and, e.g., $\mathsf{bd}(B) = \bigcup_i \mathsf{bd}(B_i)$. Also, while $\partial B \subset \partial X$ may be empty or non-empty, for each i,

$$d_i := \operatorname{dist}(B_i, \partial X) > 0$$

It's not difficult to check that $\Omega_i := \Omega \cap U_i = U_i \setminus B_i$, and that $\mathsf{bd}(\Omega_i) = \mathsf{bd}(B_i) \cup \mathsf{bd}(U_i)$ and this is a disjoint union.

Next, as Ω is open in X and X is open in \overline{X} , we (eventually) see that

 $\partial \Omega = \mathsf{bd}(B) \cup \partial X$ (and this is a disjoint union)

³We assume $\Phi \geq 2$.

from which we deduce that for each $x \in \Omega$,

$$\operatorname{dist}(x,\partial\Omega) = \operatorname{dist}(x,B) \wedge \operatorname{dist}(x,\partial X) = \inf_{i} \operatorname{dist}(x,B_i) \wedge \operatorname{dist}(x,\partial X).$$

It also follows that for each $x \in \Omega$:

- (3.2a) If $\exists i$ with $dist(x, B_i) \le d_i/2$, then $dist(x, \partial\Omega) = dist(x, B)$.
- (3.2b) If $\exists i$ with $\operatorname{dist}(x, B_i) \leq d_i/2\Phi$, then $\operatorname{dist}(x, \partial\Omega) = \operatorname{dist}(x, B_i)$.
- (3.2c) If $x \in \Omega_i$, then $\operatorname{dist}(x, \partial \Omega) \ge \operatorname{dist}(x, \partial \Omega_i)$.

Now define

$$A_i := \left\{ x \in X \setminus B_i \mid \mathsf{dist}(x, B_i) < \frac{d_i}{10\Phi} \right\} \quad \text{and} \quad A := \bigcup_i A_i.$$

From (3.2b) we see that

$$x \in \mathsf{cl}(A_i) \implies \mathsf{dist}(x, \partial \Omega) = \mathsf{dist}(x, B_i)$$

and similarly

$$\mathsf{dist}(x,\partial\Omega) = \mathsf{dist}(x,\partial X) \implies x \notin \mathsf{cl}(A).$$

Let $a, b \in \Omega$ and let $\gamma_o: a \frown b$ be a C_0 -uniform arc in X. Suppose $\gamma_o \cap A = \emptyset$. Let $x \in \gamma_o$. Then for all i,

$$dist(x, \partial X) \leq dist(x, B_i) + diam(B_i) + dist(B_i, \partial X) \leq dist(x, B_i) + (\Phi + 1)d_i$$
$$\leq (10\Phi(\Phi + 1) + 1) dist(x, B_i) \leq 20\Phi^2 dist(x, B_i),$$

so $\operatorname{dist}(x, \partial \Omega) \ge (20\Phi^2)^{-1} \operatorname{dist}(x, \partial X)$ and we deduce that γ_o is a $20C_0\Phi^2$ -uniform arc in Ω .

Suppose $\gamma_o \cap A \neq \emptyset$ and, for a moment, assume $\{a, b\} \cap A = \emptyset$. Let J denote the set of all indeces i with $\gamma_o \cap A_i \neq \emptyset$. For each $j \in J$: let a_j, b_j be the first, last points of γ_o in $\mathsf{bd}(A_j)$; let $\sigma_j : a_j \frown b_j$ be a C_1 -uniform arc in Ω_j ; and, replace each subarc $\gamma_o[a_j, b_j]$ with the corresponding σ_j .

If $a \in A$, say $a \in A_{i_o}$: let a_{i_o} be the last point of γ_o in $bd(A_{i_o})$; let $\alpha : a \curvearrowright a_{i_o}$ be a C_1 -uniform arc in Ω_{i_o} ; and, replace the subarc $\gamma_o[a, a_{i_o}]$ with α . Similarly, if $b \in A_{j_o}$, we get a C_1 -uniform $\beta : b_{j_o} \curvearrowright b$ in Ω_{j_o} that replaces $\gamma_o[b_{j_o}, b]$, where b_{j_o} is the first point of γ_o in $bd(A_{j_o})$.

