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Isomorphisms on interpolation spaces
generated by the method of means

MIECZYSEAW MASTYLO

Abstract. We investigate the stability of isomorphisms acting between interpolation spaces
generated by the method of means. We focus on the methods which are determined by balanced
sequences for non-degenerate quasi-concave functions. The key point for our investigation is that
these methods have orbital description by a single element generated by a special ideal of operators
between Banach couples. We prove that if an operator is invertible in one orbit it is also invertible
by nearby orbits provided that the corresponding indices of quasi-concave functions generated these
orbits are close to each other. In particular, these results apply to the real method of interpolation.

Keskiarvomenetelméin tuottamien interpolaatioavaruuksien isomorfismit

Tiivistelm&. Tarkastelemme keskiarvomenetelmén tuottamien interpolaatioavaruuksien valis-
ten isomorfismien hairidherkkyytté. Keskitymme ei-degeneroituneiden kvasikonkaavien funktioiden
suhteen tasapainotettujen jonojen madraamiin menetelmiin. Tutkimuksemme avainhavainto on, etta
nama menetelmét voidaan kuvailla radoittain Banachin parien vililla toimivan erityisen operaattori-
ihanteen virittdman yksittdisen alkion avulla. Osoitamme, ettéd jos operaattori on kdéntyva yhdella
radalla, niin se on kddntyva myo6s ldheisilld radoilla, mikéli ndiden ratojen virittdmien kvasikonkaa-
vien funktioiden vastaavat indeksit ovat ldhella toisiaan. Erityisesti tulokset soveltuvat reaaliseen

interpolointimenetelmésn.

1. Introduction

One of the major problems in interpolation theory is the study of stability prop-
erties of operators acting between interpolation Banach spaces. Studying these types
of properties spins off applications in various areas of analysis. Development of the
theory of Fredholm operators and a general recognition of the importance of the
subject in applications to the solvability of partial differential equations motivates
the study of stability of the Fredholm properties under interpolation. The first re-
sult on the stability of Fredholm property is due to Shneiberg [20]; it states that, if
T: (Xo, X1) — (Yo, Y1) is an operator between compatible couples of complex Banach
spaces, then the set of all § € (0, 1), for which the operator T': [Xo, X1]g — [Yo, Y1]s is
Fredholm between Calderén interpolation spaces is open. This result was overlooked
at first, but after a while it became crucial for further research (see [1, 3, 5, 10, 13, 21])
and references given there. It is perhaps appropriate to remark that the stability of
Fredholm properties of operators between interpolation scales of Banach spaces is
deeply connected with the stability of interpolated isomorphisms. This phenomenon
was discussed in [4] for interpolation scales constructed by using vector-valued ana-
lytic functions introduced in [11], which recover, up to equivalence of norms, the real
and the complex methods of interpolation. These results were used in [5] to study
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the stability of the inverses of isomorphisms acting on interpolation scales of Banach
spaces.

The main purpose of the present paper is to investigate the stability of invert-
ibility property for operators between interpolation spaces generated by the method
of means. It is a natural continuation of previous work in the literature related to
the problem mentioned above (see, e.g., [1, 4, 5, 15]). We focus on methods of means
determined by quasi concave-functions which proved to play a key role in the theory
of interpolation of linear operators. As we will see, the key to our study is that these
methods have an orbital description by a single element generated by a special ideal
of operators. We prove that if an operator is invertible in one orbit it is also invertible
in nearby orbits provided that the corresponding indices of quasi-concave functions
generated these orbits are close to each other. In particular, these results apply to
the real method of interpolation.

Throughout the paper we will use standard notation. As usual, for a given Banach
space X we denote by L(X) the Banach space of all bounded linear operators on X
equipped with the uniform norm. If X and Y are Banach spaces such that X C Y
and the inclusion map id: X — Y is bounded, then we write X — Y. We write
X 2Y whenever X =Y, with equality of norms.

2. Notation and main results

First, we introduce some essential definitions and notation. For basic notation of
interpolation theory, we refer to [7] and [8]. We recall that a mapping F: B — B, from
the category Bofall couples of Banach spaces into the category B of all Banach spaces
is said to be an interpolation functor (or method) if, for any couple X = (Xo, X1),
the Banach space F(Xp,X;) is intermediate with respect to X (i.c., Xo N X, C
F()Z') C Xo+ X1), and T: F(Xo, X;) — F(Yy, Y1) for all T: (Xo, X;) — (Yo, Y1);
here, as usual, the notation 7": (Xo, X1) — (Yo, Y1) means that T: Xo+X; — Yo+Y)
is a linear operator, such that the restrictions of 7' to the space X, is a bounded
operator from X; to Y}, for j = 0 and j = 1. Notice that by the closed graph

theorem, for any Banach couples X and Y one has

||T||F()?)aF(Y) <C|Tlg.y=C jH:l%?% 1T x5

If C may be chosen independently of X and 37, then F is called a bounded interpo-
lation functor and it is called exact if C' = 1.

An operator T: (Xo, X1) — (Y0, Y1) between Banach couples is said to be invert-
ible whenever the restriction T'|x,: X; — Y} is invertible (i.e., T is an isomorphism
of X; onto Y;) for j = 0 and j = 1. In what follows we will often omit the domain

of the restricted operator. We will use Peetre’s K-functional. Let X = (X0, X1) be
a Banach couple. For ¢ > 0

Ktz X) = K(t,z; Xo, X1) := inf {||zo|lx, + tl|z1 ]l xy; 2o+ 21 =2}, z € Xo+ Xi.

