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Littlewood—Paley inequalities for
fractional derivative on Bergman spaces

Jost ANGEL PELAEZ and ELENA DE LA RoOsA

Abstract. For any pair (n,p), n € N and 0 < p < oo, it has been recently proved by Pelaez
and Réttyd (2021) that a radial weight w on the unit disc of the complex plane D satisfies the
Littlewood—Paley equivalence

/ FEP / F® P~ [2])Pwlz) dA(= +Z|f(”

for any analytic function f in D, if and only if w € D = DND. A radial weight w belongs to the class
f w(s)ds J w(s)ds
T > 1.

Dif SUPo<r<1 fl - w(s)ds ior w(s)ds

< 00, and w € D if there exists k > 1 such that info<rct I

In this paper we extend this result to the setting of fractional derivatives. Belng precise,
for an analytic function f(z) = Y07 f f(n)z" we consider the fractional derivative D"(f)(z) =

> Hfz(—":lz” induced by a radial weight p € D where piop11 = fol r?2" 1 (r) dr. Then, we prove

that for any p € (0, 00), the Littlewood—Paley equivalence

[ r@reedae = [ 10pner

holds for any analytic function f in D if and only if w € D. We also prove that for any p € (0, c0),

the inequality
[ 1peis l / M(s)ds] w2 dAR) 5 [ 7P dA)

holds for any analytic function f in D if and only if w € D.

/Hu(s) ds] w(z) dA(z)

Bergmanin avaruuksien murtoasteisen derivaatan Littlewoodin—Paleyn epayhtilot

Tiivistelm3. Peldez ja Rittyd (2021) osoittivat hiljattain, ettd jokaisella parilla (n,p), missd
n € Nja 0 < p < oo, kompleksitason yksikkdkiekon D séteittdinen paino w toteuttaa jokaisella
kiekon D analyyttisellda funktiolla f Littlewoodin—Paleyn verrannon

[ 5P eaae) = [ 170EPa - e aae) + Y 1190)
7=0
~ ~ g 1 wi(s S
jos javain jos w € D = DND. Séteittdinen paino w kuuluu luokkaan D, mikdli supy<, . flfr%
— 14r w(s S
2

~ 1 3
00, ja w € D jos on olemassa k > 1, joka toteuttaa info<,<1 M
= 117 ir w(s)ds
Téssd tyossé yleistimme tamén tuloksen murtoasteisille derivaatoille. Tarkemmin sanottuna,

jos f(z) = >0, f(n)z” on analyyttinen funktio ja u € D on séteittdinen paino, tarkastelemme

> 1.
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o _f(n)

n=0 H2n+1

funktion f painoon g liittyvad murtoasteista derivaattaa D*(f)(z) = > 2™, missa oy 41 =

fIor " p2n41 () dr. Osoitamme, etti jokaisella p € (0, 00) on voimassa Littlewoodin-Paleyn verranto

/D F(2)Pw(z) dA() = / DA () ()P [ /|Z| (s) ds

jokaisella kiekon ID analyyttisella funktiolla f, jos ja vain jos w € D. Osoitamme lisdksi, etté jokaisella
p € (0,00) on voimassa epayhtild

/D DH(f) (=) [ /st)ds] w(=) dA(2) < / F(2)Pew(z) dA(z)

jokaisella kiekon D analyyttiselld funktiolla f, jos ja vain jos w € D.

p

w(z) dA(z)

1. Introduction

Let H(D) denote the space of analytic functions in the unit disc D = {z €
C:|z| < 1}. For f € H(D) and 0 < r < 1, set

. :
M0 = (50 [ lreepar)’s o<p<oe,

and Moo (r, f) = maxp,= |f(2)|. For 0 < p < oo, the Hardy space H” consists of
f € H(D) such that ||f||zr = supge,<q Mp(r, f) < co. For a nonnegative function
w € L'(]0,1)), the extension to D, defined by w(z) = w(|z]) for all z € D, is called
a radial weight. For 0 < p < oo and such an w, the Lebesgue space LP consists of
complex-valued measurable functions f on ID such that

IWW—AWM%MMM<w

where dA(z) = % is the normalized Lebesgue area measure on D. The correspond-
ing weighted Bergman space is A? = LP NH(D). Throughout this paper we assume
W(z) = f‘i‘ w(s)ds > 0 for all z € D, for otherwise A? = H (D).

A well-known formula ensures that for each n € N and 0 < p < o0

(L f I, A/DIf(”)(Z)Ip(l— [21)"w(z) dA(ZHZ_:If(”(O)V’, f e H(D),

if w is a standard radial weight, that is, w(z) = (o + 1)(1 — |2z[*)* for some —1 <
a < o0o. Generalizations of this Littlewood—Paley formula have been obtained in
[3, 14, 23| for different classes of radial weights. However, the question for which
radial weights the above equivalence (1.1) is valid has been a known open problem
for decades. This question has been recently solved in [20, Theorem 5], in fact (1.1)
holds for a radial weight w if and only if w € D = DN D. Recall that a radial weight
w belongs to D if there exists a constant C' = C(w) > 1 such that &(r) < Co(HE)

for all 0 < r < 1. Further, a radial weight w belongs to D if there exist constants
k=k(w)>1and C = C(w) > 1 such that @(r) > C&(1 — =) for all 0 < r < 1.
It is also worth mentioning that the inequality

/D\f(”)(z)lp(l— |2)"w(2) +Z\f“ WS, f e HD),
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holds for a radial weight w and each pair (n,p), n € Nand 0 < p < oo, if and only if
w € D [20, Theorem 6].

