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Isomorphisms on interpolation spaces
generated by the method of means

Mieczysław Mastyło

Abstract. We investigate the stability of isomorphisms acting between interpolation spaces

generated by the method of means. We focus on the methods which are determined by balanced

sequences for non-degenerate quasi-concave functions. The key point for our investigation is that

these methods have orbital description by a single element generated by a special ideal of operators

between Banach couples. We prove that if an operator is invertible in one orbit it is also invertible

by nearby orbits provided that the corresponding indices of quasi-concave functions generated these

orbits are close to each other. In particular, these results apply to the real method of interpolation.

Keskiarvomenetelmän tuottamien interpolaatioavaruuksien isomorfismit

Tiivistelmä. Tarkastelemme keskiarvomenetelmän tuottamien interpolaatioavaruuksien välis-

ten isomorfismien häiriöherkkyyttä. Keskitymme ei-degeneroituneiden kvasikonkaavien funktioiden

suhteen tasapainotettujen jonojen määräämiin menetelmiin. Tutkimuksemme avainhavainto on, että

nämä menetelmät voidaan kuvailla radoittain Banachin parien välillä toimivan erityisen operaattori-

ihanteen virittämän yksittäisen alkion avulla. Osoitamme, että jos operaattori on kääntyvä yhdellä

radalla, niin se on kääntyvä myös läheisillä radoilla, mikäli näiden ratojen virittämien kvasikonkaa-

vien funktioiden vastaavat indeksit ovat lähellä toisiaan. Erityisesti tulokset soveltuvat reaaliseen

interpolointimenetelmään.

1. Introduction

One of the major problems in interpolation theory is the study of stability prop-
erties of operators acting between interpolation Banach spaces. Studying these types
of properties spins off applications in various areas of analysis. Development of the
theory of Fredholm operators and a general recognition of the importance of the
subject in applications to the solvability of partial differential equations motivates
the study of stability of the Fredholm properties under interpolation. The first re-
sult on the stability of Fredholm property is due to Shneiberg [20]; it states that, if
T : (X0, X1) → (Y0, Y1) is an operator between compatible couples of complex Banach
spaces, then the set of all θ ∈ (0, 1), for which the operator T : [X0, X1]θ → [Y0, Y1]θ is
Fredholm between Calderón interpolation spaces is open. This result was overlooked
at first, but after a while it became crucial for further research (see [1, 3, 5, 10, 13, 21])
and references given there. It is perhaps appropriate to remark that the stability of
Fredholm properties of operators between interpolation scales of Banach spaces is
deeply connected with the stability of interpolated isomorphisms. This phenomenon
was discussed in [4] for interpolation scales constructed by using vector-valued ana-
lytic functions introduced in [11], which recover, up to equivalence of norms, the real
and the complex methods of interpolation. These results were used in [5] to study
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the stability of the inverses of isomorphisms acting on interpolation scales of Banach
spaces.

The main purpose of the present paper is to investigate the stability of invert-
ibility property for operators between interpolation spaces generated by the method
of means. It is a natural continuation of previous work in the literature related to
the problem mentioned above (see, e.g., [1, 4, 5, 15]). We focus on methods of means
determined by quasi concave-functions which proved to play a key role in the theory
of interpolation of linear operators. As we will see, the key to our study is that these
methods have an orbital description by a single element generated by a special ideal
of operators. We prove that if an operator is invertible in one orbit it is also invertible
in nearby orbits provided that the corresponding indices of quasi-concave functions
generated these orbits are close to each other. In particular, these results apply to
the real method of interpolation.

Throughout the paper we will use standard notation. As usual, for a given Banach
space X we denote by L(X) the Banach space of all bounded linear operators on X
equipped with the uniform norm. If X and Y are Banach spaces such that X ⊂ Y
and the inclusion map id : X → Y is bounded, then we write X →֒ Y . We write
X ∼= Y whenever X = Y , with equality of norms.

2. Notation and main results

First, we introduce some essential definitions and notation. For basic notation of
interpolation theory, we refer to [7] and [8]. We recall that a mapping F : ~B → B, from

the category ~B of all couples of Banach spaces into the category B of all Banach spaces
is said to be an interpolation functor (or method) if, for any couple ~X := (X0, X1),

the Banach space F (X0, X1) is intermediate with respect to ~X (i.e., X0 ∩ X1 ⊂

F ( ~X) ⊂ X0 + X1), and T : F (X0, X1) → F (Y0, Y1) for all T : (X0, X1) → (Y0, Y1);
here, as usual, the notation T : (X0, X1) → (Y0, Y1) means that T : X0+X1 → Y0+Y1
is a linear operator, such that the restrictions of T to the space Xj is a bounded
operator from Xj to Yj, for j = 0 and j = 1. Notice that by the closed graph

theorem, for any Banach couples ~X and ~Y one has

‖T‖F ( ~X)→F (~Y ) ≤ C ‖T‖ ~X→~Y := C max
j=0,1

‖T‖Xj→Yj .

If C may be chosen independently of ~X and ~Y , then F is called a bounded interpo-
lation functor and it is called exact if C = 1.

An operator T : (X0, X1) → (Y0, Y1) between Banach couples is said to be invert-
ible whenever the restriction T |Xj

: Xj → Yj is invertible (i.e., T is an isomorphism
of Xj onto Yj) for j = 0 and j = 1. In what follows we will often omit the domain

of the restricted operator. We will use Peetre’s K-functional. Let ~X = (X0, X1) be
a Banach couple. For t > 0

K(t, x; ~X) = K(t, x;X0, X1) := inf
{
‖x0‖X0

+ t‖x1‖X1
; x0 + x1 = x

}
, x ∈ X0 +X1.

Following [15] we will consider a special class of operators between Banach cou-

ples. For a fixed Banach couple ~A, we define a left operator ideal I (from ~A) as

a subclass of L( ~A, ·) such that for any Banach couple ~X its components

I( ~A, ~X) := L( ~A, ~X) ∩ I

are linear spaces which satisfy the following properties for all Banach couples ~X and
~Y :
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(i) I( ~A, ~X) equipped with a norm ‖ · ‖I is a Banach space such that

γ( ~A) := sup
~X∈ ~B

‖id : I( ~A, ~X) → L( ~A, ~X)‖ <∞.

(ii) I( ~A, ~X) contains all one rank operators from ~A to ~X.

(iii) (The left ideal property) If T ∈ I( ~A, ~X), S ∈ L( ~X, ~Y ), then ST ∈ I( ~A, ~Y )
and

‖ST‖I ≤ ‖S‖ ~X→~Y ‖T‖I .

Let ~A be a Banach couple and let I( ~A, ·) be a left operator ideal. For an arbitrary

element a 6= 0 in A0+A1, we define the orbit OrbI
a(
~X) to be the space of all elements

in the form Ta, where T ∈ I( ~A, ~X). This space is equipped with the norm

‖x‖ = inf{‖T‖I; x = Ta}.

