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Littlewood–Paley inequalities for
fractional derivative on Bergman spaces

José Ángel Peláez and Elena de la Rosa

Abstract. For any pair (n, p), n ∈ N and 0 < p < ∞, it has been recently proved by Peláez
and Rättyä (2021) that a radial weight ω on the unit disc of the complex plane D satisfies the
Littlewood–Paley equivalence

ˆ

D

|f(z)|p ω(z) dA(z) ≍
ˆ

D

|f (n)(z)|p(1− |z|)npω(z) dA(z) +
n−1∑

j=0

|f (j)(0)|p,

for any analytic function f in D, if and only if ω ∈ D = D̂∩ qD. A radial weight ω belongs to the class

D̂ if sup0≤r<1

´

1

r
ω(s) ds

´

1
1+r

2

ω(s) ds
< ∞, and ω ∈ qD if there exists k > 1 such that inf0≤r<1

´

1

r
ω(s) ds

´

1

1−
1−r

k

ω(s) ds
> 1.

In this paper we extend this result to the setting of fractional derivatives. Being precise,
for an analytic function f(z) =

∑∞
n=0 f̂(n)z

n we consider the fractional derivative Dµ(f)(z) =
∑∞

n=0
f̂(n)
µ2n+1

zn induced by a radial weight µ ∈ D where µ2n+1 =
´ 1

0
r2n+1µ(r) dr. Then, we prove

that for any p ∈ (0,∞), the Littlewood–Paley equivalence

ˆ

D

|f(z)|pω(z) dA(z) ≍
ˆ

D

|Dµ(f)(z)|p
[
ˆ 1

|z|

µ(s) ds

]p
ω(z) dA(z)

holds for any analytic function f in D if and only if ω ∈ D. We also prove that for any p ∈ (0,∞),
the inequality

ˆ

D

|Dµ(f)(z)|p
[
ˆ 1

|z|

µ(s) ds

]p
ω(z) dA(z) .

ˆ

D

|f(z)|pω(z) dA(z)

holds for any analytic function f in D if and only if ω ∈ D̂.

Bergmanin avaruuksien murtoasteisen derivaatan Littlewoodin–Paleyn epäyhtälöt

Tiivistelmä. Peláez ja Rättyä (2021) osoittivat hiljattain, että jokaisella parilla (n, p), missä
n ∈ N ja 0 < p < ∞, kompleksitason yksikkökiekon D säteittäinen paino ω toteuttaa jokaisella
kiekon D analyyttisellä funktiolla f Littlewoodin–Paleyn verrannon

ˆ

D

|f(z)|p ω(z) dA(z) ≍
ˆ

D

|f (n)(z)|p(1− |z|)npω(z) dA(z) +
n−1∑

j=0

|f (j)(0)|p,

jos ja vain jos ω ∈ D = D̂∩ qD. Säteittäinen paino ω kuuluu luokkaan D̂, mikäli sup0≤r<1

´

1

r
ω(s) ds

´

1
1+r

2

ω(s) ds
<

∞, ja ω ∈ qD jos on olemassa k > 1, joka toteuttaa inf0≤r<1

´

1

r
ω(s) ds

´

1

1−
1−r

k

ω(s) ds
> 1.

Tässä työssä yleistämme tämän tuloksen murtoasteisille derivaatoille. Tarkemmin sanottuna,
jos f(z) =

∑∞
n=0 f̂(n)z

n on analyyttinen funktio ja µ ∈ D on säteittäinen paino, tarkastelemme
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funktion f painoon µ liittyvää murtoasteista derivaattaa Dµ(f)(z) =
∑∞

n=0
f̂(n)
µ2n+1

zn, missä µ2n+1 =
´ 1

0
r2n+1µ(r) dr. Osoitamme, että jokaisella p ∈ (0,∞) on voimassa Littlewoodin–Paleyn verranto

ˆ

D

|f(z)|pω(z) dA(z) ≍
ˆ

D

|Dµ(f)(z)|p
[
ˆ 1

|z|

µ(s) ds

]p
ω(z) dA(z)

jokaisella kiekon D analyyttisellä funktiolla f , jos ja vain jos ω ∈ D. Osoitamme lisäksi, että jokaisella
p ∈ (0,∞) on voimassa epäyhtälö

ˆ

D

|Dµ(f)(z)|p
[
ˆ 1

|z|

µ(s) ds

]p
ω(z) dA(z) .

ˆ

D

|f(z)|pω(z) dA(z)

jokaisella kiekon D analyyttisellä funktiolla f , jos ja vain jos ω ∈ D̂.

1. Introduction

Let H(D) denote the space of analytic functions in the unit disc D = {z ∈
C : |z| < 1}. For f ∈ H(D) and 0 < r < 1, set

Mp(r, f) =

(
1

2π

ˆ 2π

0

|f(reit)|p dt
) 1

p

, 0 < p <∞,

and M∞(r, f) = max|z|=r |f(z)|. For 0 < p ≤ ∞, the Hardy space Hp consists of
f ∈ H(D) such that ‖f‖Hp = sup0<r<1Mp(r, f) < ∞. For a nonnegative function
ω ∈ L1([0, 1)), the extension to D, defined by ω(z) = ω(|z|) for all z ∈ D, is called
a radial weight. For 0 < p < ∞ and such an ω, the Lebesgue space Lpω consists of
complex-valued measurable functions f on D such that

‖f‖p
Lp
ω
=

ˆ

D

|f(z)|pω(z) dA(z) <∞,

where dA(z) = dx dy
π

is the normalized Lebesgue area measure on D. The correspond-
ing weighted Bergman space is Apω = Lpω ∩H(D). Throughout this paper we assume

ω̂(z) =
´ 1

|z|
ω(s) ds > 0 for all z ∈ D, for otherwise Apω = H(D).

A well-known formula ensures that for each n ∈ N and 0 < p <∞

(1.1) ‖f‖p
Ap

ω
≍
ˆ

D

|f (n)(z)|p(1− |z|)npω(z) dA(z) +
n−1∑

j=0

|f (j)(0)|p, f ∈ H(D),

if ω is a standard radial weight, that is, ω(z) = (α + 1)(1 − |z|2)α for some −1 <
α < ∞. Generalizations of this Littlewood–Paley formula have been obtained in
[3, 14, 23] for different classes of radial weights. However, the question for which
radial weights the above equivalence (1.1) is valid has been a known open problem
for decades. This question has been recently solved in [20, Theorem 5], in fact (1.1)

holds for a radial weight ω if and only if ω ∈ D = D̂ ∩ qD. Recall that a radial weight
ω belongs to D̂ if there exists a constant C = C(ω) > 1 such that ω̂(r) ≤ Cω̂(1+r

2
)

for all 0 ≤ r < 1. Further, a radial weight ω belongs to qD if there exist constants
k = k(ω) > 1 and C = C(ω) > 1 such that ω̂(r) ≥ Cω̂(1− 1−r

k
) for all 0 ≤ r < 1.

It is also worth mentioning that the inequality

(1.2)

ˆ

D

|f (n)(z)|p(1− |z|)npω(z) dA(z) +
n−1∑

j=0

|f (j)(0)|p . ‖f‖p
Ap

ω
, f ∈ H(D),
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holds for a radial weight ω and each pair (n, p), n ∈ N and 0 < p <∞, if and only if

ω ∈ D̂ [20, Theorem 6].
Throughout the next few lines we offer a brief insight to the classes of weights

D, D̂ and qD. Each standard radial weight belongs to D, while qD \ D contains
weights that tend to zero exponentially. The class of rapidly increasing weights,

introduced in [17], lies entirely within D̂ \ D, and a typical example of such a weight

is ω(z) = (1 − |z|2)−1
(
log e

1−|z|2

)−α
, where α > 1. However we emphasize that

the containment in D̂ or qD does not require continuity neither positivity. In fact,
weights in these classes may vanish on a relatively large part of each outer annulus
{z : r ≤ |z| < 1} of D. For basic properties of the aforementioned classes, concrete
nontrivial examples and more, see [15, 17, 20] and the relevant references therein.

The theory of weighted Bergman spaces Apω induced by non-radial weights is
at its early stages, and plenty of essential properties have not been described yet.
However there have been developments towards different directions during the last
decades [1, 8]. As for Littlewood–Paley formulas for derivatives, we recall that (1.1)
holds if ω is a Bekollé–Bonami weight [1, 2], see also [4, 21] for related results.

