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Quasiconformality to quasisymmetry

via weak (L,M)-quasisymmetry

Tao Cheng and Shanshuang Yang

Abstract. This paper is devoted to the study of a fundamental problem in the theory of

quasiconformal analysis: under what conditions local quasiconformality of a homeomorphism implies

its global quasisymmetry. In particular, we introduce the concept of weak (L,M)-quasisymmetry,

serving as a bridge between local quasiconformality and global quasisymmetry. We show that in

general metric spaces local regularity and some connectivity together with the Loewner condition

are sufficient for a quasiconformal map to be weakly (L,M)-quasisymmetric, and subsequently,

quasisymmetric with respect to the internal metrics.

Kvasikonformisuudesta kvasisymmetriaan heikon (L,M)-kvasisymmetrian kautta

Tiivistelmä. Tämä työ on omistettu kvasikonformisen analyysin peruskysymykselle: millä eh-

doilla homeomorfismin paikallisesta kvasikonformisuudesta seuraa sen globaali kvasisymmetria. Eri-

tyisesti otamme käyttöön heikon (L,M)-kvasisymmetrian käsitteen, joka toimii siltana paikallisen

kvasikonformisuuden ja globaalin kvasisymmetrian välillä. Osoitamme, että yleisissä metrisissä ava-

ruuksissa paikallinen säännöllisyys, tietty yhtenäisyys sekä Loewnerin ehto yhdessä riittävät takaa-

maan, että kvasikonforminen kuvaus on heikosti (L,M)-kvasisymmetrinen ja tämän seurauksena

kvasisymmetrinen sisäisten metriikoiden suhteen.

1. Introduction and preliminaries

The concept of quasiconformality has evolved from a solution of the Beltrami
equation in a domain on the complex plane to general metric space settings. Its
theory in R

n is well established and well known (see [1, 10, 25]) while, in the setting
of non-abelian Carnot groups, quasiconformal maps first appeared in [20]. Later,
Väisälä (see [27, 28, 29, 30]) developed a dimension-free theory of quasiconformal
mappings in infinite dimensional Banach spaces. In general setting, let X and Y be
metric spaces with metrics dX and dY , respectively. Following [14], a homeomorphism
f : X → Y is said to be K-quasiconformal (with K ≥ 1) if for each x ∈ X,

(1.1) lim sup
r→0

max{dY (f(a), f(x)) : dX(a, x) ≤ r}
min{dY (f(b), f(x)) : dX(b, x) ≥ r} ≤ K.

The above limit, often denoted by Hf(x), if referred to as the local dilatation of f at
x.

Quasisymmetric homeomorphisms were introduced by Beurling and Ahlfors (see
[1, 4]) as the boundary values of quasiconformal homeomorphisms of the upper half
plane onto itself. Later, Tukia and Väisälä (see [22]) generalized the definition
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of quasisymmetry to general metric spaces. Following [22], for a homeomorphism
f : X → Y , if there exists a homeomorphism η : [0,+∞) → [0,+∞) such that

(1.2) dX(x, a) ≤ tdX(x, b) ⇒ dY (f(x), f(a)) ≤ η(t)dY (f(x), f(b))

for each t > 0 and for any x, a, b ∈ X, then f is said to be η-quasisymmetric (or
η-QS). In particular, if there is a constant H ≥ 1 such that

(1.3) dX(x, a) ≤ dX(x, b) ⇒ dY (f(x), f(a)) ≤ HdY (f(x), f(b))

for all x, a, b ∈ X, then f is said to be weakly H-quasisymmetric or simply H-
quasisymmetric. It follows easily that

(1.4) η-QS ⇒ H-QS ⇒ K-QC

with H = η(1) and K = H .

1.1. Motivation. In the study of quasiconformal analysis, a fundamental prob-
lem is to investigate under what conditions the above implications can be reversed.
In the case when X = Y = R

n (n ≥ 2), it is a well known and celebrated fact that
quasiconformality always induces quasisymmetry (and hence H-quasisymmetry) (see
[8] for n = 2 and [25] for n ≥ 3) while for R, the statement is false (see [14]). Much
attention has been drawn to the circumstance other than (in general, sufficiently
distinct from) Rn. In this circumstance, things become much more complicated even
when X and Y are subdomains in R

n (see previous results mentioned below). The
difficulty lies in the lack of appropriate ingredients that make the transition possible
from the local infinitesimal condition of quasiconformality to the global condition of
quasisymmetry.

There are two lines of investigation in pursuit of reversing the implication in (1.4).
One is to show that, under certain geometric conditions on X and Y , a QC map f
is H-QS. Then Väisälä’s theory on HTB spaces (homogeneously totally bounded,
see [26]) induces that such a map is indeed η-QS. For example, in 1995 Heinonen
and Koskela [13, Theorem 1.7] showed that if X is a Carnot group of homogeneous
dimension Q and Y is a c-LLC metric space that carries a Q-regular measure µ,
then a K-QC map f : X → Y is η-QS. Later, they introduced the crucial concept
of Loewner space and established the following results [14, Corollaries 4.8 & 4.10,
Theorem 4.9].

Theorem A. Suppose that X and Y are Q-regular metric spaces with Q >
1, that X is a Loewner space. Assume X and Y are simultaneously bounded or
unbounded. Then a quasiconformal map f from X onto Y that maps bounded sets
to bounded sets is η-QS if and only if Y is LLC.

Under the same assumptions as above for metric spaces X and Y , Balogh and
Koskela [3, Theorem 3.1] showed that a homeomorphism f : X → Y with a weaker
local dilatation property than (1.1) is also H-QS (and hence η-QS). Tyson [24, The-
orem 10.9] established a local version of this result for maps between domains in X
and Y .

All the above mentioned results deal with QS and QC maps under the same
original metrics of X and Y . A different line of investigation in the study of the
reversion of the implications in (1.4) is to determine under what conditions a QC
map (with respect to the original metrics) is QS with respect to the internal metrics.
Of course, in this case, connectivity is needed for the definition of internal metric
(see [26]). Along this line, the following result was established by Väisälä [26].
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Theorem B. Suppose that f : D → D′ is a K-quasiconformal map between
domains in R

n, whereD is ϕ-broad. Suppose also that A ⊂ D is a pathwise connected
set and that f(A) has the c1-carrot property in D′ with center y0 ∈ D′. If y0 6= ∞
and hence y0 ∈ D′, we assume that d(A) ≤ c2 ·d(f−1(y0), ∂D). If y0 = ∞, we assume
that f extends to a homeomorphism D ∪ {∞} → D′ ∪ {∞}. Then f |A is η-QS
with respect to the internal metrics δD and δD′ with η depending only on the data
(c1, c2, K, ϕ, n).

Another result along this line is due to Heinonen [11, Theorem 6.1 & 6.5] who
weakened the above carrot condition for domains to LLC2 (see definitions in the next
subsection) and proved the following theorem.

Theorem C. Suppose that f : D → D′ is K-quasiconformal where D and D′ are
bounded domains (or unbounded domains with f(∞) = ∞ ∈ D ∩ D′) in R

n, and
that D is ϕ−broad. If A ⊂ D (and ∞ ∈ A for unbounded domains) is such that
f(A) is b-LLC2 with respect to δD′ in D′, then the restriction f |A : A → f(A) is
weakly H-quasisymmetric in the metrics δD and δD′ with H depending only on some
associated data.

More recently, to complete the reversion of (1.4) in this setting, in [16] and [6]
the authors derived quasisymmetry from weak H-quasisymmetry and, at the same
time, eliminated the above LLC2 condition on f(A). More specifically, the following
theorem is established in [16].

Theorem D. Suppose that f : D → D′ is K-quasiconformal where D and D′ are
domains in R

n, and that D is ϕ-broad. For an arcwise connected set A in D, if the
restriction f |A : A → f(A) is weakly H-quasisymmetric in the metrics δD and δD′ ,
then f |A : A→ f(A) is η-quasisymmetric in the metrics δD and δD′ with η depending
only on the data (n,K,H, ϕ).

Note that in general the inverse of a weakly quasisymmetric homeomorphism
is not necessarily weakly quasisymmetric. In [6, Theorem 1.1], using a different
approach, the authors proved that the above theorem remains true if the target
domain D′, instead of the source domain D, is assumed to be ϕ-broad.

We want to point out that the crucial step in the proof of both Theorem A and
Theorem B is to show that under given conditions a QC map f is weakly H-QS (with
respect to original metrics in Theorem A and internal metrics in Theorem B). Then
the results follow from [26, Theorem 2.9] by observing that the metric spaces involved
have the HTB property. From the proofs of Theorems A and B and similar results,
one can see that H-quasisymmetry plays a crucial transitioning role in proving a QC
map is η-QS and the HTB property is key to go from H-QS to η-QS. To be able to
apply to more general settings, we propose to introduce a more general class, called
weakly (L,M)-quasisymmetric maps, as a new transition between QC and QS.

The main goal of this paper is to establish an approach to this second line of
investigation and to push it to general metric space settings while weakening the
global regularity condition on the Loewner space, which has always been assumed in
the first line of investigation discussed above, to just local regularity.