Since

‖Ta‖X0+X1
≤ ‖T‖ ~A→ ~X‖a‖A0+A1

≤ γ( ~A) ‖T‖I‖a‖A0+A1
,

the map δa : I( ~A, ~X) → X0 +X1 given by

δa(T ) := Ta, T ∈ I( ~A, ~X),

is continuous. This implies that OrbI
a( ~X) is isometrically isomorphic to the quotient

space I( ~A, ~X)/KerIa(
~X), where

KerIa(
~X) := ker(δa) =

{
T ∈ I( ~A, ~X); Ta = 0

}

and so OrbI
a(
~X) is a Banach space. Clearly, the left ideal property yields that ~B ∋

~X 7→ OrbI
a(
~X) is an exact interpolation functor.

We will use the theorem on stability of invertible operators acting between in-
terpolation orbits generated by the left ideal operator. We need first some notation
and collect some results which will be used extensively in the remainder.

Given a Banach space U and any closed subspaces U0, U1 of U we let

ρ(U0, U1) := sup
‖u‖U=1

|dist(u, U0)− dist(u, U1)|,

where dist(u, Uj) is the distance from u ∈ U to Uj , that is,

dist(u, Uj) := inf
uj∈Uj

‖u− uj‖U , j ∈ {0, 1}.

Let U , V be Banach spaces and U0, U1 and V0, V1 be closed subspaces of U and V ,
respectively. Suppose that H is a linear bounded operator from U to V which maps
U0 to V0 and U1 to V1. Since for j = 0 and j = 1 one has H(u+uj) = H(u)+H(uj) ∈
H(u)+Vj for all uj ∈ Uj , we can define the quotient operators Hj : U/Uj → V/Vj by

Hj(u+ Uj) := H(u) + Vj, u ∈ U.

The key result we need is the following theorem from [3, Theorem 3.4] which is
a slightly modified variant Theorem 9 from [15].

Theorem 2.1. Suppose that H : U → V maps Uj to Vj for each j ∈ {0, 1}, and

the quotient operator H0 : U/U0 → V/V0 is invertible. If

max{dist(U0, U1), dist(V0, V1)} <
1

2
(
1 + ‖H‖U→V ‖H

−1
0 ‖V/V0→U/U0

) ,
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then the quotient operator H1 : U/U1 → V/V1 is invertible. Moreover, an upper

estimate for the norm of H1 is given by

‖H−1
1 ‖V/V1→U/U1

≤ 2‖H−1
0 ‖V/V0→U/U0

.

Let I( ~A, ·) be the left ideal of operators. Following [15] in the case of an ideal
L of all operators, let ρ be a distance defined on closed subspaces of the spaces of
I( ~A, ~X), and let a0, a1 ∈ A0 + A1. Then we let

ρ
(
OrbI

a0
( ~X),OrbI

a1
( ~X)

)
:= ρ(ker δa0 , ker δa1).

We define a distance between orbits OrbI
a0

and OrbI
a1

by the following pseudo-metric
on A0 + A1:

ρI(a0, a1) := ρ
(
OrbI

a0 ,OrbI
a1

)
:= sup

~X∈ ~B

ρ
(
OrbI

a0(
~X),OrbI

a1(
~X)

)
.

We start with an obvious observation which follows from the the definition.

Lemma 2.2. For every a0, a1 ∈ A0 + A1 and any left ideal I one has

ρI(a0, a1) = sup
∣∣‖Ta0‖OrbIa0(

~X) − ‖Ta1‖OrbIa1(
~X)

∣∣,

where the supremum is taken over all T : ~A→ ~X such that ‖T‖I( ~A, ~X) ≤ 1.

Applying Lemma 2.2 we get estimates of the metric ρI using operators which
allow a suitable cancellations. We omit the proof since it is an inessential modification
of the proof of Proposition 3 in [15].

Proposition 2.3. Let ~A be a Banach couple, and let I( ~A, ·) be a left ideal of

operators. Assume that ε > 0 and a0, a1 ∈ A0 + A1 are such that the following

conditions are satisfied:

(i) For any Banach couple ~X and any operator T ∈ I( ~A, ~X) with Ta0 = 0, it

follows that

‖Ta0‖OrbIa0 (
~X) ≤ ε‖T‖I( ~A, ~X).

(ii) For any Banach couple ~X and any operator T ∈ I( ~A, ~X) with Ta1 = 0, it

follows that

‖Ta0‖OrbIa1 (
~X) ≤ ε‖T‖I( ~A, ~X).

Then one has

ρI(a0, a1) ≤ 2ε.

The theorem which follows now will be useful in proving results on stability of
invertible operators acting between spaces generated by method of means.

Theorem 2.4. Let ~A, ~X, ~Y be Banach couples, and let I( ~A, ·) be a left ideal

of operators. Assume that for some a0 ∈ A0 + A1 an operator T : ~X → ~Y is such

that T : OrbI
a0
( ~X) → OrbI

a0
(~Y ) is invertible. Then T : OrbI

a(
~X) → OrbI

a(
~Y ) is also

invertible for all a ∈ A0 + A1 such that

ρI(a0, a) ≤
[
2
(
1 + ‖T‖ ~X→~Y ‖T−1‖OrbIa0(

~Y )→OrbIa0(
~X)

)]−1
.

Proof. The argument is similar to the proof in [15, Theorem 10(c)] for I = L.
We include the proof for completeness. We apply Theorem 2.1 for Banach spaces
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U := I( ~A, ~X), V := I( ~A, ~Y ), and subspaces U0 := KerIa0(
~X), V0 := KerIa0(

~Y ) and

U1 := KerIa1(
~X), V1 := KerIa1(

~Y ) and H : U → V given by

H(S) := T ◦ S, S ∈ L( ~A, ~X),

Observe that for all a ∈ A0 + A1, we have H : KerIa(
~X) → KerIa(

~X). Thus using H ,

we can define the quotient operators Hj : I( ~A, ~X)/Uj → I( ~A, ~Y )/Vj by

Hj(S + Uj) := H(S) + Vj, S ∈ I( ~A, ~X), j ∈ {0, 1}.

Clearly, for all a ∈ A0 + A1, we have H : KerIa(
~X) → KerIa(

~X). This implies that

U : Uj → Vj for j = 0 and j = 1. Since for any B ∈ ~B and for any operator

S ∈ I( ~A, ~B) one has

‖Sa‖OrbIa (
~B) = ‖[S]‖I( ~A, ~B)/Ker

I
a (
~B), [S] := S + KerIa( ~B),

it follows that

‖Hj‖U/Uj→V/Vj = ‖T‖Orbaj,I(
~X)→Orbaj,I(

~Y ), j ∈ {0, 1}.