On the other hand, (1.1) can be extended to the setting of fractional derivatives

when ω is a standard weight. Indeed, for f(z) =
∑∞

n=0 f̂(n)z
n ∈ H(D) and β > 0,

consider the operator

(1.3) Dβ(f)(z) =
2

Γ(β + 1)

∞∑

n=1

Γ(n+ β + 1)

Γ(n + 1)
f̂(n)zn, z ∈ D,

which basically coincides with the fractional derivative of order β > 0 introduced by
Hardy and Littlewood in [7, p. 409]. The differences between (1.3) and [7, (3.13)]
are in the multiplicative factor 2

Γ(β+1)
and the inessential factor zβ . A floklore result

states that

(1.4) ‖f‖p
Ap

ω
≍
ˆ

D

|Dβ(f)(z)|p(1− |z|)βpω(z) dA(z), f ∈ H(D),

for any β, p > 0 and any standard radial weight ω, see [5, Theorem A] for the range
p ≥ 1. Moreover, Flett proved in [6, Theorem 6] that (1.4) remains true for any β, p >

0 if Dβf is replaced by the multiplier transformation f [β](z) =
∑∞

n=0(n+1)β f̂(n)zn,
which may also be regarded as fractional derivative of order β > 0.

For a radial weight µ ∈ D̂, we define the fractional derivative of f induced by µ

Dµ(f)(z) =

∞∑

n=0

f̂(n)

µ2n+1
zn, z ∈ D.

Here µ2n+1 are the odd moments of µ, and in general from now on we write µx =
´ 1

0
rxµ(r) dr for µ a radial weight and x ≥ 0. It is clear that Dµ(f) is a polynomial

if f is a polynomial and Dµ(f) ∈ H(D) for each f ∈ H(D), by Lemma 5 below. See
[22, 24] for related definitions or reformulations of classical and generalized fractional
derivative, and observe that Dµ = Dβ if µ is the standard weight µ(z) = β(1 −
|z|2)β−1, β > 0.

The primary purpose of this paper is twofold: extending the Littlewood–Paley
formulas (1.1) and (1.2) replacing the higher order derivative f (n) by the fractional
derivative Dµ(f) induced by µ ∈ D, and describing the radial weights such that
the arising formulas hold. With this aim, observe that µ̂(z) ≍ (1 − |z|)β when
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µ(z) = β(1 − |z|2)β−1, β > 0, so an appropriate interpretation of the Littlewood–
Paley estimate (1.4) is

‖f‖p
Ap

ω
≍
ˆ

D

|Dµ(f)(z)|pµ̂(z)pω(z) dA(z), f ∈ H(D),

when µ is a standard weight.
Our main result shows that the discussion above regarding standard weights

actually describes a general phenomenon rather than a particular case, and moreover
describes the radial weights such that the formula holds.

Theorem 1. Let ω be a radial weight, 0 < p <∞ and µ ∈ D. Then

(1.5) ‖f‖p
Ap

ω
≍
ˆ

D

|Dµ(f)(z)|pµ̂(z)pω(z) dA(z), f ∈ H(D),

if and only if ω ∈ D.

In particular, as a byproduct of Theorem 1 we obtain a proof of the folklore result

‖f‖p
Ap

α
≍
ˆ

D

|Dβ(f)(z)|p(1− |z|)βp+α dA(z), f ∈ H(D),

for any β, p > 0, and α > −1. Here and throughout the paper Apα stands for the
classical weighted Bergman spaces induced by the standard radial weight ω(z) =
(α+ 1)(1− |z|2)α.

En route to the proof of Theorem 1 we will establish the following result, which
generalizes [20, Theorem 5] to the setting of fractional derivatives induced by radial
doubling weights.

Theorem 2. Let ω be a radial weight, 0 < p < ∞ and µ ∈ D. Then, there
exists a constant C = C(ω, µ, p) > 0 such that

(1.6)

ˆ

D

|Dµ(f)(z)|pµ̂(z)pω(z) dA(z) ≤ C‖f‖p
Ap

ω
, f ∈ H(D),

if and only if ω ∈ D̂.

The proof of (1.6) of is strongly based on the following inequality between the
integral means of order p of Dµf and f ,

(1.7) Mp(r,D
µf) ≤ C

Mp(r, f)

µ̂
(
r
ρ

) , 0 < r < ρ < 1, 0 < p <∞.

The inequality (1.7) is proved in Proposition 7 below and it is a natural extension of
[14, Lemma 3.1]. The proof of this last result employes the Cauchy formula for f ′,
Minkowski’s inequality for the case p ≥ 1 and factorization results of Hp functions
when 0 < p < 1. However, the proof of (1.7) is strongly based on smooth properties
of universal Cesáro basis of polynomials introduced by Jevtić and Pavlović [9].

Reciprocally, the other implication in the proof of Theorem 2 uses ideas from [20,
Theorem 6] and some technicalities. In particular, the proof reveals that (1.6) holds
if and only if the inequality there holds for all monomials only.

As for the proof of Theorem 1 we show, in Theorem 11 below, that the inequality

(1.8) ‖f‖p
Ap

ω
≤ C

ˆ

D

|Dµ(f)(z)|pµ̂(z)pω(z) dA(z), f ∈ H(D),

implies that ω ∈ M. Recall that ω ∈ M if there exist constants C = C(ω) > 1 and

k = k(ω) > 1 such that ωx ≥ Cωkx for all x ≥ 1. It is known that qD ⊂ M [20, Proof
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of Theorem 3] but qD 6⊂ M [20, Proposition 14]. However, [20, Theorem 3] ensures

that D = D̂ ∩ qD = D̂ ∩ M, so Theorem 11 together with Theorem 2 yields that
ω ∈ D when (1.5) holds.

Concerning the reverse implication in the proof of Theorem 1, we construct
ad hoc norms for the weighted Bergman spaces Apω and A

p
ωµ̂p , in the spirit of the

decomposition results [12, Theorem 7.5.8] and [16, Theorem 4]. These two re-
sults are valid for 1 < p < ∞ and their proofs employ the boundedness of the
Riesz projection on Lp(∂D) to deal with the Hp-norm of polynomials of the type
∆n1,n2z =

∑n2

k=n1
zk. However we use universal Cesáro basis of polynomials instead

of the polynomyals ∆n1,n2, their smooth properties allow us to get equivalent norms
for any 0 < p <∞. Being precise, we prove that there is k > 1 and a shared universal
Cesáro basis of polynomials {Vn,k}∞n=0 such that ‖f‖Ap

ω
≍
∑∞

n=0 ωkn‖Vn,k ∗ f‖
p
Hp and

‖Dµ(f)‖Ap
ωµ̂p

≍
∑∞

n=0(ωµ̂
p)kn‖Vn,k ∗ Dµ(f)‖pHp for any p ∈ (0,∞), where ∗ denotes

the convolution.
Finally, we introduce the following notation that has already been used above

in the introduction. The letter C = C(·) will denote an absolute constant whose
value depends on the parameters indicated in the parenthesis, and may change from
one occurrence to another. We will use the notation a . b if there exists a constant
C = C(·) > 0 such that a ≤ Cb, and a & b is understood in an analogous manner.
In particular, if a . b and a & b, then we write a ≍ b and say that a and b are
comparable.

2. Preliminary results

2.1. Radial weights. In this section we provide several characterizations of the

classes of radial weight D̂, qD and M, which will be used in the proofs of the main
results of this paper.

For each β > 0 and ω a radial weight, let us denote ω[β](s) = (1− s)βω(s). The

next result gathers descriptions of the class D̂.

Lemma A. Let ω be a radial weight. Then, the following statements are equiv-
alent:

(i) ω ∈ D̂;
(ii) There exist C = C(ω) ≥ 1 and α0 = α0(ω) > 0 such that

ω̂(s) ≤ C

(
1− s

1− t

)α
ω̂(t), 0 ≤ s ≤ t < 1;

for all α ≥ α0;
(iii)

ωx =

ˆ 1

0

sxω(s) ds ≍ ω̂

(
1− 1

x

)
, x ∈ [1,∞);

(iv) There exists C(ω) > 0 such that ωn ≤ Cω2n, for any n ∈ N;
(v) There exist C(ω) > 0 and η(ω) > 0 such that

ωx ≤ C
(y
x

)η
ωy, 0 < x ≤ y <∞;

(vi) For some (equivalently for each) β > 0 there exists a constant C = C(ω, β) >
0 such that xβ(ω[β])x ≤ Cωx, 0 < x <∞.



