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Limiting Sobolev and Hardy inequalities
on stratified homogeneous groups

Jean Van Schaftingen and Po-Lam Yung

Abstract. We give a sufficient condition for limiting Sobolev and Hardy inequalities to hold

on stratified homogeneous groups. In the Euclidean case, this condition reduces to the known

cancelling necessary and sufficient condition. We obtain in particular endpoint Korn–Sobolev and

Korn–Hardy inequalities on stratified homogeneous groups.

Sobolevin ja Hardyn epäyhtälöiden rajatapaukset

kerrostuneissa homogeenisissa ryhmissä

Tiivistelmä. Esitämme riittävän ehdon Sobolevin ja Hardyn epäyhtälöiden rajatapausten voi-

massaololle kerrostuneissa homogeenisissa ryhmissä. Euklidisessa tilanteessa tämä pelkistyy tunne-

tuksi riittäväksi ja välttämättömäksi kumoutumisehdoksi. Todistamme erityisesti Kornin–Sobolevin

ja Kornin–Hardyn epäyhtälöiden rajatapaukset kerrostuneissa homogeenisissa ryhmissä.

1. Introduction

Let n, k be positive integers with n ≥ 2 and let V,E be finite dimensional inner
product spaces over R. Let D be the gradient on Rn and

A(D) : C∞(Rn;V ) → C∞(Rn;E)

be a (matrix-valued) homogeneous linear injectively elliptic operator of order k with
constant coefficients—that is

A(D)u =
∑

|α|=k

Aα∂
αu

with Aα ∈ End(V ;E) where A(ξ) :=
∑

|α|=kAαξ
α ∈ End(V ;E) is injective for all

ξ 6= 0. For such operators, while it is well-known that

(1.1) ‖Dku‖Lp(Rn;V ) ≤ Cp‖A(D)u‖Lp(Rn;E)

for all u ∈ C∞
c (Rn, V ) and 1 < p < ∞, the same inequality generally fails when

p = 1. Nevertheless, under the above conditions on A(D), the following statements
are known to be equivalent:
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(a) An endpoint Gagliardo–Nirenberg–Sobolev inequality

(1.2) ‖Dk−1u‖Ln/(n−1)(Rn;V ) ≤ C‖A(D)u‖L1(Rn;E),

holds for all u ∈ C∞
c (Rn, V );

(b) An endpoint Hardy inequality

(1.3)

∥∥∥∥
Dk−1u

|x|

∥∥∥∥
L1(Rn;V )

≤ C‖A(D)u‖L1(Rn;E),

holds for all u ∈ C∞
c (Rn, V );

(c) A(D) is canceling, that is,
⋂

ξ∈Rn\{0}

A(ξ)[V ] = {0}.

Note that if (1.1) were to hold when p = 1, then (1.2) and (1.3) would be a con-
sequence via Sobolev embedding and the Hardy inequality for the gradient on Rn

respectively. The above equivalence was accomplished in a series of works originating
from sharp and delicate endpoint estimates by Bourgain and Brezis [7, 33, 8, 9, 36,
37, 10, 11, 34, 35, 38, 13]. This canceling condition also plays a role in endpoint L∞

estimates [26, 25, 12, 23].
In this paper, as in [39, 14], we consider instead of the Euclidean space Rn a

stratified homogeneous group G. This means that G is a connected and simply
connected real Lie group, whose Lie algebra g is nilpotent and admits a direct sum
decomposition

(1.4) g = g1 ⊕ g2 ⊕ · · · ⊕ gr

where [gi, gj ] ⊂ gi+j for all i, j (and gi+j is understood to be zero for i + j > r);
furthermore, g1 is assumed to generate g as a Lie algebra. The additive group Rn is
the simplest example; all other examples are non-abelian, with the next simplest ones
being the Heisenberg groups Hn that arise in connection to several complex variables
and quantum mechanics. The Heisenberg groups are step 2 groups, meaning that r
can be taken to be 2 in (1.4); our results, on the other hand, are valid for groups of
arbitrarily high steps.

Of particular importance to us is the homogeneous dimension Q of G; it is defined
as

(1.5) Q :=
r∑

j=1

j · dim(gj)

and arises naturally when one computes the push-forward of the Haar measure dx
on G by an automorphic dilation (see (2.1) below). The homogeneous dimension
Q will play the role of n, in our generalization of estimates such as (1.2) to G. To
describe such a generalization, let us write X1, . . . , Xm for a basis of g1 (in particular,
m = dim g1). Each vector Xi, i = 1, . . . , m, gives rise to a left-invariant vector field
on G, which by abuse of notation we also denote by Xi. Let now k be a positive
integer, and Ik be the index set {1, . . . , m}k. For γ = (γ1, . . . , γk) ∈ Ik, we write Xγ

for the left-invariant differential operator on G given by

(1.6) Xγ := Xγ1 . . .Xγk .
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Note that Xγ depends on the ordering of the indices within γ if the group G is not
abelian. If Aγ ∈ End(V ;E) for all indices γ ∈ Ik, then

A(D) :=
∑

γ∈Ik

AγXγ ,

defines a homogeneous left-invariant linear partial differential operator A(D) : C∞(G;
V ) → C∞(G;E) of order k on G from V to E with real coefficients. We are interested
in when the inequality

(1.7) ‖Dk−1u‖LQ/(Q−1)(G;V ) ≤ C‖A(D)u‖L1(G;E),

holds for such an operator A(D), for all u ∈ C∞
c (G;V ), where Dk−1u := (Xγu)γ∈Ik−1

.
The inequality (1.7) is the natural generalization of (1.2) to stratified homogeneous
groups.

If A(D) = D, then (1.7) is an endpoint Sobolev inequality which is known to hold
[19, 18]. In the particular case, where G is a Heisenberg group, Baldi, Franchi and
Pansu have proved that (1.7) holds when A(D) is a (first- or second-order) operator of
the Rumin complex [1, 2]; their proof relies on the structure of the Rumin complex
and on a Bourgain–Brezis duality estimate on stratified homogeneous groups [14]
generalizing the Euclidean results [35, 34, 36].

Our main result asserts that for a homogeneous left-invariant linear partial dif-
ferential operator A(D) : C∞(G;V ) → C∞(G;E) of order k as above, if

(i) A(D) is maximally hypoelliptic, that is, if there exists some C > 0 such that

‖Dku‖L2(G;V ) ≤ C‖A(D)u‖L2(G;E)

for all u ∈ C∞
c (G;V ), and

(ii) there exists a finite dimensional inner product space F , a positive integer ℓ and
some linear homogeneous left-invariant partial differential operator L(D) =∑

λ∈Iℓ
BλXλ of order ℓ on G from E to F (so each Bλ ∈ End(E;F )) such

that the symmetrized operator Sym(L)(D) is cocanceling, that is

⋂

ξ∈Rm

{
e ∈ E :

∑

λ∈Iℓ

ξλBλ[e] = 0

}
= {0},

then (1.7) holds for all u ∈ C∞
c (G;V ) (see Theorem 4.1 below). Under the above

hypotheses (i) and (ii) on A(D), we also obtain Hardy–Sobolev inequalities of the
form

(1.8)

∥∥∥∥
Dk−ℓu

‖x‖ℓ

∥∥∥∥
L1(G;V )

≤ C‖A(D)u‖L1(G;E)

where ‖x‖ is a homogeneous norm on G and ℓ ∈ {1, . . . ,min{k,Q− 1}} (see Theo-
rem 5.1(a) below); when ℓ = 1 this is the analog of (1.3) on G. Similarly, if k ≥ Q,
the same assumptions on A(D) implies the L∞ estimate

‖Dk−Qu‖L∞(G;V ) ≤ C‖A(D)u‖L1(G;E)

which holds for all u ∈ C∞
c (G;V ) (see Theorem 5.1(b) below).

When G is the Euclidean space Rn, both the ellipticity of A(D) and the existence
of L(D) as above are known to be necessary for (1.7) to hold (see [37]). Another
reason why the maximal hypoellipticity condition on A(D) is a natural one is because
under this condition, one has, for all u ∈ C∞

c (G;V ) and all 1 < p <∞, that

(1.9) ‖Dku‖Lp(G;V ) ≤ Cp‖A(D)u‖Lp(G;E)
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(see e.g. Theorem 3.3 below), which implies both

(1.10) ‖Dk−1u‖LQp/(Q−p)(G;V ) ≤ Cp‖A(D)u‖Lp(G;E)

for 1 < p < Q via Sobolev embedding, and

(1.11)

∥∥∥∥
Dk−ℓu

‖x‖ℓ

∥∥∥∥
Lp(G;V )

≤ Cp‖A(D)u‖Lp(G;E)

for ℓ ∈ {1, . . . ,min{k,Q− 1}}, 1 < p < Q/ℓ via Hardy’s inequality for Dℓ. (Indeed,
if ℓ ∈ {1, . . . , Q− 1}, then for every u ∈ C∞

c (G;R), one has

|u(x)| ≤ C

ˆ

G

|Dℓu(xy−1)|
1

‖y‖Q−ℓ
dy

(this will follow e.g. from Theorem 3.3 below). By Ciatti, Cowling and Ricci [15,
Theorem A], one then has

∥∥∥∥
u(x)

‖x‖ℓ

∥∥∥∥
Lp(G;R)

≤ Cp‖D
ℓu(x)‖Lp(G;R)

for all 1 < p < Q/ℓ (see also Ruzhansky and Suragan [28, Theorem 7.1.1]). It follows
that if u ∈ C∞

c (G;V ), k ∈ N, ℓ ∈ {1, . . . ,min{k,Q− 1}} and 1 < p < Q/ℓ, then
∥∥∥∥
Dk−ℓu

‖x‖ℓ

∥∥∥∥
Lp(G;V )

≤ Cp‖D
ku‖Lp(G;V ),

which together with (1.9) implies (1.11).) The estimates (1.7) and (1.8) are then
respectively a limiting case of (1.10) and (1.11) as p→ 1+. It may be worth pointing
out that the maximal hypoellipticity condition on A(D) is actually equivalent (under
our other assumptions on A(D)) to a hypoellipticity condition on At(D)A(D); see
again Theorem 3.3. It is an interesting open question whether the validity of (1.7) for
all u ∈ C∞(G;V ) implies the conditions (i) and (ii) on A(D) on a general stratified
homogeneous group G.

In order to apply our main theorems, given the operator A(D) one must con-
struct a compatible L(D) as in condition (ii) above. In Proposition 6.1 we develop
a robust way of doing so that works in many examples of interest. In particular, in
Proposition 7.2 below, we obtain the Gagliardo–Nirenberg–Sobolev type estimate

‖Dk−1u‖LQ/(Q−1)(G) ≤ C
m∑

i=1

‖Xk
i u‖L1(G)

for every u ∈ C∞
c (G;R), and if k ≥ Q, we get an L∞ estimate

‖Dk−Qu‖L∞(G) ≤ C

m∑

i=1

‖Xk
i u‖L1(G).

We also obtain, in Theorem 7.3 below, a Korn–Sobolev type estimate

‖u‖LQ/(Q−1)(G) ≤ C
m∑

i=1

‖Xiuj +Xjui‖L1(G),

for every u ∈ C∞
c (G; g1); this Korn–Sobolev inequality was known in the Euclidean

case [30], but it seems to be new in the case of any other stratified homogeneous group.
Furthermore, certain limiting Hardy inequalities are obtained for the operators u 7→
(Xk

1u, . . . , X
k
mu) and (u1, . . . , um) 7→ (Xiuj+Xjui)1≤i≤j≤m in Section 7 if G 6= R (i.e.

if Q ≥ 2).
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Our proofs of the estimates rely on a representation formulas through a con-
struction of fundamental solution which extends to high-order operators the result of
Baldi, Franchi and Tesi [3] (which is the content of Theorem 3.1, Corollary 3.2 and
Theorem 3.3 below), the Bourgain–Brezis duality estimate on stratified homogeneous
groups [14] (see Lemma 4.3 and its variant Proposition 5.2 below) and various tools
to construct L(D) (as in Proposition 6.1 and Lemma 6.2).