Finally, applying this and an obvious estimate ‖H‖U→V ≤ ‖T‖ ~X→~Y , we obtain the
desired statement from Theorem 2.1. �

We consider Banach sequence lattices on Z. For any such lattice E and any
positive sequence w = {wn} := {wn}n∈Z, we define the weighted lattice E({wn}) on Z

to be the Banach space of all scalar sequences ξ = {ξn} such that ξw := {ξnwn} ∈ E.
The norm on E({wn}) is defined in the usual way, i.e., ‖x‖E({wn}) = ‖xw‖E. In the
following, we briefly write E(wn) instead of E({wn}).

Let E be a Banach sequence lattice on Z and let X be a Banach space. The vector
sequence x = {xn}n∈Z in X is called strongly E-summable if the scalar sequence
{‖xn‖X} is in E. We denote by E(X) the set of all such sequences in X. This forms
a Banach space under pointwise operations, and a natural norm in E(X) is given by
‖x‖E(X) := ‖{‖xn‖X}‖E.

A pair Φ̄ = (Φ0,Φ1) of Banach sequence lattices on Z is called a parameter of

the method of means if Φ0 ∩ Φ1 ⊂ ℓ1. The space J~Φ(
~X) = JΦ0,Φ1

( ~X) built by the
method of means consists of all x ∈ X0 +X1 which may be represented in the form

x =
∑

n∈Z

un (convergence in X0 +X1)

with {un} ∈ Φ0(X0) ∩ Φ1(X1). It is well known that J~Φ is an exact interpolation

functor when the Banach space J~Φ(
~X) is equipped with the norm

‖x‖J~Φ(X) = inf max
{
‖{un}‖Φ0(X0), ‖{un}‖Φ1(X1)

}
,

where the infimum is taken over all the above representations of x (see, e.g., [8, 14]).
As usual for a given quasi-concave function ϕ, we define ϕ∗ by ϕ∗(t) := t/ϕ(t)

for all t > 0 and ϕ∗(0) := 0. We are interested in the special method of means
generated by weighted Banach sequence spaces determined by nondegenerate quasi-
concave functions, i.e., such quasi-concave functions ϕ that the images of the semi-
infinite interval (0,∞) under ϕ and ϕ∗ are (0,∞). In what follows we consider
some important sequences in (0,∞) connected with quasi-concave functions. The
importance of these sequences in the study of abstract real interpolation spaces was
discovered independently by Brudnyi and Kruglyak, and Janson (see [8, 12]).
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Following [9, Definitions 3.1, 3.2], a positive sequence {tk}k∈I is said to be a par-
tition of R+ := (0,∞) if

(i) I is nonempty interval of integers, that is, ∅ 6= I = Z ∩ [inf I, sup I],
(ii) tk−1 < tk for each k such that k − 1, k ∈ I,
(iii) R+ ⊂

⋃
k−1,k∈I [tk−1, tk].

Let ϕ be a quasi-concave function. A partition {tk}k∈I is called a balanced se-

quence for ϕ is there exists a constant γ ≥ 1 and positive integer N such that

(i) For each k ∈ I such that k − 1 ∈ I, at least one of the inequalities

ϕ(tk) ≤ γϕ(tk−1), ϕ∗(tk) ≤ γϕ∗(tk−1)

holds.
(ii) for every a > 0,

card{k ∈ I; a < ϕ(tk) ≤ 2a} ≤ N, card{k ∈ I; a < ϕ∗(tk) ≤ 2a} ≤ N.

It is well known that every quasi-concave function ϕ has a balanced sequence. Note
that such sequences can be constructed by induction (see [9, Proposition 3.4]).

From the point of view of applications such functions ϕ are interesting only
when they have a balanced sequence {ti}i∈I in which I is infinite. For this reason,
we will focus below only on this case. The proofs presented in this section apply
to corresponding Banach sequence lattices E and quasi-concave functions having
balanced sequences modelled on I ∈ {Z−,Z+,Z}, where I = Z− (resp., I = Z+)
in the setting of the subclass of ordered Banach couples (X0, X1) with X1 →֒ X0

(resp., X0 →֒ X1) and I = Z in the general case of all Banach couples. For simplicity
of presentation, we consider only the case when I = Z is the whole set of integers,
which corresponds to nondegenerate quasi-concave functions ϕ. Notice that it follows
from [9, Proposition 3.5] that if {tk}k∈Z is a balanced sequence for a nondegenerate
quasi-concave function ϕ, then there exists a positive constant C such that

C−1
∑

k∈Z

ϕ(tk)min
{
1,
t

tk

}
≤ ϕ(t) ≤ C sup

k∈Z
ϕ(tk)min

{
1,
t

tk

}
, t > 0.

In terms of the K-functional of Peetre the above inequalities are equivalent to

C−1K(t, {ϕ(tk)}; ℓ1, ℓ1(1/tk)) ≤ ϕ(t) ≤ C K(t, {ϕ(tk)}; ℓ∞, ℓ∞(1/tk)).

We point out that a balanced sequence {tk}k∈Z can be constructed by induction so
that the above inequalities hold with C = 4 (see [9, Remark 3.7]). It is straightfor-
ward to check that {2n} is the balanced sequence for ϕθ given by ϕθ(t) = tθ for all
t ≥ 0.

Let {tn}n∈Z be a balanced sequence for a nondegenerate quasi-concave function
ϕ. From the above inequalities, it follows that {ϕ(tn)} ∈ ℓ1 + ℓ1(1/tn). This implies
that for any couple (E0, E1) of Banach sequence lattices on Z such that Ej →֒ ℓ∞ for
j = 0, 1 one has

ℓ∞ →֒ E ′
0(ϕ(tn)) + E ′

1(ϕ(tn)/tn),

where E ′ denotes the Köthe dual space of a Banach sequence lattice E on Z. Thus, by
Köthe duality, it follows that (Φ0,Φ1) := (E0(1/ϕ(tn)), E1(tn/ϕ(tn)) is a parameter

of the method of means. In this case the space J~Φ(
~X) is denoted by ~Xϕ,E0,E1

. If
1 ≤ p0, p1 ≤ ∞, ϕ(t) = tθ for all t ≥ 0 with 0 < θ < 1 and {tn} = {2n}, then
~Xϕ,ℓp0 ,ℓp1

is the classical Lions–Peetre method of means denoted by Jθ,p0,p1( ~X) (see

[16]). If E0 = E1 = E, then JΦ0,Φ1
( ~X) is the classical abstract J-space, which is

denoted by JE( ~X) (see [8, 14]).
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We will give an orbital description of the spaces (X0, X1)ϕ,E0,E1
. In order to do

this we need to introduce some additional notation. Suppose we are given a balanced
sequence {tn}n∈Z for a nondegenerate quasi-concave function ϕ, and a couple ~E =
(E0, E1) of Banach sequence lattices on Z such that Ej →֒ ℓ∞. For any Banach

couple ~X = (X0, X1), we define Iϕ, ~E((ℓ1, ℓ1(1/tn)),
~X) to be the space of all operators

T : (ℓ1, ℓ1(1/tn)) → (X0, X1) such that {T (en)} ∈ E0(X0) and {T (tnen)} ∈ E1(X1),
equipped with the norm given by

‖T‖I
ϕ,~E

( ~X) = max
{
‖{T (en)}‖E0(X0), ‖{T (tnen)}‖E1(X1)

}
.