1.2. Statement of main results. One of the main results is about the (L,M)-
quasisymmetry in the internal metrics of a QC map in metric spaces, which can be
stated as follows.
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Theorem 1.1. Suppose thatX and Y are arcwise connected metric spaces which
are simultaneously bounded or unbounded, that X is locally Q-regular with Q > 1,
that Y is upper half Q-regular. Assume that X is a ϕ-Loewner space, Y is c-LLC2

and locally ĉ-BT, f from X onto Y is a K-quasiconformal homeomorphism which
maps bounded sets to bounded sets. Then for any L > 0, there exists a constant
M > 0 such that f is weakly (L,M)-QS in the internal metrics, where M depends
on L and on the regularity constants and the data (Q,K, c, ĉ, ϕ), and possibly on
f if both X and Y are bounded. In particular, f is weakly H-QS in the internal
metrics where H depends on the regularity constants and the data (Q,K, c, ĉ, ϕ), and
possibly on f if both X and Y are bounded.

To the knowledge of the authors, this is the first result in general metric space
setting on the H-quasisymmetry (in the internal metrics) of a QC map. Restricting
to domains in R

n, one immediately obtains the following corollary, which is a stronger
version of Theorem C for the case A = D.

Corollary 1.2. Suppose that D,D′ ⊂ R
n are domains simultaneously bounded

or unbounded and f : D → D′ is a K-quasiconformal homeomorphism which maps
bounded sets to bounded sets. Furthermore, let D be ϕ-Loewner and D′ be c-LLC2.
Then for any L > 0, there exists a constant M > 0 such that f is weakly (L,M)-
QS in the internal metrics, where (L,M) depends on (n,K, c, ϕ) and possibly on
f if both D and D′ are bounded. In particular, f is weakly H-QS in the internal
metrics, where H depends only on (n,K, c, ϕ) and possibly on f if both D and D′

are bounded.

Built on Theorem 1.1, another main result is about the η-quasisymmetry (in the
internal metrics) of a QC map.

Theorem 1.3. Suppose thatX and Y are arcwise connected metric spaces which
are simultaneously bounded or unbounded, that X is locally Q-regular with Q > 1,
that Y is Q-regular. Assume that X is a ϕ-Loewner space, Y is c-LLC, and f
from X onto Y is a K-quasiconformal homeomorphism which maps bounded sets
to bounded sets. Then f is η-QS in the internal metrics where η depends on the
regularity constants and the data Q,K, ϕ, c, and possibly on f if both X and Y are
bounded.

Note that LLC condition implies LLC2 and locally BT while the converse may
not be true. Thus Theorem 1.3 requires a stronger geometric condition on the space
Y than in Theorem 1.1, but arrives at a stronger conclusion on the map f that it is
η-QS.

1.3. Basic concepts. In this subsection, we give some general notation and
definitions in a metric measure space. Here and in what follows, all the measures
will be assumed to be Borel regular and to assign a finite measure to every bounded
measurable set. In a metric space, we will denote the open ball centered at x with
radius r by B(x, r) (or simply Br). For any ball B, let B denote its closure and lB
the ball with the same center as B of radius l times the original radius. For a homeo-
morphism f : X → Y between metric spaces, the prime symbol always indicates the
image under f . For instance, x′ = f(x) for x ∈ X and E = f−1(E ′) for a point or a
set E ′ in Y .

1.3.1. Line integral. A curve γ is a continuous map of an interval I ⊂ R into a
metric space X. For a curve γ defined on a compact interval [a, b], which also called
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a compact curve, its length is defined by

l(γ) = sup
T

n−1∑

i=1

dX(γti+1
, γti),

where the supremum is taken over all partitions T = {a = t1 < t2 < · · · < tn−1 <
tn = b} of [a, b]. In general, the length of a curve γ is defined to be the supremum
of the length over all compact subcurve. We call γ rectifiable or locally rectifiable if
l(γ) < +∞ or any compact subcurve is rectifiable, respectively.

For any rectifiable compact curve γ in X, the line integral over γ of each non-
negative Borel function ρ : X → [0,+∞] is defined as

ˆ

γ

ρ ds =

ˆ l(γ)

0

ρ ◦ γs(t) dt,

where γs : [0, l(γ)] → X is the arc length parametrization of γ. If γ is locally recti-
fiable, the line integral is defined to be the supremum of the values of line integrals
over all rectifiable compact subcurves.

1.3.2. Modulus. Let (X, µ) be a metric measure space and Γ be a curve family
in X. A Borel function ρ : X → [0,+∞] is said to be admissible if

´

γ
ρ ds ≥ 1 for any

locally rectifiable curve γ ∈ Γ. For any p > 0, the p-modulus of Γ in X is defined as

modp(Γ) = inf

ˆ

X

ρp dµ,

where the infimum is taken over all non-negative admissible function ρ for curve
family Γ. The classic definition and basic properties of modulus in the plane and in
space R

n can be fund in [1, 2, 25]. Modulus is very closely related to extremal length
and capacity (see [14, 15, 21, 31]), and they play crucial rules in geometric function
theory and PDE theory.

1.3.3. Loewner space.

Definition 1.4. Suppose that (X, µ) is a metric measure space of Hausdorff
dimension Q. X is called a Loewner (or ϕ-Loewner) space if there exists a non-
increasing function ϕ : (0,+∞) → (0,+∞) such that

modQ(E, F ;X) ≥ ϕ(t)

for any two disjoint nondegenerate continua E and F in X with

t ≥ ∆(E, F ) =
dist(E, F )

min{diam(E), diam(F )} .

Heinonen and Koskela (see [14]) first introduced the concept of Loewner space
for it was Loewner (see [19]) who first noticed and established the qualitative form
for modulus in Euclidean n-space with n ≥ 3 , while Gehring (see [9]) proved the
quantitative version (see also [25]). In R

2, this classic estimate can be deduced from
Grötzsch extremal problem and Teichmüller extremal problem (see [1, 2, 18]).

In the original definition of Loewner space in [14], the function ϕ is not assumed to
be non-increasing. Heinonen and Koskela [14, Theorem 3.6] proved that Q-regularity
implies there exists a decreasing homeomorphism ψ : (0,+∞) → (0,+∞) such that
modQ(E, F ;X) ≥ ψ(∆(E, F )). Furthermore, ψ(t) has the asymptotic property log 1

t

and (log t)1−Q as t tending to 0 and +∞, respectively. Note that such a function ψ
may not exist if globally Q-regular condition is not satisfied (see [14, Remark 3.28]).
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In this paper, for the lack of global regularity, we assume in the definition that ϕ is
non-increasing (see also [24]).

Euclidean space Rn and Heisenberg groups are Loewner spaces while a subdomain
of Rn need not be. Loewner space is intimately connected with Poincaré inequality.
It is shown in [14] that, under some connectivity condition, a proper Q-regular space
is Loewner if and only if it supports some Poincaré inequality. This concept plays a
central role in modern geometric analysis on metric spaces.

1.3.4. Regularity conditions. A metric space X endowed with a Borel mea-
sure µ (or write (X, µ)) is called an Ahlfors–David regular space of dimension Q (or
Q-regular space) if there exists a constant C0 ≥ 1 such that

(1.5)
1

C0
rQ ≤ µ(Br) ≤ C0r

Q

for each ball Br in X with 0 < r < diam(X). If only the left (or right) side of the
Q-regular condition is satisfied, we say that µ satisfies the lower (or upper) mass
bound with constant 1

C0
(or C0), respectively.

A metric measure space (X, µ) is called locally Q-regular if there exists a constant
C0 ≥ 1 such that for any point x ∈ X, there exist positive number rx < diam(X) such
that the lower bound in (1.5) is satisfied for all balls Br = B(x, r) with r ≤ rx and
the upper bound in (1.5) is satisfied for all balls B(y, r) ⊂ B(x, rx). The supremum
of such rx, denoted by r̃x, is called the radius of local regularity at x. X is called
upper half Q-regular if it is locally Q-regular and µ satisfies the global upper mass
bound with constant C0.

As pointed out in [23], in a locally compact Q-regular metric space (X, µ), any
measure satisfying the above inequality, possibly with different constant C0, is com-
parable to µ. Thus one often says a metric space is Q-regular without specifying
the measure. A metric measure space (X, µ) is said to be doubling with constant
Cµ if µ(B2r) ≤ Cµ · µ(Br) for all balls Br ⊂ X with 0 < r < diam(X). Clearly, if
(X, µ) is Q-regular then it is doubling. The converse, as pointed out in [14], need
not be true. Also the converse of the implications Q-regular ⇒ upper half Q-regular
⇒ locally Q-regular need not be true as well. It is also worth noting that our defini-
tion of upper half Q-regular is exactly the same as Tyson’s (nonstandard) definition
of local Q-regular [24]. Furthermore, Loewner condition in a metric space X with
Hausdorff dimension greater than one implies the lower mass bound condition (see
[14, Theorem 3.6]).

Finally, Euclidean space R
n, Carnot groups and Heisenberg groups are all Q-

regular spaces. As seen in [14], a measure µ with dµ(x) = P (|x|) dx, where P (x) is
some positive function which grows sufficiently fast as |x| → ∞, may not have upper
mass bound. It is worth pointing out that Q (Q > 1) is not necessarily an integer for
a Q-regular Loewner space (see [5, 17]). Throughout this paper, we always assume
that Q > 1.

1.3.5. Internal metric. For an arcwise connected metric space X, the internal
metric δX between x, y ∈ X is defined by

δX(x, y) = inf diam(γ),

where the infimum is taken over all arcs γ joining x and y inX. The internal diameter
of a set E ⊂ X is defined by

δX(E) = sup{δX(x, y) : x, y ∈ E}.
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The internal distance between two sets E and F is defined as

δX(E, F ) = inf{δX(x, y) : x ∈ E, y ∈ F}.
It is obvious and will be used later that dX(x, y) ≤ δX(x, y) for any x, y ∈ X.