Throughout the next few lines we offer a brief insight to the classes of weights
D, D and D. Each standard radial weight belongs to D, while D \ D contains
weights that tend to zero exponentially. The class of rapidly increasing weights,
introduced in [17], lies entirely within D \ D, and a typical example of such a weight
is w(z) = (1 —|2]*) (log : T‘Q)_a, where @ > 1. However we emphasize that

the containment in D or D does not require continuity neither positivity. In fact,
weights in these classes may vanish on a relatively large part of each outer annulus
{z: 17 <|z] < 1} of D. For basic properties of the aforementioned classes, concrete
nontrivial examples and more, see [15, 17, 20] and the relevant references therein.

The theory of weighted Bergman spaces AP induced by non-radial weights is
at its early stages, and plenty of essential properties have not been described yet.
However there have been developments towards different directions during the last
decades [1, 8]. As for Littlewood—Paley formulas for derivatives, we recall that (1.1)
holds if w is a Bekollé-Bonami weight [1, 2|, see also [4, 21] for related results.

On the other hand, (1.1) can be extended to the setting of fractional derivatives
when w is a standard weight. Indeed, for f(z) = > 7, f(n)z" € H(D) and S > 0,

consider the operator

(1.3) DA(f)(z) = F(52+ 3 Zl F%’(Zle)f(n)z", 2eD,

which basically coincides with the fractional derivative of order 5 > 0 introduced by
Hardy and Littlewood in [7, p. 409]. The differences between (1.3) and [7, (3.13)]

are in the multiplicative factor % and the inessential factor z%. A floklore result
states that
(1.4) |umpA/WD3 (2)P(1 = [2)Pw(z) dA(2),  f € H(D),

for any 5, p > 0 and any standard radial weight w, see [5, Theorem A] for the range
p > 1. Moreover, Flett proved in |6, Theorem 6] that (1.4) remains true for any 3, p >
0 if DPf is replaced by the multiplier transformation f1¥(z) = 3"> (n+ 1)2f(n)z"
which may also be regarded as fractional derivative of order g > 0.

For a radial weight u € ﬁ, we define the fractional derivative of f induced by pu

9§ I en

0 M2n+1

Here 9,41 are the odd moments of y, and in general from now on we write p, =
fol r®u(r) dr for p a radial weight and x > 0. It is clear that D*(f) is a polynomial
if f is a polynomial and D*(f) € H(D) for each f € H(D), by Lemma 5 below. See
|22, 24] for related definitions or reformulations of classical and generalized fractional
derivative, and observe that D* = DF? if u is the standard weight p(z) = 8(1 —
|21%)°~1, B > 0.

The primary purpose of this paper is twofold: extending the Littlewood—Paley
formulas (1.1) and (1.2) replacing the higher order derivative f™ by the fractional
derivative D*(f) induced by p € D, and describing the radial weights such that
the arising formulas hold. With this aim, observe that 7i(z) < (1 — |2])? when
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w(z) = B(1 — |z, B > 0, so an appropriate interpretation of the Littlewood—
Paley estimate (1.4) is

11, = / DM () )PR(2)Pw(z) dA(), | € H(D),

when p is a standard weight.

Our main result shows that the discussion above regarding standard weights
actually describes a general phenomenon rather than a particular case, and moreover
describes the radial weights such that the formula holds.

Theorem 1. Let w be a radial weight, 0 < p < oo and u € D. Then

(1.5) 111, X/D|D“(f)(Z)IZ”ﬂ(?«‘)I’W(Z) dA(z), [ eHD),
if and only if w € D.

In particular, as a byproduct of Theorem 1 we obtain a proof of the folklore result

1/ 1% A/DIDB(f)(ZHp(l = |2))* dA(2),  f e H(D),

for any B,p > 0, and @ > —1. Here and throughout the paper A? stands for the
classical weighted Bergman spaces induced by the standard radial weight w(z) =
(a+1)(1 — |52)°.

En route to the proof of Theorem 1 we will establish the following result, which
generalizes [20, Theorem 5| to the setting of fractional derivatives induced by radial
doubling weights.

Theorem 2. Let w be a radial weight, 0 < p < co and o € D. Then, there
exists a constant C' = C(w, u,p) > 0 such that

(1.6) /DID“(f)(Z)Ipﬁ(Z)”W(Z) dA(z) < C|fIfyz,  f € HD),

if and only if w € D.

The proof of (1.6) of is strongly based on the following inequality between the
integral means of order p of D*f and f,

M
(1.7) Mp(T,D“f)SCM O<r<p<l, 0<p<oo.

The inequality (1.7) is proved in Proposition 7 below and it is a natural extension of
[14, Lemma 3.1]. The proof of this last result employes the Cauchy formula for f’,
Minkowski’s inequality for the case p > 1 and factorization results of H? functions
when 0 < p < 1. However, the proof of (1.7) is strongly based on smooth properties
of universal Ceséaro basis of polynomials introduced by Jevti¢ and Pavlovié¢ [9].

Reciprocally, the other implication in the proof of Theorem 2 uses ideas from |20,
Theorem 6] and some technicalities. In particular, the proof reveals that (1.6) holds
if and only if the inequality there holds for all monomials only.

As for the proof of Theorem 1 we show, in Theorem 11 below, that the inequality

(1.8) 1115 < C/D | D) ()P (2)Pw(z) dA(2), [ e H(D),

implies that w € M. Recall that w € M if there exist constants C' = C'(w) > 1 and
k = k(w) > 1 such that w, > Cwy, for all z > 1. It is known that D C M |20, Proof



Littlewood—Paley inequalities for fractional derivative on Bergman spaces 1113

of Theorem 3| but D ¢ M [20, Proposition 14]. However, [20, Theorem 3| ensures
that D=DND =DnN M, so Theorem 11 together with Theorem 2 yields that
w € D when (1.5) holds.

