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Sobolev spaces and Poincaré
inequalities on the Vicsek fractal

Fabrice Baudoin∗ and Li Chen†

Abstract. In this paper we prove that several natural approaches to Sobolev spaces coincide
on the Vicsek fractal. More precisely, we show that the metric approach of Korevaar–Schoen, the
approach by limit of discrete p-energies and the approach by limit of Sobolev spaces on cable systems
all yield the same functional space with equivalent norms for p > 1. As a consequence we prove
that the Sobolev spaces form a real interpolation scale. We also obtain Lp-Poincaré inequalities for
all values of p ≥ 1.

Sobolevin avaruudet ja Poincarén epäyhtälöt Vicsekin fraktaalilla

Tiivistelmä. Tässä työssä osoitamme, että useat luonnolliset Sobolevin avaruuden määritel-
mät johtavat Vicsekin fraktalilla samaan lopputulokseen. Tarkemmin sanottuna osoitamme, kun
p > 1, että sama funktioavaruus ja yhtäpitävä normi saadaan sekä Korevaarin ja Schoenin metrisel-
lä määritelmällä että diskreettien p-energioiden raja-arvojen tai fraktaalin kaapeloinneilla määritel-
tyjen Sobolevin avaruuksien avulla. Seurauksena osoitamme, että Sobolevin avaruudet muodostavat
reaalisen interpolaatioskaalan. Lisäksi todistamme Lp-Poincarén epäyhtälön kaikilla p ≥ 1.

1. Introduction

The theory of Sobolev spaces on abstract metric measure spaces has attracted a
lot of attention in the last few decades and the upper gradient approach has proved
to be one of the most successful approaches to develop a rich theory, see [16] and
the references therein. However, due to the generic lack of rectifiable curves between
points, the approach by upper gradients techniques is not relevant anymore in the
context of fractals.

For fractals, the theory of Sobolev spaces can be developed from several view-
points. A first natural approach is through the study of discrete p-energies as in
Herman–Peirone–Strichartz [17], Hu–Ji–Wen [20], and more recently Cao–Gu–Qiu
[7], Kigami [21, 22], and Shimizu [26]. This approach makes a crucial use of the fact
that fractals can be approximated by discrete spaces in a somehow canonical way.
A second natural and purely metric approach is based on the Korevaar–Schoen ap-
proach and defines Sobolev spaces as endpoints in a scale of Besov–Lipschitz spaces,
see [1], [3] and [4]. Finally, a third natural approach in the context of nested fractals,
is to define Sobolev spaces as the functional spaces whose traces on approximating
cable systems are the Sobolev spaces of that cable system.

A first goal of this paper is to prove that those three approaches are actually
equivalent and, for p > 1, all yield the same space W 1,p in a popular example of
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nested fractal: the Vicsek set, see Figure 1. We achieve this goal in Theorem 2.9
below. The case p = 1 is discussed separately in the text, and the space W 1,1 we
single out is a strict subspace of the space of BV functions that was defined in [3]
in the general context of Dirichlet spaces with sub-Gaussian heat kernel estimates.
We note that some parts of the proof of Theorem 2.9 make use of the notion of
piecewise affine function which is specific to the Vicsek set setting. In particular, our
arguments do not easily extend to the case of other nested fractals like the Sierpinski
gasket and the study of this fractal is left to a later work.

We also prove the following family of Poincaré inequalities on the Vicsek set K:
for p ≥ 1, there exist constants c, C > 0 such that for any f ∈ W 1,p, x0 ∈ K and
r > 0 we have:ˆ

B(x0,r)

∣∣∣∣f(x)− 1

µ(B(x0, r))

ˆ
B(x0,r)

f dµ

∣∣∣∣p dµ(x) ≤ Crp−1+dh‖f‖pW 1,p(B(x0,cr))
,

where dh is the Hausdorff dimension of the Vicsek set. The exponent p − 1 + dh is
sharp as follows from Remark 3.15. Our proof is based on the introduction of a notion
of weak gradient on the Vicsek set which is similar to the notion of exterior derivative
considered in [5] for cable systems (or more generally spaces of Hino index one). We
note that the study of Poincaré inequalities on some nested fractals including the
Vicsek set was undertaken in [4] where some stronger inequalities were proved in the
range 1 ≤ p ≤ 2 using heat semigroups techniques instead. The case p > 2 was let
open in [4] and therefore the present paper settles the question of the validity of the
Poincaré inequality for all the range p ≥ 1.

The Poincaré inequalities we obtain imply that any Sobolev function f ∈ W 1,p,
p > 1 satisfies a Lusin–Hölder estimate:

|f(x)− f(y)| ≤ d(x, y)1− 1
p

+
dh
p (g(x) + g(y))

where g is a function in weak Lp. We show that the function g can not be in Lp

however, unless the function f is constant. This shows in particular that the Hajłasz–
Sobolev space introduced by Hu in [19] is trivial at the critical exponent αp for the
case of the Vicsek set. Therefore, in the context of fractals, the approach to Sobolev
spaces due to Hajłasz [13] does not yield a satisfactory theory.