1.3.6. Linear local connectivity and bounded turning. Suppose that A is
a subset of a metric space X and c ≥ 1. We say that A is c-LLC1 in X if for all x ∈ A
and r > 0, the points in A ∩ B(x, r) can be joined in A ∩ B(x, cr). We say that A
is c-LLC2 in X if for all x ∈ A and r > 0, the points in A\B(x, cr) can be joined in
A\B(x, r). If A is both c-LLC1 and c-LLC2, we say A is c-LLC. The corresponding
LLC (linear local connectivity) properties with respect to the internal metric δX are
defined similarly with the balls replaced by internal metric balls such as BδX (x, r).

It is known (see [11]) that if X is LLC2, then it is LLC2 with respect to the
internal metric δX . However, the converse is not true. It is also worth noting that A
need not be connected even if it is b-LLC2 in X. It is shown (see [14]) that Q-regular
ϕ-Loewner space is c-LLC with c depending only on Q,ϕ and the regularity constant.
However, as pointed out in [14, Theorem 3.6], Loewner space without upper mass
bound (for example, only locally Q-regular), may not have the LLC property.

Finally, we say that a metric space X is of b-bounded turning (or b-BT) if each
pair of points x, y ∈ X can be joined by an arc E ⊂ X such that d(E) ≤ b · dX(x, y).
X is called locally b-BT if for each x0 ∈ X, there exists a neighborhood U(x0)
such that each pair of points x, y ∈ U(x0) can be joined by an arc E ⊂ X with
d(E) ≤ b · dX(x, y).

1.3.7. Homogeneously totally bounded. As in [22], a metric space X is
k-homogeneously totally bounded (or k-HTB) if there exists an increasing function
k : [1

2
,+∞) → [1,+∞) such that for any α ≥ 1

2
, every closed ball B(x, r) in X can

be covered by sets A1, A2, · · · , As so that s ≤ k(α) and d(Aj) <
r
α

for any j. As
shown in [26], if D is a bounded k-HTB set, a1, a2, · · · , an are distinct points in D

which have mutual distances at least t > 0, then n ≤ k
(diam(D)

t

)
. It is obvious that a

Q-regular space is k-HTB (in the original metric) where k depends on Q. However,
a Q-regular space may not be HTB in the internal metric.

1.4. Outline. This paper is organized as follows. In Section 2 we give some
preliminary results and examples to sort out the basic relations amongst the classes
of (L,M)-QS, H-QS and η-QS maps. In Section 3, local (L,M)-quasisymmetry of
the inverse of a QC map is derived, while in Section 4 it is shown that the same
inverse map is globally (L,M)-QS in the internal metrics, completing the proof of
Theorem 1.1. Finally, in Section 5 we complete the journey from quasiconformality
to η-quasisymmetry by establishing Theorem 1.3. Along the way, a crucial transition
is established from (L,M)-quasisymmetry to η-quasisymmetry (Theorem 5.1).

2. Weakly (L,M)-QS homeomorphisms

In an attempt to provide a unified approach in the pursuit from local to global
properties, we introduce the concept of weakly (L,M) quasisymmetric homeomor-
phisms which plays a crucial role in this paper. This is a class of maps more general
than the traditional class of weakly H-quasisymmetric homeomorphisms introduced
by Tukia and Väisälä [22]. Yet, many results about weakly H-QS homeomorphisms
remain true for weakly (L,M)-QS homeomorphisms. As illustrated through this
paper, this concept serves as a bridge from local infinitesimal quasiconformality to
global quasisymmetry.
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2.1. Weak (L,M)-quasisymmetry. Note that when the quasisymmetry con-
dition (1.2) is restricted to the case t = 1, one obtains the (weak) H-quasisymmetry
condition (1.3). By allowing the parameter t to take on other specific values, we can
introduce the class of (weakly) (L,M)-quasisymmetric homeomorphisms as follows.

Definition 2.1. Let X and Y be metric spaces with distance functions dX(x, y)
and dY (x, y), respectively, and f be a homeomorphism from X to Y . If there exist
constants L and M such that

(2.1)
dX(a, x)

dX(b, x)
≤ L⇒ dY (f(a), f(x))

dY (f(b), f(x))
≤M

for all distinct points a, b, x ∈ X, then f is said to be weakly (L,M)-quasisymmetric
(or weakly (L,M)-QS). Furthermore, f is called locally weakly (L,M)-QS if for any
point in X, there exists a neighbourhood in which f is weakly (L,M)-QS.

Note that weak H-QS is the same as weak (L,M)-QS with L = 1 and M = H . It
also follows easily from the definitions that if a homeomorphism f : X → Y is η-QS,
then it is weakly (L,M)-QS for any L > 0 and M = η(L), and that if f is weakly
(L,M)-QS for some L ≥ 1, then it is H-QS and hence K-QC with K =M . But the
converses are not true in general. Furthermore, the locally weak H-quasisymmetry
or locally weak (L,M)-quasisymmetry may not imply the weak H-quasisymmetry
or weak (L,M)-quasisymmetry (see section 2.2 below for examples). In this section,
we explore some basic properties of weakly (L,M)-QS homeomorphisms and their
relations to other classes of QS maps.

To clarify and simplify the usage of terminologies, we note that the terms (L,M)-
QS and weakly (L,M)-QS are interchangeable and mean that (2.1) is satisfied. The
same goes with H-QS and weakly H-QS. The adverb weakly is only used sometimes
to emphasize that these conditions are indeed weaker than the general η-QS condition
(1.2).

2.2. The inverse of an (L,M)-QS homeomorphism. It is shown by
Tukia and Väisälä (see [22]) that the inverse of an η-QS map is η′-QS with η′(t) =
(η−1(t−1))−1, and that the inverse of an H-QS map may not be H ′-QS for any H ′.
For the inverse of an (L,M)-QS homeomorphism, we have the following result.

Lemma 2.2. Let f : X → Y be weakly (L,M)-quasisymmetric for some L > 0
and M > 0. Then f−1 is weakly (L′,M ′)-quasisymmetric for any L′ < 1/M and
M ′ = 1/L.

Proof. Fix three distinct points a, b, x ∈ X and consider their respective images
a′, b′, x′ ∈ Y . Assume that dY (a

′, x′) ≤ L′dY (b
′, x′). Need to show that dX(a, x) ≤

M ′dX(b, x). Suppose this is not the case. Then, by weak (L,M)-quasisymmetry of
f ,

dX(b, x)

dX(a, x)
<

1

M ′
= L ⇒ dY (b

′, x′)

dY (a′, x′)
≤M ⇒ dY (a

′, x′)

dY (b′, x′)
≥ 1

M
> L′,

which contradicts the assumption that dY (a
′, x′) ≤ L′dY (b

′, x′). This proves that f−1

is weakly (L′,M ′)-quasisymmetric for any L′ < 1/M with M ′ = 1/L. �

2.3. Relation between H-QS and (L,M)-QS. It follows immediately
from the definitions that H-quasisymmetry implies (L,M)-quasisymmetry for all
L ≤ 1 with M = H and, conversely, (L,M)-quasisymmetry for L ≥ 1 implies H-
quasisymmetry with H = M . Other than these apparent containment relations,
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the following examples show that there are no other general containment relations
between these two classes of QS maps.

Example 1. In R
2 consider the points an = a′n = (n, 0), bn = (n, 1), and

b′n =
(
n, 1

2n

)
(n = 1, 2, · · · ). Let X =

⋃∞

n=1{an, bn} and Y =
⋃∞

n=1{a′n, b′n}. Define
homeomorphism f : X → Y by f(an) = a′n and f(bn) = b′n. One can verify that f is
weakly (L,M)-quasisymmetric for any L < 1. On the other hand, since

|an+1 − an|
|an − bn|

= 1 while
|a′n+1 − a′n|
|a′n − b′n|

= 2n → +∞ as n→ +∞,

f is not weakly H-quasisymmetric for any H .

Example 2. Fix any H > 1 and for n = 1, 2, · · · , let

an =
1

H2
+

1

H22
+ · · ·+ 1

H2n
,

a′n = an for n 6= 5k + 3 and a′5k+3 =
1

2
(a′5k+2 + a′5k+4) (k = 0, 1, 2, · · · ).

Then the map f : {an} → {a′n} given by f(an) = a′n is H-QS.
On the other hand, for any given L < 1 and M < 1,

|a5n+4 − a5n+3|
|a5n+3 − a5n+2|

=
1

H25n+3 < L

for large n, while
|a′5n+4 − a′5n+3|
|a′5n+3 − a′5n+2|

= 1 > M.

This shows that f is not weakly (L,M)-QS for any L < 1 and M < 1.

If one regards these as discrete examples, the following are continuous ones and
more sophisticated.

Example 3. For any positive integer n, let zn =
(
1
n
, (−1)n

)
∈ R

2 and Izn,zn+1 be
the closed line segment in R

2 connecting zn and zn+1. Define curve γ as the union of
these line segments:

γ =

+∞⋃

n=1

Izn,zn+1.

Let γp,w denote the subarc in γ between two points p and w and l(·) denote the
arclength. It is easy to see that l(γ) = +∞ and that 2 < l(γzn,zn+1) → 2 as n→ +∞.
Let A = [0,+∞) and define a mapping f : γ → A by means of the arclength
parameterization of γ, that is,

f : z1 7→ 0, z 7→ l(γz1,z) for any z ∈ γ.