Concerning the reverse implication in the proof of Theorem 1, we construct
ad hoc norms for the weighted Bergman spaces AP and Af}ﬁp, in the spirit of the
decomposition results [12, Theorem 7.5.8] and [16, Theorem 4|. These two re-
sults are valid for 1 < p < oo and their proofs employ the boundedness of the
Riesz projection on LP(OD) to deal with the HP-norm of polynomials of the type
Ay = > op,, 2" However we use universal Ceséro basis of polynomials instead
of the polynomyals A,, ,,, their smooth properties allow us to get equivalent norms
for any 0 < p < oco. Being precise, we prove that there is £ > 1 and a shared universal
Cesaro basis of polynomials {V}, ;}72 such that || f|| a2 <> 07 win||Vig * fl'y» and
|| D*( f )HAI:;ﬁP = > J(WiP) g |[Vise * DH(f) |5y for any p € (0,00), where * denotes
the convolution.

Finally, we introduce the following notation that has already been used above
in the introduction. The letter C' = C(-) will denote an absolute constant whose
value depends on the parameters indicated in the parenthesis, and may change from
one occurrence to another. We will use the notation a < b if there exists a constant
C' = C(-) > 0 such that a < Cb, and a 2 b is understood in an analogous manner.
In particular, if a < b and a 2 b, then we write a < b and say that a and b are
comparable.

2. Preliminary results

2.1. Radial weights. In this section we provide several characterizations of the
classes of radial weight ﬁ,ls and M, which will be used in the proofs of the main
results of this paper.

For each 8 > 0 and w a radial weight, let us denote wyg(s) = (1 — s)’w(s). The

next result gathers descriptions of the class D.

Lemma A. Let w be a radial weight. Then, the following statements are equiv-
alent:

(i) w e D;
(ii) There exist C' = C(w) > 1 and ay = ap(w) > 0 such that

@(s)gc(

for all o > ay;

! 1
wm:/ 5”‘“w(5)d5x@(1——), x € [1,00);
0 T

(iv) There exists C'(w) > 0 such that w, < Cws,, for any n € N;
(v) There exist C'(w) > 0 and n(w) > 0 such that

1—s
1—t

) W), 0<s<t<I;

(i)

n
waC(g) wy, 0<z<y<oo;
x

(vi) For some (equivalently for each) f > 0 there exists a constant C' = C(w, ) >
0 such that z°(wig),; < Cw,, 0 < z < 00.
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Proof. The equivalences (i)—(v) can be found in [15, Lemma 2.1| and (i) < (vi)
is proved in |20, Theorem 6], where it is provided a direct proof of (vi) = (i), but (i)
= (vi) is obtained by using the Littlewood—Paley inequality [20, (1.5)]. So, here we
give a detailed direct proof of (i) = (vi) for the convenience of the reader and the
sake of completeness.

Let 8 >0,w € D and z > 0. Observe that

2P (wig)e = xﬁ/o

By Fubini’s theorem and Lemma A (ii)

1-1 r
I= xﬁﬂ/ (1—7)° (/ 5ot ds) w(r)dr
0 0
1-1 1-1 1-1
= oAt / st (/ (1 —r)Pw(r) dr) ds < SLﬁ—H/ s (1 — 5)°D(s) ds
0 s 0

_ 1\ [ ~ 1
< gftetly (1 - —) / I 1 —s) T ds <@ <1 — —) < wy.
z) J T

Moreover, it is easy to observe that I/ < w,. This finishes the proof. 0

1-1

x

1
(1 —7)Pw(r) dr+:p5/ (1 —r)Pw(r)dr =1+ I1.
1—-1

We will also need the following characterizations of the class D.

Lemma B. Let w be a radial weight. The following statements are equivalent:
(i) we D;

(ii) There exist C' = C(w) > 0 and = f(w) > 0 such that

. 1—s BA
w(s) <C T o), 0<t<s<l;

(iii) There exist k = k(w) > 1 and C' = C(w) > 0 such that

1—1=r
(2.1) / ' w(s)ds > Cw(r), 0<r<1.

Proof. The condition (iii) is just a reformulation of the definition of the class
D, so we omit the proof of (i) < (iii). Next, assume that (i) holds and consider the
sequence {r,}52y = {1—75}52,. If 0 < ¢ < s < 1, there exist m, n € NU{0}, m >n
such that r, <t <r,; and r,, < s <rpy1. fn+1<m, then
1 C? ~
= Cm—n—1w<rn+1> < k(m—n+1) log,, C’w(t)

~

() < () < éw(rml) <.

1 — log;, C
< (2 (1—_‘j) 5(t).

Next, if m = n, then for any constant C; > k”

w(s) 1 1= 71 )" 1-s\"
—<1<(C;—=< _ <
o == —Cl( -7, ) =ol\i)
so (ii) holds for any exponent § € (0,log, C]. Reciprocally, assume (ii) and let be
1

k . By (ii) there exist C = C(w) > 0 and 8 = B(w) > 0 such that S&(r) >
@ (1—+*). So taking k > C%, (i) holds. This finishes the proof. O
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A proof of the following description of the weights w € M, in terms of the
moments of w, can be found in [20, Theorem 2.

Lemma C. Let w be a radial weight. The following statements are equivalent:

(i) we M;
(ii) For each 8 > 0, there is C' = C(f,w) such that

wy < Ca (wyg)

The next result is an essential tool to deal with the inequality
11 / |D(f) ()P () w(z) dA(z),  f € H(D),
D

(see Theorem 10 below), so to prove Theorem 1.

x> 1.

x?

Lemma 3. Let w be a radial weight. Then, the following statements holds:

(i) Ifw € D and ¢: [0,1) — (0, 00) is decreasing, then we € D. Furthermore, if
there exist k = k(w) > 1 and C' = C(w) > 0 such that

1 1—1=r
(2.2) C/ w(s)ds < / ' w(s)ds, 0<r<1,
1—1-r r

k

then

1— 1—r

(2.3) C’/Ilr w(s)e(s)ds < / ' w(s)p(s)ds, 0<r<l1.

k

(ii) fw € D, p € D and 0 < p < oo, then wii¥ € D.