We now have an arc $\gamma: a \curvearrowright b$ in Ω that has been obtained by replacing certain subarcs of γ_o with appropriate subarcs σ_j or α or β . As each of these new subarcs is C_1 -quasiconvex, we see that

$$\ell(\gamma) \le C_1 \ell(\gamma_o) \le C_0 C_1 |a-b|,$$

so γ is a C_0C_1 -quasiconvex arc. It remains to verify the double cone condition.

Let $x \in \gamma$. Suppose $x \notin \alpha \cup \beta \cup \bigcup_j \sigma_j$. As above, where $\gamma_o \cap A = \emptyset$, we again see that $\operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}(x, \partial X)/20\Phi^2$ and the double cone condition holds with $C = 20C_0C_1\Phi^2$.

Suppose $x \in \alpha$. If $\ell(\gamma[x, a]) = \ell(\alpha[x, a]) \leq \ell(\alpha[x, a_o])$, then $\operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}(x, \partial \Omega_{i_o}) \geq C_1^{-1}\ell(\gamma[x, a])$ and the double cone condition holds with constant $C = C_1$.

Assume $\ell(\alpha[x, a]) > \ell(\alpha[x, a_o])$. Now

$$\ell(\gamma[x,a]) = \ell(\alpha[x,a]) \le \ell(\alpha) \le C_1 |a - a_o|$$

$$\le C_1 (\operatorname{dist}(a, B_{i_o}) + \operatorname{diam}(B_{i_o}) + \operatorname{dist}(a_o, B_{i_o}))$$

$$\le C_1 (\Phi + 1) d_{i_o} \le 2C_1 \Phi d_{i_o}.$$

If $\ell(\alpha[x, a_o]) \ge d_{i_o}/20\Phi$, then

$$\mathsf{dist}(x,\partial\Omega) \ge \mathsf{dist}(x,\partial\Omega_{i_o}) \ge C_1^{-1}\ell(\alpha[x,a_o]) \ge \frac{d_{i_o}}{20C_1\Phi} \ge \frac{\ell(\gamma[x,a])}{40C_1^2\Phi^2}.$$

On the other hand, if $\ell(\alpha[x, a_o]) < d_{i_o}/20\Phi$, then

$$\frac{d_{i_o}}{10\Phi} = \mathsf{dist}(a_o, B_{i_o}) = \mathsf{dist}(a_o, \partial\Omega) \le |x - a_o| + \mathsf{dist}(x, \partial\Omega)$$
$$\le \ell(\alpha[x, a_o]) + \mathsf{dist}(x, \partial\Omega)$$

and so now

$$\operatorname{dist}(x,\partial\Omega) \geq \frac{d_{i_o}}{20\Phi} \geq \frac{\ell(\gamma[x,a])}{40C_1\Phi^2}.$$

Thus in all cases, when $x \in \alpha$, the double cone condition holds with constant $C = 40C_1^2 \Phi^2$.

A similar argument applies if $x \in \beta$.

Finally, suppose $x \in \sigma_j$ for some $j \in J$. We demonstrate that

$$\ell(\gamma[x,a]) \wedge \ell(\gamma[x,b]) \leq 3C_0C_1\Phi d_j \text{ and } d_j \leq 20C_1\Phi\operatorname{dist}(x,\partial\Omega)$$

which gives the double cone condition with constant $C = 60C_0C_1^2\Phi^2$.

First, if

$$\ell(\sigma_j[x, a_j]) \wedge \ell(\sigma_j[x, b_j]) \ge \frac{d_j}{20\Phi}$$

then $\operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}(x, \partial \Omega_j) \geq d_j/20C_1\Phi$. Suppose

$$\ell(\sigma_j[x,z]) < \frac{d_j}{20\Phi}$$
 for some $z \in \{a_j, b_j\}.$

Then

$$\frac{d_j}{10\Phi} = \operatorname{dist}(z, B_j) = \operatorname{dist}(z, \partial\Omega) \le |x - z| + \operatorname{dist}(x, \partial\Omega) \le \ell(\sigma_j[x, z]) + \operatorname{dist}(x, \partial\Omega)$$

whence again $\operatorname{dist}(x, \partial \Omega) \geq d_j/20C_1\Phi$.