Another objective of the paper is to study the real interpolation properties of the
Sobolev spaces and obtain, for the Vicsek set, an analogue of the main result of the
paper by Gogatishvili–Koskela–Shanmugalingam [10]. Specifically, we prove that for
every p > 1 and 0 ≤ α ≤ αp := 1− 1

p
+ dh

p

Bαp,∞ = (Lp,W 1,p)α/αp,∞,

where Bαp,∞ is a Besov–Lipschitz space which coincides with a heat semigroup based
Besov space introduced and studied in [2], see also [11, 12, 24] for further characteri-
zations and properties of the Besov–Lipschitz spaces. We also prove that the Sobolev
spaces form, with respect to the parameter p ≥ 1 a real interpolation scale, i.e., for
1 ≤ p1 < p < p2 ≤ +∞,

W 1,p = (W 1,p1 ,W 1,p2)θ,p

where θ ∈ (0, 1) is such that
1

p
=

1− θ
p1

+
θ

p2

.

Note that by the reiteration theorem we therefore obtain the full interpolation theory
for the spaces Bαp,∞ including the endpoints Bαp

p,∞ = W 1,p.
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Notations:
(1) Throughout the paper, we use the letters c, C, c1, c2, C1, C2 to denote positive

constants which may vary from line to line.
(2) For two non-negative functionals Λ1,Λ2 defined on a functional space F , the

notation Λ1(f) ' Λ2(f) indicates that there exist two constants C1, C2 > 0
such that for every f ∈ F , C1Λ1(f) ≤ Λ2(f) ≤ C2Λ1(f).

(3) For any Borel set A and any measurable function f , we write the average of
f on the set A as

−
ˆ
A

f(x) dµ(x) :=
1

µ(A)

ˆ
A

f(x) dµ(x).

2. Preliminaries and notations

2.1. Vicsek set. Let q1 = (−
√

2/2,
√

2/2), q2 = (
√

2/2,
√

2/2) , q3 = (
√

2/2,
−
√

2/2), and q4 = (−
√

2/2,−
√

2/2) be the 4 corners of the unit square and let
q5 = (0, 0) be the center of that square. Define ψi(z) = 1

3
(z − qi) + qi for 1 ≤ i ≤ 5.

Then the Vicsek set K is the unique non-empty compact set such that

K =
5⋃
i=1

ψi(K).

Figure 1. Vicsek set.

Denote W = {1, 2, 3, 4, 5} and Wn = {1, 2, 3, 4, 5}n for n ≥ 1. For any w =
{i1, · · · , in} ∈ Wn, we denote by Ψw the contraction mapping ψi1 ◦ · · · ◦ψin and write
Kw := Ψw(K). The set Kw is called an n-simplex.

Let V0 = {q1, q2, q3, q4, q5}. We define a sequence of sets of vertices {Vn}n≥0

inductively by

Vn+1 =
5⋃
i=1

ψi(Vn).

For any w = {i1, · · · , in} ∈ Wn, we will denote V w
n = Ψw(Vn). Let then V̄0 be the

cable system1 with vertices V0 = {q1, q2, q3, q4, q5} and consider the sequence of cable
systems V̄n with vertices in Vn inductively defined as follows. The first cable system
is V̄0 and then

V̄n+1 =
5⋃
i=1

ψi(V̄n).

Note that V̄n ⊂ K and that K is the closure of ∪n≥0V̄n. The set

S =
⋃
n≥0

V̄n

1Cable systems are also sometimes called quantum graphs or metric graphs in the literature.
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is called the skeleton of K and is dense in K. Therefore we have a natural increasing
sequence of Vicsek cable systems {V̄n}n≥0 whose edges have length 3−n and whose
set of vertices is Vn (see Figure 2). From this viewpoint, the Vicsek set K is seen as
a limit of the cable systems {V̄n}n≥0.

Figure 2. Vicsek cable systems V̄0, V̄1 and V̄2.

If u, v are adjacent vertices in V̄n we will write u ∼ v. We then denote by e(u, v)
the edge in V̄n connecting u to v. We will say that u ≤ v if the geodesic distance
from the center (0, 0) of the Vicsek set to u in V̄n is less than the geodesic distance
from (0, 0) to v.

2.2. Geodesic distance and measures on the Vicsek set. On K we will
consider the geodesic distance d. For x, y ∈ V̄n, d(x, y) is defined as the length of the
geodesic path between x and y and d is then extended by continuity to K ×K. The
geodesic distance d is then bi-Lipschitz equivalent to the restriction of the Euclidean
distance to K. The Hausdorff measure µ is the normalized measure on K such that
i1, · · · , in ∈ {1, 2, 3, 4, 5}

µ(ψi1 ◦ · · · ◦ ψin(K)) = 5−n.

The Hausdorff dimension of K is then dh = log 5
log 3

and the metric space (K, d) is dh-
Ahlfors regular in the sense that there exist constants c, C > 0 such that for every
x ∈ K, r ∈ [0, diamK],

c rdh ≤ µ(B(x, r)) ≤ Crdh ,

where B(x, r) = {y ∈ K, d(x, y) ≤ r} denotes the closed ball with center x and radius
r and diamK = 2 is the diameter of K.

There is also a reference measure ν on the skeleton S, the Lebesgue measure. It
is characterized by the property that for every edge e V̄n connecting two neighboring
vertices:

ν(e) = 3−n.

The measure ν is not finite (because the skeleton has infinite length) but it is σ-finite
on the σ-field generated by the e(x, y), x, y ∈ Vn, x ∼ y, n ≥ 0. The measure ν
is not a Radon measure neither since the measure of any ball with positive radius
is infinite. From its definition, it is also clear that ν is singular with respect to the
Hausdorff measure µ since the skeleton has µ-measure zero. For further comments
about this measure ν, we also refer for instance to the introduction of [9].