Proof. By Lemma B (iii), the proof of (i) follows from the proof of (2.2)=-(2.3).
Indeed, since ¢ is decreasing

/ T s ds > ¢ (1— 1;7“) / T s

> Co <1 1 ;T> /lllkr w(s)ds > C/lllr w(s)p(s)ds,

k

and (2.3) holds.
Throughout the rest of the proof let us denote v = wpP. Since w € D, by
Lemma B (iii) there exists k = k(w) > 1 such that

1— 1—7r

1+

ﬁ<r)§ﬁ<r>”@<r)§@( ! )ﬂ(r)psmr)p [ et

T
2

Moreover, by Lemma A (ii) there exist C' = C(u) > 0 and o = a(u) > 0 such that

flr) < 29 (1 - 52, 50

w(S)A(s) ds < D (1;7“) ,

that is v € D. Moreover, v € D by (i). This finishes the proof. O

2.2. Universal Cesaro basis of polynomials. In this section, we establish
some notation and previous results on universal Ceséro basis of polynomials, which
will be strongly used in the proofs of Theorem 1 and Theorem 2.
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The Hadamard product of a polynomial W(z) = 3", _; brz", where J denotes a
finite subset of N and f(z) = > 72, a,2" € H(D) is

(W f)(z) = Zakbkzk, zeD.
k=0
Furthermore, it is easy to observe that
) 1 4 ) )
WD) =5 [ W) s o,
™ —T

For a given C*°-function ®: R — C with compact support, set

_ (m)

Ap = max|®(z)| + mmax|[®™(z)], m e NU{0},

and define the polynomials

Wez)=> @ (S) 2 neN.

keZ
The next result can be found in [12, pp. 111-113].

Theorem D. Let ®: R — C be a compactly supported C*°-function. Then the
following statements hold:

(i) There exists a constant C' > 0 such that
D0y <« : 1-m|g|—m (m)
W) < Cnin {nmax ()], "6 max 4475

for allm € NU{0}, n € N and 0 < |0] < 7.
(il) If 0 < p < 1 and m € N with mp > 1, there exists a constant C = C(p) > 0
such that

(S:P (W, f)(e”>l) < CAG,, M(|f")(e”)

for all f € HP, where M denotes the Hardy—Littlewood maximal-operator

1 0+h

0\ _ 4 it
M(f)(e )_oilﬁgw% - | f(e")]dt.

(ili) For each 0 < p < oo and m € N with mp > 1, there exists a constant
C = C(p) > 0 such that

W fllee < CAg | fllmv
for all f € HP and n € N.

The property (iii) shows that the polynomials {IW®}, ey can be seen as a universal
Césaro basis for H? for any 0 < p < co. In the statement of the next result, we
consider a particular family of polynomials {W®},cy which play a key role in this
manuscript.

Proposition 4. Let k € N, k > 1 and ¥: R — R be a C*°-function such that
U =1 on (—o0,1], ¥ =0 on [k,o0) and ¥ is decreasing and positive on (1,k). Set
Y(t) =V (L) = W(¢t) for all t € R. Let Vou(z) = S w(4)2 and

j:
kntl—1

mG(z):W;pn1(z)zzw<k3_l)zj: Z w(kj_l)zj, n € N.

j:O j:kn—l
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Then,
(2.4) F) =) (Var*f)(z), z€D, feHD),
n=0
and for each 0 < p < oo there exists a constant C = C(p, ¥, k) > 0 such that
(2.5) Vo * fllze < Clfllae,  f € HP, neN.

If £k = 2 we simply denote V,, o = V,,. A proof of Proposition 4 for this choice
appears in |9, pp. 175-177] or [13, pp. 143-144]. For the convenience of the reader
and the sake of completeness, we present a proof of Proposition 4 following the ideas
in [9, 13)].

Proof of Proposition 4.  Let us denote by {m( /)}; the sequence of Taylor
coefficients of V. Since » 377, |f( )||z]” converges for each z € D, supp Vnk C
NN [k;"*l,k;"*l) and |V, +(j)] <2 foralln € N and j € N,

o) kn+1

| <2> > 1Tl |j<4Z| M

nljknl

nk*f

=1

that is, > (Vhe* f)(2) converges for each z € D. Let us prove that ) Vor(j) =

l,foreachj:O,l,Q,....A }
f0<j<k—1,>."Var(j) = Vok( )—|—V1 (j) =" (—) = 1. On the other hand,

if j > k then ¥(j) = 0 and anovmk( )= lim Y (i) = hm v (L) =1
Therefore, it is clear that (2.4) holds fgbr polynomials. Let us show that (2.4)

holds for each f € H(D). Let be S, f(z) = >, f(l)zl, the n-th partial sum of f.
Fixed z € D,

= Varx NE)| < 1F(2) = Sen (@) + Sk f(2) = Y (Vi x (=

=I(f,m,z)+ II(f,m,z),

where I(f,m, 2) = | f(2) = Sgn f(2)| and T1(f,m, 2) = |Sgm f(2) = D020 (Vak * ) (2)].
We have that lim,, ., I(f,m,z) = 0, and using (2.4) for Sgm f,

TI(f,m, 2) = |3 (Vg xS f)(2) = D_(Var % 1) (2)
n=0 n=0
m+1 e o0 .
=D Varx NE) =D Varx | S D IFOIIP,
n=0 n=0 j=km+1
so limy, 0o II(f,m, z) = 0. Consequently (2.4) holds for any f € H(D).
Finally, (2.5) follows from Theorem D (iii). O

3. Proof of Theorem 2

To begin with, we will prove some technical lemmas. The first one ensures that
the definition of D* makes sense when p € D.

Lemma 5. Let € D and f € H(D). Then, the fractional derivative D*f €
H(D) .
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Proof. By Lemma A (ii), there exist C = C'(u) > 0 and o = a(p)

R Ch() 1 C
> I
Hakrr 2 OB (1 2(k + 1)) o220 (k+1 (k4 1)

ke NU{0}.