Next,
$$\ell(\gamma[x,a]) \leq \ell(\sigma_j) + \ell(\gamma[a_j,a])$$
 and $\ell(\gamma[x,b]) \leq \ell(\sigma_j) + \ell(\gamma[b_j,b])$, so
 $\ell(\gamma[x,a]) \wedge \ell(\gamma[x,b]) \leq \ell(\sigma_j) + \ell(\gamma[a_j,a]) \wedge \ell(\gamma[b_j,b])$
 $\leq \ell(\sigma_j) + C_1(\ell(\gamma_o[a_j,a]) \wedge \ell(\gamma_o[b_j,b])).$

Now

$$\ell(\sigma_j) \le C_1 |a_j - b_j| \le C_1 \left(\mathsf{dist}(a_j, B_j) + \mathsf{diam}(B_j) + \mathsf{dist}(b_j, B_j) \right) \le C_1 \left(\Phi + \frac{1}{5\Phi} \right) d_j.$$

Also, for $z \in \{a_j, b_j\}$,

$$\operatorname{dist}(z,\partial X) \leq \operatorname{dist}(z,B_j) + \operatorname{diam}(B_j) + \operatorname{dist}(B_j,\partial X) \leq \left(\Phi + 1 + \frac{1}{10\Phi}\right) d_j.$$

If $\ell(\gamma_o[a_j, a]) \leq \ell(\gamma_o[b_j, b])$, then

$$\ell(\gamma_o[a_j,a]) = \ell(\gamma_o[a_j,a]) \land \ell(\gamma_o[a_j,b]) \le C_0 \operatorname{dist}(a_j,\partial X)$$

and similarly if $\ell(\gamma_o[b_j, b]) \leq \ell(\gamma_o[a_j, a])$, then

$$\ell(\gamma_o[b_j, b]) = \ell(\gamma_o[b_j, a]) \land \ell(\gamma_o[b_j, b]) \le C_0 \operatorname{dist}(b_j, \partial X).$$

Therefore

$$\ell(\gamma_o[a_j, a]) \wedge \ell(\gamma_o[b_j, b]) \le C_0 \left(\Phi + 1 + \frac{1}{10\Phi}\right) d_j.$$

It now follows that

$$\ell(\gamma[x,a]) \wedge \ell(\gamma[x,b]) \le C_1\left(\Phi + \frac{1}{5\Phi}\right)d_j + C_0C_1\left(\Phi + 1 + \frac{1}{10\Phi}\right)d_j \le 3C_0C_1\Phi d_j.$$

Examining all our various constants we see that $\gamma: a \frown b$ is a C_0C_1 -quasiconvex double $60C_0C_1^2\Phi^2$ -cone arc in Ω .

3.C. Proof of Theorem C. Here $\Omega = X \setminus A$ and (1.3) holds for some constant $\kappa \in (0, 1)$.

First, suppose Ω is *C*-uniform. The proof of (c) \implies (a) in [Her11, Prop. 2.3] shows that X is 2(C + 1)-annular quasiconvex at all points $a \in A$. Let $\varepsilon \in (0, 1)$. We verify that X is $(C + \varepsilon)$ -uniform.

Since $A \subset \partial \Omega$, $X = \Omega \cup A$ is C'-quasiconvex for any C' > C which permits use of Fact 2.2.

Let $a, b \in X$. Since we can join points in Ω with *C*-uniform arcs, we may assume $a, b \in A$; the case where one point lies in *A* and one in Ω is similar and easier. We select $a_o, b_o \in \Omega$ sufficiently near a, b, pick quasiconvex arcs $\alpha : a \curvearrowright a_o, \beta : b_o \curvearrowright b$ and a uniform arc $\gamma_o : a_o \curvearrowright b_o$ in Ω , and then check that $\gamma := \alpha \star \gamma_o \star \beta$ is $(C + \varepsilon)$ -uniform.

For each $a \in A$, set $\rho_a := \upsilon \delta(a)$ where $\upsilon := \kappa/10C$. Employing (1.3) in conjunction with Fact 2.2 we see that the balls $\mathsf{B}(a; \rho_a)$, with $a \in A$, are disjointed.

Fix points $a_o \in \mathsf{B}(a; \varepsilon \rho_a/10C^2), b_o \in \mathsf{B}(b; \varepsilon \rho_b/10C^2)$ and let $\alpha : a \curvearrowright a_o, \beta : b_o \curvearrowright b$ be $(C + \varepsilon)$ -quasiconvex arcs. Note that

$$\ell(\alpha) \le (C+\varepsilon)|a-a_o| \le \frac{C+\varepsilon}{10C^2} \varepsilon \rho_a \le \frac{\varepsilon}{5C} \rho_a$$

and similarly $\ell(\beta) \leq \varepsilon \rho_b / 5C$.