1114 José Ángel Peláez and Elena de la Rosa

Proof. The equivalences (i)–(v) can be found in [15, Lemma 2.1] and (i) ⇔ (vi)
is proved in [20, Theorem 6], where it is provided a direct proof of (vi) ⇒ (i), but (i)
⇒ (vi) is obtained by using the Littlewood–Paley inequality [20, (1.5)]. So, here we
give a detailed direct proof of (i) ⇒ (vi) for the convenience of the reader and the
sake of completeness.

Let β > 0, ω ∈ D̂ and x > 0. Observe that

xβ(ω[β])x = xβ
ˆ 1− 1

x

0

rx(1− r)βω(r) dr + xβ
ˆ 1

1− 1
x

rx(1− r)βω(r) dr = I + II.

By Fubini’s theorem and Lemma A (ii)

I = xβ+1

ˆ 1− 1
x

0

(1− r)β
(
ˆ r

0

sx−1 ds

)
ω(r) dr

= xβ+1

ˆ 1− 1
x

0

sx−1

(
ˆ 1− 1

x

s

(1− r)βω(r) dr

)
ds ≤ xβ+1

ˆ 1− 1
x

0

sx−1(1− s)βω̂(s) ds

. xβ+α+1ω̂

(
1− 1

x

)
ˆ 1− 1

x

0

sx−1(1− s)β+α ds . ω̂

(
1− 1

x

)
≤ ωx.

Moreover, it is easy to observe that II ≤ ωx. This finishes the proof. �

We will also need the following characterizations of the class qD.

Lemma B. Let ω be a radial weight. The following statements are equivalent:

(i) ω ∈ qD;
(ii) There exist C = C(ω) > 0 and β = β(ω) > 0 such that

ω̂(s) ≤ C

(
1− s

1− t

)β
ω̂(t), 0 ≤ t ≤ s < 1;

(iii) There exist k = k(ω) > 1 and C = C(ω) > 0 such that

(2.1)

ˆ 1− 1−r
k

r

ω(s) ds ≥ Cω̂(r), 0 ≤ r < 1.

Proof. The condition (iii) is just a reformulation of the definition of the class
qD, so we omit the proof of (i) ⇔ (iii). Next, assume that (i) holds and consider the
sequence {rn}∞n=0 = {1− 1

kn
}∞n=0. If 0 ≤ t ≤ s < 1, there exist m, n ∈ N∪{0}, m ≥ n

such that rn ≤ t < rn+1 and rm ≤ s < rm+1. If n+ 1 ≤ m, then

ω̂(s) ≤ ω̂(rm) ≤
1

C
ω̂(rm−1) ≤ · · · ≤ 1

Cm−n−1
ω̂(rn+1) ≤

C2

k(m−n+1) logk C
ω̂(t)

≤ C2

(
1− s

1 − t

)logk C

ω̂(t).

Next, if m = n, then for any constant C1 ≥ kβ

ω̂(s)

ω̂(t)
≤ 1 ≤ C1

1

kβ
≤ C1

(
1− rn+1

1− rn

)β
≤ C1

(
1− s

1 − t

)β
,

so (ii) holds for any exponent β ∈ (0, logk C]. Reciprocally, assume (ii) and let be
k > 1. By (ii) there exist C = C(ω) > 0 and β = β(ω) > 0 such that C

kβ
ω̂(r) ≥

ω̂
(
1− 1−r

k

)
. So taking k > C

1
β , (i) holds. This finishes the proof. �
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A proof of the following description of the weights ω ∈ M, in terms of the
moments of ω, can be found in [20, Theorem 2].

Lemma C. Let ω be a radial weight. The following statements are equivalent:

(i) ω ∈ M;
(ii) For each β > 0, there is C = C(β, ω) such that

ωx ≤ Cxβ
(
ω[β]

)
x
, x ≥ 1.

The next result is an essential tool to deal with the inequality

‖f‖p
Ap

ω
.

ˆ

D

|Dµ(f)(z)|pµ̂(z)pω(z) dA(z), f ∈ H(D),

(see Theorem 10 below), so to prove Theorem 1.

Lemma 3. Let ω be a radial weight. Then, the following statements holds:

(i) If ω ∈ qD and ϕ : [0, 1) → (0,∞) is decreasing, then ωϕ ∈ qD. Furthermore, if
there exist k = k(ω) > 1 and C = C(ω) > 0 such that

(2.2) C

ˆ 1

1− 1−r
k

ω(s) ds ≤
ˆ 1− 1−r

k

r

ω(s) ds, 0 ≤ r < 1,

then

(2.3) C

ˆ 1

1− 1−r
k

ω(s)ϕ(s) ds ≤
ˆ 1− 1−r

k

r

ω(s)ϕ(s) ds, 0 ≤ r < 1.

(ii) If ω ∈ D, µ ∈ D̂ and 0 < p <∞, then ωµ̂p ∈ D.

Proof. By Lemma B (iii), the proof of (i) follows from the proof of (2.2)⇒(2.3).
Indeed, since ϕ is decreasing
ˆ 1− 1−r

k

r

ω(s)ϕ(s) ds ≥ ϕ

(
1− 1− r

k

)
ˆ 1− 1−r

k

r

ω(s) ds

≥ Cϕ

(
1− 1− r

k

)
ˆ 1

1− 1−r
k

ω(s) ds ≥ C

ˆ 1

1− 1−r
k

ω(s)ϕ(s) ds,

and (2.3) holds.
Throughout the rest of the proof let us denote ν = ωµ̂p. Since ω ∈ D, by

Lemma B (iii) there exists k = k(ω) > 1 such that

ν̂(r) ≤ µ̂(r)pω̂(r) . ω̂

(
1 + r

2

)
µ̂(r)p . µ̂(r)p

ˆ 1− 1−r
2k

1+r
2

ω(s) ds.

Moreover, by Lemma A (ii) there exist C = C(µ) > 0 and α = α(µ) > 0 such that
µ̂(r) ≤ 2αkαCµ̂

(
1− 1−r

2k

)
, so

ν̂(r) .

ˆ 1− 1−r
2k

1+r
2

ω(s)µ̂(s)p ds ≤ ν̂

(
1 + r

2

)
,

that is ν ∈ D̂. Moreover, ν ∈ qD by (i). This finishes the proof. �

2.2. Universal Cesáro basis of polynomials. In this section, we establish
some notation and previous results on universal Cesáro basis of polynomials, which
will be strongly used in the proofs of Theorem 1 and Theorem 2.
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The Hadamard product of a polynomial W (z) =
∑

k∈J bkz
k, where J denotes a

finite subset of N and f(z) =
∑∞

k=0 akz
k ∈ H(D) is

(W ∗ f)(z) =
∞∑

k=0

akbkz
k, z ∈ D.

Furthermore, it is easy to observe that

(W ∗ f)(eit) = 1

2π

ˆ π

−π

W (ei(t−θ))f(eiθ) dθ.

For a given C∞-function Φ: R → C with compact support, set

AΦ,m = max
x∈R

|Φ(x)|+mmax
x∈R

|Φ(m)(x)|, m ∈ N ∪ {0},

and define the polynomials

WΦ
n (z) =

∑

k∈Z

Φ

(
k

n

)
zk, n ∈ N.

The next result can be found in [12, pp. 111–113].

Theorem D. Let Φ: R → C be a compactly supported C∞-function. Then the
following statements hold:

(i) There exists a constant C > 0 such that

|WΦ
n (e

iθ)| ≤ Cmin

{
nmax

s∈R
|Φ(s)|, n1−m|θ|−mmax

s∈R
|Φ(m)(s)|

}

for all m ∈ N ∪ {0}, n ∈ N and 0 < |θ| < π.
(ii) If 0 < p ≤ 1 and m ∈ N with mp > 1, there exists a constant C = C(p) > 0

such that (
sup
n

|(WΦ
n ∗ f)(eiθ)|

)p
≤ CA

p
Φ,mM(|f |p)(eiθ)

for all f ∈ Hp, where M denotes the Hardy–Littlewood maximal-operator

M(f)(eiθ) = sup
0<h<π

1

2h

ˆ θ+h

θ−h

|f(eit)|dt.