2. Set up and preliminaries

Let G be a stratified homogeneous group and g be its Lie algebra. The expo-
nential map x ∈ g 7→ exp(x) ∈ G defines a global coordinate chart on G, and allows
one to identify G with g; we will always use this global coordinate chart to identify
G with a Euclidean space (in particular, the identity element of G will be denoted
by 0, and G inherits the Lebesgue measure dx from the underlying Euclidean space;
note dx is then the Haar measure on G). The homogeneous dilation on G is given
by x 7→ δλx, where

δλx := (λx1, λ
2x2, . . . , λ

rxr)

if λ > 0 and x = (x1, x2, . . . , xr) ∈ g1 ⊕ g2 ⊕ · · · ⊕ gr; for any λ > 0, δλ is an
automorphism of G, and the pushforward of dx by δλ is

(2.1) (δλ)∗(dx) = λ−Qdx,

where Q is the homogeneous dimension of G defined in (1.5). For d ∈ R, a function
φ : G→ R is said to be homogeneous of degree d whenever

φ ◦ δλ(x) = λdφ(x)

for every x ∈ G \ {0} and every λ > 0. An example is given by the homogeneous

norm function on G, defined by

‖x‖ :=

(
r∑

j=1

|xj|
2r!
j

) 1
2r!

if x = (x1, . . . , xr) ∈ g1 ⊕ g2 ⊕ · · · ⊕ gr; this function is homogeneous of degree 1 and
C∞ on G \ {0}.

Throughout this paper, we will write X1, . . . , Xm for a basis of g1 (in particular,
m = dim g1). Each vector Xi, i = 1, . . . , m, gives rise to a left-invariant vector field
on G, which by abuse of notation we also denote by Xi:

Xiφ(x) :=
d

ds

∣∣∣∣
s=0

φ(x exp(sXi))

for φ ∈ C∞(G;R). The vector field Xi is left-invariant because it commutes with left
translations (i.e. Xi[φ(yx)] = (Xiφ)(yx) for any y ∈ G and any φ ∈ C∞(G;R)). We
will also denote by

Dφ = (X1φ, . . . , Xmφ)

the subelliptic gradient of any function φ ∈ C∞(G;R).
Let N denote the set of positive integers and N0 := N∪{0}. For k ∈ N, let Tk(g1)

be the k-fold tensor product of g1. We will write Ik for the index set {1, . . . , m}k,
and

X⊗
γ = Xγ1 ⊗ · · · ⊗Xγk if γ = (γ1, . . . , γk) ∈ Ik,
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so that {X⊗
γ }γ∈Ik is a basis of Tk(g1). One then has a linear surjection from Tk(g1), to

the vector space of all homogeneous left-invariant linear partial differential operator
of order k on G with real coefficients, given by

X⊗
γ 7→ Xγ ,

where Xγ is the differential operator defined in (1.6). The operator Xγ is homo-
geneous of order k, because it sends every homogeneous function in C∞(G;R) to
another homogeneous function whose degree is k lower. It is known (see e.g. [17, 6])
that if k ∈ N0 and f ∈ C∞(G;R) satisfies Xγf = 0 for all γ ∈ Ik, then f is a poly-
nomial of x on G of non-isotropic degree less then k, i.e. f(x) is a linear combination
of

xα := xα1
1 · · ·xαr

r

where α = (α1, . . . , αr) ∈ Ndim g1
0 ×· · ·×Ndim gr

0 = Ndim g

0 satisfies ‖α‖ < k; henceforth

‖α‖ :=

r∑

j=1

j|αj|.

Later we will also need right-invariant versions of X1, . . . , Xm. They are defined
by

XR
i φ(x) =

d

ds

∣∣∣∣
s=0

φ(exp(sXi)x)

for i = 1, . . . , m and φ ∈ C∞(G;R); equivalently,

XR
i φ = −X̃iφ̃

where φ̃(x) := φ(x−1). We write DRφ = (XR
1 φ, . . . , X

R
mφ), and write

XR
γ := XR

γ1
· · ·XR

γk

if γ = (γ1, . . . , γk) ∈ Ik; it is also homogeneous of order k. If φ is a C∞ function on
G taking values in a real vector space, then for each k ∈ N and γ ∈ Ik, Xγφ and
XR

γ φ are defined componentwise.
Derivatives with respect to the coordinates x on G will be denoted by ∂αx where

α ∈ Ndim g

0 is a multiindex; they are typically neither left nor right-invariant and we
will only use them in local considerations.

Let D(G) := C∞
c (G;R) denote the space of test functions on G. Upon identifying

G with the underlying Euclidean space, D(G) is endowed with a LF-topology (strict
inductive limit of Fréchet spaces, see e.g. Rudin [27], Grubb [20]), which we recall as
follows. For any compact subset K of G, let D(K) be the set of all φ ∈ D(G) with
support contained in K. D(K) is equipped with the usual Fréchet (i.e. locally convex,
metrizable and complete) topology, via a countable family of separating seminorms
{‖ · ‖Cn(K) : n ∈ N0} where

‖φ‖Cn(K) :=
∑

|α|≤n

sup
x∈K

|∂αxφ(x)|

for φ ∈ D(K); here |α| is the length of the multiindex α ∈ Ndim g defined by

|α| :=
∑dim g

i=1 αi if α = (α1, . . . , αdim g). A sequence (φi)i∈N of D(K) converges in
the topology of D(K) to some φ ∈ D(K), if and only if

lim
j→∞

‖φj − φ‖Cn(K) = 0
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for all n ∈ N0; indeed, if Un,ε := {φ ∈ D(K) : ‖φ‖Cn(K) < ε} then {Un,ε : n ∈ N0, ε >
0} is a local basis for the system of neighborhoods at 0 ∈ D(K) (cf. [20, Remark
B.6]). From this it is not difficult to show that a linear functional u : D(K) → R is
continuous, if and only if there exists n ∈ N0 and c > 0 such that

|u(φ)| ≤ c‖φ‖Cn(K)

for all φ ∈ D(K); similarly, a linear operator T : D(K) → D(K) is continuous, if and
only if for any n ∈ N0, there exists n′ ∈ N0 and C > 0 such that

‖Tφ‖Cn(K) ≤ C‖φ‖Cn′ (K)

for all φ ∈ D(K) (cf. [20, Lemma B.7]). If (Ki)i∈N is an increasing sequence of
compact subsets of G that exhaust G, then D(Ki) →֒ D(Ki′) is continuous whenever
i < i′, and

D(G) =
⋃

i∈N

D(Ki)

is endowed with the direct limit topology in the category of locally convex topological
vector spaces, i.e. the finest (a.k.a. strongest) locally convex topology on D(G) so
that the inclusions D(Ki) →֒ D(G) is continuous for every i ∈ N. This topology is
independent of the choice of the compact exhaustion of G (and finer than the topology
on D(G) inherited from the Fréchet topology of C∞(G), which we will never use).
With the topology of D(G) in place, the space D′(G) of all real distributions on G
is then defined as the space of all continuous linear functionals from D(G) to R;
as usual D′(G) is equipped with the weak* topology. More concretely, a sequence
(φj)j∈N of D(G) converges in the topology of D(G) to some φ ∈ D(G), if and only if
there exists i ∈ N so that φ, φj are supported in Ki for every j ∈ N, and φj converges
to φ in the topology of D(Ki). A linear functional u : D(G) → R is in D′(G), if and
only if for any i ∈ N, u restricts to a continuous linear functional on Ki. A sequence
(uj)j∈N of D′(G) converges in the topology of D′(G) to some u ∈ D′(G), if and only
if uj(φ) → u(φ) for every φ ∈ D(G). Finally, a linear operator T : D(G) → D(G) is
continuous, if and only if its restriction T : D(Ki) → D(G) is continuous for every
i ∈ N (this will be the case, for instance, if T restricts to a continuous operator from
D(Ki) to D(Ki) for every i ∈ N); it then induces by duality a continuous linear
operator T ∗ : D′(G) → D′(G), via (T ∗u)(φ) = u(Tφ) for all φ ∈ D(G).

If V is a finite dimensional inner product space over R, we write D(G;V ) :=
D(G) ⊗ V (the space of V -valued test functions), and D′(G;V ) := D′(G) ⊗ V (the
space of V -valued distributions); they are isomorphic to products of finitely many
copies of D(G) and D′(G) respectively, and hence are endowed with the corresponding
topologies. The natural pairing between D(G;V ) and D′(G;V ) will be denoted by
〈·, ·〉V,G. Similarly we define C∞(G;V ) := C∞(G) ⊗ V , Lp(G;V ) := Lp(G) ⊗ V for
1 ≤ p ≤ ∞, and Hs(G;V ) := Hs(G)⊗ V for s ∈ R with the natural Hs(G;V ) inner
product; also, D(K;V ) := D(K)⊗ V if K is a compact subset of G, and D(K;V ) is
endowed with the natural topology from D(K).

A distribution u ∈ D′(G;V ) is said to be homogeneous of degree d ∈ R, whenever

u ◦ δs = sdu

for all s > 0; here u ◦ δs is defined by

〈u ◦ δs, φ〉V,G = 〈u, s−Qφ ◦ δs−1〉V,G

for all φ ∈ D(G;V ) and all s > 0. For instance, from now on, let δ ∈ D′(G) be the

Dirac delta at 0. Then for any multiindex α ∈ Ndim g

0 , the distribution ∂αx δ ⊗ vα ∈
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D′(G;V ) is homogeneous of degree −Q−‖α‖ where vα is any vector in V . Later we
will need the fact that if u ∈ D′(G;V ) is supported at {0}, then u is a finite linear
combination of such ∂αx δ ⊗ vα; in particular, if in addition u is homogeneous of some
degree d > −Q, then u = 0.

Let V , E be finite dimensional inner product spaces over R and k ∈ N. We will
always identify V with its dual space V ∗ via the inner product, and similarly for E,
so that End(V ;E) = E ⊗ V . The space End(V ;E)⊗ Tk(g1) can be viewed as either
the space of all linear maps from V to E whose coefficients are k tensors on g1, or
the space of all degree k tensors on g1 whose coefficients are linear maps from V to
E; we usually adopt the second point of view. The formal adjoint At(D) of A(D) is
an operator At(D) : C∞(G;E) → C∞(G;V ), given by

At(D) :=
∑

γ∈Ik

(Aγ)tX t
γ

where (Aγ)t ∈ End(E;V ) is the transpose of Aγ , and

(Xγ)
t = (−1)kXγk . . .Xγ1

if γ = (γ1, . . . , γk) ∈ Ik. Since At(D) : D(G;V ) → D(G;E) is continuous (in fact,
At(D) : D(K;V ) → D(K;E) is continuous for every compact subset K of G), we
may extend A(D) as a continuous operator A(D) : D′(G;V ) → D′(G;E) via

〈A(D)u, φ〉E,G := 〈u,At(D)φ〉V,G

if u ∈ D′(G;V ) and φ ∈ D(G;E). The operator A(D) is said to be hypoelliptic,
whenever for any u ∈ D′(G;V ) and any open set Ω ⊂ G, A(D)u ∈ C∞(Ω;E)
implies u ∈ C∞(Ω;V ). Similarly, we may extend At(D) as a continuous operator
At(D) : D′(G;E) → D′(G;V ), and define what it means for At(D) to be hypoelliptic.

Let k ∈ N and A ∈ End(V ;E)⊗Tk(g1). Given ψ ∈ D(G;V ) we would eventually
like to achieve two goals:

(a) solve the equation At(D)u = ψ, and
(b) recover ψ from A(D)ψ,

both under appropriate conditions on A(D); this will be accomplished in Theorem 3.3
below. Due to the invariance ofA(D) under left translations, a useful tool in achieving
these goals is convolutions on G, whose basics we review next.

First, if ψ, φ ∈ D(G;R) then the convolution of ψ with φ is defined to be

ψ ∗ φ(x) =

ˆ

G

ψ(y)φ(y−1x) dy =

ˆ

G

ψ(xy−1)φ(y) dy ∈ D(G).

Note that if G is not abelian then generally ψ ∗ φ 6= φ ∗ ψ. It is easy to check that if
1 ≤ i ≤ m, then

Xi(ψ ∗ φ) = ψ ∗ (Xiφ), XR
i (ψ ∗ φ) = (XR

i ψ) ∗ φ, and (Xiψ) ∗ φ = ψ ∗ (XR
i φ)

for all ψ, φ ∈ D(G). If ψ ∈ D(G) and u ∈ D′(G), then ψ ∗ u ∈ D′(G) is defined by
duality as

(ψ ∗ u)(φ) = u(ψ̃ ∗ φ)

where ψ̃(x) := ψ(x−1). We still have

Xi(ψ ∗ u) = ψ ∗ (Xiu), XR
i (ψ ∗ u) = (XR

i ψ) ∗ u, and (Xiψ) ∗ u = ψ ∗ (XR
i u)

for ψ ∈ D(G) and u ∈ D′(G).
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Now let ψ ∈ D(G;V ) and K ∈ D′(G; End(V ;E)) = D′(G;E ⊗ V ). Let {vi}
dimV
i=1

and {ej}
dimE
j=1 be orthonormal bases of V and E respectively, and write

ψ(x) =
dimV∑

i=1

ψi(x)vi and K(x) =
dimV∑

i=1

dimE∑

j=1

Kij(x)ej ⊗ vi.