So, for each k € NU {0}, \/‘f(k L < (Hcl)a ¢/|f(k)|. Then, it follows that

H2k+1 —
~

k
lim sup o/ L/ (F)] <1,
k—o00 H2k+1

and therefore D*(f) € H(D).

Lemma 6. Let € 23 v>0andk € N\ {1}. Then,

/ o 0<r<l.
nOukn 1_t

(3.1)

Moreover, if y € D
r

(3.2) 1+ — =

Proof. Since p € 13,

o) n o) kn k™—1 co k"—1

n=0

Z Z , 0<r<l.

S [n sz+1

Now, arguing as in |18, (2 9)] it follows

r dt
Z A/ 0 <r<],
Dpgjy  Jo (I—=0)u(t)

J=1

and we get (3.1).
Next, bearing in mind Lemma B(ii),

r dt (1—r)» dt 1
(3.3)1+/7A 14+ C7 / S =
o (L—t)u(t) u(r) Jo (L=~ Li(r)y
On the other hand, it is clear that

T dt 1 1
3.4 1 +/ — 2=, 0<r<—
(3.4) s =R ~ Ay >

and because p € 1/)\,

r dt r dt 1 1
(3.5) 1+/0 W 2 /QT_l (1—t)at) R w(2r — 1) < ()

rk r rk" 1 r rd
PR o D DI P o g
e u¥+ : ;znk"j, T 2 G

> () such that

0<r<l.

1
—<r<l.

2

Consequently, (3.1) together with (3.3), (3.4) and (3.5) implies (3.2). This finishes

the proof.

O
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Now we will prove a generalization of [14, Lemma 3.1] to the setting of fractional
derivatives induced by doubling weights, which is interesting on its own right.

Proposition 7. Let 0 < p < oo and p € D. Then, there exists a constant
C = C(p,p) > 0 such that

M,
(3.6) M, (r, D*(f)) gCM, 0<r<p<l, f[feH(D).
7(;)
Proof. We will split the proof in two cases according to the value of r and p.
Case 1. l < 5 < 1. Bearing in mind (2.4),

(3.7) My <D Vi (D ) HHP+ZHV # (D" ell e, f € H(D),
n=0 n=2

for all 1 < p < 0o, and
1
(38) M D () <3 War (D1l + 3 Vo (DF1), [0 f € HD),
n=0 n=2
for 0 < p <1, where V,, = V,, 5 are the polynomials defined in the statement of
Proposition 4.
Firstly, [14, Lemma 3.1] yields

Vo s (D e < FOL DL Mol f) | M (5. F)
’ T m S U} H3
My(r, f) M. f) My(p.f) 1 _r
(3.9) < " + C(p)2 P < C(p) T 2 < s 1

The inequality

M (pr7 f)’ 1 S i < 1’

1(5) 27 p
can be proved analogously. Next, we will estimate from above the series in (3.7) and
(3.8). For each n € N, n > 2, let us consider the function

()

(3.10) Vi (D" f)el| e < C(p)

1
n\X) = n—1 on+1_1]\T ), _§_<17
#n() :u2:1:+1X[2 a1-() 27 p
and fix m € N such that mp > 1. Observe that for each k& € N, there is C = C'(k) > 0
such that
1 1\ *
(3.11) / s* <log —) p(s)ds < Cuy—y < Cpy, for any xz > 2.
0 s
Since
9 [} g2+l ]ge 1 d T (f)
Pn(T) = — Jo 57" log SZM(S) : <i) + 2 logt, pe (@2 - ),
(H2r41) P H2z+1 P

using (3.11) and the inequality % < %, it follows that there is an absolute constant

C' > 0 such that

|y, (2)] < C< ) xe 2V v -1,
/~L2m+1

<-<L

DO | —
3
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By this way, using (3.11) and an induction process on m, there is C' = C(m) such
that

<ol ey
H2z+1

Now, for each n € N\ {1}, choose a C*-function ®,, with compact support

contained in [2"72 2"2] such that ®, = ¢, in [2"71 2""! — 1]. Then, bearing in

mind Lemma A (v), there is C'= C(p, ) > 0 such that

<-<1

N | —
I3

T 2n71 271,71
6 .6 6
(3.12)  Ag,m <C  max Pl <o <o/l <l
e€2n=12n+ 1) flgy 4 Hon+241 fon 27 p
Moreover,
k
ontl_q L (E) ontl_q L
P -~ ~
Ve (D0 = 3 0 (g ) Tt = 3 0 (i ) BTt
g1 2 H2k+1 o 2

= (W' % Vo fo)(2).
So, Theorem D(iii), (3.12) and (2.5) imply that for each n € N\ {1}
Vo s (DEF)ell v < C Ayl Vi 5 foll v

2n—1 2n—1

(z ’ 1 r

<CLVn* p<CLM f), =<l <1,

<O Vs fllar < O Myfp. ). <

where C' = C(p, ) > 0. So, by Lemma 6, there is C' = C(u, p) > 0 such that
271,71

S IVaw (D Pllie < CM,(p, f) | S &
(3.13) "2 s

Analogously, using Lemma 6 again

iHVn*(D“f)rH%pSCMé’(p,f) i% SC%
(3.14) " =z [“((5 )}

1
<O 5
()
where in the last inequality we have used € D. Finally, joining (3.7), (3.9), (3.10)

and (3.13) we obtain (3.6) for p > 1, and in the case 0 < p < 1 (3.6) follows from
(3.8), (3.9), (3.10) and (3.14).