Following [15] we will consider a special class of operators between Banach cou-
ples. For a fixed Banach couple A, we define a left operator ideal Z (from A) as
a subclass of L(A,-) such that for any Banach couple X its components

I(A, X) = LA, X)NT

are linear spaces which satisfy the following properties for all Banach couples X and

Y:
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(i) Z(A, X) equipped with a norm || - ||z is a Banach space such that
v(A) == sup ||id: Z(A, X) — L(A, X)|| < co.
XeB
(i) Z(A, X) contains all one rank operators from A to X.
(iii) (The left ideal property) If T € Z(A, X), S € L(X,Y), then ST € Z(A,Y)
and
15Tz < 151l ¢ w17 llz-
Let A be a Banach couple and let Z (A: -) be a left operator ideal. For an arbitrary

element a # 0 in Ag+ Ay, we define the orbit OrbZ ()Z' ) to be the space of all elements
in the form T'a, where T' € Z(A, X). This space is equipped with the norm

l2]l = mf{|T|z; = = Ta}.

Since

-,

ITallxo+x: < 1T 1 ¢llall agrar < A(A) [T NIzllallap+a,,

the map d,: I(/T,)_(’) — Xo + X1 given by
5,(T) :=Ta, T eI(A X),

is continuous. This implies that Orb* ()Z' ) is isometrically isomorphic to the quotient
space Z(A, X)/Ker?(X), where

KerZ(X) := ker(d,) = {T € Z(A, X); Ta = 0}

and so Orb? ()Z' ) is a Banach space. Clearly, the left ideal property yields that B>
X — OrbZ(X) is an exact interpolation functor.

We will use the theorem on stability of invertible operators acting between in-
terpolation orbits generated by the left ideal operator. We need first some notation
and collect some results which will be used extensively in the remainder.

Given a Banach space U and any closed subspaces Uy, U; of U we let

p(Uy,Uy) := sup |dist(u, Upy) — dist(u, Uy)|,

lullo=1
where dist(u, U;) is the distance from u € U to Uj, that is,
dist(u, U;) = ing |lu —ujllu, 7 €{0,1}.
ujzel;

J J

Let U, V be Banach spaces and Uy, U; and Vj, V; be closed subspaces of U and V/,
respectively. Suppose that H is a linear bounded operator from U to V' which maps
Up to V and Uy to V4. Since for j = 0 and j = 1 one has H(u+u;) = H(u)+H (u;) €
H(u)+Vj for all u; € U;, we can define the quotient operators H;: U/U; — V/V; by

Hi(u+U;):=H(u)+V;, uwel.

The key result we need is the following theorem from [3, Theorem 3.4] which is
a slightly modified variant Theorem 9 from [15].

Theorem 2.1. Suppose that H: U — V maps U, to V; for each j € {0,1}, and
the quotient operator Hy: U/Uy — V/Vy is invertible. If

1
(L + HH oy HHy lvve o)

max{dist(Uo, Ul), dlSt(%, ‘/1)} < 5
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then the quotient operator Hy: U/U; — V/Vi is invertible. Moreover, an upper
estimate for the norm of Hy is given by

IH vvisogon < 201 Hy Hlvve—uye-

Let Z(A,-) be the left ideal of operators. Following [15] in the case of an ideal
L of all operators, let p be a distance defined on closed subspaces of the spaces of
Z(A, X), and let ag,a; € Ag + A;. Then we let

(OrbI( ), Orbl (X )) := p(ker 0,4, ker d,, ).

We define a distance between orbits Orbm0 and Orbf1 by the following pseudo-metric
on AO + Ali

pz(ag, ar) == p(Orby,, Orby ) := sup p( Orb (X (), Orb? (X ))
XeB
We start with an obvious observation which follows from the the definition.

Lemma 2.2. For every ag,a; € Ay + Ay and any left ideal T one has

pz(ag,ar) = sup }||Tao||orb§0()z) - ||Ta1||orb{,’31()?)}’

where the supremum is taken over all T: A — X such that 1Tz ) < 1.

Applying Lemma 2.2 we get estimates of the metric pz using operators which
allow a suitable cancellations. We omit the proof since it is an inessential modification
of the proof of Proposition 3 in [15].

Proposition 2.3. Let A be a Banach couple, and let Z(A,-) be a left ideal of
operators. Assume that € > 0 and ag, a; € Ay + Ay are such that the following
conditions are satisfied:

(i) For any Banach couple X and any operator T € I(ff, )Z') with Tag = 0, it
follows that
ITaollonz 2y < €lTllza%):

(ii) For any Banach couple X and any operator T € Z(A, X) with Ta, = 0, it
follows that
||Ta0||0rbI x) = 5||T||I(AX
Then one has
pz(ag, ar) < 2e.
The theorem which follows now will be useful in proving results on stability of
invertible operators acting between spaces generated by method of means.
Theorem 2.4. Let A, X, Y be Banach couples, and let I(A, ) be a left ideal
of operators. Assume that for some ay € Ay + Ay an operator T': X — Y is such

that T Orbfo( ) — Orbfo( ) is invertible. Then T: OrbZ(X) — OrbZ(Y) is also
invertible for all a € Ay + Ay such that

_ -1
pz(ag,a) < [2(1 + ||T||)Zﬂ7 |7 1||Orbfo(?)ﬁ0rbfo()2))] :

Proof. The argument is similar to the proof in [15, Theorem 10(c)| for Z = L.
We include the proof for completeness. We apply Theorem 2.1 for Banach spaces
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U :=TI(4, ) V := Z(A,Y), and subspaces Uy := Kert ()Z') Vo = Ker? (}7) and
Uy == Ker? (X X), V} = Ker?, (Y) and H: U — V given by

H(S):=ToS, SelL(AX),
2(X)

Observe that for all a € Ay + A;, we have H: Ker — Ker?(X). Thus using H,
we can define the quotient operators H;: Z(A, X)/U I(A, Y)/V] by

Hi(S+U;)):=H(S)+V;, SeI(AX), je{0o1}.