It is obvious that f is a homeomorphism from γ onto A. We claim that, under the
internal metrics δγ and δA, f is weakly (L, 2L)-QS for any L ≤ 2/

√
5, but not weakly

H-QS for any H .
To show that f is weakly (L, 2L)-QS, note that γ is contained in the rectangle

R = [0, 1]× [−1, 1]. Thus, for any points p, w ∈ γ,

δγ(p, w) = diam(γp,w) < diam(R) =
√
5.

Fix any three distinct points p1, p2, p3 ∈ γ with

δγ(p1, p3)

δγ(p1, p2)
≤ L.
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Without loss of generality, we may assume that p1 ∈ Izn,zn+1. Then

δγ(p1, p3) ≤ Lδγ(p1, p2) < L
√
5.

It follows that p3 must lie in one of the three line segments Izn,zn+1, Izn+1,zn+2 or Izn−1,zn.

Otherwise δγ(p1, p3) ≥ 2, contradicting to the inequality δγ(p1, p3) < L
√
5 ≤ 2.

Therefore,

l(γp1,p3) ≤ 2δγ(p1, p3) ≤ 2Lδγ(p1, p2) ≤ 2Ll(γp1,p2).

By the definition of f , we have

δA(p
′
1, p

′
3)

δA(p′1, p
′
2)

=
l(γp1,p3)

l(γp1,p2)
≤ 2L.

This shows that f is weakly (L, 2L)-QS provided that L ≤ 2/
√
5.

Next we will show that f is not weakly H-QS for any H > 0. In fact, we will
show that

δγ(z4n, z2n2)

δγ(z4n, z2n)
≤ 1 while

δA(z
′
4n, z

′
2n2)

δA(z
′
4n, z

′
2n)

→ ∞ as n→ ∞.

To this end, we note that

δγ(z4n, z2n2) ≤
√
22 + |z4n − z2n2 |2 =

√

4 +

(
n− 2

4n2

)2

and that

δγ(z4n, z2n) ≥ δγ(z4n−1, z2n) = |z4n−1 − z2n| =
√

4 +

(
2n− 1

2n(4n− 1)

)2

.

Simple comparison yields that

δγ(z4n, z2n2)

δγ(z4n, z2n)
≤ 1.

On the other hand, since γz4n,z2n2 consists of (2n2 − 4n) line segments of length no
less than 2,

l(γz4n,z2n2
) ≥ 2(2n2 − 4n) = 4n2 − 8n.

Furthermore, since γz4n,z2n consists of (4n − 2n) line segments of length no greater

than
√
5,

l(γz4n,z2n) ≤ 2n
√
5.

Thus it follows that
δA(z

′
4n, z

′
2n2)

δA(z
′
4n, z

′
2n)

≥ 4n2 − 8n

2n
√
5

→ +∞,

and hence f is not weakly H-QS for any H .

In summary, the above example shows that a weakly (L,M)-QS homeomorphism
(with L,M < 1) may not be weakly H-QS. In the next example, we exhibit a map
that is weakly H-QS, but not weakly (L,M)-QS for any L < 1 and M < 1.

Example 4. Let g = f−1 : A → γ where f is the homeomorphism in Exam-
ple 3. By the above example, f is weakly (L, 2L)-QS for any L ≤ 2/

√
5. Thus, for

sufficiently small L, it follows from Lemma 2.2 that g = f−1 is weakly H-QS with
H = 1/L.
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To show that g is not a weakly (L,M)-QS for any L < 1,M < 1, fix constant
L < 1 and let

q1 = 0, q2 = g−1(zn) = f(zn), q3 = q2

(
1

L
+ 1

)
.

Here we use the same notation as in Example 3. Then

δA(q1, q2)

δA(q2, q3)
=
q2 − q1
q3 − q2

= L.

On the other hand, routine estimates yield that

δγ(g(q1), g(q2))

δγ(g(q2), g(q3))
=

δγ(z1, zn)

δγ(zn, g(q3))
>

√
22 +

(
1− 1

n−1

)2
√

22 +
(
1
n

)2 →
√
5

2

as n → +∞. This shows that g is not weakly (L,M)-QS for any L < 1 and
M <

√
5/2.

Remark 2.3. By Examples 1-4, we can see that the class of H-QS maps and the
class of (L,M)-QS maps for L < 1 do not contain each other. Furthermore, Example
3 shows that local H-quasisymmetry may not imply global H ′-quasisymmetry, while
Example 4 shows that local (L, 2L)-QS for L < 1

2
may not imply global (L′,M ′)-QS

for any L′ < 1 and M ′ < 1.

2.4. Relation between (L,M)-QS and η-QS. It is known that, in gen-
eral, an (L,M)-quasisymmetric or H-quasisymmetric homeomorphism may not be
η-quasisymmetric. In this subsection, however, we show that their combination does
induce η-quasisymmetry in pseudoconvex spaces. Both this result and its proof will
be used later in the paper.

Following [22], a metric space X is C-pseudoconvex if there is an increasing func-
tion C : [1,∞) → [1,∞) with the following property: If a, b ∈ X with 0 < r ≤
dX(a, b), then there is a finite sequence of points a = a0, a1, · · · , as = b such that
s ≤ C(dX(a, b)/r) and dX(aj+1, aj) ≤ dX(aj , aj−1) ≤ r for j = 1, · · · , s− 1.

Theorem 2.4. Suppose that X is a pathwise connected C-pseudoconvex space.
Let f : X → Y be an embedding such that

(1) f is weakly H-quasisymmetric;
(2) f is weakly (L,M)-quasisymmetric for some L < 1 and M < 1.

Then f is η-quasisymmetric with η = η(C,H, L,M).

Proof. Fix distinct points a, x, b ∈ X and let

ρ =
dX(a, x)

dX(b, x)
, ρ′ =

dY (a
′, x′)

dY (b′, x′)
.

Here and in what follows the prime indicates the image of the corresponding point
or set under the map f . We need to show that ρ′ ≤ η(ρ) with η(ρ) → 0 as ρ → 0.
For small values of ρ, we use the weak (L,M)-quasisymmetry and, for large values
of ρ, we use the weak H-quasisymmetry and pseudoconvexity. Thus we shall divide
the proof into two cases.

Case 1: ρ ≤ L. Let m be the unique nonnegative integer such that

L2 <
ρ

Lm
≤ L.
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If m = 0, then the weak (L,M)-quasisymmetry of f implies that ρ′ ≤M . If m > 0,
one can fix a path γb,x connecting b and x in X and choose points b1, b2, · · · , bm
consecutively on γb,x such that

dX(x, b1) = LdX(x, b), dX(x, bi) = LdX(x, bi−1) = LidX(x, b)

for i = 1, 2, · · · , m. Note that the last point bm satisfies

dX(a, x)

dX(x, bm)
=

ρ

Lm
≤ L.

By the weak (L,M)-quasisymmetry of f , it follows that

dY (x
′, a′) ≤MdY (x

′, b′m), dY (x
′, b′i) ≤MdY (x

′, b′i−1).

Thus,

dY (x
′, a′) ≤ MdY (x

′, b′m) ≤M2dY (x
′, b′m−1) ≤ · · · ≤Mm+1dY (x

′, b′).

Therefore, by the choice of the integer m above, we conclude that

ρ′ =
dY (a

′, x′)

dY (b′, x′)
≤ Mm+1 ≤M

log ρ
logL

−1

with ρ′ → 0 when ρ→ 0.

Case 2: ρ = dX (x,a)
dX(x,b)

> L. Let r = LdX(x, b). Since X is C-pseudoconvex and

dX(x, a) > r, there exist finite number of points a0 = x, a1, · · · , as = a such that

s ≤ C

(
dX(x, a)

r

)
= C(ρ/L), dX(aj+1, aj) ≤ dX(aj , aj−1) ≤ r

for j = 1, 2, · · · , s− 1. By the weak H-quasisymmetry of f , it follows that

dY (a
′
j+1, a

′
j) ≤ HdY (a

′
j, a

′
j−1) ≤ HjdY (a

′
1, a

′
0) ≤ Hj+1dY (x

′, b′).

Thus

dY (a
′, x′) = dY (a

′
s, a

′
0) ≤ dY (a

′
s, a

′
s−1) + · · ·+ dY (a

′
2, a

′
1) + dY (a

′
1, a

′
0)

≤ (Hs + · · ·+H2 +H)dY (x
′, b′) =

Hs+1 −H

H − 1
dY (x

′, b′),

which yields that

ρ′ =
dY (a

′, x′)

dY (x′, b′)
≤ Hs+1 −H

H − 1
=
HC(ρ/L)+1 −H

H − 1

as desired. This completes the proof of Theorem 2.4. �

Remark 2.5. To compare Theorem 2.4 with previously known results, we note
that, in [22, Theorem 3.10], Tukia and Väisälä arrived at the same conclusion with
a weaker condition on the space X, but stronger conditions on the map f than in
Theorem 2.4 above. On the other hand, in [22, Theorem 2.15], the condition on
the target space Y is stronger while the condition on the map f is weaker than in
Theorem 2.4, also reaching the same conclusion of f being quasisymmetric. Note also
that, by the example mentioned in [22, Remark 2.13], condition (2) in Theorem 2.4
is necessary.