Case 2. 0 < i < % Observe that (3.6) has already been proved for any p > 0
and 7 = £. So,

M, (r, D f) < M, (g D“f) < Clp, M)iMZ o f) Clp, M)iMf G
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This finishes the proof. O

Proof of Theorem 2. Assume w € D. Without loss of generality we may assume
that f € AP. So, using that p € D and Proposition 7, there is C' = C'(w, u,p) > 0
such that

1
1D fl, < C[ My (r, D (f))w (r)a(r)” dr

(3.15) < C[ Mp(Vr, f)Aﬁ(r)p w(r) dr
<C/ MP(\/r, fw r_20/ rM2(r, fw(r?) dr.
Next, since f € AP,
1% / M (s s)ds > MP(r, f)&(r) = 0 asr— 17

So, two integration by parts and an application of Lemma A (ii) yield

2 /1 rM2(r, [)w(r®) dr = M? (% f) o (%) + /f1 [C%Mg(r, f)} 5(r?) dr

S (), e
< (1) )+c/ MG ) dr < CfI,

which together with (3.15) implies (1.6).
Reciprocally, assume that (1.6) holds. By choosing f,(z) = 2", n € NU {0}, in
(1.6) we obtain

[ B gpayanc) < oo [ rmat aae), n enu o)

D MHopt1

Since u € D, by Lemma A (iii) there exists C' = C(u) > 0 such that pg,q <
Cu(1- —) n € NU{0}. Therefore,

1_n+1

np
/%u( u(z) dA(2) <cp/\z|"pw 2)dA(z), neNU{o}.
m
If x > 1, we can find m € N such that m < z < m + 1. By applying the previous
inequality to n = m + 1,

1 g(mtl)ptl 1 1
/ —pﬂ(s)pw(s) ds < C’p/ stmTDPHL () ds < C’p/ s (s) ds,
o 1(1-74) 0 0



1122 José Angel Peléez and Elena de la Rosa

Moreover, bearing in mind the monotonicity of s* and fi(s) there exist C' = C(w, u, p) >
0 such that

L glmt+p+l L gmptptl
/ A—lp,u(s)pw(s)dsz/ ﬁu(s)%(s)ds
o 7 —m—+2) o i —z)

Therefore, there exists C' = C(w, ut, p) > 1 such that
1 Smp 1
/ ———ph(s)w(s) ds < C’p/ s"Pw(s)ds, forall z > 1.
0 ,u( - ;) 0
That is,

(3.16) /01 s"Pw(s) <<%> — Cp> ds <0, forallx>1.

T

) < @ for x > k;. Then, for any x > ki there
), the infimum of the points s € (0,1 — ) such that

Take k£ > 1 such that ﬁ(l -
exists s, = s,(z,C,pn) € (0,1 —
M) _ — . By (3.16),

70

/ ”((n(—%)) C)“L ”(C <ﬂ(1—%)>>d

< CPW(sy), forall x > k.

5 [ g is)
W(sgy) > C /0 s"Pw(s) ((M) —C)ds.

Next, choose ky > ki such that ﬁ(l — %) < (3‘7)(10/)120 if © > ko. So, for any x > ko,
3

there exists r, = r,(x,C, ) € (0,1 — 1), the infimum of the points r € (0,1 — 1)

oy )
such that ﬁé(_)%) =(3) PO Then, r, < s, < 1 — < and

@(81«) >(C°P /0590 sxpw(s) ((%) — C’p> ds > %/Orx Sﬂﬁpw(s) ds,

xT

1
T
1
T

So,

for any x > ko. By Fubini’s theorem,

200(s,) > / s"Pw(s) ds :/ w(s) (/ pxt”’ldt) ds
0 0 0

Tz

prsPH@(s) — &(ry)) ds

Il
S~

T

v

prs™ 5 (s) ds — ©(ry) / prs™®tds
0 0

(r)rP* —@(r)rk*, 0<r <r, <L

v
&)
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Then, for any > ks and 0 < r <71, < 1,
W(r)rP? < 20(s;) + W(ry)rk® < (24 rP*)o(r,) < 30(ry).

It is clear that r, > % if ko is large enough. In this case, take r = 2r, — 1 in the
previous inequality, that is

1
(3.17) Q(r)g?)rpx@( +T>, O<r=2r,—1<r, <1, x>ko.
Since 1 € D, by Lemma B (i) there exist Cy = Co(p) > 0 and 8 = (i) > 0 such
that y
3\ " pilre)
= C=—""_>Cyz(l—-r,))".
(5) €=50 = Catati— )
So,
1 % 3)lc E
Qyro ()7
() (%)
< =
=T Ty 1—r
1
Lo\
Then, forr > ro=1-— % ((%220) ,

1
i B
1 2(@50) )
P > ( inf TlT“") =C5 = Cs(w, u,p) >0,

- ro<r<1

which together with (3.17) yields &(r) < 3Csw(2"), for rg < r < 1. Therefore
weD. U

4. Proof of Theorem 1

We begin this section proving a technical result on LP-integrability of power series
with nonnegative coefficients. We use ideas from the proofs of [10, Theorem 6] and
[16, Proposition 9.

Proposition 8. Let 0 < p < oo, n € D and k € N\ {1} such that (2.1) holds
forn. Let be f(r) =327 a;r? where a; > 0 for all j € NU{0}. Ifty = Zf;é a; and
t, = Zf:;_l aj, n € N. Then, there exist positive constants C; = Cy(p,n) > 0 and
Cy = Cy(p,n) > 0 such that

4 anntp < / f(s s)ds < Cy anntp

n=0
Proof. First, we show the lower estimate
P

1 1 - co kitl—-1
/ f(s)Pn(s)ds > Z/ - ams +Z Z ams™ | n(s)ds
0 kn+1 =1 m=kJi
> sPR ds > C(p,n tp MH (s)ds
Z (b1
k”+1 k"+1

_ C(pm)nz:zotﬁ <?7<1 _ k;n1+1> _77<1 - kjnl—l—Q)) :
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Since (2.1) holds for k and 7, there exists a constant C' = C(n) > 1 such that
M(1— ) = Cn (1 — ). This together with Lemma A(iii) yields