Then the convolution ψ ∗ K ∈ D′(G;E) is defined by

ψ ∗ K =
dimE∑

j=1

dimV∑

i=1

[ψi ∗ Kij ]ej.

It satisfies
〈ψ ∗ K,Φ〉E,G = 〈K, ψ̃ ∗ Φ〉E⊗V,G

for all Φ ∈ D(G;E) where

ψ̃ ∗ Φ(x) :=

dimV∑

i=1

dimE∑

j=1

[ψ̃i ∗ Φj(x)]ej ⊗ vi ∈ D(G;E ⊗ V )

if Φ =
∑dimE

j=1 Φj(x)ej .

To proceed further, since End(V ;V ) = V ⊗ V and End(V ;E) = E ⊗ V , the
operator A(D) : D(G;V ) → D(G;E) extends via tensor product with V as a con-
tinuous operator A(D) : D(G; End(V ;V )) → D(G; End(V ;E)), so that A(D)(ψ ⊗
v) := (A(D)ψ) ⊗ v if ψ ∈ D(G;V ) and v ∈ V ; in particular, if ψ, φ ∈ D(G;V ),

ψ(x) =
∑dimV

i=1 ψi(x)vi, φ(x) =
∑dimV

j=1 φj(x)vj with

ψ̃ ∗ φ :=
dimV∑

i=1

dimV∑

j=1

[ψ̃i ∗ φj]vj ⊗ vi,

then
A(D)[ψ̃ ∗ φ] = ψ̃ ∗ A(D)φ.

We may then define At(D) : D′(G; End(V ;E)) → D′(G; End(V ;V )), so that if u ∈
D′(G;E) and v ∈ V , then At(D)(u ⊗ v) := (At(D)u)⊗ v. If K ∈ D′(G; End(V ;E))
is such that

(2.2) At(D)K = δ ⊗ I on G

where δ is the delta function at 0 ∈ G and I is the identity map on V , then

At(D)[ψ ∗ K] = ψ

for all ψ ∈ D(G;V ), because then for every φ ∈ D(G;V ) we have

〈ψ ∗ K, A(D)φ〉E,G = 〈K, ψ̃ ∗ A(D)φ〉E⊗V,G = 〈K, A(D)[ψ̃ ∗ φ]〉E⊗V,G

= 〈δ ⊗ I, ψ̃ ∗ φ〉V⊗V,G = 〈ψ, φ〉V,G.

Hence our goal (a) above reduces to the construction of K ∈ D′(G; End(V ;E)) so
that (2.2) is satisfied. Indeed, under suitable hypothesis on A, we will construct some
K◦ ∈ D′(G; End(V ;V )) for which At(D)A(D)K◦ = δ ⊗ I, and set K := A(D)K◦.
The distribution K◦ will also allow us to construct K̃ ∈ D′(G; End(E;V )) such that

ψ − (A(D)ψ) ∗ K̃ is in the nullspace of At(D)A(D) for any ψ ∈ D(G;V ). If further
k < Q, we will see that ψ − (A(D)ψ) ∗ K = 0, which achieves our goal (b) above.

Finally, for ℓ ∈ N, a distribution K ∈ D′(G; End(V ;E)) is said to be a kernel
of type ℓ, if K is homogeneous of degree ℓ − Q and C∞ on G \ {0}. Since ℓ > 0,
necessarily such K are given by integration against an End(V ;E)-valued function,
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that is homogeneous of degree ℓ − Q and C∞ on G \ {0}. Furthermore, for every
γ ∈ Iℓ, the map

ψ 7→ ψ ∗XγK,

initially defined for ψ ∈ D(G;V ), extends to a bounded linear operator from Lp(G;V )
to Lp(G;E) for every 1 < p <∞; this is a consequence of Calderón–Zygmund theory
on G, and follows, for instance, from Theorem 4 in [29, Chapter XIII, Section 5.3]. It
should be noted that so far we refrained from defining kernels of type ℓ when ℓ ≤ 0; in
that case, the correct definition of a kernel of type ℓ should involve certain additional
cancellation conditions, which we will not go into.

3. A left inverse to A(D) and a right inverse to A
t(D)

Our first result provides a first sufficient condition on A ∈ End(V ;E) ⊗ Tk(g1)
under which the equation At(D)u = ψ may be solved for every ψ ∈ D(G;V ).

Theorem 3.1. Let k ∈ N, V,E be finite dimensional inner product spaces
over R, and A ∈ End(V ;E) ⊗ Tk(g1). Suppose A(D) : D′(G;V ) → D′(G;E) and
At(D) : D′(G;E) → D′(G;V ) are both hypoelliptic. Then there exists K ∈ D′(G;
End(V ;E)) such that

At(D)K = δ ⊗ I on G

where δ is the delta function at 0 ∈ G and I is the identity map on V . Furthermore,
if k < Q, then K is a kernel of type k; on the other hand, if k ≥ Q, then there exists
an End(V ;E)-valued C∞ function K∞ on G \ {0} that is homogeneous of degree
k − Q, and a homogeneous End(V ;E)-valued polynomial P of degree k − Q, such
that

K = K∞(x) + P (x) log ‖x‖ on G

(in the sense that K is distribution given by integration against the right hand side).

The above theorem is essentially contained in Theorem 3.1(i,ii) of Baldi, Franchi
and Tesi [5] if we impose the additional hypotheses that V = E, A(D) = At(D)
and k ≤ Q. Their proof, whose essence can be found in [4] and [3] and has its
roots in Folland [16, Theorem 2.1], can be extended with relatively little difficulty
to cover our slightly more general case in Theorem 3.1, where we allow possibly
V 6= E, A(D) 6= At(D) and k > Q. We will provide a proof of Theorem 3.1 in an
Appendix. Roughly speaking, the hypoellipiticity assumption on A(D) allows for the
construction of a local right inverse of At(D), while the hypoellipticity assumption
on At(D) allows one to rescale the above local right inverse to At(D) to a global right
inverse K.

In practice, the application of Theorem 3.1 is limited by the fact that it only
applies when both A(D) and At(D) are hypoelliptic. There are natural situations
where this assumption is not satisfied; for instance, when G = Rn, V = R, E = Rn

and A(D) = D the usual gradient on Rn, then A(D) is (hypo)elliptic, but At(D) =
−div is not hypoelliptic when n ≥ 2. Still we expect the equation −div u = ψ to be
solvable for all ψ ∈ D(G;V ): one would first solve −∆v = ψ and let u = Dv, and
this works because −∆ = At(D)A(D). This argument gives us the following more
robust sufficient condition under which the equation At(D)u = ψ is solvable for all
ψ ∈ D(G;V ):

Corollary 3.2. Let k ∈ N, V,E be finite dimensional inner product spaces over
R, and A ∈ End(V ;E) ⊗ Tk(g1). Suppose At(D)A(D) : D′(G;V ) → D′(G;V ) is
hypoelliptic. Then the conclusions of Theorem 3.1 continue to hold.
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Proof. Indeed, since At(D)A(D) is its own formal adjoint, Theorem 3.1 implies
the existence of a fundamental solution K◦ ∈ D′(G; End(V ;V )) so that

At(D)A(D)K◦ = δ ⊗ I on G.

It remains to observe that K := A(D)K◦ ∈ D′(G; End(V ;E)) satisfies the conclusions
of Theorem 3.1, by considering separately the cases 0 < k < Q/2, Q/2 ≤ k < Q,
and k > Q. When 0 < k < Q/2, then K◦ is a kernel of type 2k, so A(D)K◦ is a
kernel of type 2k − k = k. When Q/2 ≤ k < Q, then K◦ = K◦

homo + P ◦(x) log ‖x‖
where K◦

homo ∈ D′(G; End(V ;E)) is homogeneous of degree 2k − Q, and P ◦(x) is a
homogeneous End(V ;V )-valued polynomial of degree 2k −Q < k; but K = A(D)K◦

involves k homogeneous derivatives of K◦
homo + P ◦(x) log ‖x‖, so at least one of the

k derivatives must hit the log ‖x‖ factor in the second term in order for it to make
a non-zero contribution, transforming the second term into one that is homogeneous
of degree k −Q. This shows that K is a kernel of type k in this case. Finally, when
k ≥ Q, we still have K◦ = K◦

homo + P ◦(x) log ‖x‖, but now that k ≥ Q, the degree
2k−Q of the polynomial P ◦ is at least k. As a result, the best one can get out of the
above argument is that K = K∞(x) + P (x) log ‖x‖ for some End(V ;E)-valued C∞

function K∞ on G\{0} that is homogeneous of degree k−Q, and some homogeneous
End(V ;E)-valued polynomial P of degree k −Q. �

To proceed further, let A ∈ End(V ;E) ⊗ Tk(g1) for some k ∈ N. Then the
following conditions are equivalent:

(a) There exists an open set Ω ⊂ G containing 0, and some CΩ > 0, such that

(3.1) ‖Dku‖L2(G;V ) ≤ CΩ

[
‖A(D)u‖L2(G;E) + ‖u‖L2(G;V )

]

for all u ∈ D(Ω, V ) (henceforth Dk is a shorthand for Xγ for any γ ∈ Ik).
(b) There exists some C > 0 such that

(3.2) ‖Dku‖L2(G;V ) ≤ C‖A(D)u‖L2(G;E)

for all u ∈ D(G, V ).

In fact, the first condition implies the second condition by scaling and homogeneity
of A(D), and the second condition clearly implies the first. If A(D) satisfies either
of these conditions, then A(D) is said to be maximally hypoelliptic. It implies that

(3.3) ‖Dku‖L2(G;V ) ≤ CΩ

[
〈At(D)A(D)u, u〉V,G + ‖u‖L2(G;V )

]

for all u ∈ D(Ω, V ), which is sometimes described as At(D)A(D) being maximally

hypoelliptic of type 2 on Ω (see Street [31, Section 2.4.1]), or At(D)A(D) being
maximally subelliptic on Ω (see Baldi, Franchi, Tesi [5, Theorem 4.1]). Again we
may scale away the lower order term on the right-hand side of (3.3), and obtain

(3.4) ‖Dku‖L2(G;V ) ≤ C〈At(D)A(D)u, u〉V,G

for all u ∈ D(G;V ). It is known that via microlocalization techniques, (3.4) implies
that At(D)A(D) : D′(G;V ) → D′(G;V ) is hypoelliptic on G (see e.g. [31, Theo-
rem 2.4.11], [5, Theorem 4.1]). To summarize, maximal hypoellipticity of A(D)
implies the hypoellipticity of At(D)A(D). We will see that the converse also holds,
and in fact we have the following theorem.

Theorem 3.3. Let k ∈ N, V , E be finite dimensional inner product spaces
over R, and A ∈ End(V ;E) ⊗ Tk(g1). Then A(D) : D′(G;V ) → D′(G;E) is maxi-
mally hypoelliptic, if and only if At(D)A(D) : D′(G;V ) → D′(G;V ) is hypoelliptic.
Furthermore, under either of these conditions, the following conclusions hold:
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(i) There exists K ∈ D′(G; End(V ;E)) such that for every ψ ∈ D(G;V ) we have

(3.5) ψ = At(D)[ψ ∗ K].

Furthermore, for any ℓ ∈ N0 and any γ ∈ Iℓ, there exists Kγ ∈ D′(G; End(V ;E))
such that

(3.6) (Xγ)
tψ = At(D)[ψ ∗ Kγ ]

for every ψ ∈ D(G;V ). If ℓ > k −Q, then Kγ is a homogeneous End(V ;E)-
valued distribution of (negative) degree k − ℓ − Q, and Kγ agrees with a
End(V ;E)-valued C∞ function on G \ {0}, so if further ℓ < k, then Kγ is a
kernel of type k − ℓ.

(ii) There exists K̃ ∈ D′(G; End(E;V )) such that for every ψ ∈ D(G;V ) we have

(3.7) ψ(x)− (A(D)ψ) ∗ K̃(x) =

{
0 if k < Q,

p(x) if k ≥ Q,

where in the second case p(x) is a polynomial of x whose non-isotropic degree
is at most k − Q. Furthermore, for any ℓ ∈ N0 with ℓ > k − Q and any
γ ∈ Iℓ, there exists K̃γ ∈ D′(G; End(E;V )), homogeneous of (negative) degree
k− ℓ−Q and agrees with an End(E;V )-valued C∞ function on G \ {0}, such
that

(3.8) Xγψ = (A(D)ψ) ∗ K̃γ

for every ψ ∈ D(G;V ). So if further ℓ < k, then K̃γ is a kernel of type k − ℓ.
Finally, for 1 < p <∞ and ψ ∈ D(G;V ),

(3.9)
∑

γ∈Ik

‖Xγψ‖Lp(G;V ) ≤ C‖A(D)ψ‖Lp(G;E).