(iii) For each 0 < p < ∞ and m ∈ N with mp > 1, there exists a constant
C = C(p) > 0 such that

‖WΦ
n ∗ f‖Hp ≤ CAΦ,m‖f‖Hp

for all f ∈ Hp and n ∈ N.

The property (iii) shows that the polynomials {WΦ
n }n∈N can be seen as a universal

Césaro basis for Hp for any 0 < p < ∞. In the statement of the next result, we
consider a particular family of polynomials {WΦ

n }n∈N which play a key role in this
manuscript.

Proposition 4. Let k ∈ N, k > 1 and Ψ: R → R be a C∞-function such that
Ψ ≡ 1 on (−∞, 1], Ψ ≡ 0 on [k,∞) and Ψ is decreasing and positive on (1, k). Set

ψ(t) = Ψ
(
t
k

)
−Ψ(t) for all t ∈ R. Let V0,k(z) =

∑k−1
j=0 Ψ(j)zj and

Vn,k(z) = W
ψ
kn−1(z) =

∞∑

j=0

ψ

(
j

kn−1

)
zj =

kn+1−1∑

j=kn−1

ψ

(
j

kn−1

)
zj , n ∈ N.
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Then,

(2.4) f(z) =

∞∑

n=0

(Vn,k ∗ f)(z), z ∈ D, f ∈ H(D),

and for each 0 < p <∞ there exists a constant C = C(p,Ψ, k) > 0 such that

(2.5) ‖Vn,k ∗ f‖Hp ≤ C‖f‖Hp, f ∈ Hp, n ∈ N.

If k = 2 we simply denote Vn,2 = Vn. A proof of Proposition 4 for this choice
appears in [9, pp. 175–177] or [13, pp. 143–144]. For the convenience of the reader
and the sake of completeness, we present a proof of Proposition 4 following the ideas
in [9, 13].

Proof of Proposition 4. Let us denote by {V̂n,k(j)}j the sequence of Taylor

coefficients of Vn,k. Since
∑∞

j=0 |f̂(j)||z|j converges for each z ∈ D, supp V̂n,k ⊂
N ∩ [kn−1, kn+1) and |V̂n,k(j)| ≤ 2 for all n ∈ N and j ∈ N,

∣∣∣∣∣
∞∑

n=1

(Vn,k ∗ f)(z)
∣∣∣∣∣ ≤ 2

∞∑

n=1

kn+1∑

j=kn−1

|f̂(j)||z|j ≤ 4
∞∑

j=0

|f̂(j)||z|j,

that is,
∑∞

n=0(Vn,k ∗f)(z) converges for each z ∈ D. Let us prove that
∑∞

n=0 V̂n,k(j) =
1, for each j = 0, 1, 2, . . . .

If 0 ≤ j ≤ k−1,
∑∞

n=0 V̂n,k(j) = V̂0,k(j)+V̂1,k(j) = Ψ
(
j
k

)
= 1. On the other hand,

if j ≥ k then Ψ(j) = 0 and
∑∞

n=0 V̂n,k(j) = lim
m→∞

∑m
n=1 ψ

(
j

kn−1

)
= lim

m→∞
Ψ
(
j
km

)
= 1.

Therefore, it is clear that (2.4) holds for polynomials. Let us show that (2.4)

holds for each f ∈ H(D). Let be Snf(z) =
∑n

l=0 f̂(l)z
l, the n-th partial sum of f .

Fixed z ∈ D,
∣∣∣∣∣f(z)−

∞∑

n=0

(Vn,k ∗ f)(z)
∣∣∣∣∣ ≤ |f(z)− Skmf(z)|+

∣∣∣∣∣Skmf(z)−
∞∑

n=0

(Vn,k ∗ f)(z)
∣∣∣∣∣

= I(f,m, z) + II(f,m, z),

where I(f,m, z) = |f(z)−Skmf(z)| and II(f,m, z) = |Skmf(z)−
∑∞

n=0(Vn,k ∗ f)(z)|.
We have that limm→∞ I(f,m, z) = 0, and using (2.4) for Skmf ,

II(f,m, z) =

∣∣∣∣∣
∞∑

n=0

(Vn,k ∗ Skmf)(z)−
∞∑

n=0

(Vn,k ∗ f)(z)
∣∣∣∣∣

=

∣∣∣∣∣
m+1∑

n=0

(Vn,k ∗ f)(z)−
∞∑

n=0

(Vn,k ∗ f)(z)
∣∣∣∣∣ .

∞∑

j=km+1

|f̂(j)||z|j,

so limm→∞ II(f,m, z) = 0. Consequently (2.4) holds for any f ∈ H(D).
Finally, (2.5) follows from Theorem D (iii). �

3. Proof of Theorem 2

To begin with, we will prove some technical lemmas. The first one ensures that
the definition of Dµ makes sense when µ ∈ D̂.

Lemma 5. Let µ ∈ D̂ and f ∈ H(D). Then, the fractional derivative Dµf ∈
H(D) .
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Proof. By Lemma A (ii), there exist C = C(µ) > 0 and α = α(µ) > 0 such that

µ2k+1 ≥ Cµ̂

(
1− 1

2(k + 1)

)
≥ Cµ̂(0)

2α
1

(k + 1)α
=

C

(k + 1)α
, k ∈ N ∪ {0}.

So, for each k ∈ N ∪ {0}, k

√
|f̂(k)|
µ2k+1

≤ k

√
(k+1)α

C

k

√
|f̂(k)|. Then, it follows that

lim sup
k→∞

k

√
|f̂(k)|
µ2k+1

≤ 1,

and therefore Dµ(f) ∈ H(D). �

Lemma 6. Let µ ∈ D̂, γ > 0 and k ∈ N \ {1}. Then,

(3.1)

∞∑

n=0

rk
n

µ
γ
kn

≍
ˆ r

0

dt

(1− t)µ̂(t)γ
, 0 ≤ r < 1.

Moreover, if µ ∈ D

(3.2) 1 +

∞∑

n=0

rk
n

µ
γ
kn

≍ 1

µ̂(r)γ
, 0 ≤ r < 1.

Proof. Since µ ∈ D̂,

∞∑

n=0

rk
n

µ
γ
kn

≍ r

µ
γ
1

+

∞∑

n=1

rk
n

µ
γ
kn

1

kn

kn−1∑

j=kn−1

1 .
r

µ
γ
1

+

∞∑

n=1

kn−1∑

j=kn−1

rj

(j + 1)µγj

≍
∞∑

j=1

rj

(j + 1)µγ2j+1

, 0 ≤ r < 1.

Analogously, it can be proved that
∞∑

n=0

rk
n

µ
γ
kn

&

∞∑

j=1

rj

(j + 1)µγ2j+1

, 0 ≤ r < 1.

Now, arguing as in [18, (2.9)], it follows
∞∑

j=1

rj

(j + 1)µγ2j+1

≍
ˆ r

0

dt

(1− t)µ̂(t)γ
, 0 ≤ r < 1,

and we get (3.1).
Next, bearing in mind Lemma B(ii),

(3.3) 1 +

ˆ r

0

dt

(1− t)µ̂(t)γ
≤ 1 + Cγ (1− r)βγ

µ̂(r)γ

ˆ r

0

dt

(1− t)1+βγ
.

1

µ̂(r)γ
, 0 ≤ r < 1.

On the other hand, it is clear that

(3.4) 1 +

ˆ r

0

dt

(1− t)µ̂(t)γ
&

1

µ̂(r)γ
, 0 ≤ r ≤ 1

2
,

and because µ ∈ D̂,

(3.5) 1+

ˆ r

0

dt

(1− t)µ̂(t)γ
≥
ˆ r

2r−1

dt

(1− t)µ̂(t)γ
&

1

µ̂(2r − 1)γ
&

1

µ̂(r)γ
,

1

2
< r < 1.

Consequently, (3.1) together with (3.3), (3.4) and (3.5) implies (3.2). This finishes
the proof. �
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Now we will prove a generalization of [14, Lemma 3.1] to the setting of fractional
derivatives induced by doubling weights, which is interesting on its own right.