2.3. Korevaar–Schoen–Sobolev spaces on the Vicsek set. We now in-
troduce the definitions of the Korevaar–Schoen–Sobolev spaces on the Vicsek set,
following the previous works [3, 4]. In particular, in this paper, we will use the
following notations and definitions.
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Definition 2.1. Let p > 1. The Korevaar–Schoen–Sobolev space W 1,p(K) is
defined by

W 1,p(K)

=

f ∈ Lp(K,µ), lim sup
r→0+

1

rαp

(ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

< +∞

 ,

where αp = 1− 1
p

+ dh
p
. The semi-norm of f ∈ W 1,p(K) is given by

‖f‖W 1,p(K) := lim sup
r→0+

1

rαp

(ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

,

and for a Borel subset A ⊂ K we will denote

‖f‖pW 1,p(A) := lim sup
r→0+

1

rpαp

ˆ
A

ˆ
B(x,r)∩A

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x).

Remark 2.2. It is easy to prove, see [3], that for a function f ∈ Lp(K,µ), if
‖f‖pW 1,p(K) < +∞ then

sup
r>0

1

rpαp

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x) < +∞.

We will further prove in Corollary 4.5 that for every p > 1, there exists a constant
C > 0 such that for every f ∈ W 1,p(K)

sup
r>0

1

rpαp

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x) ≤ C‖f‖pW 1,p(K).

As a consequence, using the sup or lim sup in the definition of W 1,p(K) eventually
yields the same space with equivalent semi-norms.

Remark 2.3. It follows from [1] that for every p > 1, W 1,p(K) ⊂ C(K) where
C(K) denotes the set of continuous functions on K. More precisely, any function in
W 1,p(K) has a continuous Lp representative, so in the sequel we will look atW 1,p(K)
as a subspace of C(K) when p > 1.

Remark 2.4. The space W 1,2(K) is the domain of the canonical self-similar
Dirichlet form on K, see [12].

Definition 2.5. For p = ∞, we define W 1,∞(K) to be the set of Lipschitz
continuous functions on K equipped with the seminorm

‖f‖W 1,∞(K) = sup
x,y∈K,x6=y

|f(x)− f(y)|
d(x, y)

.

When p = 1, the Korevaar-Schoen approach yields the space BV (K) of bounded
variations function on K, see Definition 5.6 and [3]. The definition of W 1,1(K) is
given below (see Definition 3.4) and is motivated from Theorem 2.9 and Section 5.5.

2.4. Discrete p-energies. Another natural approach to Sobolev spaces on
fractals is by using limits of discrete p-energies, see [17] and the more recent [7, 4,
22, 26]. For 1 ≤ p < +∞, the discrete p-energy of a function f ∈ C(K) is defined as

Emp (f) :=
1

2
3(p−1)m

∑
x,y∈Vm,x∼y

|f(x)− f(y)|p.
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For p = +∞, we define

Em∞(f) := 3m max
x,y∈Vm,x∼y

|f(x)− f(y)|.

Here the constant 3 is in fact the resistance scale factor of the Vicsek set K. For a
subset A ⊂ K we define for 1 ≤ p < +∞

EmA,p(f) :=
1

2
3(p−1)m

∑
x,y∈A∩Vm,x∼y

|f(x)− f(y)|p,

and
EmA,∞(f) := 3m max

x,y∈A∩Vm,x∼y
|f(x)− f(y)|.

The subset A ⊂ K will be called convex if for any two points x, y ∈ A ∩ S the
geodesic path connecting x to y is included in A∩S. For instance, any ball B(x0, r)
in K is convex. If A is convex, as a consequence of the basic inequalities

|x+ y + z|p ≤ 3p−1(|x|p + |y|p + |z|p), |x+ y + z| ≤ 3 max(|x|, |y|, |z|)

and of the tree structure of A ∩ Vm we always have for 1 ≤ p ≤ +∞

EmA,p(f) ≤ EnA,p(f), ∀m,n ∈ N, m ≤ n.

Moreover, from this fact we deduce that

(1) lim
n→∞

EnA,p(f) = sup
n≥0
EnA,p(f) = lim sup

n→∞
EnA,p(f) = lim inf

n→∞
EnA,p(f),

where the above quantities are in R≥0 ∪ {+∞}.
Definition 2.6. Let 1 ≤ p ≤ +∞. For any convex subset A ⊂ K and f ∈ C(K),

we define the (possibly infinite) p-energy on A by

EA,p(f) := lim
m→∞

EmA,p(f).

Definition 2.7. Let 1 ≤ p ≤ +∞. We define

Fp =

{
f ∈ C(K), sup

m≥0
Emp (f) < +∞

}
and consider on Fp the seminorm

‖f‖Fp =

{
supm≥0 Emp (f)1/p, 1 ≤ p < +∞,
supm≥0 Em∞(f).

2.5. Piecewise affine functions. A continuous function Φ: K → R is called
n-piecewise affine, if there exists n ≥ 0 such that Φ is piecewise affine on the cable
system V̄n (i.e. linear between the vertices of V̄n) and constant on any connected
component of V̄m \ V̄n for every m > n. Piecewise affine functions provide a large
and convenient set of test functions. Indeed, for every f ∈ C(K) and n ≥ 0 define
Hnf to be the unique n-piecewise affine function on K that coincides with f on Vn.
By the construction of Hnf , it is clear that for every n ≥ 0 and w ∈ Wn, we have for
every x ∈ Kw,

inf
Kw

f ≤ Hnf(x) ≤ sup
Kw

f.