This improves upon our Theorem 3.1 earlier, because if A(D) and At(D) are
both hypoelliptic, then so is At(D)A(D) and Theorem 3.3 applies. It also strength-
ens Theorem 3.1 of Baldi, Franchi and Tesi [5], because if V = E and A(D) = At(D)
is hypoelliptic, then again At(D)A(D) is hypoelliptic, and the conclusions of The-
orem 3.3 imply the conclusions (i)–(iv) of [5, Theorem 3.1]. Again we note that
we impose no upper bound assumption on the order k of the operator A(D) in our
Theorem 3.3.

Given what we have done so far, the main remaining difficulty in proving The-
orem 3.3 is in the proof of conclusion (ii). To that end, a useful tool is a clever
Liouville-type theorem from Baldi, Franchi and Tesi [5], as we will see below.

Proof of Theorem 3.3. Let A ∈ End(V ;E) ⊗ Tk(g1) for some k ∈ N. We have
already seen that if A(D) : D′(G;V ) → D′(G;E) is maximally hypoelliptic, then
At(D)A(D) : D′(G;V ) → D′(G;V ) is hypoelliptic.

So now suppose At(D)A(D) : D′(G;V ) → D′(G;V ) is hypoelliptic, so that Corol-
lary 3.2 applies. We will prove the conclusions (i) and (ii). The last conclusion of (ii),
or more specifically (3.9) applied with p = 2, shows that A(D) : D′(G;V ) → D′(G;E)
is maximally hypoelliptic, and this will complete our proof of the present theorem.

In order to prove (i), from Corollary 3.2, we obtain some K ∈ D′(G; End(V ;E))
so that

At(D)K = δ ⊗ I.

As observed before, this shows ψ = At(D)[ψ ∗K] for all ψ ∈ D(G;V ), which is (3.5).
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Next, let ℓ ∈ N0, γ ∈ Iℓ. We apply the above identity to (Xγ)
tψ in place of ψ.

Then
(Xγ)

tψ = At(D)[[(Xγ)
tψ] ∗ K] = At(D)[ψ ∗ Kγ]

where
Kγ := (−1)ℓXR

γ K ∈ D′(G; End(V ;E)).

This proves (3.6). Now by Corollary 3.2, we may write

K = Khomo + P (x) log ‖x‖,

where Khomo ∈ D′(G; End(V ;E)) is homogeneous of degree k − Q, and P (x) is a
homogeneous End(V ;E)-valued polynomial of degree k − Q if k ≥ Q, and zero
otherwise. If ℓ > k − Q, then the formula of Kγ shows that Kγ is a homogeneous
End(V ;E)-valued distribution of degree k − Q − ℓ. This is because at least one
of the ℓ derivatives in XR

γ must hit log ‖x‖ for it to give a non-zero contribution,
which transforms this factor into something homogeneous. Finally, Kγ agrees with
an End(V ;E)-valued C∞ function on G \ {0}, because K is C∞ away from 0 by
Corollary 3.2. Thus if further ℓ < k, then Kγ is a kernel of type k − ℓ. The last
assertion in (i) is now established.

In order to prove (ii), let K◦ ∈ D′(G; End(V ;V )) be the distribution in the proof
of Corollary 3.2 so that

(3.10) At(D)A(D)K◦ = δ ⊗ I on G.

This K◦ was constructed using Theorem 3.1, with At(D)A(D) in place of A(D) and
2k in place of k. Hence K◦ is C∞ on G \ {0}, and satisfies a pointwise bound

(3.11) K◦(x) =

{
O(1) if 2k < Q,

O
(
‖x‖2k−Q(1 + log ‖x‖)

)
if 2k ≥ Q.

as ‖x‖ → ∞. Furthermore, we may write

(3.12) K◦ = K◦
homo + P ◦(x) log ‖x‖,

where K◦
homo ∈ D′(G; End(V ;V )) is homogeneous of degree 2k − Q, and P ◦(x) is a

homogeneous End(V ;V )-valued polynomial of degree 2k − Q if 2k ≥ Q, and zero
otherwise.

Now let A(D) =
∑

γ∈Ik
AγXγ and let K̃ ∈ D′(G; End(E;V )) be defined by

K̃ := (−1)k
∑

γ∈Ik

XR
γ K

◦(Aγ)t.

Suppose ψ ∈ D(G;V ). Then

(A(D)ψ) ∗ K̃ = (At(D)A(D)ψ) ∗ K◦.

As a result, if

w := ψ − (A(D)ψ) ∗ K̃ = ψ − (At(D)A(D)ψ) ∗ K◦,

then from (3.10) we have
At(D)A(D)w = 0.

In particular, hypoellipticity of At(D)A(D) implies that w ∈ C∞(G;V ). The point-
wise estimate for K◦ in (3.11) shows that, as ‖x‖ → ∞,

w(x) =

{
O(1) if 2k < Q,

O
(
‖x‖2k−Q(1 + log ‖x‖)

)
if 2k ≥ Q.
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In particular, w is an V -valued tempered distribution on G. Using the Liouville–
type theorem in Baldi, Franchi and Tesi [5, Proposition 3.2], we then see that w is a
V -valued polynomial on G.

To proceed further, if ℓ ∈ N0, ℓ > k −Q and γ ∈ Iℓ, we claim that Xγw = 0 on
G. Indeed, then

Xγw = Xγψ − (A(D)ψ) ∗ K̃γ

where
K̃γ := XγK̃ = (−1)k

∑

γ′∈Ik

XγX
R
γ′K◦(Aγ′

)t ∈ D′(G; End(E;V )).

By (3.12), we then have

(3.13) K̃γ = (−1)k
∑

γ′∈Ik

XγX
R
γ′

(
K◦

homo + P ◦(x) log ‖x‖
)
(Aγ′

)t.

However, since ℓ > k −Q, this shows K̃γ is homogeneous of degree

2k −Q− (ℓ+ k) = k − ℓ−Q < 0.

This is because when ℓ > k − Q, we have ℓ + k > 2k − Q, so at least one of
the ℓ + k derivatives in XγX

R
γ′ must hit the factor log ‖x‖ in (3.13) for it to give

a non-zero contribution, making the term homogeneous. Furthermore, K̃γ agrees
with an End(E;V )-valued C∞ function on G \ {0}. Since ψ ∈ D(G;V ), we see that

(A(D)ψ) ∗ K̃γ(x) → 0 as x → ∞. Thus Xγw(x) → 0 as ‖x‖ → ∞ as well, and from
the fact that w is a polynomial, our claim Xγw = 0 follows.

If now k < Q, we apply the above claim with ℓ = 0, and see that w = 0, i.e.

ψ − (A(D)ψ) ∗ K̃ = 0.

If k ≥ Q, we apply the above claim with ℓ = k − Q + 1, and see that w = ψ −
(A(D)ψ) ∗ K̃ is a V -valued polynomial whose non-isotropic degree is ≤ k −Q. This
establishes (3.7).

If ℓ > k − Q and γ ∈ Iℓ, applying Xγ to both sides of (3.7), we see that

Xγψ = (A(D)ψ)∗K̃γ, where as in the above, K̃γ := XγK̃. Indeed all desired properties

of K̃γ have already been established above. This establishes (3.8).

Finally, if γ = (γ1, . . . , γk) ∈ Ik, then K̃γ = Xγ1K̃(γ2,...,γk) is a left-invariant
derivative of a kernel of type 1. Together with (3.8), this implies (3.9), as we have
seen towards the end of the last section. �

We finish this section with some examples of maximally hypoelliptic operators
on G.

Example 3.1. (Subelliptic gradient) Let V = R, E = g
∗
1 and e1, . . . , em be the

basis of E dual to X1, . . . , Xm. Let A ∈ End(V ;E)⊗ T1(g1) be such that

(3.14) A(D)u =
∑

1≤j≤m

Xju e
j

if u ∈ D′(G;V ). Then A(D) : D′(G;R) → D′(G; g∗1) is obviously maximally hypoel-
liptic.

Example 3.2. More generally, let k ∈ N, V = R, E = g
∗
1 and A ∈ End(V ;E)⊗

Tk(g1) be such that

(3.15) A(D)u =
∑

1≤j≤m

Xk
j u e

j
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if u ∈ D′(G;V ). (This generalizes the previous example, which is the case k = 1.)
We will show that A(D) : D′(G;R) → D′(G; g∗1) is maximally hypoelliptic.

To see this, note that At(D)A(D) : D′(G;R) → D′(G;R) is given by

At(D)A(D)u = (X2k
1 + · · ·+X2k

m )u, u ∈ D′(G;R)

which is hypoelliptic by a theorem of Helffer and Nourrigat [21] (see also Melin [24]).
Indeed, as in Folland and Stein [17, (4.20)], suppose π is an irreducible (complex)
representation of G, which determines a representation dπ of the Lie algebra g as
skew-Hermitian operators on Sπ. Then dπ extends to a representation of Tk(g) (still
denoted dπ) as operators acting on Sπ, and if dπ(X2k

1 + · · · + X2k
m )v = 0 for some

v ∈ Sπ, then

0 = (dπ(X2k
1 + · · ·+X2k

m )v, v) =

m∑

i=1

(dπ(Xi)
kv, dπ(Xi)

kv)

so dπ(Xi)
kv = 0 for 1 ≤ i ≤ m. It follows that whenever ℓ ∈ N0 and 2ℓ ≥ k,

then dπ(Xi)
2ℓv = 0 for 1 ≤ i ≤ m. A similar argument as above then shows

that dπ(Xi)v = 0 for 1 ≤ i ≤ m. Since X1, . . . , Xm generates g, this shows that
dπ(X)v = 0 for all X ∈ g, so either π is the trivial representation, or v = 0. This
verifies what is called the Rockland condition, and the aforementioned theorem of
Helffer and Nourrigat implies that X2k

1 + · · · + X2k
m is hypoelliptic. It follows now

from our Theorem 3.3 that A(D) given by (3.15) is also maximally hypoelliptic.

Example 3.3. (Korn–Sobolev) Let V = g1, E = S2(g1) the subspace of all
symmetric tensors in T2(g1) and e1, . . . , em be a basis of V . Write eij as a shorthand
for Sym(ei ⊗ ej), so that {eij}1≤i≤j≤m is a basis for E. Let A ∈ End(V ;E)⊗ T1(g1)
be the Korn operator

A(D)u =
∑

1≤i≤j≤m

(Xiuj +Xjui)e
ij

if u =
∑

1≤j≤m uje
j ∈ D′(G;V ). We will show that A(D) : D′(G;R) → D′(G;S2(g1))

is maximally hypoelliptic.
Fix 1 ≤ i < j ≤ m, and let u ∈ D(G;V ). We want to estimate ‖Xiuj‖L2(G)

in terms of ‖A(D)u‖L2(G;E). But pick k = 2r where r is the step of the group G
(so that gr 6= {0} in (1.4)); we assume r ≥ 2 for otherwise we are in the Euclidean
situation and the ellipticity of A(D) is well-known. We will express (Xk

ℓXiuj)1≤ℓ≤m

in terms of order k derivatives of A(D)u. A tool that comes in handy is the following
observation: for 1 ≤ ℓ, ℓ′ ≤ m and s ∈ N,

X⊗s
ℓ ⊗Xℓ′ ∈ gs+1 + gs ⊗Xℓ + · · ·+ g1 ⊗X⊗s

ℓ

which can be proved easily using induction on s; indeed,

Xs
ℓXℓ′ =

(
s

0

)
(adXℓ)

s(Xℓ′) +

(
s

1

)
(adXℓ)

s−1(Xℓ′)Xℓ + . . .

+

(
s

s− 1

)
(adXℓ)(Xℓ′)X

s−1
ℓ +

(
s

s

)
Xℓ′X

s
ℓ

which is a general identity that holds in all associative algebras. Since gr+1 = {0},
this shows

(3.16) Xr
ℓXℓ′ = Cℓ,ℓ′(D)Xℓ where Cℓ,ℓ′ ∈ gr + gr−1 ⊗Xℓ + · · ·+ g1 ⊗X

⊗(r−1)
ℓ .
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Recall we fixed 1 ≤ i < j ≤ m, and wrote k = 2r. Let now 1 ≤ ℓ ≤ m. We will
express Xk

ℓ (Xiuj) in terms of order k derivatives of A(D)u.