Let $\gamma_o: a_o \curvearrowright b_o$ be a *C*-uniform arc in Ω . Put $\gamma := \alpha \star \gamma_o \star \beta$; then $\gamma: a \curvearrowright b$ in $\Omega \cup \{a, b\}$. Since $|a - b| \ge \rho_a + \rho_b$ and $|a_o - b_o| \le |a - a_o| + |a - b| + |b - b_o|$, we see that

$$\ell(\gamma) \leq (C+\varepsilon) (|a-a_o|+|b-b_o|) + C|a_o-b_o|$$

$$\leq (2C+\varepsilon) (|a-a_o|+|b-b_o|) + C|a-b|$$

$$\leq \varepsilon \frac{2C+\varepsilon}{10C^2} (\rho_a+\rho_b) + C|a-b|$$

$$\leq (C+\varepsilon)|a-b|$$

and so γ is $(C + \varepsilon)$ -quasiconvex.

To establish the double cone condition, let $x \in \gamma$, and let z_o be the arclength midpoint of γ_o . If $x \in \alpha$, it is not difficult to check that $\delta(x) \ge \ell(\alpha) \ge \ell(\gamma([x, a]);$

similarly for $x \in \beta$. Assume $x \in \gamma_o$, say $x \in \gamma_o[a_o, z_o]$. Here

$$\delta(x) \ge \operatorname{dist}(x, \partial \Omega) \ge C^{-1}\ell(\gamma_o[x, a_o]).$$

If $\ell(\gamma_o[x, a_o]) \ge \rho_a/5$, then $\ell(\alpha) \le (C/\varepsilon)\ell(\gamma_o[x, a_o])$, so

$$\ell(\gamma[x,a]) = \ell(\gamma_o[x,a_o]) + \ell(\alpha) \le \left(1 + \frac{C}{\varepsilon}\right)\ell(\gamma_o[x,a_o]) \le (C + \varepsilon)\delta(x).$$

Finally, if $\ell(\gamma_o[x, a_o]) \leq \rho_a/5$, then

$$|x-a| \le \frac{\rho_a}{5} + \frac{\varepsilon \rho_a}{10C^2} \le \frac{2C^2 + \varepsilon}{10C^2} \upsilon \delta(a) \le \frac{3\upsilon}{10} \delta(a)$$

 \mathbf{SO}

$$\delta(x) \ge \left(1 - \frac{3\upsilon}{10}\right)\delta(a)$$

whence

$$\ell(\gamma[x,a]) \le \frac{\rho_a}{5} + \frac{\varepsilon \rho_a}{5C} = \frac{C+\varepsilon}{5C} \upsilon \delta(a) \le \frac{C+\varepsilon}{C} \frac{2\upsilon}{10-3\upsilon} \le (1+\varepsilon)\delta(x)$$

For the converse, suppose X is C_0 -uniform and C_1 -annular quasiconvex at each point of A. We show that $\Omega := X \setminus A$ is uniformly collared with fat collars and appeal to Theorem B.

For each $a \in A$, set $\rho_a := v_0 \delta(a)$ where $v_0 := \kappa/4C_0$. Employing Fact 2.2 and (1.3) we see that the balls $\mathsf{B}(a;\rho_a)$, with $a \in A$, are disjointed. By assumption, each $\mathsf{B}(a;\rho_a)$ is C_2 -uniform and X is C_1 -annularly quasiconvex at a; by the proof of Theorem A, $\mathsf{B}_{\star}(a;\rho_a) := \mathsf{B}(a;\rho_a) \setminus \{a\}$ is C_{\star} -uniform. Since $A = X \setminus \Omega = \bigcup_{a \in A} \{a\}$ with $\{a\} = \{a\} \cap \mathsf{B}(a;\rho_a)$, we see that Ω is uniformly collared. Evidently, the collars $\mathsf{B}_{\star}(a;\rho_a)$ are Φ -fat with $\Phi := 1/v_0 = 4C_0/\kappa$.