1 o
/f s)ds > C(p.n Zt ( kn+2)20(p,n)2nkntﬁ-
n=0

In order to show the upper bound, observe that

(4.1) f(s) <ap+ i st
n=0

If 0 <p <1, by Lemma A (v), there is C' = C(p,n) > 0 such that

1 o0 a
/ PSP ds < ali©) + [ 37 5 nls) ds = af(0) + 3ty
0 n=0 n=0
<C (t’énko +) tﬁ%n) <CY e

If 1 < p < oo, take v such that 0 < % < 1. Then, by (4.1), Holder’s inequality and
Lemma 6, we obtain

4 1 1
o gkm\ 7 > P 1 > . =

which yields

=

1 o0 w ol
/ f(s)Pn(s)ds < abn(0) + Ztﬁn,ﬁi / s*" n(szp ds
0 - 0 n(s)»
> ap
< tonwo + Z tﬁm”é / " ,\n<83_p d
=0 o 7(s)?

Next, let us prove that
w1
o n 1(s)
nk" / g PUENEZ ds S N
0

which together with (4.2) finishes the proof. Indeed, by Lemma A (iii)

ap
w o (loge v 1
: - (s Nin n
mfn/ SkA(zz;dSSA - "/5?/5k77<5)d5x77k”7
0 n(s)» 77(1—k—n)” 0

Morever, an integration and another application of Lemma A (iii) imply

ap 1 vp 1 +p 1-22
* e () Z ) oo 7s Ly 7
Ngin /_LS stﬁﬁ;fn /_LA L] X Mn 1] 1‘@ S Mk
g 7(s) =g 7(8) 7
This finishes the proof. O

The right choice of the norm used is in many cases a key to a good understanding
of how a concrete operator acts in a given space. Here, the following decomposition
result provides an effective tool for the study of the fractional derivative D*.



Littlewood—Paley inequalities for fractional derivative on Bergman spaces 1125

Proposition 9. Let 0 < p < oo, n € D and k = k(n) > 1, k € N such that
(2.1) holds for n and k. If {V,,}>2, is a sequence of polynomials considered in
Proposition 4, then there are constants C, = Cy(p,n) > 0 and Cy = Cy(p,n) > 0
such that

Cr YV * fllige < 11 < Co Y iV * fllfgos f € H(D).
n=0 n=0
Proof. By (2.5) and [11, Lemma 3.1], there is C' > 0 such that
1feller = O™ Vo # frllan = C7H % [ Vo % fll o
for any 0 <r <1 and n € N. So,

kn+1|

| follge = C7 sup ™ ||Vik = ]l e,
neN

which implies

|f||AM/||fr||Hpn dr>02/ (p ||vk*f||m) n(r) dr

kn+1
1
T nF2 n
(4.3) >CZ||vnk*f|| / T ) dr
T

> 03 Wass e (1 (1- )~ (1- ) ) FEHO)
n=0

Since (2.1) holds for k and 7, there exists a constant C' = C(n) > 1 such that
1(1— ) = O (1 — =), which together with (4.3) and Lemma A(iii), yields

(44) |rfuzp>Zank*qum( ) = Zuvnk*qumkn, f € H(D).

In order to show the reverse inequality, we distinguish two cases according to the
range of p. If 0 < p <1, by using (2.4) and [11, Lemma 3.1] we obtain

[e.9]
Z| n.k *fv"HHp
n=0

S Vo * fllw + Z [Vii * flB, 777, f € H(D),
n=1

1l =

nk ¥ fr

HP

and therefore by Lemma A (v),

> 1
1P < Vowx FIBAO) + 3 [Vae * £12 / ()
— 0
(4.5) N n=l
S MWVase# flloy e, fEHD), 0<p< 1L

n=0
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On the other hand, if 1 < p < oo, by (2.4) and [11, Lemma 3.1|, we obtain

) p 00 p
Zvn,k*fr < <Z”Vn,k*f7’”Hp>
n=0 HP n=0

o] p
S (Hvo,k w fllee + Y WVas o Sl 7 )

n=1

Lf e =

[oe] p
S Vo = fliEm + (Z [V f | 1o T’“"_1> . feHD).
n=1

The above chain of inequalities together with Proposition 8 yields

115 < (Vo * fIl%s7(0) /(ZIIV & ¥ fllg ) n(r)dr

(4.6) -
S WV # fl i, f € HD), 1< p < oo,
n=0
Consequently, joining (4.4), (4.5) and (4.6), the proof is finished. O

With Proposition 9 in hand we are able to prove that the space of analytic
functions DY, ; = {f € H(D le) |D*(f)(2)|P1(2)Pw(z) dA(z) < oo} is continuuosly
embedded mto AP when w € D and p € D. This result together with Theorem 2
proves that (1.5) holds when w € D.

Theorem 10. Let w € D, 0 < p < o0 and i € D. Then there exists C =
C(w, p, p) > 0 such that

[fllaz, < CID*(Nlap . € HD).

Proof. By Lemma B(iii) there exists k = k(w) > 1, k € N such that (2.1) holds
for k and w. Next, Lemma 3 (ii) ensures that wp? € D and Lemma 3 (i) implies that
wpP satisfies (2.1) with the same k as w does. Therefore, we can apply Proposition 9
to the weights w,wi? € D and the choosen k. That is, there are positive constants
Cj(w,p) >0, j = 1,2 such that

(4.7)
Cr(w,p) Y win Vo * fllw < I1F 1% < Calw,p) > wrn|Vag * fllhw, [ € H(D),
n=0 n=0

and Cj(w, i, p) > 0, j = 3,4 such that

Cg((,d, M,p) Z(wﬁp)k" an,k * DHfHII)-IP < ”Dﬂiniﬁp

n=0
(4.8) < Cylw, p, p Z WP ) || Ve % DP f ||
n=0

for all f € H(D).
Observe that for each n € N, (V,, 1 * f)(2) = Z ;; 1f( ) ()27 and
k.n+1_1 -~

H2j+1

(Vo D f)(2) =

j=k"_1



Littlewood—Paley inequalities for fractional derivative on Bergman spaces 1127

So, applying [19, Lemma 9(i)] to g = V,, . * D*(f), h = Vo % f and Sgn—1 gn+1_1h =
Vo * f, there exists a constant C' = C(p) > 0 such that

(4.9) Vak* fllar < Cpgns[[Vig x D*(f)|[ e, f € H(D).