Frequently, for simplicity, we write Iϕ, ~E(
~X) instead of Iϕ, ~E((ℓ1, ℓ1(1/tn)),

~X).

It can be easily verified that Iϕ, ~E is a left ideal of the Banach couple (ℓ1, ℓ1(1/tn)).

If 1 ≤ q ≤ ∞, 0 < θ < 1 and ϕ(t) = tθ for all t ≥ 0 and E0 = E1 = ℓq, then we
recover the left ideal Iq := Iϕ,ℓq introduced in [15].

Note that under the above assumptions, we have aϕ := {ϕ(tn)}n∈Z ∈ ℓ1+ℓ1(1/tn)

and so the orbit OrbI
aϕ(

~X) from the couple (ℓ1, ℓ1(1/tn)) to ~X generated by an ideal

I := Iϕ, ~E is well defined. It is denoted by Orbaϕ, ~E(
~X). In the case E0 = E1 = E,

we write Iϕ,E and Orbaϕ,E( ~X) for short instead of Iϕ, ~E and Orbaϕ, ~E. Moreover if

I := Iϕ,E we write ρE instead of ρI .
The starting point for our investigation is the following result. We omit the

proof which is an inessential modification of the proof Theorem 12 in the work by
Kruglyak-Milman [15] in the case of the left ideal Iq = Iϕ,ℓq with ϕ(t) = tθ for all
t ≥ 0 and for some θ ∈ (0, 1).

Theorem 2.5. For every Banach couple ~X the following isometrical formula

holds

Orbaϕ, ~E(
~X) ∼= Jϕ, ~E(

~X).

The following variant of Lemma 2 from [15] is the essential ingredient in the
proofs of the main results.

Lemma 2.6. Let ~X = (X0, X1) be a Banach couple and let x ∈ X0+X1. Assume

that w = {wk}k∈Z is a positive sequence and {x0k}k∈Z and {x1k}k∈Z are sequences in X0

andX1, respectively such that x0k+x
1
k = x for each k ∈ Z and the series

∑
k∈Zwk(x

0
k−

x0k−1) converges in X0 +X1. If for a given n ∈ Z the series
∑

k<n |wk+1 −wk| ‖x
0
k‖X0

and
∑

k≥n |wk+1 − wk| ‖x
1
k‖X1

converge absolutely in X0 and X1, respectively, then

for every t > 0 one has

K(t, xw − wnx) ≤
∑

k<n

|wk+1 − wk| ‖x
0
k‖X0

+ t
∑

k≥n

|wk+1 − wk| ‖x
1
k‖X1

,

where xw :=
∑

k∈Zwk
(
x0k − x0k−1

)
.

Proof. Clearly, our hypotheses imply that the following series converge in X0+X1

and it is follows readily that

xw − wnx =
∑

k≤n

wk
(
x0k − x0k−1

)
− wnx

0
n +

∑

k>n

wk
(
x1k−1 − x1k

)
− wnx

1
n

=
∑

k<n

(wk − wk+1)x
0
k +

∑

k≥n

(wk+1 − wk)x
1
k.

Since
∑

k<n(wk −wk+1)x
0
k ∈ X0 and

∑
k≥n(wk+1 −wk)x

1
k ∈ X1, the desired estimate

follows. �
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We need to introduce the following notion. Fix pair (ϕ0, ϕ1) of nondegenerate
quasi-concave functions. A positive sequence {tk}k∈I is said to be admissible of ϕ0

and ϕ1 if it is a common balanced sequence for ϕ0 and ϕ1 such that

sup
k,k+1∈I

wk+1

wk
<∞,

where wk :=
ϕ1(tk)
ϕ0(tk)

for each k ∈ I. A pair (ϕ0, ϕ1) is said to be admissible whenever

there exists an admissible sequence {tk}k∈I of ϕ0 and ϕ1 such that

inf
k,k+1∈I

wk+1

wk
> 0.

For any balanced sequence t := {tn}n∈Z for a nondegenerate quasi-concave func-
tion ϕ, the Calderón operator St defined on ℓ1 + ℓ1(1/tn) is given by

St(ξ) :=

{∑

k≤n

ξk + tn
∑

k>n

ξk
tk

}

n∈Z

, ξ = {ξn} ∈ ℓ1 + ℓ1(1/tn).

Now we are ready to state the following result.

Theorem 2.7. Let t = {tn}n∈Z be a common balanced sequence for nondegener-

ate quasi-concave functions ϕ0 and ϕ1. Assume that the Calderón operator S := St is

bounded in spaces F0 and F1, where Fj := E(1/ϕj(tn)) for j ∈ {0, 1} and E is a Ba-

nach sequence lattice on Z with E →֒ ℓ∞. Then for any Banach couple ~X = (X0, X1)

and any operator T : (ℓ1, ℓ1(1/tn)) → (X0, X1)) with T ∈ Iϕ0,E(
~X), one has

∥∥∥
{
K
(
tn, T

( aϕ1

ϕ1(tn)
−

aϕ0

ϕ0(tn)

)
; ~X

)}∥∥∥
E

≤ 2 sup
n∈Z

∣∣∣
wn+1

wn
− 1

∣∣∣‖S‖F0→F0
‖S‖F1→F1

‖T‖Iϕ0,E
( ~X),

where wn = ϕ1(tn)
ϕ0(tn)

for each n ∈ Z.

Proof. Fix an operator T : (ℓ1, ℓ1(1/tn)) → (X0, X1). Since for both j = 0 and
j = 1 one has aϕj

=
∑

k∈Z ϕj(tk)ek (convergence in ℓ1 + ℓ1(1/tn)),

T (aϕj
) =

∑

k∈Z

T (ϕj(tk)ek) (convergence in X0 +X1).

Let x := T (aϕ0
). Since for each k ∈ Z the series

∑
i<k ϕ0(ti)ei and

∑
i≥k ϕ0(ti)ei

converge absolutely in ℓ1 and ℓ1(1/tn) respectively, it follows that x = x0k+x
1
k, where

x0k :=
∑

i<k

T (ϕ0(ti)ei) ∈ X0, x1k :=
∑

i≥k

T (ϕ0(ti)ei) ∈ X1.

The above formulas yield

T (aϕ1
) =

∑

k∈Z

T (ϕ1(tk)ek) =
∑

k∈Z

ϕ1(tk)

ϕ0(tk)
T (ϕ0(tk)ek)) =

∑

k∈Z

wk
(
x0k − x1k

)
.

We set γ(w) := supn∈Z
∣∣wn+1

wn
− 1

∣∣ and K̃(tk, x) := ‖x0k‖X0
+ tk‖x

1
k‖X1

for each k ∈ Z.