Proposition 7. Let 0 < p < ∞ and µ ∈ D. Then, there exists a constant
C = C(p, µ) > 0 such that

(3.6) Mp(r,D
µ(f)) ≤ C

Mp(ρ, f)

µ̂
(
r
ρ

) , 0 ≤ r < ρ < 1, f ∈ H(D).

Proof. We will split the proof in two cases according to the value of r and ρ.

Case 1. 1
2
≤ r

ρ
< 1. Bearing in mind (2.4),

Mp(r,D
µ(f)) ≤

1∑

n=0

‖Vn ∗ (Dµf)r‖Hp +
∞∑

n=2

‖Vn ∗ (Dµf)r‖Hp, f ∈ H(D),(3.7)

for all 1 < p <∞, and

Mp
p (r,D

µ(f)) ≤
1∑

n=0

‖Vn ∗ (Dµf)r‖pHp +
∞∑

n=2

‖Vn ∗ (Dµf)r‖pHp , f ∈ H(D),(3.8)

for 0 < p ≤ 1, where Vn = Vn,2 are the polynomials defined in the statement of
Proposition 4.

Firstly, [14, Lemma 3.1] yields

‖V0 ∗ (Dµf)r‖Hp ≤ |f̂(0)|
µ1

+ r
|f̂(1)|
µ3

≤ Mp(r, f)

µ1
+ r

Mp(
ρ
2
, f ′)

µ3

≤ Mp(r, f)

µ1
+ C(p)2r

Mp(ρ, f)

ρµ3
≤ C(p)

Mp(ρ, f)

µ̂( r
ρ
)

,
1

2
≤ r

ρ
< 1.(3.9)

The inequality

(3.10) ‖V1 ∗ (Dµf)r‖Hp ≤ C(p)
Mp(ρ, f)

µ̂( r
ρ
)

,
1

2
≤ r

ρ
< 1,

can be proved analogously. Next, we will estimate from above the series in (3.7) and
(3.8). For each n ∈ N, n ≥ 2, let us consider the function

ϕn(x) =

(
r
ρ

)x

µ2x+1
χ[2n−1,2n+1−1](x),

1

2
≤ r

ρ
< 1,

and fix m ∈ N such that mp > 1. Observe that for each k ∈ N, there is C = C(k) > 0
such that

(3.11)

ˆ 1

0

sx
(
log

1

s

)k
µ(s) ds ≤ Cµx−1 ≤ Cµx, for any x ≥ 2.

Since

ϕ′
n(x) = −2

´ 1

0
s2x+1 log 1

s
µ(s) ds

(µ2x+1)2

(
r

ρ

)x
+

(
r
ρ

)x

µ2x+1

log
r

ρ
, x ∈ (2n−1, 2n+1 − 1),

using (3.11) and the inequality 1
2
≤ r

ρ
, it follows that there is an absolute constant

C > 0 such that

|ϕ′
n(x)| ≤ C

(
r
ρ

)x

µ2x+1
, x ∈ (2n−1, 2n+1 − 1),

1

2
≤ r

ρ
< 1.
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By this way, using (3.11) and an induction process on m, there is C = C(m) such
that

|ϕ(m)
n (x)| ≤ C

(
r
ρ

)x

µ2x+1
, x ∈ (2n−1, 2n+1 − 1),

1

2
≤ r

ρ
< 1.

Now, for each n ∈ N \ {1}, choose a C∞-function Φn with compact support
contained in [2n−2, 2n+2] such that Φn = ϕn in [2n−1, 2n+1 − 1]. Then, bearing in
mind Lemma A (v), there is C = C(p, µ) > 0 such that

(3.12) AΦn,m ≤ C max
x∈[2n−1,2n+1−1]

(
r
ρ

)x

µ2x+1

≤ C

(
r
ρ

)2n−1

µ2n+2+1

≤ C

(
r
ρ

)2n−1

µ2n
,

1

2
≤ r

ρ
< 1.

Moreover,

Vn ∗ (Dµf)r(z) =

2n+1−1∑

k=2n−1

ψ

(
k

2n−1

) ( r
ρ

)k

µ2k+1
f̂(k)ρkzk =

2n+1−1∑

k=2n−1

ψ

(
k

2n−1

)
Φn(k)f̂(k)ρ

kzk

= (WΦn
1 ∗ Vn ∗ fρ)(z).

So, Theorem D(iii), (3.12) and (2.5) imply that for each n ∈ N \ {1}
‖Vn ∗ (Dµf)r‖Hp ≤ CAΦn,m‖Vn ∗ fρ‖Hp

≤ C

(
r
ρ

)2n−1

µ2n
‖Vn ∗ fρ‖Hp ≤ C

(
r
ρ

)2n−1

µ2n
Mp(ρ, f),

1

2
≤ r

ρ
< 1,

where C = C(p, µ) > 0. So, by Lemma 6, there is C = C(µ, p) > 0 such that

∞∑

n=2

‖Vn ∗ (Dµf)r‖Hp ≤ CMp(ρ, f)




∞∑

n=2

(
r
ρ

)2n−1

µ2n




≤ C
Mp(ρ, f)

µ̂
(
r
ρ

) ,
1

2
≤ r

ρ
< 1, f ∈ H(D), 1 < p <∞.

(3.13)

Analogously, using Lemma 6 again

∞∑

n=2

‖Vn ∗ (Dµf)r‖pHp ≤ CMp
p (ρ, f)




∞∑

n=2

(
r
ρ

)p2n−1

µ
p
2n


 ≤ C

Mp
p (ρ, f)[

µ̂
((

r
ρ

)p)]p

≤ C
Mp

p (ρ, f)(
µ̂
(
r
ρ

))p ,
1

2
≤ r

ρ
< 1, f ∈ H(D), 0 < p ≤ 1,

(3.14)

where in the last inequality we have used µ ∈ D̂. Finally, joining (3.7), (3.9), (3.10)
and (3.13) we obtain (3.6) for p > 1, and in the case 0 < p ≤ 1 (3.6) follows from
(3.8), (3.9), (3.10) and (3.14).

Case 2. 0 ≤ r
ρ
< 1

2
. Observe that (3.6) has already been proved for any ρ > 0

and r = ρ
2
. So,

Mp(r,D
µf) ≤Mp

(ρ
2
, Dµf

)
≤ C(p, µ)

Mp (ρ, f)

µ̂
(
1
2

) ≤ C(p, µ)
Mp (ρ, f)

µ̂
(
r
ρ

) , 0 ≤ r

ρ
<

1

2
.
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This finishes the proof. �

Proof of Theorem 2. Assume ω ∈ D̂. Without loss of generality we may assume

that f ∈ Apω. So, using that µ ∈ D̂ and Proposition 7, there is C = C(ω, µ, p) > 0
such that

‖Dµf‖p
Ap

µ̂pω
≤ C

ˆ 1

1
2

Mp
p (r,D

µ(f))ω(r)µ̂(r)p dr

≤ C

ˆ 1

1
2

Mp
p (
√
r, f)

µ̂(r)p

µ̂(
√
r)p

ω(r) dr

≤ C

ˆ 1

1
2

Mp
p (
√
r, f)ω(r) dr = 2C

ˆ 1

1√
2

rMp
p (r, f)ω(r

2) dr.

(3.15)

Next, since f ∈ Apω,

‖f‖p
Ap

ω
≥
ˆ 1

r

Mp
p (s, f)ω(s) ds ≥Mp

p (r, f)ω̂(r) → 0 as r → 1−.

So, two integration by parts and an application of Lemma A (ii) yield

2

ˆ 1

1√
2

rMp
p (r, f)ω(r

2) dr =Mp
p

(
1√
2
, f

)
ω̂

(
1

2

)
+

ˆ 1

1√
2

[
d

dr
Mp

p (r, f)

]
ω̂(r2) dr

≤Mp
p

(
1√
2
, f

)
ω̂

(
1

2

)
+ C

ˆ 1

1√
2

[
d

dr
Mp

p (r, f)

]
ω̂(r) dr,

≤Mp
p

(
1√
2
, f

)
ω̂

(
1

2

)
+ C

ˆ 1

1
2

rMp
p (r, f)ω(r) dr ≤ C‖f‖p

Ap
ω
,

which together with (3.15) implies (1.6).
Reciprocally, assume that (1.6) holds. By choosing fn(z) = zn, n ∈ N ∪ {0}, in

(1.6) we obtain

ˆ

D

|z|np
µ
p
2n+1

µ̂(z)pω(z) dA(z) ≤ Cp

ˆ

D

|z|npω(z) dA(z), n ∈ N ∪ {0}.