We conclude this section with two corollaries which follow directly from Theo-
rem 2.4.
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Corollary 2.6. Suppose that X is a pathwise connected C-pseudoconvex space.
If an embedding f : X → Y is both (L,M)-QS for some L < 1 and M < 1, and
(L′,M ′)-QS for some L′ ≥ 1 and M ′ < ∞, then f is η-quasisymmetric with η =
η(C,L,M,L′,M ′).

Corollary 2.7. Suppose that D is a domain in R
n which is C-pseudoconvex

with respect to the internal metric δD. Let f : D → D′ be an embedding such that

(1) f is weakly H-quasisymmetric in metrics δD and δD′;
(2) f is weakly (L,M)-quasisymmetric for some L < 1 and M < 1 in metrics δD

and δD′.

Then f is η-quasisymmetric in metrics δD and δD′ with η = η(C,H, L,M).

3. Locally weak (L,M)-quasisymmetry

As the first step towards to the proof of Theorems 1.1 and 1.3, in this section
we show that the inverse of a QC map as described in Theorem 1.1 is locally weakly
(L,M)-quasisymmetric for certain parameters L < 1 and M < 1.

3.1. Distortion of modulus of a ring domain. Going from local QC to global
QS, one of the key Lemmas established in [14] is the following distortion result of
modulus of a ring like domain under a QC map in metric spaces.

Lemma 3.1. [14, Lemma 4.12] Suppose that X and Y are Q-regular metric
spaces with Q > 1 and that f is K-QC from X onto Y . If E and F are two continua
in X such that f(E) ⊂ B(y, r) and that f(F ) ⊂ Y \B(y, R) for some y ∈ Y and
some R > 2r, then

modQ(E, F ;X) ≤ C

(
log

R

r

)1−Q

.

The constant C ≥ 1 only depends on K and on the data associated with X and Y .

In [3], Balogh and Koskela obtained the same estimate under a weaker dilata-
tion condition on the mapping (see [3, Lemma 3.3]). To fit the requirement in our
main theorem (Theorem 1.1), we establish the following similar modulus estimates
under weaker regularity conditions on the spaces. These estimates are of independent
interests.

Lemma 3.2. Suppose that X is locally Q-regular with Q > 1 and Y is upper
half Q-regular metric spaces with regularity constants CX and CY , respectively, and
that f is K-QC from X onto Y . Let E and F be two continua in X.

(1) If f(E) ⊂ B(f(x0), r) and f(F ) ⊂ Y \B(f(x0), R) for some x0 ∈ X and some
R > 2r, then

(3.1) modQ(E, F ;X) ≤ C1

(
log

R

r

)1−Q

.

The constant C1 ≥ 1 depends only on the data Q,K,CX , CY .
(2) If f(E) ⊂ BδY (f(x0), r) and f(F ) ⊂ Y \BδY (f(x0), R) for some x0 ∈ X and

some R > 2r, then

(3.2) modQ(E, F ;X) ≤ C2

(
log

R

r

)1−Q

.

The constant C2 ≥ 1 depends only on the data Q,K,CX , CY .
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Remark 3.3. Due to the weaker regularity conditions in Lemma 3.2, one can
not take Lemma 3.2(1) as a direct corollary of Lemma 3.1. Nevertheless, the method
and procedures of its proof are the same as in [13, Theorem 1.7] and [14, Lemma 4.12]
except for some subtle differences. For completeness, we outline the main steps in
the proof.

Proof. For the proof of Lemma 3.2 Part (1), we may assume that

E = f−1(B(f(x0), r)) and F = f−1(Y \B(f(x0), R)).

We divide the proof into two steps. The first step is to show that there exists a
constant C depending on Q,CX such that

modQ(E, F ;X) ≤ C d-modQ,2(E, F ),

where the definition of discrete (Q, 2)-modulus, denoted d-modQ,2(E, F ), is the same
as in [13, Section 2.5], with the only modification that the radius of each ball B
in a cover B is required to be less than the radius of local regularity at its center.
With this modification for the definition of discrete modulus, the proof of the above
inequality is exactly the same as in [13, Proposition 2.9].

The second step is to show that the discrete modulus d-modQ,2(E, F ) has a
desired upper bound. To this end, we need to construct an appropriate admissible
pair (ν,B) for the given continua E and F . For simplicity of notation and without
loss of generality, we assume that the strict inequality in (1.1) holds. For a fixed
δ > 0, partition X\(E ∪ F ) into two disjoint subsets H and P, where H consists
of those points x ∈ X\(E ∪ F ) for which

lim sup
r→0

µ(f(B(x, 2r)))

µ(f(B(x, r)))
< D = 2(5K2)QC2

Y .

For each x ∈ H ∪ P, choose a radius rx (0 < rx < δ) satisfying

(1) B(x, 4rx) ⊂ X\(E ∪ F );
(2) 4rx < r̃x if x ∈ H , or f(B(x, 4rx)) ⊂ B(x′, r̃x′), where r̃x denotes the radius

of local regularity at a point x;
(3) for each 0 < r < rx,

max{dY (f(a), f(x)) : dX(a, x) ≤ r}
min{dY (f(b), f(x)) : dX(b, x) ≥ r} ≤ K,

and

µ(f(B(x, 2r)))

µ(f(B(x, r)))
< D if x ∈ H , or

µ(f(B(x, 2r)))

µ(f(B(x, r)))
≥ D

2
if x ∈ P.

Following the argument in [13, Section 3.5], one can construct covers B1 and B2

for H and P, respectively. Specifically, for the set H , by using a general Besicovitch
covering theorem (see [12, Theorem 1.16] or [7, Page 53]), a countable subfamily B1

can be extracted from the family {B(x, rx) : x ∈ H } such that H ⊂ ⋃B∈B1
B and

1
5
B ∩ 1

5
B′ = ∅ whenever B,B′ ∈ B1 with B 6= B′. Similarly, for the set P, same

argument as in [13, Page 71] shows that there exist a countable subfamily B2 =
{B(xi, rxi

) : xi ∈ P, i = 1, 2, · · · } and Vi ⊂ B(xi, rxi
) such that P ⊂ ⋃

B∈B2
B,

Vi ∩ Vj = ∅ whenever i 6= j, and

µ(f(B(xi, ri))) ≤ C2
Y 5

QKQµ(f(Vi)).

Then B = B1 ∪ B2 is a desired cover of X\(E ∪ F ).
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Next, define set function ν : B → (0,∞) by

ν(B) =

(
log

R

r

)−1
diam(f(B))

dist(f(B), f(x0))
.

Now proceeding as in [13, Pages 72–73], and taking into account of the fact that Y
has the global upper Q-mass bound, one can deduce that (cν,B) is 2-admissible for
some appropriate constant c, and consequently that

d-modQ,2(E, F ;X) ≤ C ′

(
log

R

r

)1−Q

,

where C ′ depends on K,Q,CY . This completes the proof of Part (1).
For the prove of Part (2), we may assume that

E = f−1(BδY (f(x0), r)) and F = f−1(Y \BδY (f(x0), R)).

As in the proof of Part (1), we only need to find an appropriate upper bound for the
discrete modulus d-modQ,2(E, F ;X). For this, construct ball covering B = B1 ∪B2

of X\(E ∪ F ) as above. The only modification one needs to make is the definition
of set function ν : B → (0,∞), which is given by

ν(B) =

(
log

R

r

)−1
diam(f(B))

δY (f(B), f(x0))

for B ∈ B. Then the same procedure as in [13, Page 72] shows that there exists
a constant c = c(Q,K,CY ) such that (cν,B) is 2-admissible for the configuration
(E, F ;X). Finally, one derives the desired upper bound

d-modQ,2(E, F ;X) ≤ C ′′

(
log

R

r

)1−Q

,

by following [13, Page 73] and taking into consideration of the fact that

µ(BδY (f(x0), 2
−j−1R)) ≤ µ(B(f(x0), 2

−j−1R)).

This completes the proof of Lemma 3.2. �

From the proof one can see that a local version of Lemma 3.2 is also valid.
More precisely, if both X and Y are only assumed to be locally Q-regular, then
for each x0 ∈ X, there exists Rx0 such that for any R < Rx0 and r < R

2
, the

inequality (3.1) holds for any continua E and F in X with f(E) ⊂ B(f(x0), r) and
f(F ) ⊂ Y \B(f(x0), R). A similar statement is true for Lemma 3.2 Part (2).

3.2. Local (L,M)-quasisymmetry.

Proposition 3.4. Suppose that X and Y are arcwise connected metric spaces,
that X is upper half Q-regular with Q > 1, and that Y is locally Q-regular. Assume
X is c-LLC2 and locally ĉ-BT, Y is ϕ-Loewner, and f−1 from Y onto X is a K-
quasiconformal homeomorphism which maps bounded sets to bounded sets. Then f
is locally weakly (L,M)-QS for all L ≤ L0 < 1 with M < 1 depending on L, where
L0 is a constant depending on the regularity constants and the data (Q,K, c, ĉ, ϕ).
Furthermore,

lim
L→0

M = 0.
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Proof. Fix any x0 ∈ X and let r′ to be sufficiently small such that X\B(x0,
2Lf−1(x′0, 2r

′)) 6= ∅, where

Lf−1(x′0, 2r
′) = sup

dY (x′,x′

0)≤2r′
dX(f

−1(x′), f−1(x′0)).