Case 1: ℓ = j. Then

Xr
ℓ (Xiuj) = Xr

j (Xiuj) = Cj,i(D)(Xjuj)

by (3.16), so

(3.17) Xk
ℓ (Xiuj) = Xr

ℓCj,i(D)(Xjuj).

Case 2: ℓ = i. Then

Xr
ℓ (Xiuj) = Xr

i (Xiuj) = Xr
i (Xiuj +Xjui)−Xr

iXjui

= Xr
i (Xiuj +Xjui)− Ci,j(D)(Xiui)

by (3.16), so

(3.18) Xk
ℓ (Xiuj) = X2r

i (Xiuj +Xjui)−Xr
i Ci,j(D)(Xiui).

Case 3: 1 ≤ ℓ ≤ m, ℓ 6= i nor j. Then by (3.16),

Xr
ℓ (Xiuj) = Cℓ,i(D)(Xℓuj) = Cℓ,i(D)(Xℓuj +Xjuℓ)− Cℓ,i(D)Xjuℓ.

But

Xr
ℓCℓ,i(D) = C̃ℓ,i(D)Xr

ℓ for some C̃ℓ,i ∈ gr + gr−1 ⊗Xℓ + · · ·+ g1 ⊗X
⊗(r−1)
ℓ .

As a result,

Xk
ℓ (Xiuj) = Xr

ℓCℓ,i(D)(Xℓuj +Xjuℓ)− C̃ℓ,i(D)Xr
ℓXjuℓ

which in light of (3.16) gives

(3.19) Xk
ℓ (Xiuj) = Xr

ℓCℓ,i(D)(Xℓuj +Xjuℓ)− C̃ℓ,i(D)Cℓ,j(D)(Xℓuℓ).

Now since dim g1 ≥ 2 and dim gj ≥ 1 for 2 ≤ j ≤ r, we have

Q =

r∑

j=1

j · dim gj ≥ 2 +

r∑

j=2

j =
r2 + r + 2

2
≥ 2r,

with a strict inequality unless both r = 2 and dim g1 = 2. If Q > 2r = k, then
using the ellipticity of u 7→ (Xk

1u, . . . , X
k
mu) as in Example 3.2, and using (3.7) in

Theorem 3.3, we conclude the existence of K̃1, . . . , K̃m ∈ D′(G;R), each a kernel of
type k, such that

Xiuj =

m∑

ℓ=1

(Xk
ℓXiuj) ∗ K̃ℓ.

But using (3.17), (3.18) and (3.19), we have expressed Xk
ℓXiuj as a derivative of order

k of components of A(D)u. As a result, we may express Xiuj as the convolution of
A(D)u with the order k derivative of a kernel of type k. As observed at the end of
the last section, this shows

(3.20)

dimV∑

i=1

‖Xiu‖L2(G;V ) ≤ ‖A(D)u‖L2(G;E).

On the other hand, if indeed r = 2 and dim g1 = 2, then Q = 4 and we didn’t have
Case 3 above. So we may express (X2

1 (Xiuj), X
2
2 (Xiuj)) in terms of second order

derivatives of A(D)u, which then allows us to express Xiuj as the convolution of
A(D)u with the second order derivative of a kernel of type 2. Hence (3.20) also holds
in this case, and this completes our proof of the maximal hypoellipticity of A(D).
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4. L
1 estimates

In this section we prove L1 estimates for certain A(D) satisfying the conditions of
Theorem 3.3. To set up some notations, let Sℓ(g1) be the subspace of all symmetric
tensors in Tℓ(g1). There is a symmetrization map Sym: Tℓ(g1) → Sℓ(g1), which is a
linear surjection given by

X⊗
λ 7→

1

ℓ!

∑

σ∈Sℓ

X⊗
σ(λ), λ ∈ Iℓ,

where Sℓ is the symmetric group on ℓ elements, and σ(λ) := (λσ(1), . . . , λσ(ℓ)) if
λ = (λ1, . . . , λℓ) ∈ Iℓ and σ ∈ Sℓ. Let Iℓ := {β = (β1, . . . , βm) ∈ Nm

0 : |β| = ℓ} for the
set of all multiindices of length ℓ. For λ ∈ Iℓ and β ∈ Iℓ, we will write β = Sym(λ)
if for 1 ≤ j ≤ m, βj is the number of indices among λ1, . . . , λℓ that is equal to j. If
β ∈ Iℓ, it will also be convenient to write

X̃⊗β = Sym(X⊗
λ )

where λ is any element in Iℓ with Sym(λ) = β. Note that Sℓ(g1) is isomorphic to the
vector space of all commutative homogeneous polynomials of ξ = (ξ1, . . . , ξm) ∈ Rm

of degree ℓ with real coefficients, via the map

X̃⊗β 7→ ξβ, β ∈ Iℓ

where ξβ := ξβ1
1 . . . ξβm

m for β ∈ Iℓ.
Let now F be a finite dimensional inner product space over R. The sym-

metrizaiton map Sym: Tℓ(g1) → Sℓ(g1) extends to a linear map

Sym: End(E;F )⊗ Tℓ(g1) → End(E;F )⊗ Sℓ(g1);

more explicitly, for L ∈ End(E;F ) ⊗ Tℓ(g1), if L =
∑

λ∈Iℓ
BλX⊗

λ where each Bλ ∈
End(E;F ), we have

Sym(L) =
∑

λ∈Iℓ

Bλ Sym(X⊗
λ ) =

∑

β∈Iℓ

B̃βX̃
⊗β

where

B̃β :=
∑

λ∈Iℓ : Sym(λ)=β

Bλ for each β ∈ Iℓ.

As before, we may associate to each such Sym(L) a homogeneous left-invariant linear
partial differential operator Sym(L)(D) of order ℓ on G. Moreover, by identifying
Sℓ(g1) with the space of all commutative homogeneous degree ℓ polynomials on Rm,
we may identify Sym(L) ∈ End(E;F )⊗ Sℓ(g1) with

(4.1) Sym(L)(ξ) =
∑

β∈Iℓ

B̃βξ
β.

This polynomial in ξ is usually called the symbol of Sym(L)(D); we say Sym(L)(D)
is cocanceling, if and only if

⋂

ξ∈Rm

ker Sym(L)(ξ) = {0}.

This is the same as saying that
⋂

β∈Iℓ

ker B̃β = {0},
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if Sym(L)(ξ) is as in (4.1); this follows, for instance, from a variant of the proof of
Lemma 6.2 below.

One of our main results is as follows.

Theorem 4.1. Let k ∈ N, let V,E be finite dimensional inner product spaces
over R, and let A ∈ End(V ;E) ⊗ Tk(g1). Suppose A(D) is maximally hypoelliptic.
Assume there exist L ∈ End(E;F ) ⊗ Tℓ(g1) for some finite dimensional real inner
product space F and some ℓ ∈ N, such that

L(D) ◦ A(D) = 0,

and that Sym(L)(D) is cocanceling. Then for any γ ∈ Ik−1, we have

‖Xγu‖
L

Q
Q−1 (G;V )

≤ C‖A(D)u‖L1(G;E)

for all u ∈ C∞
c (G;V ).

The proof of Theorem 4.1 depends on Theorem 3.3(i), as well as the following
proposition, in the spirit of [37]:

Proposition 4.2. Suppose L ∈ End(E;F ) ⊗ Tℓ(g1), such that Sym(L)(D) is
cocanceling. Suppose f ∈ C∞(G;E) is such that L(D)f = 0. Then for any φ ∈
C∞

c (G;E), ∣∣∣∣
ˆ

G

〈f, φ〉E

∣∣∣∣ . ‖f‖L1(G;E)‖Dφ‖LQ(G;E).

To prove Proposition 4.2, we need Theorem 5.3 of [14] (see also [34, 36] for its
Euclidean precedent). We reformulate it as follows:

Lemma 4.3. Suppose f ∈ C∞(G;Tℓ(g1)) is given by

f =
∑

λ∈Iℓ

fλX⊗
λ

where each fλ ∈ C∞(G;R). Assume that
∑

λ∈Iℓ

Xλf
λ = 0.

Then for any ϕ ∈ C∞
c (G;Sℓ(g1)), we have
∣∣∣∣
ˆ

G

〈f, ϕ〉Tℓ(g1)

∣∣∣∣ . ‖f‖L1(G;Tℓ(g1))‖Dϕ‖LQ(G;Sℓ(g1))

where 〈·, ·〉Tℓ(g1) is an inner product on the inner product space Tℓ(g1).

The above lemma easily generalizes to the situation where f and ϕ takes value
in F ⊗ Tℓ(g1) and F ⊗ Sℓ(g1) for some finite dimensional inner product space F over
R. More precisely, we will need the following corollary of Lemma 4.3:

Corollary 4.4. Let F be a finite dimensional inner product space over R. Sup-
pose f =

∑
λ∈Iℓ

fλX⊗
λ ∈ C∞(G;F ⊗ Tℓ(g1)) is such that

∑

λ∈Iℓ

Xλf
λ = 0

componentwise. Then for any β ∈ Iℓ and any φ ∈ C∞
c (G;F ), we have

∣∣∣∣
ˆ

G

〈f̃β, φ〉F

∣∣∣∣ .
∑

β∈Iℓ

‖f̃β‖L1(G;F )‖Dφ‖LQ(G;F )
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where 〈·, ·〉F is an inner product on the inner product space F . Here

f̃β :=
∑

λ∈Iℓ : Sym(λ)=β

fλ.

Proof. It suffices to take ϕ =
∑

λ∈Iℓ : Sym(λ)=β φX
⊗
λ ∈ C∞(G;Sℓ(g1)) and apply

Lemma 4.3 to each F -component. �

Proof of Proposition 4.2. Let L =
∑

λ∈Iℓ
BλX⊗

λ ∈ End(E;F ) ⊗ Tℓ(g1), and

Sym(L)(ξ) =
∑

β∈Iℓ
B̃βξ

β. Since Sym(L)(D) is cocanceling, the map

e 7→ (B̃β(e))β∈Iℓ

is an injective linear map from E to FN where N is the number of elements in Iℓ.
This map has a left inverse, i.e. for every β ∈ Iℓ, there exists a linear map Cβ : F → E
such that

e =
∑

β∈Iℓ

CβB̃βe

for all e ∈ E. It follows that for any f ∈ C∞(G;E), we have

f(x) =
∑

β∈Iℓ

CβB̃βf(x)

for all x ∈ G. Now

〈f, φ〉E =
∑

β∈Iℓ

〈B̃βf, C
∗
βφ〉F ,

where C∗
β : E → F is the adjoint to Cβ. The condition L(D)f = 0 guarantees that

∑

λ∈Iℓ

XλB
λf = 0.

Thus Corollary 4.4 applies, and we obtain the bound
∣∣∣∣
ˆ

G

〈B̃βf, C
∗
βφ〉F

∣∣∣∣ . ‖f‖L1(G;E)‖Dφ‖LQ(G;E)

for all β ∈ Iℓ. Summing over β gives the desired estimate for
´

G
〈f, φ〉E. �

We may now prove Theorem 4.1.

Proof of Theorem 4.1. By Theorem 3.3(i), for any γ ∈ Ik−1, and any ψ ∈
C∞

c (G;V ), we have

X t
γψ = At(D)[ψ ∗ Kγ]

where Kγ is a End(V ;E)-valued kernel of type 1. Hence for any u ∈ C∞
c (G;V ), we

have

〈Xγu, ψ〉L2(G;V ) = 〈A(D)u, ψ ∗ Kγ〉L2(G;E)

We may then apply Proposition 4.2 to f := A(D)u and φ := ψ ∗ Kγ. Since there
exists L ∈ End(E;F )⊗ Sℓ(g1), such that L(D) ◦ A(D) = 0, and that Sym(L)(D) is
cocanceling, the above gives

∣∣〈Xγu, ψ〉L2(G;V )

∣∣ ≤ C‖A(D)u‖L1(G;E)‖D(ψ ∗ Kγ)‖LQ(G;V )

≤ C‖A(D)u‖L1(G;E)‖ψ‖LQ(G;V ). �
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5. Hardy inequalities

In this section we prove certain Hardy inequalities under the same assumptions
as in Theorem 4.1, in the spirit of [13].

Theorem 5.1. Let k ∈ N, let V,E be finite dimensional inner product spaces
over R, and let A ∈ End(V ;E) ⊗ Tk(g1). Suppose A(D) is maximally hypoelliptic.
Assume there exists L ∈ End(E;F ) ⊗ Tℓ(g1) for some finite dimensional real inner
product space F and some ℓ ∈ N, such that

L(D) ◦ A(D) = 0,

and that Sym(L)(D) is cocanceling. Then

(a) for any ℓ ∈ {1, . . . ,min{k,Q− 1}}, and any p ∈ [1, Q
Q−ℓ

), we have

(
ˆ

G

(
‖x‖Q−ℓ|Dk−ℓu(x)|V

)p dx

‖x‖Q

)1/p

≤ C‖A(D)u‖L1(G;E)

for all u ∈ C∞
c (G;V ); furthermore,

(b) if k ≥ Q, then

‖Dk−Qu‖L∞(G;V ) ≤ C‖A(D)u‖L1(G;E)

for all u ∈ C∞
c (G;V ).