A similar argument shows that
(4.10) Vo * fllar < Cpol[Vor + D*(f)luw, f € H(D).

Moreover, by Lemma A and (2.1) (for £ and w), there is C' = (w, 1, p) > 0 such that

~ 1\ o 1\
Wi gy < Cwpnpty iy < CW <1 — ﬁ) u <1 — k:"+1)

Pl 1=
(411) <Cu ( k;"lH) / o w(s)ds < C/ o w(s)p(s)? ds
-2 11

En

< C(wpP)gn, for all n € N.

Then, by joining (4.7), (4.9), (4.10), (4.11) and (4.8),

o0
1£150 < C " win Vi * fI10

n=0
< C wnlh|[Vos * D*(F) I + D win sty | Vi ¥ D“(f)||§;,,]
n=1
< CY (@) Va # DH(F) g < ClID N, f € HD).
n=0
This finishes the proof. 0

In order to complete a proof of Theorem 1 we have to show that w € D is a
necessary condition so that (1.5) holds. This implication will follow from Theorem 2
and the next result.

Theorem 11. Let w be a radial weight, 0 < p < oo and p € D. If there exists
C = C(w, u,p) > 0 such that

(4.12) T / DA (1)) Pw()A)P dAG), | € H(D),

then w € M.
Proof. By choosing f,(2) = 2" € H(D), n € N in (4.12), we deduce

2™

/D\z|"pw(z) dA(z) < CP (2)Pw(z) dA(z)

P
D Mop41

o [ A L dAG).
<O [ TR ee) AG), neN
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Now, if x > 1, we can find m € N such that m < x < m + 1. Then, bearing in mind
the monotonicity of s* and fi(s)

Smerl

1 1 1
/ s+ (s) ds < / s™PH(s) ds < C’P/ ﬁﬁ(s)pw(s) ds
0 0 0

H m+1

1 S(m+1)p+1 R
<cr [ sl ds
o A(1-75)

1 Sxp—l—l
< C”/ ————l(s)Pw(s)ds, x>1.
0

That is, there exists C' = C(p,w, i) > 1 such that

! xp+1 1 ﬁ(S) "
/0 s"Pw(s) (5—<m> )dsg().

Since ﬁ(l — JC—L) < Cpu(0) for all > 1, there exists s, = s.(x,C,u), the

supremum of the points s € (1 — <, 1) such that ﬁ(lﬁ% = &. Then,
xz+1

b (L (A N\
[smet ><cp (ﬁ( —ﬁ)) )d
S /Osx $$p+1w($) ((%) — %) dS, i Z 1.

There also exists 7, = r.(x,C,pu) € (sz 1) the supremum of the points r €

- !
(1 —1,1) such that ﬁ(l!i(z)%l) =2 (3)7. So,

Lty [ as) \'
/st w(s)<@—<ﬂ( _#1)>>ds

1 ! 1 1 e
zp+1 _ zp+1
> 5GP / S W(S) ds = —Qprﬂﬁp-l—l — —201’ /0 S W(S) ds, x> 1.

Tz

Therefore,

P
Sg -~ 1 T
Wapt1 < 20”/ s"PHy(s) AL - — ds+/ s w(s) ds
p+1 0 ,LL (1 — %H) Cp 0

e ~ p re
< QCP/ s (s) (%) ds —i—/ sPw(s)ds, x> 1.
0 0

A(l- 4

Next, by Lemma A(ii), there exist C; = Cy(u) > 1 and o = a(p) > 0 such that

(4.13)

1—r,

1 . 1 1 1—s\“ 0<s<
~ - S Tz,
ot x+1 1—7r,/) -

(4.14) p(s) < Cipalre) < 1—s )a

Il

Q
N
DO | =
"
Q=
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where in the last identity we have used the definition of r,. Consequently, putting
together (4.13) and (4.14)

G
(1 —rg)o®
On the other hand, by Lemma B (ii) there exist Cy = Cy(p) > 0 and 8 = (u) > 0

such that )
1) Sl At
) == A <y (22(1 —1y))P,
( ¢ E(-)
so there is C5 = C5(p,w, 1) > 0 such that ﬁ < Csz. This together with (4.15)

implies that there is C' = C(w, i, p) > 0 such that

(415) wmp+1 S (w[ap]>mp+17 T Z 1

Warp+1 < Cxap(w[ap})mp—l—la x> 1

That is,
Y — 1 ap 1 ap op
wy s O == (Wap))y < C o) v (Wap))ys ¥ =P+ 1,
which together with Lemma C implies that w € M. This finishes the proof. 0

Finally, we are ready to prove Theorem 1.

Proof of Theorem 1. If w € D, putting together Theorem 2 and Theorem 10,
we get (1.5). Reciprocally, if (1.5) holds, w € D by Theorem 2 and w € M by
Theorem 11. Then, it follows from [20, Theorem 3] that w € DN M = D.

This finishes the proof. O

We would like to point out that it would be interesting to obtain some progress
about Littlewood-Paley inequalities for fractional derivatives on Bergman spaces A?
induced by a non-radial weight w. For instance, to know whether or not (1.5) (1 € D)
remains true for Bekollé-Bonami weights.
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