Clearly, for all a € Ay + Ay, we have H: Ker?(X) — KerZ(X). This implies that
U:U; = Vjfor j =0and j = 1. Since for any B € B and for any operator
S € I(A, B) one has

||Sa||orb§(§) = |I[S ]||z B)/KerZ(B) 1S] = S+Ker (B),
it follows that

||Hj||U/Uj*>V/‘/j = ||T||Orbaj,I(X:)*)Ol"baj,I(?)’ J € {O> 1}~

Finally, applying this and an obvious estimate ||H||y—y < [|T]| ¢y, we obtain the
desired statement from Theorem 2.1. O

We consider Banach sequence lattices on Z. For any such lattice £ and any
positive sequence w = {w, } := {wy, }nez, we define the weighted lattice E({w,}) on Z
to be the Banach space of all scalar sequences & = {¢,} such that {w := {{,w,} € E.
The norm on E({w,}) is defined in the usual way, i.e., |z| g({w,}) = |[|[zw||z. In the
following, we briefly write E(w,,) instead of E({w,}).

Let E be a Banach sequence lattice on Z and let X be a Banach space. The vector
sequence z = {x,}nez in X is called strongly F-summable if the scalar sequence
{||znl|x} is in E. We denote by F(X) the set of all such sequences in X. This forms
a Banach space under pointwise operations, and a natural norm in E(X) is given by
lellzco) = Ilzallx His

A pair & = (9, P;) of Banach sequence lattices on Z is called a parameter of
the method of means if & N ®; C ¢;. The space Jq;()Z) = J¢07¢1()Z') built by the
method of means consists of all z € Xy + X; which may be represented in the form

T = Z u, (convergence in Xy + X7)

with {u,} € ®o(Xo) N P1(X;). It is well known that Jz is an exact interpolation
functor when the Banach space Jq;()z ) is equipped with the norm

(1, ) = inf max {||{w. oo, {un} ey}

where the infimum is taken over all the above representations of z (see, e.g., [8, 14]).
As usual for a given quasi-concave function ¢, we define ¢* by ¢*(t) := t/p(t)
for all ¢ > 0 and ¢*(0) := 0. We are interested in the special method of means
generated by weighted Banach sequence spaces determined by nondegenerate quasi-
concave functions, i.e., such quasi-concave functions ¢ that the images of the semi-
infinite interval (0,00) under ¢ and ¢* are (0,00). In what follows we consider
some important sequences in (0, 00) connected with quasi-concave functions. The
importance of these sequences in the study of abstract real interpolation spaces was
discovered independently by Brudnyi and Kruglyak, and Janson (see [8, 12]).
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Following |9, Definitions 3.1, 3.2|, a positive sequence {ty}re; is said to be a par-
tition of R, := (0, 00) if
(i) I is nonempty interval of integers, that is, ) # I = Z N [inf I, sup I],
(ii) tx_1 < tx for each k such that k — 1,k € I,
(111) R, C Uk—l,ke[ [tk—latk]-
Let ¢ be a quasi-concave function. A partition {¢;}rer is called a balanced se-
quence for ¢ is there exists a constant v > 1 and positive integer N such that

(i) For each k € I such that k — 1 € I, at least one of the inequalities

p(te) < ye(tr-1),  @* (k) < 79" (th-1)
holds.
(ii) for every a > 0,

card{k € I; a < o(ty) <2a} < N, card{k € I;a < ¢*(tx) <2a} < N.

It is well known that every quasi-concave function ¢ has a balanced sequence. Note
that such sequences can be constructed by induction (see [9, Proposition 3.4]).
From the point of view of applications such functions ¢ are interesting only
when they have a balanced sequence {t;};c; in which [ is infinite. For this reason,
we will focus below only on this case. The proofs presented in this section apply
to corresponding Banach sequence lattices F and quasi-concave functions having
balanced sequences modelled on I € {Z_,Z,Z}, where I = Z_ (resp., I = Z,)
in the setting of the subclass of ordered Banach couples (Xo, X;) with X; — X
(resp., Xo <= X7) and I = Z in the general case of all Banach couples. For simplicity
of presentation, we consider only the case when I = Z is the whole set of integers,
which corresponds to nondegenerate quasi-concave functions ¢. Notice that it follows
from |9, Proposition 3.5] that if {;}rez is a balanced sequence for a nondegenerate
quasi-concave function ¢, then there exists a positive constant C' such that

! ng(tk)min{l,i} < p(t) < C sup go(tk)min{l, ti}’ t>0.

Pyt keZ k
In terms of the K-functional of Peetre the above inequalities are equivalent to
CTHE(t {p(te)}: 0, 6(1/0) < o(t) < C Kt {o(ti)}; Lo, loo(L/1))-

We point out that a balanced sequence {fx}rez can be constructed by induction so
that the above inequalities hold with C' = 4 (see [9, Remark 3.7]). It is straightfor-
ward to check that {2"} is the balanced sequence for , given by g(t) = t? for all
t>0.