Applying Lemma 2.6 with x = T (aϕ0
) and xw = T (aϕ1

), we conclude that for each
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n ∈ Z one has

K(tn, T (aϕ1
)− wnT (aϕ0

)) ≤
∑

k<n

|wk+1 − wk|‖x
0
k‖X0

+ tn
∑

k≥n

|wk+1 − wk|‖x
1
k‖X1

≤
(
sup
k∈Z

∣∣∣
wk+1

wk
− 1

∣∣∣
) (∑

k<n

wk‖x
0
k‖X0

+ tn
∑

k≥n

wk‖x
1
k‖X1

)

≤ γ(w)
(∑

k<n

wk K̃(tk, x) + tn
∑

k≥n

wk
tk
K̃(tk, x)

)
= γ(w)S({wkK̃(tk, x)}).

Consequently

K
(
tn, T

( aϕ1

ϕ1(tn)
−

aϕ0

ϕ0(tn)

)
≤ γ(w)

S({wkK̃(tk, x)})

ϕ1(tn)
, n ∈ Z,

whence∥∥∥
{
K
(
tn, T

( aϕ1

ϕ1(tn)
−

aϕ0

ϕ0(tn)

)
; ~X

)}∥∥∥
E
≤ γ(w)‖S‖F1→F1

∥∥{K̃(tn, x)
}∥∥

F0
.(∗)

The hypothesis T ∈ I := Iϕ0,E(
~X) yields

∥∥{ϕ0(tk)‖T (ek)‖X0
}
∥∥
F0

= ‖{T (ek)}‖E(X0) ≤ ‖T‖I ,

and ∥∥{ϕ0(tk)‖T (tkek)‖X1
}
∥∥
F0

= ‖{T (tkek)}‖E(X1) ≤ ‖T‖I .

Now observe that

K̃(tn, x) = ‖x0n‖X0
+ tn‖x

1
n‖X1

≤
∑

k<n

ϕ0(tk)‖T (ek)‖X0
+ tn

∑

k≥n

ϕ0(tk)

tk
‖T (tkek)‖X1

≤ S({ϕ0(tk)‖T (ek)‖X0
}) + S({ϕ0(tk)‖T (tkek)‖X1

}).

Combining this with the estimates above gives

‖{K̃(tn, x)}‖F0
≤ 2‖S‖F0→F0

‖T‖I ,

so the required estimate follows from the inequality (∗). �

To present applications of Theorem 2.7 we need a connection between the special
method of means and the K-method. Suppose we are given a positive sequence
s = {sn} ∈ c0(Z) (that is lim|n|→∞ sn = 0) and a Banach sequence lattice on Z such
that

ℓ∞ ∩ ℓ∞(1/sn) ⊂ Φ ⊂ ℓ1 + ℓ1(1/sn).

Note that Φ ⊂ ℓ1 + ℓ1(1/sn) implies that Φ ∩ Φ(s) ⊂ ℓ1, so the method of means

JΦ,Φ(s) is well defined. For any Banach couple ~X = (X0, X1), we define Ks
Φ(
~X) to be

a Banach space of all x ∈ X0 +X1 equipped with the norm

‖x‖Ks
Φ
( ~X) :=

∥∥{K(sn, x; ~X)}
∥∥
Φ
.

The proof of the following lemma is similar to the equivalence theorem for the
classical Lions-Peetre Jθ,q - and Kθ,q -methods. For the sake of completeness we in-
clude a proof.

Lemma 2.8. Let {sn} ∈ c0(Z) be a positive sequence. Then under the above

conditions on Φ the following hold for any Banach couple ~X = (X0, X1):

(i) Ks
Φ(
~X) →֒ JΦ,Φ(s)( ~X) with the norm less than or equal to 4.

(ii) If the Calderón operator S = Ss is bounded in Φ, then JΦ,Φ(s)( ~X) →֒ Ks
Φ(
~X)

with norm less than or equal to 2‖S‖Φ→Φ.
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Proof. (i). For any x ∈ Ks
Φ(
~X) one has {K(sk, x; ~X)} ∈ ℓ1 + ℓ1(1/sk). Hence

min
{
1, 1/sk

}
K(sk, x; ~X) → 0 as |k| → ∞.

Then it follows from the proof of a fundamental lemma for interpolation (see [7,
Lemma 3.3.2]) that there exists a representation of x, such that

x =
∑

k∈Z

uk (convergence in X0 +X1)

and

max{‖uk‖X0
, sk‖uk‖X1

} ≤ 4K(sk, x; ~X), k ∈ Z.

This shows that ∥∥id : Ks
Φ(
~X) → JΦ,Φ(s)( ~X)

∥∥ ≤ 4.

(ii). For given ε > 0 and x ∈ X := JΦ,Φ(v)( ~X) there exists a representation of x,
such that

x =
∑

k∈Z

uk (convergence in X0 +X1)

and

max{‖{uk}‖Φ(X0), ‖{skuk}‖Φ(X1)} ≤ ‖x‖X + ε.

Hence, letting ξ = {ξk} with ξk := max{‖uk‖X0
, sk‖uk‖X1

} for each k ∈ Z, we get

K(sn, x; ~X) ≤
∑

k∈Z

K(sn, uk; ~X) ≤
∑

k∈Z

min{‖uk‖X0
, sn‖uk‖X1

}

≤
∑

k∈Z

min
{
1,
sn
sk

}
max{‖uk‖X0

, sk‖uk‖X1
} = (Sξ)n.

The above estimate combined with

‖ξ‖Φ ≤ 2 max{‖{uk}‖Φ(X0), ‖{skuk}‖Φ(X1)} ≤ 2 ‖x‖X + ε

yields

‖x‖Ks
Φ
( ~X) ≤ 2‖S‖Φ→Φ(‖x‖X + ε).

Since ε > 0 is arbitrary, the required statement follows. �

To state the next result we note that in what follows for a given balanced sequence
s = {sn} for a nondegenerate quasi-concave function ϕ and a Banach sequence lattice
E →֒ ℓ∞, we let

Kϕ,E( ~X) := Ks
Φ( ~X),

for any Banach couple ~X where Φ := E(1/ϕ(sn)).

Theorem 2.9. Assume that ϕ0, ϕ1 and E satisfy the conditions of Theorem 2.7,
where E is a Banach sequence lattice on Z intermediate between ℓ1 and ℓ∞. Then

there exists a constant C > 0 such that for S := St with t = {tn}n∈Z one has

ρE(aϕ0
, aϕ1

) ≤ C sup
k∈Z

∣∣∣
wk+1

wk
− 1

∣∣∣‖S‖F0→F0
‖S‖F1→F1

,

where wk =
ϕ1(tk)
ϕ0(tk)

for each k ∈ Z and Fj := E(1/ϕj(tn)) for j ∈ {0, 1}.
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Proof. From Lemma 2.8 it follows that Kϕ,E( ~X) →֒ Jϕ,E( ~X) with the norm of
the inclusion map less than or equal to 4.

By Theorem 2.7, we conclude that there exists a universal constant C > 0 such
that ∥∥id : Kϕ,E( ~X) → Orbaϕ,E( ~X)

∥∥ < C/4.