References

- [Aik04] AIKAWA, H.: Potential-theoretic characterizations of nonsmooth domains. Bull. London Math. Soc. 36:4, 2004, 469–482.
- [Aik06] AIKAWA, H.: Characterization of a uniform domain by the boundary Harnack principle. - In: Harmonic analysis and its applications, Yokohama Publ., Yokohama, 2006, 1–17.
- [AH88] ASTALA, K., and J. HEINONEN: On quasiconformal rigidity in space and plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 13, 1988, 81–92.
- [BS07] BJÖRN, J., and N. SHANMUGALINGAM: Poincaré inequalities, uniform domains and extension properties for Newton–Sobolev functions in metric spaces. - J. Math. Anal. Appl. 332:1, 2007, 190–208.
- [BHK01] BONK, M., J. HEINONEN, and P. KOSKELA: Uniformizing Gromov hyperbolic spaces. -Astérisque 270, 2001, 1–99.
- [BHX08] BUCKLEY, S. M., D. A. HERRON, and X. XIE: Metric space inversions, quasihyperbolic distance and uniform spaces. Indiana Univ. Math. J. 57:2, 2008, 837–890.
- [CGN00] CAPOGNA, L., N. GAROFALO, and D.-M. NHIEU: Examples of uniform and NTA domains in Carnot groups. - In: Proceedings on Analysis and Geometry (Novosibirsk), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., 2000, (Novosibirsk Akad., 1999), 103–121.
- [CT95] CAPOGNA, L., and P. TANG: Uniform domains and quasiconformal mappings on the Heisenberg group. Manuscripta Math. 86:3, 1995, 267–281.

[Geh87]	GEHRING, F. W.: Uniform domains and the ubiquitous quasidisk Jahresber. Deutsch. MathVerein 89, 1987, 88–103.
[GP76]	GEHRING, F. W., and B. P. PALKA: Quasiconformally homogeneous domains J. Anal. Math. 30, 1976, 172–199.
[Gre01]	GRESHNOV, A. V.: On uniform and NTA-domains on Carnot groups Sibirsk. Mat. Zh. 42:5, 2001, 1018–1035.
[HK98]	HEINONEN, J., and P. KOSKELA: Quasiconformal maps in metric spaces with controlled geometry Acta Math. 181, 1998, 1–61.
[Her87]	HERRON, D. A.: The geometry of uniform, quasicircle, and circle domains Ann. Acad. Sci. Fenn. Ser. A I Math. 12:1, 1987, 217–228.
[Her89]	HERRON, D. A.: Uniform domains: sufficient conditions Proceedings Rolf Nevanlinna Institute, 1989, 57–69.
[Her11]	HERRON, D. A.: Uniform metric spaces, annular quasiconvexity, and pointed tangent spaces Math. Scand. 108, 2011, 115–145.
[HK91]	HERRON, D. A., and P. KOSKELA: Uniform, Sobolev extension and quasiconformal circle domains J. Anal. Math. 57, 1991, 172–202.
[HSX08]	HERRON, D. A., N. SHANMUGALINGHAM, and X. XIE: Uniformity from Gromov hyperbolicity Illinois J. Math. 52:4, 2008, 1065–1109.
[HVW17]	HUANG, M., M. VUORINEN, and X. WANG: On removability properties of ψ -uniform domains in Banach spaces Complex Anal. Oper. Theory 11, 2017, 33–55.
[Jon81]	JONES, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces Acta Math. 147, 1981, 71–88.
[Kor07]	KORTE, R.: Geometric implications of the Poincaré inequality Results Math. 50:1-2, 2007, 93–107.
[Mac10]	MACKAY, J.: Spaces with conformal dimension greater than one Duke Math. J. 153:2, 2010, 211–227.
[Mar80]	MARTIO, O.: Definitions for uniform domains Ann. Acad. Sci. Fenn. Ser. A I Math. 5:1, 1980, 197–205.
[MS79]	MARTIO, O., and J. SARVAS: Injectivity theorems in plane and space Ann. Acad. Sci. Fenn. Ser. A I Math. 4:2, 1978/79, 383–401.
[Väi71]	VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings Lecture Notes in Math. 229, Springer-Verlag, Berlin, 1971.
[Väi88]	VÄISÄLÄ, J.: Uniform domains Tôhoku Math. J. 40, 1988, 101–118.
[Väi94]	VÄISÄLÄ, J.: Exhaustions of John domains Ann. Acad. Sci. Fenn. Math. 19, 1994, 47–57.
Received 3	30 March 2022 \bullet Accepted 10 July 2022 \bullet Published online 15 August 2022
Departme	Herron of Cincinnati nt of Mathematical Sciences 10025, Cincinnati OH 45221-0025, USA

David A. Herron

David.Herron@UC.edu