Let {t,}nez be a balanced sequence for a nondegenerate quasi-concave function
¢. From the above inequalities, it follows that {¢(¢,)} € ¢; + ¢1(1/t,). This implies
that for any couple (Ey, E7) of Banach sequence lattices on Z such that E; — { for
7 =20,1 one has

loo = E(0(tn)) + E1(p(tn) /tn),

where £’ denotes the Kéthe dual space of a Banach sequence lattice E on Z. Thus, by
Kothe duality, it follows that (®g, 1) := (Eo(1/¢(tn)), E1(t,/@(t,)) is a parameter
of the method of means. In this case the space Ji;()?) is denoted by )Z'%EO,EI. If
1 < po,p1 < 00, p(t) =t forall t > 0 with 0 < § < 1 and {t,} = {2"}, then
)?‘Pvgpo «,, is the classical Lions-Peetre method of means denoted by Jy y,p, (X) (see
[16]). If Ey = Ey = E, then Jg,¢,(X) is the classical abstract J-space, which is
denoted by Jg(X) (see [8, 14]).
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We will give an orbital description of the spaces (Xo, X1), g,z - In order to do
this we need to introduce some additional notation. Suppose we are given a balanced
sequence {t,},ecz for a nondegenerate quasi-concave function ¢, and a couple E =
(Ep, Ey) of Banach sequence lattices on Z such that E; — (. For any Banach
couple X = (X, X;), we define 7, 5((61, (1)), X) to be the space of all operators
T: (01,01(1/t,)) — (Xo, X1) such that {T'(e,)} € Eo(Xo) and {T'(tnen)} € E1(Xy),
equipped with the norm given by

1Tz ) = max {I{T(en) Ml goxo), I{T (tnen) Hlgr i) }-

Frequently, for simplicity, we write Z #(X) instead of Z, 5((1, 61 (1/t0)), X).

It can be easily verified that Z , 5 is a left ideal of the Banach couple (¢1, 1(1/t,)).
f1<qg<o00,0<6<1andp(t)=1tl forallt >0 and Ey = E; = {,, then we
recover the left ideal Z, := Z,, 4, introduced in [15].

Note that under the above assumptions, we have a, := {¢(t,) }nez € L1+41(1/t,)
and so the orbit Orbi()z) from the couple (¢1,¢1(1/t,)) to X generated by an ideal

1 :=1I, is well defined. It is denoted by Orb%ﬁ()?). In the case Fy = E; = E,

—

we write Z, g and Orb,, g(X) for short instead of I% 7 and Orbaw 7 Moreover if
1 =1, we write pg instead of pz.

The starting point for our investigation is the following result. We omit the
proof which is an inessential modification of the proof Theorem 12 in the work by
Kruglyak-Milman [15] in the case of the left ideal Z, = Z,,,, with ¢(t) = t? for all
t > 0 and for some 6 € (0,1).

Theorem 2.5. For every Banach couple X the following isometrical formula
holds

—

Orb, #(X)=J

o,E

(X).
The following variant of Lemma 2 from [15] is the essential ingredient in the

proofs of the main results.

Lemma 2.6. Let X = (X, X;) be a Banach couple and let x € Xo+X,. Assume
that w = {wy }rez Is a positive sequence and {x2 }cz and {x}. ez are sequences in X,
and X, respectively such that z)+x), = x for each k € Z and the series Y, wy () —
2f)_,) converges in X+ Xi. If for a given n € Z the series Y, _, [wr41 — wi| [|20]| x,
and > ,o. |wri1 — wy| ||3]|x, converge absolutely in X, and Xi, respectively, then
for every t > 0 one has

K(t, @y — wn) < Y Jwper = wil 2l xo + Y [ — wil llg]lx,
k<n k>n
where z, = Y, wi (2 — 2f_)).

Proof. Clearly, our hypotheses imply that the following series converge in X+ X3
and it is follows readily that

Ty — WpT = Z wy (2, — x)_y) — wazh) + Zwk (21 — 1) — waz,,

k<n k>n
= Z(wk — W)Y+ Z(wkﬂ — wy,) T}
k<n k>n

Since Y, _, (w, — wpi1)2h) € Xo and Yo, (we1 — wy)zy € X, the desired estimate
follows. - 0
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We need to introduce the following notion. Fix pair (¢g,¢1) of nondegenerate
quasi-concave functions. A positive sequence {t}rer is said to be admissible of ¢
and ¢ if it is a common balanced sequence for ¢y and ¢ such that

W41

sup
kk+1el Wk

< 00,

where wy, := :2; (Ue) for cach k € I. A pair (0, ¢1) is said to be admissible whenever
there exists an admzsszble sequence {tx}rer of vo and ¢ such that

. Wr+1
inf +
kk+1€l wy

> 0.

For any balanced sequence t := {t, } ,cz for a nondegenerate quasi-concave func-
tion ¢, the Calderon operator S* defined on ¢; + ¢1(1/t,) is given by

{Zékﬂ%zgk} cE={G) e+ n(1/ty).

k<n k>n

Now we are ready to state the following result.