Next choose r > 0 sufficiently small such that B(x0, r) is ĉ-BT in X and that

f(B(x0, (1 + 2ĉ)r)) ⊂ B(x′0, r
′),

which implies that

B(x0, (1 + 2ĉ)r) ⊂ B(x0, Lf−1(x′0, r
′)) ⊂ B(x0, Lf−1(x′0, 2r

′)).

To show that f is weakly (L,M)-QS in B(x0, r), let

L0 =
1

4cĉe(
C

ϕ(2))
1

Q−1

,

where C is the constant in Lemma 3.2(1). For any x, a, b ∈ B(x0, r) with dX(x,a)
dX(x,b)

≤
L < L0, we will show that

(3.3)
dY (x

′, a′)

dY (x′, b′)
≤ M =

2

ϕ−1
(
C
(
log 1

2cĉL

)1−Q
) .

This will be done through modulus comparison. First, by ĉ-BT property of B(x0, r),
there exists an arc E ⊂ X connecting x and a such that d(E) ≤ ĉdX(x, a). Next
fix w ∈ X with dX(w, x0) > 2Lf−1(x′0, 2r

′). By the definition of Lf−1(x′0, 2r
′), one

deduces that f(w) = w′ ∈ Y \B(x′0, 2r
′). Since

2Lf−1(x′0, 2r
′) < dX(w, x) + dX(x, x0) ≤ dX(w, x) + Lf−1(x′0, 2r

′),

it follows that

dX(w, x) ≥ Lf−1(x′0, 2r
′) > 2r > dX(x, b).

By the c-LLC2 property of X, there is a continua F , connecting b and w in X, such
that

F ⊂ X\B
(
x,
dX(x, b)

2c

)
.

Therefore, by Lemma 3.2 (1) (with the roles of X and Y switched), there exists a
constant C, depending on Q,K,CX, CY , such that

modQ(E
′, F ′; Y ) ≤ C

(
log

dX(x,b)
2c

ĉdX(x, a)

)1−Q

≤ C

(
log

1

2cĉL

)1−Q

.

To find a lower bound for the modulus modQ(E
′, F ′; Y ), one observes that

dist(E ′, F ′) ≤ dY (x
′, b′),

min{diam(E ′), diam(F ′)} ≥ min{dY (x′, a′), r′} >
dY (x

′, a′)

2
.

The last two inequalities result from the fact that

w′ ∈ Y \B(x′0, 2r
′) and b′ ∈ f(B(x0, r)) ⊂ B(x′0, r

′).

Thus, by the ϕ-Loewner condition on Y , we obtain

modQ(E
′, F ′; Y ) ≥ ϕ

(
dist(E ′, F ′)

min{diam(E ′), diam(F ′)}

)
≥ ϕ

(
2dY (x

′, b′)

dY (x′, a′)

)
.
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Combining this with the upper bound of modQ(E
′, F ′, Y ) above yields (3.3) as de-

sired. Finally, it is easy to see that M → 0 as L→ 0. �

4. Global (L,M)-quasisymmetry in internal metrics

In the previous section, we showed that the inverse of the QC map described
in Theorem 1.1 is locally (L,M)-QS with respect to the original metrics. In this
section, we further establish its global (L,M)-quasisymmetry with respect to the
internal metrics.

4.1. Bounded turning property of a locally regular Loewner space. In
[14, Theorem 3.13], Heinonen and Koskela proved that, in a Q-regular space, the
Loewner condition implies quasiconvexity, and hence the bounded turning property.
Using the same idea, we establish a local version of this result, which will be needed
in this paper.

Lemma 4.1. Let Y be a connected locally Q-regular ϕ-Loewner space with
Q > 1. Then it is locally ĉ-BT with ĉ depending only on the regularity constant CY ,
Q and ϕ.

Before proving Lemma 4.1, we quote some estimates for modulus from [14], which
will be needed in the proof. We point out that the original results and proofs in [14]
were formulated for Q-regular spaces. However, as noted in [14], they are valid for
spaces that only satisfy the upper mass bound condition.

Lemma 4.2. [14, Lemma 3.15 & 3.14] Let X be a metric space with a Borel
measure µ satisfying the global upper mass bound condition with constant C0 and
dimension Q > 1. If Γ is a family of curves in a ball BR = B(x,R) such that
l(γ) ≥ L > 0 for each γ ∈ Γ, then

modQ(Γ) ≤
µ(BR)

LQ
.

Furthermore, if 0 < 2r < R, then there is a constant C = C(Q,C0) such that

modQ(B(x, r), X\B(x,R);X) ≤ C

(
log

R

r

)1−Q

.

Remark 4.3. We need to point out that, by further examining the proofs in [14],
one can see that a local version of Lemma 4.2 holds for a locally regular space X.
More precisely, if X is only assumed to satisfy a local upper mass bound condition (in
particular, if X is locally regular), then the modulus estimates in the above lemma
remain valid if the curve family under consideration lies in a neighborhood of local
regularity. This will be needed in the proof of Lemma 4.1.

Proof of Lemma 4.1. For z ∈ Y , fix ε > 0 no greater than the radius of local
regularity of Y at z. Let

ε∗ =
ε

1 + 2p
with p =

1

10
e

(
2C

ϕ(10)

) 1
Q−1

,

where C is the constant in Lemma 4.2. We shall show that B(z, ε∗) ∩ B(z, 1
2
) is BT

in Y .
For any distinct pair x, y ∈ B(z, ε∗) ∩ B(z, 1

2
), let r = dY (x, y) < 1. By the

connectivity of Y , there exist continua E ⊂ B(x, r
10
) connecting x and Y \B

(
x, r

10

)
,

and F ⊂ B(y, r
10
) connecting y and Y \B

(
y, r

10

)
.
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Let Γ be the curve family connecting E and F in Y and write Γ = Γ1∪Γ2, where
Γ1 consists of the curves in Γ that are contained in B(x, pr) and Γ2 = Γ\Γ1. The
ϕ-Loewner property induces that

modQ(Γ) ≥ ϕ

(
r
1
10
r

)
= ϕ(10).

On the other hand, since B(x, pr) ⊂ B(z, ε) by the choices of parameters above, it
follows from Lemma 4.2 (or its local version as mentioned in Remark 4.3) that

modQ(Γ2) ≤ C

(
log

pr
1
10
r

)1−Q

=
ϕ(10)

2
.

Therefore,

modQ(Γ1) ≥ modQ(Γ)−modQ(Γ2) =
ϕ(10)

2
.

This, together with local Q-regularity and the local version of Lemma 4.2, yields that
there exists a curve γ0 ∈ Γ1 whose length l0 satisfies

lQ0 ≤ 2CY (pr)
Q

ϕ(10)
,

where CY is the regularity constant of Y . Thus one can construct a path γ ⊂ E∪γ0∪F
connecting x and y with diameter satisfying

d(γ) ≤ d(E) + d(F ) + l0 ≤
2

5
dY (x, y) +

(
2CY

ϕ(10)

) 1
Q

pdY (x, y)

= dY (x, y)

(
2

5
+

(
2CY

ϕ(10)

) 1
Q

p

)
,

and the desired result follows. �

4.2. Proof of Theorem 1.1. In light of Lemma 2.2 on the inverse of an
(L,M)-QS map, to prove Theorem 1.1, it suffices to prove the following proposition.

Proposition 4.4. Suppose that X and Y are arcwise connected metric spaces
which are simultaneously bounded or unbounded, that X is upper half Q-regular
with Q > 1, that Y is locally Q-regular. Assume that X is c-LLC2 and locally ĉ-BT,
Y is ϕ-Loewner, f−1 from Y onto X is a K-quasiconformal homeomorphism. Then
there is a constant L0 < 1 such that f is weakly (L,M)-QS in the internal metrics
for all L ≤ L0 with M =M(L) such that

lim
L→0

M = 0.

Furthermore, the constant L0 depends only on the regularity constants and the data
(Q,K, c, ĉ, ϕ), and possibly on f if both X and Y are bounded.

Note that one obtains Theorem 1.1 by reversing the roles of X and Y in the
above proposition and by applying Lemma 2.2.

4.3. Proof of Proposition 4.4: unbounded case. We start the proof by
considering the easier case when X and Y are unbounded. Since X is c-LLC2 with
respect to the original metric, it is c1-LLC2 with respect to the internal metric δ for
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some constant c1 (see [11]). We will show that f is (L,M)-QS with respect to the
internal metrics for all L ≤ L0 with M =M(L), where

L−1
0 = 4c1e

(
C̃

ϕ(1)

) 1
Q−1

,

and C̃ is the constant in (3.2) of Lemma 3.2.
Fix three distinct points x, a, b ∈ X, let

ρ =
δX(x, a)

δX(x, b)
≤ L < L0, ρ′ =

δY (x
′, a′)

δY (x′, b′)

and let
Lf (x, δX(x, b)) = sup{δY (x′, z′) : z ∈ B(x, δX(x, b))}.

For w′ ∈ Y \B(x′,max{Lf (x, δX(x, b)), 2δY (x
′, b′)}), we have

w ∈ X\B(x, δX(x, b)) ⊂ X\Bδ(x, δX(x, b)).

Since X is c1-LLC2 with respect to the internal metric δX , there exists an arc β
connecting b and w such that

β ⊂ X\Bδ

(
x,
δX(x, b)

c1

)
.