Since µ ∈ D̂, by Lemma A (iii) there exists C = C(µ) > 0 such that µ2n+1 ≤
Cµ̂
(
1− 1

n+1

)
, n ∈ N ∪ {0}. Therefore,

ˆ

D

|z|np
µ̂
(
1− 1

n+1

)p µ̂(z)pω(z) dA(z) ≤ Cp

ˆ

D

|z|npω(z) dA(z), n ∈ N ∪ {0}.

If x ≥ 1, we can find m ∈ N such that m ≤ x < m + 1. By applying the previous
inequality to n = m+ 1,

ˆ 1

0

s(m+1)p+1

µ̂
(
1− 1

m+2

)p µ̂(s)pω(s) ds ≤ Cp

ˆ 1

0

s(m+1)p+1ω(s) ds ≤ Cp

ˆ 1

0

sxp+1ω(s) ds,
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Moreover, bearing in mind the monotonicity of sx and µ̂(s) there exist C = C(ω, µ, p) >
0 such that

ˆ 1

0

s(m+1)p+1

µ̂
(
1− 1

m+2

)p µ̂(s)pω(s) ds ≥
ˆ 1

0

smp+p+1

µ̂
(
1− 1

x

)p µ̂(s)pω(s) ds

≥ C

ˆ 1

0

smp+1

µ̂
(
1− 1

x

)p µ̂(s)pω(s) ds

≥ C

ˆ 1

0

sxp+1

µ̂
(
1− 1

x

)p µ̂(s)pω(s) ds.

Therefore, there exists C = C(ω, µ, p) > 1 such that
ˆ 1

0

sxp

µ̂
(
1− 1

x

)p µ̂(s)pω(s) ds ≤ Cp

ˆ 1

0

sxpω(s) ds, for all x ≥ 1.

That is,

(3.16)

ˆ 1

0

sxpω(s)

((
µ̂(s)

µ̂
(
1− 1

x

)
)p

− Cp

)
ds ≤ 0, for all x ≥ 1.

Take k1 ≥ 1 such that µ̂
(
1− 1

x

)
<

µ̂(0)
C

for x ≥ k1. Then, for any x ≥ k1 there

exists sx = sx(x, C, µ) ∈ (0, 1− 1
x
), the infimum of the points s ∈ (0, 1− 1

x
) such that

µ̂(s)

µ̂(1− 1
x)

= C. By (3.16),

ˆ sx

0

sxpω(s)

((
µ̂(s)

µ̂
(
1− 1

x

)
)p

− Cp

)
ds ≤

ˆ 1

sx

sxpω(s)

(
Cp −

(
µ̂(s)

µ̂
(
1− 1

x

)
)p)

ds

≤ Cpω̂(sx), for all x ≥ k1.

So,

ω̂(sx) ≥ C−p

ˆ sx

0

sxpω(s)

((
µ̂(s)

µ̂
(
1− 1

x

)
)p

− Cp

)
ds.

Next, choose k2 ≥ k1 such that µ̂
(
1− 1

x

)
<

µ̂(0)

( 3
2)

1/p
C

if x ≥ k2. So, for any x ≥ k2,

there exists rx = rx(x, C, µ) ∈ (0, 1 − 1
x
), the infimum of the points r ∈ (0, 1 − 1

x
)

such that µ̂(r)

µ̂(1− 1
x)

=
(
3
2

)1/p
C. Then, rx < sx < 1− 1

x
and

ω̂(sx) ≥ C−p

ˆ sx

0

sxpω(s)

((
µ̂(s)

µ̂
(
1− 1

x

)
)p

− Cp

)
ds ≥ 1

2

ˆ rx

0

sxpω(s) ds,

for any x ≥ k2. By Fubini’s theorem,

2ω̂(sx) ≥
ˆ rx

0

sxpω(s) ds =

ˆ rx

0

ω(s)

(
ˆ s

0

pxtxp−1 dt

)
ds

=

ˆ rx

0

pxsxp−1(ω̂(s)− ω̂(rx)) ds

≥
ˆ r

0

pxsxp−1ω̂(s) ds− ω̂(rx)

ˆ rx

0

pxsxp−1 ds

≥ ω̂(r)rpx − ω̂(rx)r
px
x , 0 < r < rx < 1.
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Then, for any x ≥ k2 and 0 < r < rx < 1,

ω̂(r)rpx ≤ 2ω̂(sx) + ω̂(rx)r
px
x ≤ (2 + rpxx )ω̂(rx) ≤ 3ω̂(rx).

It is clear that rx >
1
2

if k2 is large enough. In this case, take r = 2rx − 1 in the
previous inequality, that is

(3.17) ω̂(r) ≤ 3r−pxω̂

(
1 + r

2

)
, 0 < r = 2rx − 1 < rx < 1, x ≥ k2.

Since µ ∈ qD, by Lemma B (ii) there exist C2 = C2(µ) > 0 and β = β(µ) > 0 such
that (

3

2

)1/p

C =
µ̂(rx)

µ̂
(
1− 1

x

) ≥ C2(x(1− rx))
β.

So,

x ≤

(
( 3
2
)
1
pC

C2

) 1
β

1− rx
=

2

(
( 3
2
)
1
pC

C2

) 1
β

1− r
.

Then, for r ≥ r0 = 1− 2
k2

(
( 3
2
)
1
pC

C2

) 1
β

,

rpx ≥
(

inf
r0≤r<1

r
1

1−r

)2



 ( 32 )
1
p C

C2





1
β

p

= C3 = C3(ω, µ, p) > 0,

which together with (3.17) yields ω̂(r) ≤ 3C3ω̂(
1+r
2
), for r0 ≤ r < 1. Therefore

ω ∈ D̂. �

4. Proof of Theorem 1

We begin this section proving a technical result on Lp-integrability of power series
with nonnegative coefficients. We use ideas from the proofs of [10, Theorem 6] and
[16, Proposition 9].

Proposition 8. Let 0 < p < ∞, η ∈ D and k ∈ N \ {1} such that (2.1) holds

for η. Let be f(r) =
∑∞

j=0 ajr
j where aj ≥ 0 for all j ∈ N∪ {0}. If t0 =

∑k−1
j=0 aj and

tn =
∑kn+1−1

j=kn aj , n ∈ N. Then, there exist positive constants C1 = C1(p, η) > 0 and

C2 = C2(p, η) > 0 such that

C1

∞∑

n=0

ηknt
p
n ≤
ˆ 1

0

f(s)pη(s) ds ≤ C2

∞∑

n=0

ηknt
p
n.

Proof. First, we show the lower estimate

ˆ 1

0

f(s)pη(s) ds ≥
∞∑

n=0

ˆ 1− 1
kn+2

1− 1
kn+1




k−1∑

m=0

ams
m +

∞∑

j=1

kj+1−1∑

m=kj

ams
m



p

η(s) ds

≥
∞∑

n=0

ˆ 1− 1
kn+2

1− 1
kn+1

spk
n+1

tpnη(s) ds ≥ C(p, η)
∞∑

n=0

tpn

ˆ 1− 1
kn+2

1− 1
kn+1

η(s) ds

= C(p, η)
∞∑

n=0

tpn

(
η̂

(
1− 1

kn+1

)
− η̂

(
1− 1

kn+2

))
.
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Since (2.1) holds for k and η, there exists a constant C = C(η) > 1 such that
η̂
(
1− 1

kn+1

)
≥ Cη̂

(
1− 1

kn+2

)
. This together with Lemma A(iii) yields

ˆ 1

0

f(s)pη(s) ds ≥ C(p, η)
∞∑

n=0

tpnη̂

(
1− 1

kn+2

)
≥ C(p, η)

∞∑

n=0

ηknt
p
n.

In order to show the upper bound, observe that

(4.1) f(s) ≤ a0 +

∞∑

n=0

sk
n

tn.