Since f ∈ C(K), we deduce that Hnf converges to f uniformly on K. The following
lemma is a useful property regarding p-energies for piecewise affine functions, see the
proof of Theorem 5.8 in [4].
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Lemma 2.8. Let Φ: K → R be an n-piecewise affine function. Then, for 1 ≤
p ≤ +∞, E0

p (Φ) ≤ · · · ≤ Enp (Φ) = Emp (Φ), where m ≥ n, and Ep(Φ) = Enp (Φ). In
particular, Φ ∈ Fp for every 1 ≤ p ≤ +∞.

2.6. Characterizations of the Sobolev spaces. One of the major goals of
the paper will be to prove the following theorem which follows from the combination
of Theorem 3.1, Theorem 3.2, Proposition 4.1 and Proposition 4.4.

Theorem 2.9. Let 1 < p ≤ +∞. For f ∈ C(K) the following are equivalent:
(1) f ∈ W 1,p(K);
(2) f ∈ Fp;
(3) There exists (a unique) ∂f ∈ Lp(S, ν) such that for every n ≥ 0 and adjacent

vertices u, v ∈ Vn with u ≤ v,

f(v)− f(u) =

ˆ
e(u,v)

∂f dν.

Moreover, on W 1,p(K), one has

‖f‖W 1,p(K) ' ‖∂f‖Lp(K,ν) = ‖f‖Fp .

We will actually obtain stronger results, since the equivalence of the seminorms
will be proved to be uniform over metric balls. The case p = 1 has to be treated
separately and is covered in Theorem 3.3 and Proposition 4.4.

3. Weak gradients and Poincaré inequalities

3.1. Characterization of Fp. We first prove the following result:

Theorem 3.1. Let 1 < p < +∞. Let f ∈ C(K). The following are equivalent:
(1) f ∈ Fp;
(2) There exists g ∈ Lp(S, ν) such that for every n ≥ 0 and for every adjacent

u, v ∈ Vn with u ≤ v,

f(v)− f(u) =

ˆ
e(u,v)

g dν.

Moreover, if A ⊂ K is a convex set, we have for every f ∈ Fp,

EA,p(f) =

ˆ
A∩S
|g|p dν.

Proof. We first prove that (2) implies (1). Indeed, it follows from (2) and Hölder’s
inequality that for every n ≥ 0 and every convex set A ⊂ K,

3(p−1)n
∑

x,y∈Vn∩A,x∼y

|f(x)− f(y)|p ≤ 3(p−1)n
∑

x,y∈Vn∩A,x∼y

(ˆ
e(x,y)

|g| dν
)p

≤
∑

x,y∈Vn∩A,x∼y

ˆ
e(x,y)

|g|p dν ≤ 2

ˆ
A∩S
|g|p dν.

Hence

EA,p(f) = sup
n
EnA,p(f) ≤

ˆ
A∩S
|g|p dν

and we deduce that f ∈ W 1,p(K) with EA,p(f) ≤
´
A∩S |g|

p dν.
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It remains to show that (1) implies (2). If Φ is a piecewise affine function, it is
clear that there exists a piecewise constant function, denoted by ∂Φ, such that for
every adjacent u, v ∈ Vn with u ≤ v,

Φ(v)− Φ(u) =

ˆ
e(u,v)

∂Φ dν.

Consider then f ∈ Fp. For every n ≥ 0, we define Hnf to be the unique n-
piecewise affine function on K that coincides with f on Vn. We have then for every
convex set A ⊂ K

sup
n

ˆ
A∩S
|∂(Hnf)|p dν = sup

n

1

2
3(p−1)n

∑
x,y∈Vn∩A,x∼y

|f(x)− f(y)|p < +∞.

The reflexivity of Lp(S, ν) and Mazur lemma imply then that there exists a convex
combination of a subsequence of ∂(Hnf) that converges in Lp(S, ν) to some g ∈
Lp(S, ν). Since Hnf converges uniformly to f , we have then for every adjacent
u, v ∈ Vn with u ≤ v,

f(v)− f(u) =

ˆ
e(u,v)

g dν,

and furthermore ˆ
A∩S
|g|p dν ≤ sup

n

ˆ
A∩S
|∂(Hnf)|p dν ≤ EA,p(f). �

We now turn to the case p = +∞.

Theorem 3.2. Let f ∈ C(K). The following are equivalent:
(1) f ∈ W 1,∞(K);
(2) f ∈ F∞;
(3) There exists g ∈ L∞(S, ν) such that for every n ≥ 0 and for every adjacent

u, v ∈ Vn with u ≤ v,

f(v)− f(u) =

ˆ
e(u,v)

g dν.

Moreover, if A ⊂ K is a convex set, we have for every f ∈ F∞,

sup
x,y∈A,x 6=y

|f(x)− f(y)|
d(x, y)

= EA,∞(f) = ‖g‖L∞(A∩S,ν).

Proof. We begin with the proof that (3) implies (1). It follows from (3) that for
every adjacent u, v ∈ Vn,

|f(u)− f(v)| ≤ ‖g‖L∞(S,ν)ν(e(u, v)) = ‖g‖L∞(S,ν)d(u, v).

Using the tree structure of Vn and the triangle inequality, this yields that for every
u, v ∈ Vn,

|f(u)− f(v)| ≤ ‖g‖L∞(S,ν)ν(γn(u, v)) = ‖g‖L∞(S,ν)d(u, v),

where γn(u, v) denotes the shortest path in V̄n connecting u and v. Since K is the
closure of the skeleton S = ∪nV̄n and f is continuous, we deduce that f is Lipschitz
on K and thus in W 1,∞(K) with ‖f‖W 1,∞(K) ≤ ‖g‖L∞(S,ν).