The proof relies on Theorem 3.3(ii), as well as the following proposition:

Proposition 5.2. Let E, F be finite dimensional inner product spaces over R,
and ℓ ∈ N. Suppose L ∈ End(E;F ) ⊗ Tℓ(g1), such that Sym(L)(D) is cocanceling.
Suppose f ∈ C∞(G;E) is such that L(D)f = 0. Then for any φ ∈ C∞

c (G,E), we
have ∣∣∣∣

ˆ

G

〈f, φ〉E

∣∣∣∣ ≤ C
ℓ∑

j=1

ˆ

G

|f(x)|E|D
jφ(x)|E‖x‖

j dx.

The key here is that the sum on the right hand side begins with j = 1 (instead
of j = 0).

Proof of Proposition 5.2. Let L =
∑

λ∈Iℓ
BλX⊗

λ ∈ End(E;F ) ⊗ Tℓ(g1), and

Sym(L)(ξ) =
∑

β∈Iℓ
B̃βξ

β. Since Sym(L)(D) is cocanceling, we may construct, as in
the proof of Proposition 4.2, a linear map Cβ : F → E for every β ∈ Iℓ such that

e =
∑

β∈Iℓ

CβB̃βe

for all e ∈ E. Now write xβ for xβ1
1 . . . xβm

m for β ∈ Iℓ. Then

1

β!
Lt(D)(xβ) = B̃∗

β

for all β ∈ Iℓ, so

φ(x) = Lt(D)
∑

β∈Iℓ

1

β!
(xβC∗

βφ(x)) +O

(
ℓ∑

j=1

‖x‖j|Djφ(x)|E

)

for all x ∈ G. Plugging this back into
´

G
〈f, φ〉E, and noting that L(D)f = 0, we

have ∣∣∣∣
ˆ

G

〈f, φ〉E

∣∣∣∣ ≤ C

ℓ∑

j=1

ˆ

G

|f(x)|E|D
jφ(x)|E‖x‖

j dx,
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as desired. �

Proof of Theorem 5.1. For (a), first let ℓ ∈ {1, . . . ,min{k,Q − 1}} so that
k − Q < k − ℓ < k. By Theorem 3.3(ii), for any γ ∈ Ik−ℓ, and any u ∈ C∞

c (G;V ),
we have

Xγu(x) =

ˆ

G

K̃γ(y
−1x)[A(D)u](y) dy

for all x ∈ G, where K̃γ is an End(E;V )-valued function, that is C∞ on G \ {0} and
homogeneous of degree k −Q− (k − ℓ) = −(Q− ℓ). Let ρ ∈ C∞

c (R;R) be a cut-off
function, so that ρ(t) = 1 for |t| ≤ 1/4, and ρ(t) = 0 for |t| ≥ 1/2. We then have
Xγu(x) = I(x) + II(x), where

I(x) :=

ˆ

G

ρ

(
‖y‖

‖x‖

)
K̃γ(x)[A(D)u](y) dy,

and

II(x) :=

ˆ

G

[
K̃γ(y

−1x)− ρ

(
‖y‖

‖x‖

)
K̃γ(x)

]
[A(D)u](y) dy.

To estimate I(x), since L(D) ◦ A(D) = 0 and Sym(L)(D) is cocanceling, we may

then apply Proposition 5.2 to f(y) := [A(D)u](y) and φ(y) := ρ
(

‖y‖
‖x‖

)
K̃γ(x). Hence

‖x‖Q−ℓ|I(x)|V ≤

ˆ

‖y‖≤ ‖x‖
2

‖y‖

‖x‖
|A(D)u(y)|E dy.

Since p ≥ 1, from Minkowski inequality, it follows that

(5.1)

(
ˆ

G

(
‖x‖Q−ℓ|I(x)|V

)p dx

‖x‖Q

)1/p

≤ C‖A(D)u‖L1(G;E).

Next,

‖x‖Q−ℓ|II(x)|V ≤

ˆ

‖y‖≤ ‖x‖
2

‖y‖

‖x‖
|A(D)u(y)|E dy

+

ˆ

‖y‖≥ ‖x‖
2

‖x‖Q−ℓ

‖y−1x‖Q−ℓ
|A(D)u(y)|E dy.

Since p ∈ [1, Q
Q−ℓ

), from Minkowski inequality again, it follows that

(5.2)

(
ˆ

G

(
‖x‖Q−ℓ|II(x)|V

)p dx

‖x‖Q

)1/p

≤ C‖A(D)u‖L1(G;E).

Combining (5.1) and (5.2), we get the desired conclusion in part (a).
For (b), note that

Dk−Qu(0) = −

ˆ ∞

0

d

dλ
Dk−Qu(δλx0) dλ

for any x0 ∈ G with ‖x0‖ = 1. Hence

|Dk−Qu(0)|V ≤

ˆ ∞

0

r∑

j=1

λj−1|DjDk−Qu(δλx0)|V dλ

for any such x0. Integrating over all such x0, we see that

|Dk−Qu(0)|V ≤ C

ˆ

G

r∑

j=1

|Dk−(Q−j)u(x)|V
‖x‖Q−j

dx.
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Hence by part (a) above (with p = 1), we have

|Dk−Qu(0)|V . ‖A(D)u‖L1(G;E),

proving part (b). �

6. Construction of a compatible L(D)

In applying Theorem 4.1 and Theorem 5.1, we need to find some L(D) such that
L(D) ◦ A(D) = 0 and that Sym(L)(D) is cocanceling. In that regard, we remark
that the left-invariant differential operators on G form a left Noetherian ring [22,
Proposition 3.27 and Problems 3.11–3.13], and the left-invariant differential operators
K(D) : C∞(G;E) → C∞(G;R) such that

K(D) ◦ A(D) = 0

form a left module over this left Noetherian ring. Hence by a non-commutative ver-
sion of the Hilbert basis theorem, this module is finitely left-generated. Let us think
of each K(D) in this module as a row vector, multiplying the matrix A(D) on the
left, and let L(D) be a matrix of left-invariant differential operators so that the rows
generate this module. By multiplying some further left-invariant differential opera-
tors, we can make L(D) a homogeneous operator while maintaining L(D)◦A(D) = 0.
The question is then whether one can find such an L(D) such that Sym(L)(D) is
cocanceling. Below we develop a robust way that works for our examples of interest.

Proposition 6.1. Suppose L0 ∈ End(E;F )⊗ Tℓ(g1), and suppose Sym(L0)(D)
is cocanceling. Let M ∈ End(F ;W )⊗ Tℓ′(g1) for some finite dimensional real inner
product space W and some ℓ′ ∈ N. If there exists ξ0 ∈ Rm such that Sym(M)(ξ0) is
injective, then Sym(M ◦ L0)(D) is cocanceling.

Here

(M ◦ L0) :=
∑

γ′∈Iℓ′

∑

γ∈Iℓ

(Mγ′

◦ Lγ
0)X

⊗
γ′ ⊗X⊗

γ ∈ End(E;W )⊗ Tℓ+ℓ′(g1),

if M =
∑

γ′∈Iℓ′
Mγ′

X⊗
γ′ and L0 =

∑
γ∈Iℓ

Lγ
0X

⊗
γ .

The point of this proposition is that given A(D), typically it is not too difficult, by
looking at the Euclidean analog for instance, to come up with an L0 ∈ End(E;F )⊗
Tℓ(g1) with Sym(L0)(D) cocanceling such that L0(D) ◦ A(D) is almost zero (in the
sense that it involves a lot of commutators). We will then apply some M(D) that
satisfies the conditions of Proposition 6.1, to the composition L0(D) ◦A(D), hoping
that we have

(M ◦ L0 −N)(D) ◦ A(D) = 0

for some N(D) with Sym(N)(D) = 0. Then we may apply Theorem 4.1 and The-
orem 5.1 with L(D) := (M ◦ L0 − N)(D), because Proposition 6.1 guarantees that
Sym(L)(D) = 0. See examples in Section 7.

The proof of Proposition 6.1 relies on the following lemma:

Lemma 6.2. Suppose L ∈ End(E;F )⊗Tℓ(g1). Then Sym(L)(D) is cocanceling,
if and only if ⋂

ξ∈U

ker Sym(L)(ξ) = {0}

for any non-empty open subset U of Rm.
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Proof. Suppose Sym(L)(D) is cocanceling, and U is a non-empty open subset of
Rm. Then there exist vectors v1, . . . , vm+ℓ−1 ∈ Rm such that the following holds:

(i) any m distinct vectors from v1, . . . , vm+ℓ−1 are linearly independent;
(ii) for any set S of ℓ distinct vectors from v1, . . . , vm+ℓ−1, the orthogonal com-

plement of the m− 1 vectors in {v1, . . . , vm+ℓ−1} \ S contains some ξS ∈ U .

Let Λ be the collection of all sets of ℓ distinct vectors from v1, . . . , vm+ℓ−1. For S ∈ Λ,
let’s write vS · ξ as a shorthand for

∏
v∈S v · ξ. Then {vS · ξ}S∈Λ is a basis of Sℓ(g1).

Hence Sym(L)(ξ) can be expanded as

Sym(L)(ξ) =
∑

S∈Λ

CS(vS · ξ)

where each CS ∈ End(E;F ). By setting ξ = ξS, we see that CS = Sym(L)(ξS), so

Sym(L)(ξ) =
∑

S∈Λ

Sym(L)(ξS)(vS · ξ).

This shows that ⋂

S∈Λ

ker Sym(L)(ξS) ⊂
⋂

ξ∈Rm

ker Sym(L)(ξ),

which is {0} since Sym(L)(D) is cocanceling. It follows that
⋂

ξ∈U

ker Sym(L)(ξ) = {0}.

The converse is obvious. �

Proof of Proposition 6.1. Suppose Sym(L0)(D) is cocanceling, and suppose
there exists ξ0 ∈ Rm such that Sym(M)(ξ0) is injective. Then there exists an open
neighborhood U of ξ0 such that Sym(M)(ξ) is injective for all ξ ∈ U . Now

Sym(M ◦ L0)(ξ) = Sym(M)(ξ) ◦ Sym(L0)(ξ)

for all ξ ∈ Rm, and

ker [Sym(M)(ξ) ◦ Sym(L0)(ξ)] = ker Sym(L0)(ξ)

whenever ξ ∈ U . As a result,
⋂

ξ∈Rm

ker Sym(M ◦ L0)(ξ) ⊂
⋂

ξ∈U

ker [Sym(M)(ξ) ◦ Sym(L0)(ξ)]

=
⋂

ξ∈U

ker Sym(L0)(ξ) = {0},

the last equality following from Lemma 6.2. Hence Sym(M ◦ L0)(D) is cocanceling.
�

7. Applications

We are now ready to revisit the Examples 3.1, 3.2 and 3.3. As usual, X1, . . . , Xm

represents a basis of g1.
Much of the following proposition is not new. We include it here mainly for the

purpose of exposition, to illustrate how our methods apply in this simple case.
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Proposition 7.1. Suppose G is a stratified homogeneous group with homoge-
neous dimension Q ≥ 2. Let u ∈ C∞

c (G;R). Then

(7.1) ‖u‖
L

Q
Q−1 (G;R)

≤ C

m∑

j=1

‖Xju‖L1(G;R).

Furthermore,

(7.2)

ˆ

G

|u(x)|

‖x‖
dx ≤ C

m∑

j=1

‖Xju‖L1(G;R),

and more generally

(7.3)

(
ˆ

G

(
‖x‖Q−1|u(x)|

)p dx

‖x‖Q

)1/p

≤ C

m∑

j=1

‖Xju‖L1(G;R)

for all p ∈ [1, Q
Q−1

).

Proof. We will use the notations from Example 3.1. Additionally, let F = Λ2(g∗1).
Define L0 ∈ End(E;F )⊗ T1(g1) such that

L0(D)f :=
∑

1≤i<j≤m

(Xifj −Xjfi)e
i ∧ ej

for f =
∑

1≤j≤m fje
j ∈ C∞(G;E). Then

L0(D) ◦ A(D)u =
∑

1≤i<j≤m

[Xi, Xj]u e
i ∧ ej

if u ∈ C∞(G;V ). Furthermore, define M ∈ End(F ;F )⊗ Tr(g1) such that

M(D)g :=
∑

1≤i<j≤m

Xr
j gij e

i ∧ ej

for g =
∑

1≤i<j≤m gij e
i ∧ ej ; here r is the step of the Lie algebra g, so that any

commutator of length r + 1 of elements from g1 is zero. Then there exists N ∈
End(E;F )⊗ Tr+1(g1) such that

(M ◦ L0 −N)(D) ◦ A(D) = 0

and

Sym(N)(D) = 0.