Theorem 2.7. Lett = {t,},ez be a common balanced sequence for nondegener-
ate quasi-concave functions g and ;. Assume that the Calderén operator S := S is
bounded in spaces Fy and Fy, where F; := E(1/p;(t,)) for j € {0,1} and E is a Ba-
nach sequence lattice on Z with E < (s, Then for any Banach couple X = (Xo, X1)
and any operator T: ((1,01(1/t,)) = (Xo, X1)) with T € I%E()Z'), one has

et (55 ~ 23

n+1

< 2sup = - 1\HSHWOHSHFHEHTHIM@,

nezZ n

where w,, = 2% for each n € Z.
SOO(tn)
Proof. Fix an operator T': (¢1,¢1(1/t,)) — (Xo,X1). Since for both j = 0 and
j =1lonehas a,, =), ., 0j(ty)er (convergence in £1 + ¢1(1/t,)),
T(ay,) ZT @;(tr)er) (convergence in X+ Xj).

keZ

Let z := T(ay,). Since for each k € Z the series ), , ¢o(ti)e; and D .-, wo(ti)e;
converge absolutely in ¢; and ¢;(1/t,,) respectively, it follows that = 29 4+ x}, where
l‘k —ZT QOQ 61 EX(), ZL‘k —ZT (po )ei)GXl.

i<k 1>k

The above formulas yield

T(ag,) =Y T(pi(tr)ex) %(tk)T(@o(tk)ek)) =D wi(a} — ).

We set y(w) 1= sup,,cz, ‘“ﬁ:l — 1| and K (ty, x) = |22 x, + t||7i| x, for each k € Z.
Applying Lemma 2.6 with = T'(ay,) and x,, = T'(a,, ), we conclude that for each
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n € Z one has

K (tn: T(ag,) = wnT(ag,)) < Y fwnrr = welllafllxo + tn Y lwnser — wil |zt x,

k<n k>n

anl) (Zwkuxkuxo +t Zwkuxkuxl)
(Zwk (th, @ +tz K(ty,2)) = 7(w) S{uwrK (e, ) ).

< (sup
keZ

Consequentlyk<n -
(o (i~ eiy) <10 T nen
whence
e (G - 2O, < S HE M,

The hypothesis T' € Z := 1, £(X) yields
[{eo(t)IT (ex)llx0 | g, = I{T (ex) Hlpx0) < 1T Iz,

and
H{o T (tren)llx H s, = KT (trer) Hpexn) < NIT 1z
Now observe that

et <P0 )
K(t, z) = |20 x, + tallzhllx, <) o) IT(er)lxo + tn Z i 1T (tkex)l x,

k<n k>n

< S{eo(te)[IT(er)llxo}) + S{o(ti) [T (Erer) || x1})-

Combining this with the estimates above gives

I{E (tns ) o < 2015 o0 1 T ]|
so the required estimate follows from the inequality (x). U

To present applications of Theorem 2.7 we need a connection between the special
method of means and the K-method. Suppose we are given a positive sequence
s = {sn} € co(Z) (that is lim, . S, = 0) and a Banach sequence lattice on Z such
that

loo N loo(1/8,) TP C by +41(1/sy).
Note that & C ¢, + ¢1(1/s,) implies that & N ®(s) C ¢4, so the method of means

Jo,a(s) is well defined. For any Banach couple X = (X, X1), we define K3(X) to be
a Banach space of all x € Xy + X; equipped with the norm

Ky (X) "= H{K Snsy T X }ch

The proof of the following lemma is similar to the equivalence theorem for the
classical Lions-Peetre Jy,- and Ky ,-methods. For the sake of completeness we in-
clude a proof.

||

Lemma 2.8. Let {s,} € co(Z) be a positive sequence. Then under the above
conditions on ® the following hold for any Banach couple X = (Xo, X1):
(i) K5(X) — Jo,a(s) (X) with the norm less than or equal to 4.
(ii) If the Calderon operator S = S* is bounded in ®, then J¢7¢(S)()Z) — K5(X)
with norm less than or equal to 2||S||¢—e.
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Proof. (i). For any = € K3(X) one has {K (s, 2; X)} € €1 + £1(1/s;). Hence

min {1, 1/sk}K(sk,x;X) —0 as |k| = 0.
Then it follows from the proof of a fundamental lemma for interpolation (see |7,
Lemma 3.3.2]) that there exists a representation of x, such that

xr = Z u  (convergence in X+ X;)
keZ
and
max{||ue]|x,, sellurllx, } < 4K (s, 2: X), k€ Z.

This shows that

(ii). For given € > 0 and z € X := J<I;.7<I;(U ()Z') there exists a representation of z,
such that

xr = Z ur  (convergence in X+ X;)
keZ
and
max{|[{ue}locxo), [{srkuntllocxn} < llzllx +e.

Hence, letting & = {&} with & := max{||uk||x,, Sklluk|x,} for each k € Z, we get

K<Snux;)?) < ZK(Snauk;X> < Z min{HukHXovsn”uk”Xl}

keZ kEZ
< 3 min {1, 2} masc{ o] x5t el ) = (SE)n
kEZ

The above estimate combined with

1€l < 2 max{[[{ur}lexo): [H{srur}llexn} < 2lzlx +e
yields
2/l ks 2y < 20Slo—se(llz]lx + ).
Since € > 0 is arbitrary, the required statement follows. O

To state the next result we note that in what follows for a given balanced sequence
s = {s,} for a nondegenerate quasi-concave function ¢ and a Banach sequence lattice
E — (., we let
Kop(X) := Kg(X),
for any Banach couple X where ® := E(1/¢(s,)).

Theorem 2.9. Assume that pg, @1 and E satisfy the conditions of Theorem 2.7,
where F is a Banach sequence lattice on Z intermediate between ¢, and (... Then
there exists a constant C' > 0 such that for S := S* with t = {t, },ecz one has

W41

pe(agn; ap,) < Csup |[THE 1\||S||WO||S||FMF1,

where wy, = Zl for each k € Z and F; := E(1/¢;(t,)) for j € {0,1}.