We now prove that (1) implies (3). Let u, v ∈ Vn, u ∼ v, u ≤ v. If f ∈ W 1,∞(K),
then its restriction to e(u, v) is Lipschitz continuous. Since e(u, v) is a compact
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interval and ν induces the Lebesgue measure of that interval, we deduce from well-
known real analysis results (a weak version of Rademacher theorem) that there exists
a function g on e(u, v) which is ν essentially bounded by ‖f‖W 1,∞(K) such that

f(v)− f(u) =

ˆ
e(u,v)

g dν.

Using a covering of V̄n by its edges, we obtain a function g defined on V̄n such that
for every u, v ∈ Vn, u ∼ v, u ≤ v

f(v)− f(u) =

ˆ
e(u,v)

g dν.

Using the tree structure of V̄n, we see that this function g is independent from n.
Since the fact that (1) implies (2) with E∞(f) ≤ ‖f‖W 1,∞(K) is obvious, we are left

with the fact that (2) implies (1). We note that (2) implies that for every x, y ∈ Vm,
x ∼ y,

|f(x)− f(y)| ≤ E∞(f) d(x, y).

Using the tree structure of Vm and triangle inequality, one gets that for every x, y ∈
Vm,

|f(x)− f(y)| ≤ E∞(f) d(x, y).

Using the density of
⋃
m Vm in K and the continuity of f finishes the proof that

f ∈ W 1,∞(K) with ‖f‖W 1,∞(K) ≤ E∞(f).
When A ⊂ K is a convex set, the equality

sup
x,y∈A,x 6=y

|f(x)− f(y)|
d(x, y)

= EA,∞(f) = ‖g‖L∞(A∩S,ν)

follows by similar arguments. �

For p = 1 the situation is slightly different.

Theorem 3.3. Let f ∈ C(K). The following are equivalent:
(1) f ∈ F1;
(2) There exists a finite signed measure γf on S such that for every n and u ∈ Vn
|γf |({u}) = 0 and for every adjacent u, v ∈ Vn with u ≤ v,

f(v)− f(u) = γf (e(u, v)).

Moreover, if A ⊂ K is a convex set, we have for every f ∈ F1,

EA,1(f) = |γf |(A ∩ S).

Proof. Assume (2). In that case, for any convex set A ⊂ K

EmA,1(f) =
1

2

∑
x,y∈A∩Vm,x∼y

|f(x)− f(y)| ≤ 1

2

∑
x,y∈A∩Vm,x∼y

|γf |(e(x, y)) ≤ |γf |(A ∩ V̄m).

Therefore f ∈ F1 and EA,1(f) ≤ |γf |(A ∩ S). Assume (1) and fix n ≥ 0, u, v ∈ Vn be
adjacent. From the triangle inequality we have for everym ≥ n and x, y ∈ e(u, v)∩Vm

|f(x)− f(y)| ≤ Eme(x,y),1(f) ≤ Ee(x,y),1(f).

Similarly for every N ≥ 2, and xi ∈ e(u, v) ∩ (
⋃
m≥n Vm), 1 ≤ i ≤ N , such that

x1 < · · · < xN we have
N−1∑
i=1

|f(xi+1)− f(xi)| ≤ Ee(u,v),1(f).
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By continuity of f and density of
⋃
m≥n Vm in K we deduce that

N−1∑
i=1

|f(xi+1)− f(xi)| ≤ Ee(u,v),1(f).

holds for every N ≥ 2, and xi ∈ e(u, v), 1 ≤ i ≤ N , such that x1 < · · · < xN .
This means that the restriction of f to the edge e(u, v) is a continuous bounded
variation function. Therefore from a classical result in real analysis, there exist two
non-decreasing continuous functions f1 and f2 on e(u, v) such that f = f1 − f2 on
e(u, v). We can then define a unique finite signed measure γf on e(u, v) such that

γf (e(x, y)) = (f1(y)− f1(x))− (f2(y)− f2(x)), x, y ∈ e(u, v), x ≤ y.

Note that

|γf |(e(x, y)) = (f1(y)− f1(x)) + (f2(y)− f2(x)) = |f(x)− f(y)|.
and that the |γf | measure of a point is zero due to the continuity of f1 and f2.
Using the tree structure of V̄n one obtains a finite measure γf on S = ∪nV̄n (and
two continuous functions f1 and f2) such that for every n ≥ 0 and every adjacent
u, v ∈ Vn with u ≤ v,

f(v)− f(u) = γf (e(u, v)).

Moreover, if A ⊂ K is convex we have for every m ≥ 0

|γf |(A ∩ V̄m) ≤ EA∩V̄m,1(f) ≤ EA,1(f).

This implies |γf |(A ∩ S) ≤ EA,1(f) by letting m→∞. �

3.2. Weak gradients.

Definition 3.4. We define W 1,1(K) ⊂ F1 to be the set of f ∈ C(K) such that
there exists g ∈ L1(S, ν) such that for every adjacent u, v ∈ Vn with u ≤ v,

f(v)− f(u) =

ˆ
e(u,v)

g dν.

Such g is then unique and the semi-norm on W 1,1(K) is defined by

‖f‖W 1,1(K) =

ˆ
S
|g| dν.

Remark 3.5. The inclusion W 1,1(K) ⊂ F1 is strict. Indeed, consider a contin-
uous function f : [0, 1]→ R of bounded variation which is not absolutely continuous
with respect to the Lebesgue measure (like the so-called devil staircase). Consider
now the unique continuous function g on K such that

g(x, x) = f(
√

2x), x ∈ [0,
√

2/2]

and such that g is, for every n, constant on any connected component of V̄n \e where
e is the edge (

√
2x,
√

2x), x ∈ [0,
√

2/2]. Then g is in F1 but not W 1,1(K).