Next choose an arc α connecting x and a such that d(α) ≤ 2δX(x, a). Since

δX (x,b)
c1

2δX(x, a)
>

1

2c1L0

> 2,

by Lemma 3.2 Part (2) (with the roles of X and Y switched), we have

(4.1) modQ(α
′, β ′; Y ) ≤ C̃

(
log

δX(x,b)
c1

2δX(x, a)

)1−Q

.

On the other hand, since δY (w
′, b′) ≥ δY (w

′, x′) − δY (x
′, b′) ≥ δY (x

′, b′), one can
deduce that

dist(α′, β ′)

min{d(α′), d(β ′)} ≤ δY (x
′, b′)

min{δY (x′, a′), δY (x′, b′)}
.

If δY (x
′, a′) > δY (x

′, b′), then modQ(α
′, β ′; Y ) ≥ ϕ(1) by the Loewner condition. This

together with (4.1) yields that

ϕ(1) ≤ C̃

(
log

1

2c1ρ

)1−Q

,

which implies that

1

ρ
≤ 2c1e

(
C̃

ϕ(1)

) 1
Q−1

,

Contradicting with the assumption that ρ < L0. Thus we must have δY (x
′, a′) ≤

δY (x
′, b′), and it follows that

modQ(α
′, β ′; Y ) ≥ ϕ

(
δY (x

′, b′)

δY (x′, a′)

)
= ϕ

(
1

ρ′

)
.

Appealing to (4.1), one derives that

ϕ

(
1

ρ′

)
≤ C̃

(
log

δX(x,b)
c1

2δX(x, a)

)1−Q

.
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And hence
1

ρ′
≥ ϕ−1

(
C̃

(
log

1

2c1ρ

)1−Q
)
.

Therefore, f is (L,M)-QS with

M =M(L) =
1

ϕ−1

(
C̃
(
log 1

2c1L

)1−Q
) ,

which converges to zero as L→ 0.

4.4. Proof of Proposition 4.4: for bounded X and Y . To show that f has
the claimed quasisymmetry property, in light of the proof of Case 1 in Theorem 2.4,
we only need to show that there exist constants L0 < 1 and M < 1, depending
only on the given parameters associated with X, Y and f , such that for any distinct
points x, a, b ∈ X,

(4.2) ρ =
δX(x, a)

δX(x, b)
≤ L0 ⇒ ρ′ =

δY (x
′, a′)

δY (x′, b′)
≤M.

By appealing to Lemma 4.1, we may assume that Y is locally ĉ′-BT. According
to Proposition 3.4, one can fix constants L∗ < 1 and M∗ < 1

2ĉ′
such that f is locally

weakly (L∗,M∗)-QS (in the original metrics). To establish (4.2), we fix x0 ∈ X and
choose small positive parameters r̃, r, r′ as follows. First, fix r̃ > 0 such that f is
weakly (L∗,M∗)-QS in f−1(B(x′0, (1+

1
M∗

)r̃) and that f−1(B(x′0, (1+
1

M∗
)r̃) ⊂ X and

B(x′0, r̃) ⊂ Y are ĉ-BT and ĉ′-BT, respectively. Next choose r such that

f(B(x0, (2ĉ
2 + 1)r)) ⊂ B(x′0, r̃).

Finally, fix r′ < d(Y ) with

f−1(B(x′0, r
′)) ⊂ B

(
x0,

r

2

)
, f−1(∂B(x′0, r

′)) ∩ ∂B
(
x0,

r

2

)
6= ∅.

We shall divide the proof of (4.2) into two cases by using the following constant:

C0 = 4ce

(
C̃

ϕ( 1
N )

) 1
Q−1

with N =
r′

2 d(Y )
≤ 1

2
,

where C̃ is the constant in Lemma 3.2 Part (2) as above.

4.4.1. Case 1: δX(x, x0) ≤ C0δX(x, a). In this case the idea is to show that
x, a, b lie in a neighborhood that is BT and in which f is (L∗,M∗)-QS in original
metric. The BT property makes the internal metric comparable with the original
metric, which enables the transition from (L∗,M∗)-quasisymmetry in original metric
to quasisymmetry in internal metric. More specifically, we show that (4.2) holds with

L0 = min

{
L∗

ĉ
,

r

(C0 + 1)d(X)

}
and M = 2ĉ′M∗.

Note that, since

δX(x, x0) ≤ C0δX(x, a) = C0δX(x, b)ρ ≤ C0d(X)L0 < r,

δX(a, x0) ≤ δX(x, a) + δX(x, x0) ≤ (C0 + 1)d(X)L0 ≤ r,

it follows that x, a ∈ B(x0, r) and that x′, a′ ∈ f(B(x0, r)) ⊂ B(x′0, r̃). By the
BT-property, δY (x

′, a′) ≤ ĉ′dY (x
′, a′).
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To show that ρ′ ≤M , we assume, on the contrary, that

ρ′ =
δY (x

′, a′)

δY (x′, b′)
> M = 2ĉ′M∗.

One deduces that

dY (x
′, b′) ≤ δY (x

′, b′) <
ĉ′dY (x

′, a′)

2ĉ′M∗
<

r̃

M∗
,

which yields

b′ ∈ B

(
x′0,

(
1 +

1

M∗

)
r̃

)
and x, a, b ∈ f−1

(
B

(
x′0,

(
1 +

1

M∗

)
r̃

))
.

Using the comparative relation between internal metric and original metric and the
(L∗,M∗)-quasisymmetry, one can derive that

δY (x
′, a′)

δY (x′, b′)
> M ⇒ dY (x

′, a′)

dY (x′, b′)
> M∗ ⇒ dX(x, a)

dX(x, b)
> L∗ ⇒ δX(x, a)

δX(x, b)
>
L∗

ĉ
,

a contradiction with ρ ≤ L0. This verifies (4.2) in Case 1.

4.4.2. Case 2: δX(x, x0) > C0δX(x, a). Comparing to Case 1 above and the
unbounded case, this is the most complicated case and we describe the main idea
first as follows. One can use Lemma 3.2 to obtain an upper bound for the modulus
of a curve family ∆(α′, β ′; Y ) and use the Loewner condition to obtain a lower bound
for the modulus of the same curve family in Y . Bring these two estimates together
will yields the desired relation between ρ′ and ρ. More specifically, we show that
(4.2) holds for

L0 = min

{
2

4ĉ2 + ĉ
,
L∗

ĉ
,
(2ĉ− 1)r

2C0d(X)

}
and M = max{N, ĉ′M∗}.

To this end, fix an arc α joining x and a in X with d(α) ≤ 2δX(a, x). The choice
of β (an arc joining b to a point) is more sophisticated and depends on the subcases
considered below.

Subcase 2.1: b′ /∈ B(x′0,
r′

2
). In this case, we establish (4.2) by assuming, on the

contrary, that ρ ≤ L0 but δY (x′,a′)
δY (x′,b′)

> M ≥ N .

By the c-LLC2 property (in original metric, and hence in internal metric by [11]),
one can fix an arc β joining b to x0 with

β ⊂ X\Bδ

(
x,
C0

c
δX(a, x)

)
.

Combining this with the fact that α ⊂ BδX (x, 2δX(a, x)) and C0

2c
> 2, it follows from

Lemma 3.2 Part (2) that

(4.3) modQ(α
′, β ′; Y ) ≤ C̃

(
log

C0

c
δX(a, x)

2δX(a, x)

)1−Q

= C̃

(
log

C0

2c

)1−Q

.

Next, to obtain a lower bound for the modulus modQ(α
′, β ′; Y ), we note that

d(β ′) ≥ r′

2
and

dist(α′, β ′) ≤ δY (x
′, b′) <

δY (x
′, a′)

N
≤ d(α′)

N
and

dist(α′, β ′)

d(β ′)
≤ 2d(Y )

r′
.
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Thus,

dist(α′, β ′)

min{d(α′), d(β ′)} ≤ max

{
1

N
,
2d(Y )

r′

}
=

1

N
.

And it follows from ϕ-Loewner condition that

modQ(α
′, β ′; Y ) ≥ ϕ

(
1

N

)
.

This together with (4.3) yields that

ϕ

(
1

N

)
≤ C̃

(
log

C0

2c

)1−Q

,

which leads to a contradiction with the choice of the constant C0. This contradiction
proves (4.2) as desired in this subcase. Note that this inequality is the reason why
C0 was chosen as above.

Subcase 2.2: b′ ∈ B(x′0,
r′

2
). By the choices of r and r′, we have b ∈ B(x0,

r
2
).

To treat this case, we first assume that x ∈ B(x0, 2ĉr). By the local BT-property,
δX(x, b) ≤ ĉdX(x, b) < ĉ(2ĉ+ 1

2
)r. Thus

ρ =
δX(x, a)

δX(x, b)
≤ L0 ≤

2

4ĉ2 + ĉ
⇒ δX(x, a) < r.

Thus it follows that x, a, b ∈ B(x0, (2ĉ+ 1)r). Using the (L∗,M∗)-quasisymmetry of
f in this neighborhood and BT-property again, it is not difficult to derive that

ρ =
δX(x, a)

δX(x, b)
≤ L0 ≤

L∗

ĉ
⇒ dX(x, a)

dX(x, b)
≤ δX(x, a)

δX(x,b)
ĉ

≤ L∗

⇒ dY (x
′, a′)

dY (x′, b′)
≤M∗ ⇒ δY (x

′, a′)

δY (x′, b′)
≤ ĉ′

dY (x
′, a′)

dY (x′, b′)
≤ ĉ′M∗ < M,

which verifies (4.2) under the assumption that x ∈ B(x0, 2ĉr).
Next assume that x /∈ B (x0, 2ĉr). In this case, one can choose z′ ∈ ∂B(x′0, r

′)
such that dX(z, x0) =

r
2
. By the locally ĉ-BT property, there exists an arc β connect-

ing b and z with diameter d(β) ≤ ĉdX(b, z).
If β ∩BδX (x, C0δX(x, a)) 6= ∅, then there exists a point w with

w ∈ β ⊂ B

(
x0,

(
ĉ+

1

2

)
r

)
and δX(x, w) ≤ C0δX(x, a).