Isomorphisms on interpolation spaces generated by the method of means 1169

Proof. From Lemma 2.8 it follows that K%E()?) — J%E()?) with the norm of
the inclusion map less than or equal to 4.
By Theorem 2.7, we conclude that there exists a universal constant C' > 0 such
that .
lid: K, 5(X) — Orb,, p(X)|| < C/4.

Now observe that if T: (¢4, 41(1/t,)) — (Xo, X1) is any operator in Z := Z, p(X)
such that ||T|z < 1 and T'(a,,) = 0 for j = 0. The above continuous inclusion
combined with Theorem 2.7 yields,

Wi+1

C .
”Ta’@j”Oerj,E()?) < 5 ilé‘g - 1‘HSHF0HF0”S”F1HF17 J=0.

Similar statement holds for j = 1. This completes the proof by Proposition 2.3. [

We make applications to a special class of pairs of quasi-concave functions. Fol-
lowing Brudnyi and Shteinberg [9], quasi-concave functions ¢y and ¢; are said to be
in the same scale if there exist quasi-concave functions 1y, ¥ and 0, 6; € (0,1) such
that

po =5 UL, o1 =5 yr
We will use the following lemma.

Lemma 2.10. Let g and ;1 be quasi-concave functions in the same scale. Then
the pair (g, ¢1) is admissible.

Proof. By [9, Proposition 3.9], it follows that if quasi-concave functions yy and
¢1 are in the same scale, then {t)}res is a balanced sequence for g if and only if
it is a balanced sequence for ¢; and, moreover for any common balanced sequence
{tr}rer for o and ¢y there exists a constant 7 such that for each k such that £ — 1,
k € I at least one of the following conditions holds:

©i(te) < voi(te-1), J€{0,1},
or
@i (tr) < v (t-r),  J€{0,1}.

Now we assume that {t;}res is a common balanced sequence for ¢q and ;. We
claim that this sequence satisfies the required conditions, which ensure that the pair
(0, ¢1) is admissible. To see this let {wy}rer denote the sequence given by wy =
©1(tr)/po(ty) for each k € I. Recall that t; < tyyq for each pair (k,k+1) € I x I.
Since ¢; and ¢} are non-decreasing functions for j = 0 and j = 1, the first (resp.,
the second) estimate above yields for each k such that &k, k+ 1 € I,

1 wo(tr) < Wrrt _ e1(trr1) oty . ©1(tri1)
YT opolthe) T wi e1(te) eoltrer) = @r1(ts) —
(resp.,
1. sf”f(tk) < Wit _ f’{(tk) wéitm) < wéitm) < )
YT eilter) T owe @i(tern)  @5(t) @ (tn)
This completes the proof. 0

Recall that a Banach sequence lattice F/ on Z is called rearrangement invariant
(r.i. for short) if £ = {&x}rez € F and 7 is an arbitrary permutation of Z, then the

sequence & = {&x(k) frez belongs to E and |||z = [I€]] -
We are ready to state the following result.
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Theorem 2.11. Let nondegenerate quasi-concave functions pg and 1 be given
by vg = wé_eow?’ and @1 = wé_olz/)fl, where 1)y, 1 are quasi-concave functions and
0o, 61 € (0,1) with 6y # 6,. Suppose that there exist C' > 1 and a balanced sequence
{tn}nez for @y such that

1 < V1 (te1)  Yolt) <C. kel
C ™ nltr) Yo(tes1)
Then for any r.i. Banach sequence lattice E/ on 7Z one has
pE(a’SO()’aSOI) < (C|90—91\ - 1) ||S||F0—>F0||S||F1—>F17
where F; := E(1/¢;(t,)) for j € {0,1}.

Proof. Without loss of generality we may assume that 6, < 6;. The result by
Brudnyi and Shteinberg mentioned in the proof of Lemma 2.10 shows that {t,} is
also a balanced sequence for ;. Since F is a r.i. Banach sequence lattice, the analysis
of the proof of Lemma 6 in [12] shows that the Calderén operator S generated by
a sequence {t,} is bounded in E(1/p,(t,)) for j =0, 1.

Let {w,} be given by w,, = % for each n € Z. Then we have

1o Wolle) o wen <¢1(tk+1) Yo(tr) )61_007 ke
Y Yoltesr) T wy U1(tk) Yo(tetr)
The hypotheses on ¢y and ¢; combined with

w w w
sup k“—l‘gmax{—l—i—sup k“,l—inf k“}
kez | Wk kez Wk kE€EZ Wk
gives
sup }wkﬂ — 1‘ < maX{C'el_e“ —1,1-— 000_01} < 0t _ 1,
kez | W
To finish we apply Theorem 2.9. U

We give applications to quasi-power functions. We first recall that the lower and
upper dilation indices of a quasi-concave function ¢: [0,a) — [0,00) (0 < a < o)

are given by

s s
%'_tgl& Int ’ 5¢.—tlg£10 Int

)

respectively, where s4(t) := SUPg 54 0<st<a % We have 0 < v4 <9, <1

A quasi-concave function ¢(0,00) — (0,00) is said to be quasi-power if 0 <
Yo < 05 < 1. It is well-known that {2"},cz is a balanced sequence for any quasi-
power concave function ¢. In what follows for any quasi-power function ¢, we let

ay, = {(2") }nez and S := S* with ¢ := {2"}.

Corollary 2.12. Let quasi-power functions g and @, be given by v = é_gowfo
and ¢ = wéfellpfl, where 1)y, 11 are quasi-concave functions and 6y, 6, € (0,1) with
0y # 6,. Then for any r.i. Banach sequence lattice E on Z one has

PE(agy; apy) < 0 — O] (IS ros i [| S| Fr s
where F; := E(1/¢;(2")) for j € {0,1}.