Now observe that if T : (ℓ1, ℓ1(1/tn)) → (X0, X1) is any operator in I := Iϕ,E( ~X)
such that ‖T‖I ≤ 1 and T (aϕj

) = 0 for j = 0. The above continuous inclusion
combined with Theorem 2.7 yields,

‖Taϕj
‖Orbaϕj

,E( ~X) ≤
C

2
sup
k∈Z

∣∣∣
wk+1

wk
− 1

∣∣∣‖S‖F0→F0
‖S‖F1→F1

, j = 0.

Similar statement holds for j = 1. This completes the proof by Proposition 2.3. �

We make applications to a special class of pairs of quasi-concave functions. Fol-
lowing Brudnyi and Shteinberg [9], quasi-concave functions ϕ0 and ϕ1 are said to be
in the same scale if there exist quasi-concave functions ψ0, ψ1 and θ0, θ1 ∈ (0, 1) such
that

ϕ0 = ψ1−θ0
0 ψθ01 , ϕ1 = ψ1−θ1

0 ψθ11 .

We will use the following lemma.

Lemma 2.10. Let ϕ0 and ϕ1 be quasi-concave functions in the same scale. Then

the pair (ϕ0, ϕ1) is admissible.

Proof. By [9, Proposition 3.9], it follows that if quasi-concave functions ϕ0 and
ϕ1 are in the same scale, then {tk}k∈I is a balanced sequence for ϕ0 if and only if
it is a balanced sequence for ϕ1 and, moreover for any common balanced sequence
{tk}k∈I for ϕ0 and ϕ1 there exists a constant γ such that for each k such that k − 1,
k ∈ I at least one of the following conditions holds:

ϕj(tk) ≤ γϕj(tk−1), j ∈ {0, 1},

or
ϕ∗
j (tk) ≤ γϕ∗

j (tk−1), j ∈ {0, 1}.

Now we assume that {tk}k∈I is a common balanced sequence for ϕ0 and ϕ1. We
claim that this sequence satisfies the required conditions, which ensure that the pair
(ϕ0, ϕ1) is admissible. To see this let {wk}k∈I denote the sequence given by wk :=
ϕ1(tk)/ϕ0(tk) for each k ∈ I. Recall that tk < tk+1 for each pair (k, k + 1) ∈ I × I.
Since ϕj and ϕ∗

j are non-decreasing functions for j = 0 and j = 1, the first (resp.,
the second) estimate above yields for each k such that k, k + 1 ∈ I,

1

γ
≤

ϕ0(tk)

ϕ0(tk+1)
≤
wk+1

wk
=
ϕ1(tk+1)

ϕ1(tk)

ϕ0(tk)

ϕ0(tk+1)
≤
ϕ1(tk+1)

ϕ1(tk)
≤ γ

(
resp.,

1

γ
≤

ϕ∗
1(tk)

ϕ∗
1(tk+1)

≤
wk+1

wk
=

ϕ∗
1(tk)

ϕ∗
1(tk+1)

ϕ∗
0(tk+1)

ϕ∗
0(tk)

≤
ϕ∗
0(tk+1)

ϕ∗
0(tk)

≤ γ
)
.

This completes the proof. �

Recall that a Banach sequence lattice E on Z is called rearrangement invariant

(r.i. for short) if ξ = {ξk}k∈Z ∈ E and π is an arbitrary permutation of Z, then the
sequence ξπ = {ξπ(k)}k∈Z belongs to E and ‖ξπ‖E = ‖ξ‖E.

We are ready to state the following result.
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Theorem 2.11. Let nondegenerate quasi-concave functions ϕ0 and ϕ1 be given

by ϕ0 = ψ1−θ0
0 ψθ01 and ϕ1 = ψ1−θ1

0 ψθ11 , where ψ0, ψ1 are quasi-concave functions and

θ0, θ1 ∈ (0, 1) with θ0 6= θ1. Suppose that there exist C > 1 and a balanced sequence

{tn}n∈Z for ϕ0 such that

1

C
≤
ψ1(tk+1)

ψ1(tk)

ψ0(tk)

ψ0(tk+1)
≤ C, k ∈ Z.

Then for any r.i. Banach sequence lattice E on Z one has

ρE(aϕ0
, aϕ1

) ≤
(
C |θ0−θ1| − 1

)
‖S‖F0→F0

‖S‖F1→F1
,

where Fj := E(1/ϕj(tn)) for j ∈ {0, 1}.

Proof. Without loss of generality we may assume that θ0 < θ1. The result by
Brudnyi and Shteinberg mentioned in the proof of Lemma 2.10 shows that {tn} is
also a balanced sequence for ϕ1. Since E is a r.i. Banach sequence lattice, the analysis
of the proof of Lemma 6 in [12] shows that the Calderón operator S generated by
a sequence {tn} is bounded in E(1/ϕj(tn)) for j = 0, 1.

Let {wn} be given by wn = ϕ1(tn)
ϕ0(tn)

for each n ∈ Z. Then we have

1

γ
≥

ψ0(tk)

ψ0(tk+1)
≥
wk+1

wk
=

(
ψ1(tk+1)

ψ1(tk)

ψ0(tk)

ψ0(tk+1)

)θ1−θ0

, k ∈ Z.

The hypotheses on ϕ0 and ϕ1 combined with

sup
k∈Z

∣∣∣
wk+1

wk
− 1

∣∣∣ ≤ max

{
− 1 + sup

k∈Z

wk+1

wk
, 1− inf

k∈Z

wk+1

wk

}

gives

sup
k∈Z

∣∣∣
wk+1

wk
− 1

∣∣∣ ≤ max
{
Cθ1−θ0 − 1, 1− Cθ0−θ1

}
≤ Cθ1−θ0 − 1.

To finish we apply Theorem 2.9. �

We give applications to quasi-power functions. We first recall that the lower and
upper dilation indices of a quasi-concave function φ : [0, a) → [0,∞) (0 < a ≤ ∞)
are given by

γφ := lim
t→0+

ln sϕ(t)

ln t
, δφ := lim

t→∞

ln sφ(t)

ln t
,

respectively, where sφ(t) := sup0<s<a,0<st<a
φ(st)
φ(t)

. We have 0 ≤ γφ ≤ δφ ≤ 1

A quasi-concave function ϕ(0,∞) → (0,∞) is said to be quasi-power if 0 <
γφ ≤ δφ < 1. It is well-known that {2n}n∈Z is a balanced sequence for any quasi-
power concave function ϕ. In what follows for any quasi-power function ϕ, we let
aϕ := {ϕ(2n)}n∈Z and S := St with t := {2n}.