If 0 < p ≤ 1, by Lemma A (v), there is C = C(p, η) > 0 such that

ˆ 1

0

f(s)pη(s) ds ≤ a
p
0η̂(0) +

ˆ 1

0

∞∑

n=0

sk
nptpnη(s) ds = a

p
0η̂(0) +

∞∑

n=0

tpnηknp

≤ C

(
t
p
0ηk0 +

∞∑

n=0

tpnηkn

)
≤ C

∞∑

n=0

tpnηkn .

If 1 < p < ∞, take γ such that 0 < γp
p′
< 1. Then, by (4.1), Hölder’s inequality and

Lemma 6, we obtain

f(s) ≤ a0 +

(
∞∑

n=0

sk
n

η
γ
kn

) 1
p′
(

∞∑

n=0

sk
n

tpnη
γp
p′

kn

) 1
p

. a0 +
1

η̂(s)
γ
p′

(
∞∑

n=0

sk
n

tpnη
γp
p′

kn

) 1
p

which yields

ˆ 1

0

f(s)pη(s) ds . a
p
0η̂(0) +

∞∑

n=0

tpnη
γp
p′

kn

ˆ 1

0

sk
n η(s)

η̂(s)
γp
p′
ds

. t
p
0ηk0 +

∞∑

n=0

tpnη
γp
p′

kn

ˆ 1

0

sk
n η(s)

η̂(s)
γp
p′
ds.

(4.2)

Next, let us prove that

η
γp
p′

kn

ˆ 1

0

sk
n η(s)

η̂(s)
γp
p′
ds . ηkn,

which together with (4.2) finishes the proof. Indeed, by Lemma A (iii)

η
γp
p′

kn

ˆ 1− 1
kn

0

sk
n η(s)

η̂(s)
γp
p′
ds ≤ η

γp
p′

kn

η̂
(
1− 1

kn

) γp
p′

ˆ 1

0

sk
n

η(s) ds ≍ ηkn,

Morever, an integration and another application of Lemma A (iii) imply

η
γp
p′

kn

ˆ 1

1− 1
kn

sk
n η(s)

η̂(s)
γp
p′
ds ≤ η

γp
p′

kn

ˆ 1

1− 1
kn

η(s)

η̂(s)
γp
p′
ds ≍ η

γp
p′

kn η̂

(
1− 1

kn

)1− γp
p′

. ηkn.

This finishes the proof. �

The right choice of the norm used is in many cases a key to a good understanding
of how a concrete operator acts in a given space. Here, the following decomposition
result provides an effective tool for the study of the fractional derivative Dµ.
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Proposition 9. Let 0 < p < ∞, η ∈ D and k = k(η) > 1, k ∈ N such that
(2.1) holds for η and k. If {Vn,k}∞n=0 is a sequence of polynomials considered in
Proposition 4, then there are constants C1 = C1(p, η) > 0 and C2 = C2(p, η) > 0
such that

C1

∞∑

n=0

ηkn‖Vn,k ∗ f‖pHp ≤ ‖f‖p
Ap

η
≤ C2

∞∑

n=0

ηkn‖Vn,k ∗ f‖pHp, f ∈ H(D).

Proof. By (2.5) and [11, Lemma 3.1], there is C > 0 such that

‖fr‖Hp ≥ C−1‖Vn,k ∗ fr‖Hp ≥ C−1rk
n+1‖Vn,k ∗ f‖Hp

for any 0 ≤ r < 1 and n ∈ N. So,

‖fr‖Hp ≥ C−1 sup
n∈N

rk
n+1‖Vn,k ∗ f‖Hp,

which implies

‖f‖p
Ap

η
≍
ˆ 1

0

‖fr‖pHpη(r) dr ≥ C

∞∑

n=0

ˆ 1− 1
kn+2

1− 1
kn+1

(
sup
j∈N

rk
j+1‖Vj,k ∗ f‖Hp

)p
η(r) dr

≥ C

∞∑

n=0

‖Vn,k ∗ f‖pHp

ˆ 1− 1
kn+2

1− 1
kn+1

rk
n+1pη(r) dr

≥ C

∞∑

n=0

‖Vn,k ∗ f‖pHp

(
η̂

(
1− 1

kn+1

)
− η̂

(
1− 1

kn+2

))
, f ∈ H(D).

(4.3)

Since (2.1) holds for k and η, there exists a constant C = C(η) > 1 such that
η̂
(
1− 1

kn+1

)
≥ Cη̂

(
1− 1

kn+2

)
, which together with (4.3) and Lemma A(iii), yields

‖f‖p
Ap

η
&

∞∑

n=0

‖Vn,k ∗ f‖pHp η̂

(
1− 1

kn+2

)
≍

∞∑

n=0

‖Vn,k ∗ f‖pHpηkn, f ∈ H(D).(4.4)

In order to show the reverse inequality, we distinguish two cases according to the
range of p. If 0 < p ≤ 1, by using (2.4) and [11, Lemma 3.1] we obtain

‖fr‖pHp =

∥∥∥∥∥
∞∑

n=0

Vn,k ∗ fr

∥∥∥∥∥

p

Hp

.

∞∑

n=0

‖Vn,k ∗ fr‖pHp

. ‖V0,k ∗ f‖pHp +
∞∑

n=1

‖Vn,k ∗ f‖pHp r
kn−1p, f ∈ H(D),

and therefore by Lemma A (v),

‖f‖p
Ap

η
. ‖V0,k ∗ f‖pHp η̂(0) +

∞∑

n=1

‖Vn,k ∗ f‖pHp

ˆ 1

0

rk
n−1pη(r) dr

.

∞∑

n=0

‖Vn,k ∗ f‖pHp ηkn, f ∈ H(D), 0 < p ≤ 1.

(4.5)
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On the other hand, if 1 < p <∞, by (2.4) and [11, Lemma 3.1], we obtain

‖fr‖pHp =

∥∥∥∥∥
∞∑

n=0

Vn,k ∗ fr

∥∥∥∥∥

p

Hp

≤
(

∞∑

n=0

‖Vn,k ∗ fr‖Hp

)p

.

(
‖V0,k ∗ f‖Hp +

∞∑

n=1

‖Vn,k ∗ f‖Hp r
kn−1

)p

. ‖V0,k ∗ f‖pHp +

(
∞∑

n=1

‖Vn,k ∗ f‖Hp r
kn−1

)p

, f ∈ H(D).

The above chain of inequalities together with Proposition 8 yields

‖f‖p
Ap

η
. ‖V0,k ∗ f‖pHp η̂(0) +

ˆ 1

0

(
∞∑

n=1

‖Vn,k ∗ f‖Hp r
kn−1

)p

η(r) dr

.

∞∑

n=0

‖Vn,k ∗ f‖pHp ηkn , f ∈ H(D), 1 < p <∞.

(4.6)

Consequently, joining (4.4), (4.5) and (4.6), the proof is finished. �

With Proposition 9 in hand, we are able to prove that the space of analytic
functions Dp

ω,µ̂ = {f ∈ H(D) :
´

D
|Dµ(f)(z)|pµ̂(z)pω(z) dA(z) < ∞} is continuuosly

embedded into Apω when ω ∈ D and µ ∈ D̂. This result together with Theorem 2
proves that (1.5) holds when ω ∈ D.

Theorem 10. Let ω ∈ D, 0 < p < ∞ and µ ∈ D̂. Then there exists C =
C(ω, µ, p) > 0 such that

‖f‖Ap
ω
≤ C‖Dµ(f)‖Ap

ωµ̂p
, f ∈ H(D).

Proof. By Lemma B(iii) there exists k = k(ω) > 1, k ∈ N such that (2.1) holds
for k and ω. Next, Lemma 3 (ii) ensures that ωµ̂p ∈ D and Lemma 3 (i) implies that
ωµ̂p satisfies (2.1) with the same k as ω does. Therefore, we can apply Proposition 9
to the weights ω, ωµ̂p ∈ D and the choosen k. That is, there are positive constants
Cj(ω, p) > 0, j = 1, 2 such that
(4.7)

C1(ω, p)
∞∑

n=0

ωkn‖Vn,k ∗ f‖pHp ≤ ‖f‖p
Ap

ω
≤ C2(ω, p)

∞∑

n=0

ωkn‖Vn,k ∗ f‖pHp, f ∈ H(D),

and Cj(ω, µ, p) > 0, j = 3, 4 such that

C3(ω, µ, p)
∞∑

n=0

(ωµ̂p)kn‖Vn,k ∗Dµf‖pHp ≤ ‖Dµf‖p
Ap

ωµ̂p

≤ C4(ω, µ, p)
∞∑

n=0

(ωµ̂p)kn‖Vn,k ∗Dµf‖pHp,(4.8)

for all f ∈ H(D).