Proof. Note that any quasi-power function p is nondegenerate. By quasi-concavity
of Yy and 1, we get

1 (251) 4p(28)
G2 goeny =2 REE

<

1
2
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We now apply Theorem 2.11 for {t;}rez := {2F} and C = 2 to get by the obvious
inequality 2¢ — 1 < « for all « € [0, 1], the required statement. O

Theorem 2.13. Assume that quasi-power functions ¢y and @, are such that for
some 6y, 0, € (0,1) one of the following conditions is satisfied:

(i) {p1(2™)/p0(2™) }nez is a nondecreasing sequence, t + @q(t)/t% is a nonde-
creasing function on Ry and t — ¢, (t)/t% is a nonincreasing on R, .

(ii) {¢1(2")/00(2")}nez is a nonincreasing sequence, t — o(t)/t% is a nonin-
creasing function on Ry and t — p;(t)/t% is nondecreasing on R .

Then for any translation-invariant Banach sequence lattice on Z one has

pE(a’sOov a’m) < C|00 - 01| ||S||F0—>F0||S||F1—>F17
where F; := E(1/¢;(2")) for j € {0,1}.

Proof. Since FE is an r.i. Banach sequence lattice, it is easy to verify that the
Calderén operator S generated by a sequence {2"} is bounded in E(1/¢(2")) for any
quasi-power function .

Assume that the condition (i) (resp., (ii)) holds. Let w,, = Z;gz; for each n € Z.
Then our hypotheses on ¢y and ¢; imply that for each k € Z one has

1 < Whtt _ p1(2511) ) wo(2")
Wy ©1(2%)  po(2kH) T
(resp., 2017% < wg—:l < 1); in particular, 6y < 6; (resp., 6; < ). These estimates
combined with the above-mentioned inequality 2¢ — 1 < « for all « € [0, 1] yield

291 . 2790 — 291*‘90

sup )wkﬂ - 1‘ < 2lo=0l _ 1 < |6 — 64].
kez | Wg
Thus the required statement follows from Theorem 2.9. U

We give examples of non-power functions satisfying the conditions of Theorem
2.13. Fix a quasi-concave function ¢ and any ag, oy, 5o, f1,00 € (0,1) such that
0<by<a;<1/2and 0< fy < 1 < ;. For j € {0,1} we define

pi(t) =tYpt)%, >0,
and note that
Vs = 0+ B < 0y, = aj + [0,

Since ¢ is quasi-concave, 0 < 7, < d, < 1. Thus our hypotheses imply that ¢, and
1 are quasi-power functions. If we put 6y := o and 6, := 2a, then the functions
t = 1(t)/o(t), t — @o(t)/t?% are nondecreasing and t — ¢, (t)/t"* is nonincreasing
on (0, 00). Thus the quasi-power functions ¢y, ¢; satisfy the condition (i) of Theorem
2.13. In a similar way, we can construct an example of functions satisfying the second
condition (ii).

Before we state the next result we introduce the following definition. A family
{o}oc(0,1) of nondegenerate quasi-concave functions is said to be stable with respect
to a Banach sequence lattice E on Z with E < (. if there exists a common balanced
sequence {t, }nez for all functions of this family having the property: if 6y € (0,1) is
fixed, then for any 0 > 0 there exists ¢ > 0 such that if |# — 6y| < ¢, then

pE(ap,, as%) < 9.
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We are ready to formulate a variant of Shneiberg’s result on stability of bounded
invertible operators acting on a corresponding scale of interpolation spaces generated
by the method of means.

Theorem 2.14. Let {yg}oc0,1) @ family of nondegenerate quasi-concave func-
tions which is stable with respect to a Banach sequence lattice E — (.. IfT": XY
is an operator between Banach couples such that T': on,E(X) — Js&emE(?) is invert-

—

ible for some 6y € (0, 1), then there exists € > 0 such that T": J,, p(X) — J%,E(}?)
is invertible for all 6 € (0,1) with |6 — 6y| < €.

Proof. Applying Theorem 2.5 we infer that for every 6 € (0, 1) one has
OrbaweyE(.> %’ J@g,ﬁ<.)'

Thus if we put X := Orb,, p(X) and Y := Orb,, p(Y), then T: X — Y is
0 0
invertible. Now choose § > 0 such that

0 < 2O+ 1Tl goe I T ly—x))
By our hypothesis, it follows that there exists e > 0 such that if |§ — 6y| < £, then

PE(Qgy; Gy ) < 0.
Consequently, the desired result follows from the Theorem 2.4. O

The following result provides examples of families which have the stability prop-
erty.

Lemma 2.15. Let 1)y and 11 be nondegenerate quasi-concave functions with the
same balanced sequence {t, }ncz generated by induction. Then the family {©g}oc(0,1)

where @y = 1/15’91/1? for all § € (0, 1) is stable with respect to any r.i. Banach sequence
lattice E on 7.

Proof. Let {t,},ez be a balanced sequence for both vy and v, generated by
induction (via a fixed ¢ > 1), that is, for j =0 and j = 1,

i) Gty (te) |
mm{ V;(te) tk%(tkﬂ)} —a FEn

Then for every 6 € (0,1) and each k € Z one has

: {@e(tkﬂ) tk+1900(tk)}:

min ,
wo(tr) ~ tipo(tisr)

and so {¢,} is a balanced sequence of ¢y for all 6 € (0,1).