This holds because

Xr
j [Xi, Xj] = Xr−1

j [Xi, Xj]Xj +Xr−1
j [Xj, [Xi, Xj]]

= Xr−1
j [Xi, Xj]Xj +Xr−2

j [Xj, [Xi, Xj]]Xj +Xr−2
j [Xj , [Xj, [Xi, Xj]]]

= · · ·

=

r∑

s=1

Xr−s
j [Xj , [Xj, · · · [Xi, Xj]]]︸ ︷︷ ︸

s brackets

Xj + [Xj , [Xj, · · · [Xi, Xj]]]︸ ︷︷ ︸
r + 1 brackets

while the last term is zero since it has r + 1 brackets; hence it suffices to take

N(D)f =

r∑

s=1

Xr−s
j [Xj , [Xj, · · · [Xi, Xj]]]︸ ︷︷ ︸

s brackets

fj e
i ∧ ej
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if f =
∑m

j=1 fj e
j . Since Sym(M)(ξ0) is the identity map on F when ξ0 = (1, . . . , 1),

and Sym(L0)(D) is cocanceling (here we usem ≥ 2 which follows from the assumption
Q ≥ 2), by Proposition 6.1, we have Sym(M ◦L0−N)(D) being cocanceling. Taking
L := M ◦ L0 − N , (7.1) now follows from Theorem 4.1, and (7.2), (7.3) follow from
Theorem 5.1. �

Next we generalize the previous proposition to a ‘higher order gradient’.

Proposition 7.2. Suppose G is a stratified homogeneous group with homoge-
neous dimension Q ≥ 2. Let k ∈ N and u ∈ C∞

c (G;R). Then

(7.4) ‖Dk−1u‖
L

Q
Q−1 (G;R)

≤ C

m∑

j=1

‖Xk
j u‖L1(G;R),

and for all ℓ ∈ {1, . . . ,min{k,Q− 1}}, we have

(7.5)

ˆ

G

|Dk−ℓu(x)|

‖x‖ℓ
dx ≤ C

m∑

j=1

‖Xk
j u‖L1(G;R)

and more generally

(7.6)

(
ˆ

G

(‖x‖Q−ℓ|Dk−ℓu(x)|)p
dx

‖x‖Q

)1/p

≤ C

m∑

j=1

‖Xk
j u‖L1(G;R)

for all p ∈ [1, Q
Q−1

). If k ≥ Q, we also have

(7.7) ‖Dk−Qu‖L∞(G;R) ≤ C

m∑

j=1

‖Xk
j u‖L1(G;R).

Proof. We adopt the notations from Example 3.2. Additionally, let F = Λ2(g∗1).
Define L0 ∈ End(E;F )⊗ Tk(g1) such that

L0(D)f :=
∑

1≤i<j≤m

(Xk
i fj −Xk

j fi)e
i ∧ ej

for f =
∑

1≤j≤m fje
j ∈ C∞(G;E). Then

L0(D) ◦ A(D)u =
∑

1≤i<j≤m

[Xk
i , X

k
j ]u e

i ∧ ej ,

or more explicitly

L0(D) ◦ A(D)u =
∑

1≤i<j≤m

∑

1≤s,t≤k

Xk−s
i Xk−t

j [Xi, Xj]X
t−1
j Xs−1

i u ei ∧ ej

if u ∈ C∞(G;V ). Furthermore, define M ∈ End(F ;F )⊗ Tk2r(g1) such that

M(D)g :=
∑

1≤i<j≤m

Xk2r
j gij e

i ∧ ej

for g =
∑

1≤i<j≤m gij e
i ∧ ej ; again r is the step of the Lie algebra g. Then there

exists N ∈ End(E;F )⊗ Tk(kr+1)(g1) such that

(M ◦ L0 −N)(D) ◦ A(D) = 0

and

Sym(N)(D) = 0.
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This holds because

Xk2r
j [Xk

i , X
k
j ] =

kr∑

s=1

X
k(kr−s)
j [Xk

j , [X
k
j , · · · [X

k
i , X

k
j ]]]︸ ︷︷ ︸

s brackets

Xk
j + [Xk

j , [X
k
j , · · · [X

k
i , X

k
j ]]]︸ ︷︷ ︸

kr + 1 brackets

.

We claim that the last term is zero: this is because there are kr + 1 brackets, each
of which involving at least one Xi’s, but there are only k Xi’s; hence at least one of
the Xi’s is in a bracket of length at least r + 1, which is zero. As a result, it suffices
to take

N(D)f :=
kr∑

s=1

X
k(kr−s)
j [Xk

j , [X
k
j , · · · [X

k
i , X

k
j ]]]︸ ︷︷ ︸

s brackets

Xk
j fj e

i ∧ ej

if f =
∑m

j=1 fj e
j . Since Sym(M)(ξ0) is the identity map on F when ξ0 = (1, . . . , 1),

and Sym(L0)(D) is cocanceling (here we usem ≥ 2 which follows from the assumption
Q ≥ 2), by Proposition 6.1, we have Sym(M ◦L0−N)(D) being cocanceling. Taking
L := M ◦ L0 − N , (7.4) now follows from Theorem 4.1, and (7.5), (7.6) and (7.7)
follow from Theorem 5.1. �

Finally, on a general stratified homogeneous group G with G 6= R, we have the
following endpoint Korn–Sobolev inequality, and the following endpoint Korn–Hardy
inequality.

Theorem 7.3. Suppose G is a stratified homogeneous group with homogeneous
dimension Q ≥ 2. Let u1, . . . , um ∈ C∞

c (G;R) where m = dim g1. Then

(7.8)
m∑

j=1

‖uj‖
L

Q
Q−1 (G;R)

≤ C
m∑

i,j=1

‖Xiuj +Xjui‖L1(G;R).

Furthermore,

(7.9)
m∑

j=1

ˆ

G

|uj(x)|

‖x‖
dx ≤ C

m∑

i,j=1

‖Xiuj +Xjui‖L1(G;R),

and more generally

(7.10)
m∑

j=1

(
ˆ

G

(‖x‖Q−1|uj(x)|)
p dx

‖x‖Q

)1/p

≤ C
m∑

i,j=1

‖Xiuj +Xjui‖L1(G;R)

for all p ∈ [1, Q
Q−1

).

Proof. We adopt the notations from Example 3.3. Additionally, let F = Λ2(g1)
and define L0 ∈ End(E;F )⊗ T2(g1) such that

L0(D)f :=
∑

1≤i<j≤m

(
X2

i fjj +X2
j fii

2
−XiXjfij

)
ei ∧ ej

if f =
∑

1≤i≤j≤m fij e
ij . Then

L0(D) ◦ A(D)u =
∑

1≤i<j≤m

(Xi[Xi, Xj]uj + [X2
j , Xi]ui) e

i ∧ ej

if u =
∑

1≤j≤m uje
j. Furthermore, define M ∈ End(F ;F )⊗ Tr(2r+4)(g1) such that

M(D)g =
∑

1≤i<j≤m

X
r(2r+2)
i X2r

j gij e
i ∧ ej
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for g =
∑

1≤i<j≤m gij e
i ∧ ej ; again r is the step of the Lie algebra g. Then there

exists N ∈ End(E;F )⊗ Tr(2r+4)+2 such that

(M ◦ L0 −N)(D) ◦ A(D) = 0

and

Sym(N)(D) = 0.

This holds because

X2r
j Xi[Xi, Xj] =

2r∑

s=1

X2r−s
j [Xj, [Xj , · · · , Xi[Xi, Xj]]]︸ ︷︷ ︸

s brackets

Xj + [Xj, [Xj , · · · , Xi[Xi, Xj]]]︸ ︷︷ ︸
2r + 1 brackets

,

the last term being zero because there are 2r + 1 brackets, but only two Xi’s; also

X
r(2r+2)
i X2r

j [X2
j , Xi] =

r(2r+2)∑

s=1

X
r(2r+2)−s
i [Xi, [Xi, · · · , X

2r
j [X2

j , Xi]]]︸ ︷︷ ︸
s brackets

Xi

+ [Xi, [Xi, · · · , X
2r
j [X2

j , Xi]]]︸ ︷︷ ︸
r(2r + 2) + 1 brackets

,

the last term being zero because there are r(2r + 2) + 1 brackets, but only 2r + 2
Xj’s. As a result, it suffices to take

N(D)f :=
1

2

∑

1≤i<j≤m

2r∑

s=1

X
r(2r+2)
i X2r−s

j [Xj, [Xj , · · · , Xi[Xi, Xj]]]︸ ︷︷ ︸
s brackets

fjj e
i ∧ ej

+
1

2

∑

1≤i<j≤m

r(2r+2)∑

s=1

X
r(2r+2)−s
i [Xi, [Xi, · · · , X

2r
j [X2

j , Xi]]]︸ ︷︷ ︸
s brackets

fii e
i ∧ ej

if f =
∑m

j=1 fj e
j . Since Sym(M)(ξ0) is the identity map on F when ξ0 = (1, . . . , 1),

and Sym(L0)(D) is cocanceling (here we usem ≥ 2 which follows from the assumption
Q ≥ 2), by Proposition 6.1, we have Sym(M ◦L0−N)(D) being cocanceling. Taking
L := M ◦ L0 − N , (7.8) follows from Theorem 4.1, and (7.9), (7.10) follow from
Theorem 5.1. �

Appendix A. Proof of Theorem 3.1

In this appendix we prove Theorem 3.1. For this we will need to work with
(isotropic L2-based) Sobolev spaces Hs(G), defined for s ∈ R to be the set of all real
tempered distributions u on the underlying Euclidean space, for which

‖u‖Hs(G) :=

ˆ

G

(1 + 4π2|ξ|2)s|Fu(ξ)|2 dξ <∞;

here Fu is the (Euclidean) Fourier transform of u, which is required to agree with a
locally integrable function if u ∈ Hs(G), where we use the convention

Fφ(ξ) =

ˆ

G

e−2πıξ·xφ(x) dx.

The space Hs(G) is a real Hilbert space under the real inner product

(u, v)Hs(G) :=

ˆ

G

(1 + 4π2|ξ|2)sFu(ξ)Fv(−ξ) dξ.
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For every s ∈ R, the dual space to Hs(G) is H−s(G), via the pairing

(u, φ) :=

ˆ

G

Fu(ξ)Fφ(−ξ) dξ

if u ∈ H−s(G) and φ ∈ Hs(G).
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. First, the hypoellipticity of A(D) will be used to show
that At(D) is locally solvable (cf. Trèves [32, Theorem 52.2]): in particular, there
exists a bounded open set Ω ⊂ G containing 0 and some Kloc ∈ D′(G; End(V ;E))
such that

At(D)Kloc = δ ⊗ I on Ω,

where we have extended by tensor product with V to obtain a continuous linear
operator At(D) : D′(G; End(V ;E)) → D′(G; End(V ;V )).

Indeed, let K be any compact subset of G. We claim that for every s ∈ N there
exists s′ ∈ N and C > 0 such that

(A.1) ‖φ‖Hs(G;V ) ≤ C(‖A(D)φ‖Hs′(G;E) + ‖φ‖L2(G;V ))

for all φ ∈ D(K;V ). To prove this, let τ be the Fréchet topology we endowed on
D(K;V ), and τ̃ be the locally convex metrizable topology on D(K;V ) given by a
countable family of separating seminorms {|||·|||s : s ∈ N0} where

|||φ|||s := ‖A(D)φ‖Hs(G;E) + ‖φ‖L2(G;V )

for φ ∈ D(K;V ). One can check that D(K;V ) is complete under the topology τ̃ ,
making (D(K;V ), τ̃) a Fréchet space as well. This is because if (φi)i∈N is a Cauchy
sequence in (D(K;V ), τ̃), then there exists φ ∈ L2(G;V ) and Φ ∈

⋂
s∈N0

Hs(G;E)
such that

lim
i→∞

‖φi − φ‖L2(G;V ) = 0 and lim
i→∞

‖A(D)φi − Φ‖Hs(G;E) = 0

for every s ∈ N0. In particular, the case s = 0 shows that A(D)φ = Φ in D′(G;E),
and Sobolev embedding implies Φ ∈ C∞(G;E), so the hypoellipiticity of A(D) im-
plies that φ ∈ C∞(G;V ), and the support conditions on the sequence φi further
implies φ ∈ D(K;V ). Furthermore, |||φi − φ|||s = ‖At(D)φi − Φ‖Hs(G;E) + ‖φi −
φ‖L2(G;V ) → 0 as i → +∞, for every s ∈ N0. Thus the sequence (φi)i∈N0 converges
in (D(K;V ), τ̃), and this verifies the completeness of D(K;V ) under the topology τ̃ .