Corollary 2.12. Let quasi-power functions ϕ0 and ϕ1 be given by ϕ0 = ψ1−θ0
0 ψθ01

and ϕ1 = ψ1−θ1
0 ψθ11 , where ψ0, ψ1 are quasi-concave functions and θ0, θ1 ∈ (0, 1) with

θ0 6= θ1. Then for any r.i. Banach sequence lattice E on Z one has

ρE(aϕ0
, aϕ1

) ≤ |θ0 − θ1| ‖S‖F0→F0
‖S‖F1→F1

,

where Fj := E(1/ϕj(2
n)) for j ∈ {0, 1}.

Proof. Note that any quasi-power function ρ is nondegenerate. By quasi-concavity
of ψ0 and ψ1 we get

1

2
≤
ψ1(2

k+1)

ψ1(2k)

ψ0(2
k)

ψ0(2k+1)
≤ 2, k ∈ Z.
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We now apply Theorem 2.11 for {tk}k∈Z := {2k} and C = 2 to get by the obvious
inequality 2α − 1 ≤ α for all α ∈ [0, 1], the required statement. �

Theorem 2.13. Assume that quasi-power functions ϕ0 and ϕ1 are such that for

some θ0, θ1 ∈ (0, 1) one of the following conditions is satisfied:

(i) {ϕ1(2
n)/ϕ0(2

n)}n∈Z is a nondecreasing sequence, t 7→ ϕ0(t)/t
θ0 is a nonde-

creasing function on R+ and t 7→ ϕ1(t)/t
θ1 is a nonincreasing on R+.

(ii) {ϕ1(2
n)/ϕ0(2

n)}n∈Z is a nonincreasing sequence, t 7→ ϕ0(t)/t
θ0 is a nonin-

creasing function on R+ and t 7→ ϕ1(t)/t
θ1 is nondecreasing on R+.

Then for any translation-invariant Banach sequence lattice on Z one has

ρE(aϕ0
, aϕ1

) ≤ C|θ0 − θ1| ‖S‖F0→F0
‖S‖F1→F1

,

where Fj := E(1/ϕj(2
n)) for j ∈ {0, 1}.

Proof. Since E is an r.i. Banach sequence lattice, it is easy to verify that the
Calderón operator S generated by a sequence {2n} is bounded in E(1/ϕ(2n)) for any
quasi-power function ϕ.

Assume that the condition (i) (resp., (ii)) holds. Let wn = ϕ1(2n)
ϕ0(2n)

for each n ∈ Z.

Then our hypotheses on ϕ0 and ϕ1 imply that for each k ∈ Z one has

1 ≤
wk+1

wk
=
ϕ1(2

k+1)

ϕ1(2k)
·
ϕ0(2

k)

ϕ0(2k+1)
≤ 2θ1 · 2−θ0 = 2θ1−θ0

(resp., 2θ1−θ0 ≤ wk+1

wk
≤ 1); in particular, θ0 ≤ θ1 (resp., θ1 ≤ θ0). These estimates

combined with the above-mentioned inequality 2α − 1 ≤ α for all α ∈ [0, 1] yield

sup
k∈Z

∣∣∣
wk+1

wk
− 1

∣∣∣ ≤ 2|θ0−θ1| − 1 ≤ |θ0 − θ1|.

Thus the required statement follows from Theorem 2.9. �

We give examples of non-power functions satisfying the conditions of Theorem
2.13. Fix a quasi-concave function ϕ and any α0, α1, β0, β1, θ0 ∈ (0, 1) such that
0 < θ0 < α1 < 1/2 and 0 < β0 < β1 < α1. For j ∈ {0, 1} we define

ϕj(t) := tαjϕ(t)βj , t ≥ 0,

and note that

γϕj
= αj + βjγϕ ≤ δϕj

= αj + βjδϕ.

Since ϕ is quasi-concave, 0 ≤ γϕ ≤ δϕ ≤ 1. Thus our hypotheses imply that ϕ0 and
ϕ1 are quasi-power functions. If we put θ0 := α0 and θ1 := 2α1, then the functions
t 7→ ϕ1(t)/ϕ0(t), t 7→ ϕ0(t)/t

θ0 are nondecreasing and t 7→ ϕ1(t)/t
θ1 is nonincreasing

on (0,∞). Thus the quasi-power functions ϕ0, ϕ1 satisfy the condition (i) of Theorem
2.13. In a similar way, we can construct an example of functions satisfying the second
condition (ii).

Before we state the next result we introduce the following definition. A family
{ϕθ}θ∈(0,1) of nondegenerate quasi-concave functions is said to be stable with respect
to a Banach sequence lattice E on Z with E →֒ ℓ∞ if there exists a common balanced
sequence {tn}n∈Z for all functions of this family having the property: if θ0 ∈ (0, 1) is
fixed, then for any δ > 0 there exists ε > 0 such that if |θ − θ0| < ε, then

ρE(aϕθ
, aϕθ0

) < δ.
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We are ready to formulate a variant of Shneiberg’s result on stability of bounded
invertible operators acting on a corresponding scale of interpolation spaces generated
by the method of means.

Theorem 2.14. Let {ϕθ}θ∈(0,1) a family of nondegenerate quasi-concave func-

tions which is stable with respect to a Banach sequence lattice E →֒ ℓ∞. If T : ~X → ~Y
is an operator between Banach couples such that T : Jϕθ0

,E( ~X) → Jϕθ0
,E(~Y ) is invert-

ible for some θ0 ∈ (0, 1), then there exists ε > 0 such that T : Jϕθ ,E(
~X) → Jϕθ,E(

~Y )
is invertible for all θ ∈ (0, 1) with |θ − θ0| < ε.

Proof. Applying Theorem 2.5 we infer that for every θ ∈ (0, 1) one has

Orbaϕθ
,E(·) ∼= Jϕθ, ~E

(·).

Thus if we put X := Orbaϕθ0
,E( ~X) and Y := Orbaϕθ0

,E(~Y ), then T : X → Y is

invertible. Now choose δ > 0 such that

δ <
[
2(1 + ‖T‖ ~X→~Y ‖T

−1‖Y→X)]
−1.

By our hypothesis, it follows that there exists ε > 0 such that if |θ − θ0| < ε, then

ρE(aϕθ
, aϕθ0

) < δ.

Consequently, the desired result follows from the Theorem 2.4. �

The following result provides examples of families which have the stability prop-

erty.

Lemma 2.15. Let ψ0 and ψ1 be nondegenerate quasi-concave functions with the

same balanced sequence {tn}n∈Z generated by induction. Then the family {ϕθ}θ∈(0,1)
where ϕθ = ψ1−θ

0 ψθ1 for all θ ∈ (0, 1) is stable with respect to any r.i. Banach sequence

lattice E on Z.

Proof. Let {tn}n∈Z be a balanced sequence for both ψ0 and ψ1 generated by
induction (via a fixed q > 1), that is, for j = 0 and j = 1,

min

{
ψj(tk+1)

ψj(tk)
,
tk+1ψj(tk)

tkψj(tk+1)

}
= q, k ∈ Z.