Fix an r.i. Banach sequence lattice £ on Z. Then the Calderén operator S
generated by {¢,} is bounded in E; := E(1/v;(t,)) for j € {0,1}. Since S is positive
operator, it follows from an interpolation theorem for positive operators between the
Calderon product spaces (X () := X37°X?, generated by Banach function lattices
X, and X on any o-finite measure space) that S is bounded on Ej °EY with (see,
e.g., [14, p. 246])

15150 -50) < (ISll50-80)" (IS 210)" < max ISl ;-

We shall use the fact (which is easily seen) that
E(9) = E(1/0(ta)) " E(1/¢1(tn))” = E(1/05(tn))
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with 27| - l5 /00 < Il l50) < I+ /00t - Hence
1SN Ea/coe < K = 2max|[S]lpa/p, e, 0 € (0,1),

where the constant K is independent of #. Now apply Theorem 2.11 to find

(g gy, ) < (C17H 1) 1S ] m1 /0, 1) 1S B 1100, (00))
< (CMal — 1) K2,
This completes the proof. O
We conclude this section with the following result.

Corollary 2.16. Let {®g}oc(o,1) & family of nondegenerate quasi-concave func-
tions which is stable with respect to a translation-invariant Banach sequence lat-
tice E on Z. If T: X — Y is an operator between Banach couples such that
T: Ky, 0(X) = Ky, 5(Y) is invertible for some 6 € (0,1), then there exists € > 0
such that T: K,, g(X) = K,, g(Y) is invertible for all 6 € (0,1) with |6 — 6] < e.

Proof. The assumption that the Calderén operator S generated by any balanced
sequence {t,} of nondegenerate quasi-concave function ¢ is bounded in E(1/¢(t,))
yields the continuous inclusion for any Banach couple X,

Jon(X) = K, p5(X).
Since the opposite inclusion holds (see proof of Theorem 2.9), K, 5(X) = J, 5(X).
This completes the proof by Theorem 2.14. O

3. Applications to rearrangement invariant function spaces

Throughout this section I = [0, 1] or I = [0, 00) is equipped with the Lebesgue
measure m and L°(I, m) denotes the space of equivalence classes of all real Lebesgue
measurable functions on I. Given f € L%(I,m), its distribution function is defined
by ms(A) = m({t € L; |f(t)] > A}), and its decreasing rearrangement by f*(t) =
inf{\ > 0; mg(A\) <t} fort > 0. A Banach lattice (X, ||-||x) is called a rearrangement
invariant (r.i. for short) function space provided my = my, f € X implies g € X,
11 = lgllx.

If X is an r.i. function space on (I,m) (for short on I) and x4 denotes the
characteristic function of a measurable set A, clearly ||xal|x depends only on m(A).
The function px(t) = ||xallx, where m(A) =¢, 0 <t <1, is called the fundamental
function of X.

Important examples of r.i. function spaces include the L,-spaces with 1 < p < oo,
Marcinkiewicz and Lorentz spaces. Let ¢: I — [0,00) be a quasi-concave function.
The Marcinkiewicz space M, is the space of all f € L°(I, m) equipped with the norm

t t
|fllaz, :== sup Q / f*(s)ds < oc.
0<tel 0

In the case when ¢: I — [0, 00) is a concave function with ¢(0) = 0, the Lorentz
space A, consists of all f € LY(I,m) equipped with the norm

HMM:AF®W®<M

Note that the fundamental functions of these spaces are px, = @, = .
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Recall that if T = [0,1] (resp., I = [0,00)), then L; and L., (resp., L; N Lo
and L; + L) are, respectively, the largest and the smallest r.i. function spaces on
[. Moreover, if X is an r.i. function space on I with fundamental function ¢, then
¢ is quasi-concave and the following continuous embeddings hold (see [14, Theorems

I1.5.5 and 11.5.7] or |9, Theorem I1.5.13]):
A@) = X = M(yp),

where ¢ is a least concave majorant of (.

For a given t > 0 the dilation operator o; is defined for all f € L(I,m) by
orf(s) = f(s/t)xi(s/t), s € I. Then oy is bounded in every r.i. function space X and
so the lower and the upper Boyd indices are well defined by
In o

— — Qi ol
ox = A0 Int ’ Px Pt Int ’

In flo

respectively. In general, 0 < ax < Bx < 1. Since s, (t) < ||o¢||x for every ¢t > 0,
it follows that ax < px < gx < Bx, where px := v, and gx = d,,. We refer the
reader to |9, 14| for more details about r.i. function spaces.

An r.i. function space X on I is said to be ultrasymmetric if X is an interpolation
space between the Lorentz space A, and the Marcinkiewicz space M, with ¢ := ¢x.
Ultrasymmetric spaces were studied by Pustylnik [17]. Applications of these spaces
are given in |18, 19].

A description of a certain class of ultrasymmetric spaces was given by Pustylnik
in terms of real interpolation spaces. Using our notation, his main result Theorem 2.1
in [17] states that an r.i. function space X on [0, 1] with vx > 0 is ultrasymmetric if
and only if one has

X = Kpg/p(ta) (L1, L),
where ¢ = px, {t,} = {27"},>0 and E is an interpolation space between ¢; and o
defined on Z,. Combining this result with our variants of the results for estimates
of orbits of elements a, = {p(t,)}ner for I = Z, allows us to obtain Shnieberg’s
type results on stability of invertible operators T': (L1, L) — (L1, L) acting on
ultrasymmetric spaces. We leave details to the interested reader.
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