On the other hand, δX(x, w) ≥ d(x, x0)− d(w, x0) > (ĉ− 1
2
)r. This yields

δX(x, a)

δX(x, b)
≥ δX(x, a)

d(X)
>

(2ĉ− 1)r

2C0d(X)
,

a contradiction with the assumption in (4.2). Thus, to verify (4.2) in this case, we
may assume that β ∩ BδX (x, C0δX(x, a)) = ∅.

To deal with this final case, we again establish (4.2) by assuming, on the contrary,
that ρ′ > M ≥ N . The contradiction will result from estimates of the lower and upper
bound of modQ(α

′, β ′; Y ), respectively.
To obtain an upper bound for modQ(α

′, β ′; Y ), we note that

α ⊂ Bδ(x, 2δX(a, x)), β ⊂ X\Bδ(x, C0δX(a, x)).
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By Lemma 3.2 Part (2) (again with the roles of X and Y switched as above), we
have

(4.4) modQ(α
′, β ′; Y ) ≤ C̃

(
log

C0δX(a, x)

2δX(a, x)

)1−Q

= C̃

(
log

C0

2

)1−Q

.

To obtain a lower bound for the modulus modQ(α
′, β ′; Y ), as in the Subcase 2.1

above (details omitted), one can verify that

dist(α′, β ′)

min{d(α′), d(β ′)} ≤ max

{
1

N
,
2d(Y )

r′

}
=

1

N
.

By ϕ-Loewner condition on Y ,

modQ(α
′, β ′; Y ) ≥ ϕ

(
1

N

)
.

Combining this together with (4.4), one concludes that

ϕ

(
1

N

)
≤ C̃

(
log

C0

2

)1−Q

,

which leads to a contradiction with the definition of the constant C0. This completes
the proof of Proposition 4.4.

5. Proof of Theorem 1.3: from QC to η-quasisymmetry

We finally complete the journey from QC to η-quasisymmetry by showing that
in the internal metrics an (L,M)-QS map is η-QS.

5.1. From weakly (L,M)-QS to η-QS. The following theorem serves as a
bridge going from weakly (L,M)-QS to η-QS in an HTB metric space, just like the
bridge established by Väisälä’ going from weakly H-QS to η-QS [26, Theorem 2.9].
However, the main difference is that in the following result no extra condition is
imposed on Y . This weakened condition will make the result widely applicable. As
an application, we shall use it to establish Theorem 1.3.

Theorem 5.1. Suppose that (X, dX) and (Y, dY ) are arcwise connected metric
spaces and that X is k-HTB. If f : X → Y is weakly (L,M)-QS for some L < 1 and
M < 1, then f is η-QS with η depending only on k, L,M .

Proof. Fix distinct points a, x, b ∈ X and let

ρ =
dX(a, x)

dX(b, x)
, ρ′ =

dY (a
′, x′)

dY (b′, x′)
.

Here and in what follows the prime indicates the image of the corresponding point
or set under the map f . We need to show that ρ′ ≤ η(ρ) with η(ρ) → 0 as ρ→ 0.

Case 1: ρ ≤ L. The proof of this case is the same as Theorem 2.4, Case 1.

Case 2: ρ = dX(x,a)
dX(x,b)

> L. Fix an arc γa,x ⊂ X connecting a and x. Let a0 = x

and let a1 be the last point on γa,x along the direction from x to a such that

dX(a0, a1) = LdX(x, b).

Inductively, one can choose consecutive points a2, · · · , an on γa,x along the direction
from x to a such that ai is the last point after ai−1 with

dX(ai−1, ai) = LdX(a0, ai−1) (i = 2, · · · , n)
and that an is the first of these points outside B(x, 1

L
dX(x, a)).
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Observe that, for any i 6= j with 0 < i < j ≤ n, by the choice of ai+1 we have

dX(ai, aj) ≥ dX(ai, ai+1) = LdX(a0, ai) ≥ L2dX(x, b)

and that dX(a0, aj) ≥ dX(a0, a1) = LdX(x, b) for j > 0. Combining this with the
fact that ai ∈ B(x, 1

L
dX(x, a)) for each i = 1, 2, · · · , n− 1, the k-HTB property of X

implies that

n ≤ k

( 1
L
dX(x, a)

L2dX(x, b)

)
= k

(
1

L3
ρ

)
.

Note that this argument also shows that the above process of choosing consecutive
points ai on γa,x terminates after a finte number of steps due to the HTB property.
Furthermore, by (L,M)-quasisymmetry, one can inductively deduce that

dY (x
′, a′) ≤MdY (a

′
0, a

′
n) ≤M(dY (a

′
0, a

′
n−1) + dY (a

′
n−1, a

′
n))

≤M(1 +M)dY (a
′
0, a

′
n−1) ≤M(1 +M)2dY (a

′
0, a

′
n−2)

≤ · · · ≤M(1 +M)n−1dY (a
′
0, a

′
1) ≤M2(1 +M)n−1dY (x

′, b′).

Therefore, it yields that

ρ′ =
dY (a

′, x′)

dY (b′, x′)
≤ η(ρ) with η(ρ) =M2(1 +M)k(

1
L3 ρ)−1. �

Since an η-QS map is always weakly H-QS, Theorem 5.1 and Example 3 in
Section 2 immediately yield the following corollary.

Corollary 5.2. Suppose that X and Y are arcwise connected metric spaces and
that X is k-HTB. If f : X → Y is weakly (L,M)-QS for some L < 1 and M < 1, then
f is weakly H-QS. The converse is not true unless Y is also HTB.

Interestingly, it follows from Theorem 5.1 and [26, Theorem 2.8] that these three
classes of maps are equivalent if both X and Y are HTB.

Corollary 5.3. Suppose that X and Y are arcwise connected HTB metric
spaces. Let f : X → Y be a homeomorphism. Then the following are equivalent.

(1) f is weakly H-quasisymmetric;
(2) f is weakly (L,M)-quasisymmetric for some L < 1 and M < 1;
(3) f is η-quasisymmetric.

5.2. Proof of Theorem 1.3. For the proof of Theorem 1.3, we need a lemma
which can be regarded as a generalization of [26, Lemma 2.14] from the Euclidean
space to metric spaces.

Lemma 5.4. Suppose that X is an arcwise connected metric space with k-HTB
and c-LLC1 properties. Then X is k′-HTB in the internal metric.

Proof. It suffices to show that there is a constant k′ = k′(k, c) (depending only
on k, c) such that for any x0 ∈ X and r > 0, if x1, x2, · · · , xn ∈ BδX (x0, r) with
δX(xi, xj) ≥ r

2
for any i 6= j, then n ≤ k′.

Fix x0 ∈ X, r > 0, and x1, x2, · · · , xn ∈ BδX (x0, r) with above properties. For
j = 2, · · · , n, choose an arc γj connecting xj and x1, and then fix a point x̃j ∈ γj such

that δX(xj , x̃j) =
r
2m

, where m is a fixed constant with m > 2 + log(1+2c)
log 2

. Obviously,

δX(x̃j , x1) ≥ r
2m

.
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If B
(
x̃i,

r
2m

)
∩ B

(
x̃j ,

r
2m

)
6= ∅ for some i 6= j, the c-LLC1 property implies that

there exists an arc γ̃i,j connecting x̃i and x̃j such that

γ̃i,j ⊂ B
(
x̃i,

cr

2m−1

)
.

Thus, by the choice of the constant m above, it follows that

δX(xi, xj) ≤ δX(xi, x̃i) + δX(x̃i, x̃j) + δX(x̃j, xj) ≤
2r

2m
+

2cr

2m−1
=

(1 + 2c)r

2m−1
<
r

2
,

which contradicts the assumption that δX(xi, xj) ≥ r
2
. Therefore, it follows that

B
(
x̃i,

r
2m

)
∩ B

(
x̃j ,

r
2m

)
= ∅ for distinct i, j ∈ {2, 3, · · · , n}.

Furthermore, since

dX(x̃i, x0) ≤ δX(x̃i, x0) ≤ δX(x̃i, xi) + δX(xi, x0) ≤
(

1

2m
+ 1

)
r

for i = 2, · · · , n, the k-HTB property (in original metric) yields

n− 1 ≤ k

((
1
2m

+ 1
)
r

r
2m

)
= k(1 + 2m)

as desired. �

Proof of Theorem 1.3. By Theorem 1.1 (or by Proposition 4.4 more precisely),
we can see that f−1 : Y → X is weakly (L,M)-QS in the internal metrics for some
L < 1,M < 1. Then, since Q-regular spaces are HTB (in original metric), Lemma 5.4
implies that Y is k′-HTB in the internal metric. Applying Theorem 5.1 to the internal
metric spaces (Y, δY ) and (X, δX) and the map f−1, it follows that f−1 is η′-QS in
the internal metrics. And therefore f is η-QS in the internal metric for some η. �
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