Remark 3.6. We use the notation W 1,1(K) because that space appears as the
endpoint of the real interpolation scale W 1,p(K), 1 < p ≤ +∞, see Theorem 5.9.

Definition 3.7. Let 1 ≤ p ≤ +∞. For f ∈ Fp if p > 1, and f ∈ W 1,1(K) if
p = 1, we will denote by ∂f the unique function in Lp(S, ν) such that for every n
and for every adjacent u, v ∈ Vn with u ≤ v

f(v)− f(u) =

ˆ
e(u,v)

∂f dν.
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Remark 3.8. It is easy to see that if q5 = (0, 0) is the center of K and if x ∈ Vm,
then for f ∈ Fp

f(x)− f(q5) =

ˆ
γm(q5,x)

∂f dν,

where we recall that γm(q5, x) is the geodesic path in V̄m connecting q5 to x.

Remark 3.9. The operator ∂ is defined modulo the orientation on S determined
by the order ≤ on pair of adjacent vertices in Vm. However |∂f | is independent from
the choice of orientation.

Remark 3.10. The set V̄m is a cable system. As such, see for instance Section 5.1
in [5], one can see any continuous function on V̄m as a finite collection of functions
(f)e∈Em where Em is the set of edges of V̄m and fe : [0, 3−m] → R is a continuous
functions (with the appropriate boundary conditions). Then, it is easy to see that
for f ∈ Fp, 1 < p ≤ +∞ (or f ∈ W 1,1(K) if p = 1), denoting fm = f/V̄m , we have
for all e in Em, fme ∈ W 1,p ([0, 3−m]), where for an interval I ⊂ R, W 1,p(I) is the
usual (1, p) Sobolev space. Note then that for p = 2 our operator ∂ is similar to the
exterior derivative considered in [5]. Thus, with the terminology of [5] one can see
Lp(S, ν), 1 ≤ p ≤ +∞ as the set of p-integrable one-forms on K.

Remark 3.11. Let 1 ≤ p ≤ +∞. It is clear that for f ∈ Fp for p > 1 (or
f ∈ W 1,1(K) if p = 1) and w ∈ Wm, we have f ◦Ψw ∈ Fp with

∂(f ◦Ψw) = 3−m(∂f) ◦Ψw.

Remark 3.12. For p = 2, F2 is the domain of the standard self-similar Dirichlet
form E2 on K and from the previous result one has

E2(f) =

ˆ
S
|∂f |2 dν, f ∈ F2.

The measure ν is a minimal energy dominant measure in the sense of Hino [18].

3.3. Poincaré inequalities. In this section we prove the Poincaré inequalities
using Morrey type estimates.

Theorem 3.13. (Morrey type estimate) Let A ⊂ K be a closed convex set. Let
1 ≤ p < +∞. For every f ∈ Fp and x, y ∈ A

|f(x)− f(y)|p ≤ d(x, y)p−1EA,p(f).

Proof. We first assume p > 1. Let x, y ∈ (
⋃
n Vn) ∩ A. We can find m large

enough so that x, y ∈ Vm. We have then from Hölder’s inequality

|f(x)− f(y)| ≤
ˆ
γm(x,y)

|∂f | dν ≤ d(x, y)1− 1
p

(ˆ
γm(x,y)

|∂f |p dν
)1/p

≤ d(x, y)1− 1
p

(ˆ
A∩S
|∂f |p dν

)1/p

,

where γm(x, y) denotes the geodesic path connecting x and y in Vm. Therefore, for
every x, y ∈ (

⋃
n Vn) ∩ A

|f(x)− f(y)|p ≤ d(x, y)p−1EA,p(f).

Since
⋃
n Vn is dense in K, the result follows by the continuity of f . For p = 1 the

proof is similar by using Theorem 3.3 so the details are left to the reader. �
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Corollary 3.14. Let A ⊂ K be a closed convex set. Let 1 ≤ p < +∞. For
every f ∈ Fp, and x, y ∈ A, there holds

−
ˆ
A

∣∣∣∣f(x)−−
ˆ
A

f dµ

∣∣∣∣p dµ(x) ≤ diam(A)p−1EA,p(f).

In particular, for any ball B(x0, r) ⊂ K
ˆ
B(x0,r)

∣∣∣∣f(x)−−
ˆ
B(x0,r)

f dµ

∣∣∣∣p dµ(x) ≤ CrpαpEB(x0,r),p(f).(2)

Proof. Applying Hölder’s inequality and Theorem 3.13, we have
ˆ
A

|f(x)− fA|p dµ(x) ≤ 1

µ(A)p

ˆ
A

∣∣∣∣ˆ
A

(f(x)− f(y)) dµ(y)

∣∣∣∣p dµ(x)

≤ 1

µ(A)

ˆ
A

ˆ
A

|f(x)− f(y)|p dµ(y)dµ(x)

≤ µ(A)diam(A)p−1EA,p(f).

The second inequality immediately follows from the dh-Ahlfors regular property of
K. �

Remark 3.15. It is worth noting that the exponent pαp in the Poincaré inequal-
ity (2) is sharp. Indeed, consider the 0-piecewise affine function f such that

f(q2) = f(q4) = 1, f(q1) = f(q3) = −1

and f(q5) = 0. Then, by symmetry, for every r > 0,
´
B(q5,r)

fdµ = 0. On the other
hand for every n ≥ 0, ˆ

3−nK

|f |p dµ = 5−n3−np
ˆ
K

|f |p dµ

and ˆ
3−nK∩S

|∂f |p dν = 3−n
ˆ
S
|∂f |p dν.