Observe that for each n ∈ N, (Vn,k ∗ f)(z) =
∑kn+1−1

j=kn−1 f̂(j)V̂n,k(j)z
j and

(Vn,k ∗Dµf)(z) =

kn+1−1∑

j=kn−1

f̂(j)

µ2j+1
V̂n,k(j)z

j .
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So, applying [19, Lemma 9(i)] to g = Vn,k ∗Dµ(f), h = Vn,k ∗ f and Skn−1,kn+1−1h =
Vn,k ∗ f , there exists a constant C = C(p) > 0 such that

(4.9) ‖Vn,k ∗ f‖Hp ≤ Cµkn−1‖Vn,k ∗Dµ(f)‖Hp, f ∈ H(D).

A similar argument shows that

(4.10) ‖V0,k ∗ f‖Hp ≤ Cµ0‖V0,k ∗Dµ(f)‖Hp, f ∈ H(D).

Moreover, by Lemma A and (2.1) (for k and ω), there is C = (ω, µ, p) > 0 such that

ωknµ
p
kn−1 ≤ Cωknµ

p
kn+1 ≤ Cω̂

(
1− 1

kn

)
µ̂

(
1− 1

kn+1

)p

≤ Cµ̂

(
1− 1

kn+1

)p ˆ 1− 1
kn+1

1− 1
kn

ω(s) ds ≤ C

ˆ 1− 1
kn+1

1− 1
kn

ω(s)µ̂(s)p ds

≤ C(ωµ̂p)kn, for all n ∈ N.

(4.11)

Then, by joining (4.7), (4.9), (4.10), (4.11) and (4.8),

‖f‖p
Ap

ω
≤ C

∞∑

n=0

ωkn‖Vn,k ∗ f‖pHp

≤ C

[
ω1µ

p
0‖V0,k ∗Dµ(f)‖pHp +

∞∑

n=1

ωknµ
p
kn−1‖Vn,k ∗Dµ(f)‖pHp

]

≤ C

∞∑

n=0

(ωµ̂p)kn‖Vn,k ∗Dµ(f)‖pHp ≤ C‖Dµ(f)‖p
Ap

ωµ̂p
, f ∈ H(D).

This finishes the proof. �

In order to complete a proof of Theorem 1 we have to show that ω ∈ D is a
necessary condition so that (1.5) holds. This implication will follow from Theorem 2
and the next result.

Theorem 11. Let ω be a radial weight, 0 < p < ∞ and µ ∈ D. If there exists
C = C(ω, µ, p) > 0 such that

(4.12) ‖f‖p
Ap

ω
≤ C

ˆ

D

|Dµ(f)(z)|pω(z)µ̂(z)p dA(z), f ∈ H(D),

then ω ∈ M.

Proof. By choosing fn(z) = zn ∈ H(D), n ∈ N in (4.12), we deduce

ˆ

D

|z|npω(z) dA(z) ≤ Cp

ˆ

D

|z|np
µ
p
2n+1

µ̂(z)pω(z) dA(z)

≤ Cp

ˆ

D

|z|np
µ̂
(
1− 1

n+1

)p µ̂(z)pω(z) dA(z), n ∈ N.
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Now, if x ≥ 1, we can find m ∈ N such that m ≤ x < m+ 1. Then, bearing in mind
the monotonicity of sx and µ̂(s)

ˆ 1

0

sxp+1ω(s) ds ≤
ˆ 1

0

smp+1ω(s) ds ≤ Cp

ˆ 1

0

smp+1

µ̂
(
1− 1

m+1

)p µ̂(s)pω(s) ds

≤ Cp

ˆ 1

0

s(m+1)p+1

µ̂
(
1− 1

m+1

)p µ̂(s)pω(s) ds

≤ Cp

ˆ 1

0

sxp+1

µ̂
(
1− 1

x+1

)p µ̂(s)pω(s) ds, x ≥ 1.

That is, there exists C = C(p, ω, µ) > 1 such that

ˆ 1

0

sxp+1ω(s)

(
1

Cp
−
(

µ̂(s)

µ̂
(
1− 1

x+1

)
)p)

ds ≤ 0.

Since µ̂
(
1− 1

x+1

)
< Cµ̂(0) for all x ≥ 1, there exists sx = sx(x, C, µ), the

supremum of the points s ∈ (1− 1
x
, 1) such that µ̂(s)

µ̂(1− 1
x+1)

= 1
C
. Then,

ˆ 1

sx

sxp+1ω(s)

(
1

Cp
−
(

µ̂(s)

µ̂
(
1− 1

x+1

)
)p)

ds

≤
ˆ sx

0

sxp+1ω(s)

((
µ̂(s)

µ̂
(
1− 1

x+1

)
)p

− 1

Cp

)
ds, x ≥ 1.

There also exists rx = rx(x, C, µ) ∈ (sx, 1) the supremum of the points r ∈
(1− 1

x
, 1) such that µ̂(r)

µ̂(1− 1
x+1)

= 1
C

(
1
2

) 1
p . So,

ˆ 1

sx

sxp+1ω(s)

(
1

Cp
−
(

µ̂(s)

µ̂
(
1− 1

x+1

)
)p)

ds

≥ 1

2Cp

ˆ 1

rx

sxp+1ω(s) ds =
1

2Cp
ωxp+1 −

1

2Cp

ˆ rx

0

sxp+1ω(s) ds, x ≥ 1.

Therefore,

ωxp+1 ≤ 2Cp

ˆ sx

0

sxp+1ω(s)

((
µ̂(s)

µ̂
(
1− 1

x+1

)
)p

− 1

Cp

)
ds+

ˆ rx

0

sxp+1ω(s) ds

≤ 2Cp

ˆ rx

0

sxp+1ω(s)

(
µ̂(s)

µ̂
(
1− 1

x+1

)
)p

ds+

ˆ rx

0

sxp+1ω(s) ds, x ≥ 1.

(4.13)

Next, by Lemma A(ii), there exist C1 = C1(µ) > 1 and α = α(µ) > 0 such that

µ̂(s) ≤ C1µ̂(rx)

(
1− s

1− rx

)α

= C1

(
1

2

) 1
p 1

C
µ̂

(
1− 1

x+ 1

)(
1− s

1− rx

)α
, 0 < s ≤ rx,

(4.14)
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where in the last identity we have used the definition of rx. Consequently, putting
together (4.13) and (4.14)

ωxp+1 ≤
C
p
1

(1− rx)αp
(ω[αp])xp+1, x ≥ 1.(4.15)

On the other hand, by Lemma B (ii) there exist C2 = C2(µ) > 0 and β = β(µ) > 0
such that (

1

2

) 1
p 1

C
=

µ̂(rx)

µ̂
(
1− 1

x+1

) ≤ C2(2x(1− rx))
β,

so there is C3 = C3(p, ω, µ) > 0 such that 1
1−rx

≤ C3x. This together with (4.15)

implies that there is C = C(ω, µ, p) > 0 such that

ωxp+1 ≤ Cxαp(ω[αp])xp+1, x ≥ 1.

That is,

ωy ≤ C

(
y − 1

p

)αp
(ω[αp])y ≤ C

(
1

p

)αp
yαp(ω[αp])y, y ≥ p+ 1,

which together with Lemma C implies that ω ∈ M. This finishes the proof. �

Finally, we are ready to prove Theorem 1.

Proof of Theorem 1. If ω ∈ D, putting together Theorem 2 and Theorem 10,

we get (1.5). Reciprocally, if (1.5) holds, ω ∈ D̂ by Theorem 2 and ω ∈ M by

Theorem 11. Then, it follows from [20, Theorem 3] that ω ∈ D̂ ∩M = D.
This finishes the proof. �

We would like to point out that it would be interesting to obtain some progress
about Littlewood–Paley inequalities for fractional derivatives on Bergman spaces Apω
induced by a non-radial weight ω. For instance, to know whether or not (1.5) (µ ∈ D)
remains true for Bekollé–Bonami weights.
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