Then for every θ ∈ (0, 1) and each k ∈ Z one has

min

{
ϕθ(tk+1)

ϕθ(tk)
,
tk+1ϕθ(tk)

tkϕθ(tk+1)

}
= q

and so {tn} is a balanced sequence of ϕθ for all θ ∈ (0, 1).
Fix an r.i. Banach sequence lattice E on Z. Then the Calderón operator S

generated by {tn} is bounded in Ej := E(1/ψj(tn)) for j ∈ {0, 1}. Since S is positive
operator, it follows from an interpolation theorem for positive operators between the
Calderón product spaces (X(θ) := X1−θ

0 Xθ
1 , generated by Banach function lattices

X0 and X1 on any σ-finite measure space) that S is bounded on E1−θ
0 Eθ

1 with (see,
e.g., [14, p. 246])

‖S‖E(θ)→E(θ) ≤ (‖S‖E0→E0
)1−θ(‖S‖E1→E1

)θ ≤ max
j=0,1

‖S‖Ej→Ej
.

We shall use the fact (which is easily seen) that

E(θ) = E(1/ψ0(tn))
1−θE(1/ψ1(tn))

θ = E(1/ϕθ(tn))
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with 2−1‖ · ‖E(1/ϕθ(tn)) ≤ ‖ · ‖E(θ) ≤ ‖ · ‖E(1/ϕθ(tn)). Hence

‖S‖E(1/ϕθ(tn)) ≤ K := 2max
j=0,1

‖S‖E(1/ψj(tn)), θ ∈ (0, 1),

where the constant K is independent of θ. Now apply Theorem 2.11 to find

ρE(aϕθ0
, aϕθ1

) ≤
(
C |θ0−θ1| − 1

)
‖S‖E(1/ϕθ0

(tn))‖S‖E(1/ϕθ1
(tn))

≤
(
C |θ0−θ1| − 1

)
K2.

This completes the proof. �

We conclude this section with the following result.

Corollary 2.16. Let {ϕθ}θ∈(0,1) a family of nondegenerate quasi-concave func-

tions which is stable with respect to a translation-invariant Banach sequence lat-

tice E on Z. If T : ~X → ~Y is an operator between Banach couples such that

T : Kϕθ0
,E( ~X) → Kϕθ0

,E(~Y ) is invertible for some θ0 ∈ (0, 1), then there exists ε > 0

such that T : Kϕθ,E(
~X) → Kϕθ,E(

~Y ) is invertible for all θ ∈ (0, 1) with |θ − θ0| < ε.

Proof. The assumption that the Calderón operator S generated by any balanced
sequence {tn} of nondegenerate quasi-concave function ϕ is bounded in E(1/ϕ(tn))

yields the continuous inclusion for any Banach couple ~X,

Jϕ,E( ~X) →֒ Kϕ,E( ~X).

Since the opposite inclusion holds (see proof of Theorem 2.9), Kϕ,E( ~X) = Jϕ,E( ~X).
This completes the proof by Theorem 2.14. �

3. Applications to rearrangement invariant function spaces

Throughout this section I = [0, 1] or I = [0,∞) is equipped with the Lebesgue
measure m and L0(I, m) denotes the space of equivalence classes of all real Lebesgue
measurable functions on I. Given f ∈ L0(I, m), its distribution function is defined
by mf(λ) = m({t ∈ I; |f(t)| > λ}), and its decreasing rearrangement by f ∗(t) =
inf{λ ≥ 0; mf (λ) ≤ t} for t > 0. A Banach lattice (X, ‖·‖X) is called a rearrangement
invariant (r.i. for short) function space provided mf = mg, f ∈ X implies g ∈ X,
‖f‖X = ‖g‖X.

If X is an r.i. function space on (I, m) (for short on I) and χA denotes the
characteristic function of a measurable set A, clearly ‖χA‖X depends only on m(A).
The function ϕX(t) = ‖χA‖X , where m(A) = t, 0 ≤ t ≤ 1, is called the fundamental

function of X.
Important examples of r.i. function spaces include the Lp-spaces with 1 ≤ p ≤ ∞,

Marcinkiewicz and Lorentz spaces. Let ϕ : I → [0,∞) be a quasi-concave function.
The Marcinkiewicz space Mϕ is the space of all f ∈ L0(I, m) equipped with the norm

‖f‖Mϕ := sup
0<t∈I

ϕ(t)

t

ˆ t

0

f ∗(s) ds <∞.

In the case when ϕ : I → [0,∞) is a concave function with ϕ(0) = 0, the Lorentz
space Λϕ consists of all f ∈ L0(I, m) equipped with the norm

‖f‖Λϕ :=

ˆ

I

f ∗(t) dϕ(t) <∞.

Note that the fundamental functions of these spaces are ϕΛϕ = ϕMϕ = ϕ.
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Recall that if I = [0, 1] (resp., I = [0,∞)), then L1 and L∞ (resp., L1 ∩ L∞

and L1 + L∞) are, respectively, the largest and the smallest r.i. function spaces on
I. Moreover, if X is an r.i. function space on I with fundamental function ϕ, then
ϕ is quasi-concave and the following continuous embeddings hold (see [14, Theorems
II.5.5 and II.5.7] or [9, Theorem II.5.13]):

Λ(ϕ̃) →֒ X →֒ M(ϕ),

where ϕ̃ is a least concave majorant of ϕ.
For a given t > 0 the dilation operator σt is defined for all f ∈ L0(I, m) by

σtf(s) = f(s/t)χI(s/t), s ∈ I. Then σt is bounded in every r.i. function space X and
so the lower and the upper Boyd indices are well defined by

αX = lim
t→0+

ln ‖σt‖

ln t
, βX = lim

t→∞

ln ‖σt‖

ln t
,

respectively. In general, 0 ≤ αX ≤ βX ≤ 1. Since sϕX
(t) ≤ ‖σt‖X for every t > 0,

it follows that αX ≤ pX ≤ qX ≤ βX , where pX := γϕX
and qX := δϕX

. We refer the
reader to [9, 14] for more details about r.i. function spaces.

An r.i. function space X on I is said to be ultrasymmetric if X is an interpolation
space between the Lorentz space Λϕ and the Marcinkiewicz space Mϕ with ϕ := ϕX .
Ultrasymmetric spaces were studied by Pustylnik [17]. Applications of these spaces
are given in [18, 19].

A description of a certain class of ultrasymmetric spaces was given by Pustylnik
in terms of real interpolation spaces. Using our notation, his main result Theorem 2.1
in [17] states that an r.i. function space X on [0, 1] with γX > 0 is ultrasymmetric if
and only if one has

X = KE(1/ϕ(tn))(L1, L∞),

where ϕ = ϕX , {tn} = {2−n}n≥0 and E is an interpolation space between ℓ1 and ℓ∞
defined on Z+. Combining this result with our variants of the results for estimates
of orbits of elements aϕ = {ϕ(tn)}n∈I for I = Z+ allows us to obtain Shnieberg’s
type results on stability of invertible operators T : (L1, L∞) → (L1, L∞) acting on
ultrasymmetric spaces. We leave details to the interested reader.
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