Therefore, for r = 3−n, we have
´
B(q5,r)

|f |pdµ ' rpαp
´
B(q5,r)∩S |∂f |

p dν when r → 0.

Proving Poincaré inequalities using discrete approximations. It is pos-
sible to give a second proof of Theorem 3.13 and thus of Corollary 3.14 using discrete
approximations on Vm as in [8] and then taking the limit when m → ∞. Such
an approach would be natural in the context of more general nested fractals. For
completeness, we sketch the argument (mostly adapted from [8]).

Let A be a closed and convex set and f ∈ Fp, 1 ≤ p < +∞. For any edge e in
Vm, denote by e+ and e− its two vertices. Then, for x, y ∈ A ∩ Vm,

|f(x)− f(y)| ≤
∑

e∈γm(x,y)

|f(e+)− f(e−))|,

where γm(x, y) is the geodesic path connecting x and y in Vm. In addition, denote
by |γm(x, y)| the number of edges in V̄m for the path γm(x, y). Then we note that
from the structure of the Vicsek set,

|γm(x, y)| = 3md(x, y).



Sobolev spaces and Poincaré inequalities on the Vicsek fractal 15

The above estimate and Hölder’s inequality give that

|f(x)− f(y)| ≤
∑

e∈γm(x,y)

|f(e+)− f(e−)| ≤ |γm(x, y)|1−
1
p

( ∑
e∈γm(x,y)

|f(e+)− f(e−)|p
) 1

p

≤ d(x, y)1− 1
p

(
3m(1−p)

∑
v,w∈A∩Vm,v∼w

|f(v)− f(w)|p
) 1

p

= d(x, y)1− 1
pEmA,p(f)

1
p .

Now, for general x, y ∈ A, we pick sequences xm, ym ∈ Vm such that xm → x and
ym → y and let m→ +∞ in the previous inequality thanks to the continuity of f .

4. Korevaar–Schoen–Sobolev and Hajłasz–Sobolev spaces

4.1. Comparison of the discrete and Korevaar–Schoen p-energies. In
this section, we compare the Lp Korevaar–Schoen energy (see Definition 2.1) and
the p-energy defined from the limit approximation of discrete p-energy (see Defini-
tion 2.6).

Proposition 4.1. Let 1 < p < +∞. There exist constants c, C > 0 such that
for every f ∈ C(K), x0 ∈ K, and r > 0

EB(x0,r),p(f) ≤ C‖f‖pW 1,p(B(x0,cr))
.

In particular, if f ∈ W 1,p(K) then Ep(f) < +∞ and thus f ∈ Fp.
Proof. We use a strategy found in the proof of [20, pages 108–110]. The method

in that paper deals with the Sierpinski gasket, but it can be applied as well to the
Vicsek set modulo appropriate modifications. For a fixed ball B(x0, r) ⊂ K with
r ≤ 2, let n0 ≥ 0 be such that 2 · 3−n0−1 < r ≤ 2 · 3−n0 . From now on we assume that
m > n0. Notice that for any x, y ∈ Vm which are neighbors, there exists a unique
m-simplex Kw such that x, y ∈ Kw. In this case, we also have x, y ∈ V w

m . By the
basic convexity inequality,

|f(x)− f(y)|p ≤ 2p−1 (|f(x)− f(u)|p + |f(u)− f(y)|p)
one has

(3) |f(x)− f(y)|p ≤ 2p−1

µ(Kw)

ˆ
Kw

(|f(x)− f(u)|p + |f(u)− f(y)|p) dµ(u).

In order to estimate EmB(x0,r),p
(f), we denote

Im = {w ∈ Wm : ∃x, y ∈ V w
m ∩B(x0, r) such that x ∼ y}.

Observe that there exists a constant c > 1 (c = 2 will do) such that
⋃
w∈Im Kw ⊂

B(x0, cr). By (3), one has

EmB(x0,r),p
(f) ≤ C3m(p−1)

∑
w∈Im

∑
x∈V w

m

1

µ(Kw)

ˆ
Kw

|f(x)− f(u)|p dµ(u).

Now let x ∈ V w
m be fixed. There exists a sequence of sets {Sj}j≥0 which shrinks

to x and where Sj is an (m + j)-simplex. Indeed, take i0 ∈ W such that qi0 ∈ V0 is
the vertex satisfying x = Ψw(qi0). We set

S0 = Kw, S1 = Ψw ◦ ψi0(K), · · · , Sj = Ψw ◦ ψi0 ◦ · · · ◦ ψi0︸ ︷︷ ︸
j times

(K).
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Then one observes that x ∈ Sj for every j ≥ 0 and that the sequence {Sj}j≥0 shrinks
to the vertex x. Now for every u0 := u ∈ S0, uj ∈ Sj for j > 0 and l ≥ 1, we have
that

|f(x)− f(u)|p ≤ 2p−1 (|f(x)− f(ul)|p + |f(ul)− f(u)|p)

≤ 2p−1|f(x)− f(ul)|p +
l∑

j=1

2(p−1)(j+1)|f(uj)− f(uj−1)|p.