Since for every s ∈ N0, there exists n ∈ N0 and c > 0 such that

|||φ|||s ≤ c‖φ‖Cn(K;V )

for all φ ∈ D(K;V ), the identity map is a continuous linear map from (D(K;V ), τ) to
(D(K;V ), τ̃). Since both (D(K;V ), τ) and (D(K;V ), τ̃) are Fréchet spaces, the open
mapping theorem implies that the identity map is also continuous from (D(K;V ), τ̃)
to (D(K;V ), τ), which implies (cf. [20, Lemma B.7]) that for every n ∈ N0, there
exists s′ ∈ N0 and c′ > 0 such that

‖φ‖Cn(K;V ) ≤ c′|||φ|||s′

for all φ ∈ D(K;V ). This in turn establishes our previous claim (A.1), because

‖φ‖Hs(G;V ) ≤ cs‖φ‖Cs(K;V )

for all φ ∈ D(K;V ) and s ∈ N0.
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Now fix s ∈ N large enough so that δ ∈ H−s(G). Let s′ and C be chosen as
in the claim (A.1) depending on s. If Ω ⊂ G is an open neighborhood of 0 with
sufficiently small diameter, we claim that

(A.2) C‖φ‖L2(G;V ) ≤
1

2
‖φ‖Hs(G;V )

for all φ ∈ D(Ω;V ). Indeed, by the fundamental theorem of calculus, or equivalently,
by Poincaré’s inequality, for all φ ∈ D(Ω;V ), we have

‖φ‖L2(G;V ) ≤ (diam Ω)‖φ‖H1(G;V ),

so it suffices to take diam Ω ≤ 1/(2C) for the desired inequality to hold. In this case,
it follows from (A.1) and (A.2) that

‖φ‖Hs(G;V ) ≤ 2C‖A(D)φ‖Hs′(G;E)

for all φ ∈ D(Ω;V ). Let Y be the closure, in Hs′(G;E), of the set

{A(D)φ ∈ Hs′(G;E) : φ ∈ D(Ω;V )}.

By density, the map A(D)φ 7→ φ can be extended to a continuous linear map of Y into
Hs(G;V ). It can be further extended as a continuous linear map T : Hs′(G;E) →
Hs(G;V ), by setting it to be zero on the orthogonal complement of Y in Hs′(G;E).
The adjoint T ∗ is then a continuous linear map T ∗ : H−s(G;V ) → H−s′(G;E), such
that for all u ∈ H−s(G;V ), one has

At(D)T ∗u = u on Ω;

indeed, for every φ ∈ D(Ω;V ), we have 〈At(D)T ∗u, φ〉V,G = 〈u, TA(D)φ〉V,G =
〈u, φ〉V,G. It remains to observe that if {vi}

dimV
i=1 is an orthonormal basis for V , then

Kloc :=
dimV∑

i=1

T ∗(δ ⊗ vi)⊗ vi

is in H−s′(G;E)⊗ V = H−s′(G; End(V ;E)) ⊂ D′(G; End(V ;E)) and

At(D)Kloc =

dimV∑

i=1

δ ⊗ vi ⊗ vi = δ ⊗ I on Ω,

as desired.
Next, using the assumption that At(D) is hypoelliptic and homogeneous of order

k, we may use a rescaling of Kloc to construct a global K ∈ D′(G; End(V ;E)) such
that

At(D)K = δ ⊗ I on G.

Indeed, since At(D) is hypoelliptic and At(D)Kloc = 0 on Ω \ {0}, we have

Kloc ∈ C∞(Ω \ {0}; End(V ;E)).

Let η ∈ C∞
c (Ω;R) be such that η(x) = 1 in an open set containing 0. Then letting

K(1) := ηKloc, we have

At(D)K(1) = δ ⊗ I + Φ(1) on G

where Φ(1) ∈ C∞(G; End(V ;V )) vanishes in an open set containing 0. Now for λ > 0,
let

K(λ) := λk−QK(1) ◦ δλ−1 and Φ(λ) := λk−QΦ ◦ δλ−1

so that
At(D)K(λ) = δ ⊗ I + Φ(λ) on G
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for every λ > 0. As λ→ +∞, Φ(λ) → 0 in the topology of D′(G; End(V ;V )) because
Φ vanishes in an open set containing 0. We claim that

(i) if k < Q, then K(λ) converges in the topology of D′(G; End(V ;E)) as λ →
+∞;

(ii) if k ≥ Q, then there exist End(V ;E)-valued polynomials p0, p1, . . . , pk−Q on
G, with pi homogeneous of degree i for all i ∈ {0, . . . , k −Q}, such that

(A.3) K̃(λ) := K(λ) − (log λ)pk−Q −

k−Q∑

i=1

λipk−Q−i

converges in the topology of D′(G; End(V ;E)) as λ→ +∞.

In the first case, we define K ∈ D′(G; End(V ;E)) to the limit of K(λ) as λ→ +∞; in

the second case, we define K ∈ D′(G; End(V ;E)) to be the limit of K̃(λ) as λ→ +∞.
We then have

At(D)K = δ ⊗ I on G

in either case, as desired.
To prove the claims above, first observe that

K′ := lim
λ→1

K(λ) −K(1)

λ− 1

exists in D′(G; End(V ;E)). This is because for any φ ∈ D(G; End(V ;E)),
〈K(λ) −K(1)

λ− 1
, φ
〉
=
〈
K(1),

λkφ ◦ δλ − φ

λ− 1

〉

and
λkφ ◦ δλ − φ

λ− 1
converges in the topology of D(G; End(V ;E)) as λ → 1 (indeed, recalling our nota-
tion x = (x1, . . . , xr) ∈ g = g1 ⊕ · · · ⊕ gr, we have

φ ◦ δλ − φ

λ− 1
→

r∑

j=1

j xj · ∂xj
φ(x)

in the topology of D(G; End(V ;E)) as λ→ 1, which shows that

λkφ ◦ δλ − φ

λ− 1
→ kφ(x) +

r∑

j=1

jxj · ∂xj
φ(x)

in the topology of D(G; End(V ;E)) as λ → 1). Furthermore, K′ is compactly sup-
ported (since K(1) is), and At(D)K′ ∈ C∞(G; End(V ;V )) (indeed, by the continuity
of At(D) : D′(G; End(V ;E)) → D′(G; End(V ;V )),

At(D)K′ = lim
λ→1

At(D)

(
λk−QK(1) ◦ δλ−1 −K(1)

λ− 1

)

= lim
λ→1

λ−Q(At(D)K(1)) ◦ δλ−1 − (At(D)K(1))

λ− 1

= lim
λ→1

λ−QΦ(1) ◦ δλ−1 − Φ(1)

λ− 1
= −QΦ(1) −

r∑

j=1

jxj · ∂xj
Φ(1)(x)

which is in C∞(G; End(V ;V ))), so the hypoellipticity of At(D) implies that we have
K′ ∈ C∞(G; End(V ;E))). It follows that K′ ∈ D(G; End(V ;E)). Now for every λ >
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0, the derivative d
dλ
K(λ) exists in D′(G; End(V ;E)) and is equal to λk−Q−1K′ ◦ δλ−1 ,

because

1

λ
lim
s→1

K(λs) −K(λ)

s− 1
=

1

λ
λk−Q lim

s→1

sk−QK(1) ◦ δs−1 −K(1)

s− 1
◦ δλ−1

converges to λk−Q−1K′ ◦ δλ−1 in D′(G; End(V ;E)). We now consider two cases. If
k < Q, then for every φ ∈ D(G; End(V ;E)), we have
ˆ ∞

1

∣∣∣
〈 d

dλ
K(λ), φ

〉∣∣∣ dλ =

ˆ ∞

1

λk−Q−1 |〈K′ ◦ δλ−1 , φ〉| dλ

≤‖K′‖L∞(G;End(V ;E))‖φ‖L1(G;End(V ;E))

ˆ ∞

1

λs−Q−1 dλ <∞.

Hence in this case, K(λ) = K(1) +
´ λ

1
d
dµ
K(µ) dµ converges in D′(G; End(V ;E)) as

λ→ +∞, verifying claim (i). On the other hand, if k ≥ Q, for every i ∈ N0,

qi(x) :=
di

dεi

∣∣∣∣
ε=0

[K′ ◦ δε(x)]

is an End(V ;E)-valued homogeneous polynomial of degree i, and K′◦δε can be Taylor
expanded at ε = 0, leading to

K′ ◦ δλ−1(x) =

k−Q∑

i=0

qi(x)λ
−i +

ˆ λ−1

0

(λ−1 − ε)k−Q

(k −Q)!

dk−Q+1

dεk−Q+1
(K′ ◦ δε)(x) dε

for λ > 0. We then have

d

dλ
K(λ)(x) = λk−Q−1K′ ◦ δλ−1(x)

=

k−Q∑

i=0

qi(x)λ
k−Q−i−1 + λk−Q−1

ˆ λ−1

0

(λ−1 − ε)k−Q

(k −Q)!

dk−Q+1

dεk−Q+1
K′ ◦ δε(x) dε

=
d

dλ

[
qk−Q(x) log λ+

k−Q−1∑

i=0

qi(x)
λk−Q−i

k −Q− i

]
+ e(λ)(x)

for some e(λ)(x) ∈ C∞(G; End(V ;E)); taking pk−Q := qk−Q and pk−Q−i :=
qk−Q−i

i
for

i = 1, . . . , k −Q, and defining K̃(λ) by (A.3), we have

d

dλ
K̃(λ) = e(λ)(x).

It remains to observe that for every compact subset K ⊂ G, there exists a constant
CK (depending also on k) such that

sup
ε>0

∥∥∥∥
dk−Q+1

dεk−Q+1
K′ ◦ δε(x)

∥∥∥∥
L∞(K;End(V ;V ))

≤ CK .

As a result, for every λ > 0 and every φ ∈ D(G; End(V ;E)), we have

|〈e(λ), φ〉| ≤ Csuppφ‖φ‖L1(G;End(V ;E))λ
k−Q−1

ˆ λ−1

0

(λ−1 − ε)k−Q

(k −Q)!
dε . λ−2.

Integration in λ yields
ˆ ∞

1

∣∣∣
〈 d

dλ
K̃(λ), φ

〉∣∣∣ dλ =

ˆ ∞

1

∣∣〈e(λ), φ
〉∣∣ dλ <∞
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so that K̃(λ) = K̃(1) +
´ λ

1
d
dµ
K̃(µ) dµ converges in D′(G; End(V ;E)) as λ → +∞,

verifying claim (ii).
Finally, to complete the proof of the second conclusion of the theorem, note that

K always agrees with some End(V ;E)-valued C∞ function on G \ {0}, by hypoellip-
ticity of At(D). Suppose first k ≥ Q. Then

K = lim
λ→∞

K̃(λ) = lim
λ→∞

[
K(λ) − (log λ)pk−Q −

k−Q∑

i=1

λipk−Q−i

]

satisfies

(A.4) K ◦ δs = sk−Q
(
K + (log s)P

)

for all s > 0, where P := −pk−Q. Indeed, recall K(λ) = λk−QK(1) ◦ δλ−1 , which gives,
for any s > 0, that

K(λ) ◦ δs = sk−QK(λs−1).

It follows that

K̃(λ) ◦ δs = sk−QK(λs−1) − (log λ)sk−Qpk−Q −

k−Q∑

i=1

λisk−Q−ipk−Q−i

= sk−Q

[
K(λs−1) − (log(λs−1))pk−Q −

k−Q∑

i=1

(λs−1)ipk−Q−i

]
− sk−Q(log s)pk−Q

= sk−QK̃(λs−1) − sk−Q(log s)pk−Q

for all s > 0. Letting λ→ ∞, we obtain (A.4), which implies that K − P (x) log ‖x‖
is homogeneous of degree k − Q. Since k − Q > −Q, we see that K − P (x) log ‖x‖
is given by integration against some End(V ;E)-valued C∞ function K∞ on G \ {0}
that is homogeneous of degree k − Q, as was to be proved. A similar but simpler
calculation shows that if k < Q, then K is homogeneous of degree k − Q, hence a
kernel of type k. This completes the proof of the theorem. �
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