Integrating the above inequality with respect to each uj ∈ Sj (0 ≤ j ≤ l) and dividing
by µ(S0)µ(S1) · · ·µ(Sl), we then obtain

1

µ(Kw)

ˆ
Kw

|f(x)− f(u)|p dµ(u) ≤ 2p−1

µ(Sl)

ˆ
Sl

|f(x)− f(ul)|p dµ(ul)

+
l∑

j=1

2(p−1)(j+1)

µ(Sj−1)µ(Sj)

ˆ
Sj−1

ˆ
Sj

|f(uj)− f(uj−1)|p dµ(uj) dµ(uj−1).

Since f is continuous, the first term on the right hand side tends to zero as l →∞.
Next we note that µ(Sj) = 5−(m+j) and d(uj, uj−1) ≤ 2 · 3−(m+j−1) for any uj−1 ∈
Sj−1, uj ∈ Sj, then for 1 ≤ j ≤ l there holds

1

µ(Sj−1)µ(Sj)

ˆ
Sj−1

ˆ
Sj

|f(uj)− f(uj−1)|p dµ(uj) dµ(uj−1)

≤ 52m+2j−1

ˆ
S0

ˆ
B(u,2·3−(m+j−1))

|f(u)− f(v)|p dµ(v) dµ(u).

Also, one always has Sj ⊂ Kw ⊂ B(x0, cr) for any j ≥ 0. Therefore the second term
is bounded above by

l∑
j=1

2(p−1)(j+1)52m+2j−1

ˆ
Kw

ˆ
B(u,2·3−(m+j−1))∩B(x0,cr)

|f(u)− f(v)|p dµ(v) dµ(u).

Summing up the integral above over all w ∈ Im and letting l→∞, we have then

EmB(x0,r),p
(f) ≤ C3m(p−1)

∞∑
j=1

2(p−1)(j+1)52m+2j−1

·
ˆ
B(x0,cr)

ˆ
B(u,2·3−(m+j−1))∩B(x0,cr)

|f(u)− f(v)|p dµ(v) dµ(u)

≤ C
∞∑
j=1

2(p−1)(j+1)3−(p−1)(j−1) 1

3−(m+j−1)(pαp+dh)

·
ˆ
B(x0,cr)

ˆ
B(u,2·3−(m+j−1))∩B(x0,cr)

|f(u)− f(v)|p dµ(v) dµ(u)

≤ C sup
ρ∈(0,2·3−m)

1

ρpαp+dh

ˆ
B(x0,cr)

ˆ
B(u,ρ)∩B(x0,cr)

|f(u)− f(v)|p dµ(v) dµ(u)

where the second inequality follows from the fact that pαp + dh = p − 1 + 2dh. In
view of (1), we thus conclude the proof by taking limm→∞. �

As an immediate corollary we obtain from Corollary 3.14 the Lp-Poincaré in-
equality in the Korevaar-Schoen-Sobolev spaces.
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Corollary 4.2. Let p > 1. Then there exist constants c, C > 0 such that for
any f ∈ W 1,p(K), x0 ∈ K and r > 0 we have:

ˆ
B(x0,r)

|f(x)− fB(x0,r)|p dµ(x) ≤ Crp−1+dh‖f‖pW 1,p(B(x0,cr)
.

Remark 4.3. For the Vicsek set, Lp-Poincaré inequalities in the Korevaar–
Schoen–Sobolev spaces were obtained in [4] for the range 1 ≤ p ≤ 2. The inequalities
in [4] are actually stronger since we used on the right hand side the functional

lim inf
r→0+

1

rpαp

ˆ
A

ˆ
B(x,r)∩A

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x)

instead of ‖f‖W 1,p(A) (which is defined using a lim sup). However, the techniques in
[4] do not apply for p ≥ 2.

For the comparison of the reverse direction, we have in fact the following stronger
statement.

Proposition 4.4. Let 1 ≤ p <∞. There exists constants c, C > 0 such that for
every f ∈ Fp, x0 ∈ K, and r > 0

sup
R>0

1

Rpαp

ˆ
B(x0,r)

ˆ
B(x0,r)∩B(x,R)

|f(x)− f(y)|p

µ(B(x,R))
dµ(y) dµ(x) ≤ CEB(x0,cr),p(f).

In particular, for 1 < p < +∞, Fp ⊂ W 1,p(K).

Proof. Without loss of generality, we take r ≤ 2. We first assume R ≥ r/6. Let
f ∈ Fp, then

ˆ
B(x0,r)

ˆ
B(x0,r)∩B(x,R)

|f(x)− f(y)|p

µ(B(x,R))
dµ(y) dµ(x)

≤
ˆ
B(x0,r)

ˆ
B(x0,r)

|f(x)− f(y)|p

µ(B(x,R))
dµ(y) dµ(x).

From Theorem 3.13, we have |f(x)− f(y)|p ≤ Crp−1EB(x0,r),p(f). Therefore,
ˆ
B(x0,r)

ˆ
B(x0,r)

|f(x)− f(y)|p

µ(B(x,R))
dµ(y) dµ(x) ≤ Crp−1+dhEB(x0,r),p(f)

≤ CRpαpEB(x0,r),p(f),

and

(4)
ˆ
B(x0,r)

ˆ
B(x,R)∩B(x0,r)

|f(x)− f(y)|p dµ(y) dµ(x) ≤ CRpαp+dhEB(x0,r),p(f).

We then assume 0 < R ≤ r/6. Let k be the unique integer such that

3−(k+1) < R ≤ 3−k.

Consider the covering of B(x0, r) by a collection of k-simplices {Kw}w∈Ak
, where

Ak := {w ∈ Wk : Kw ∩B(x0, r) 6= ∅}.
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Notice that for x ∈ Kw, we have that B(x,R) ⊂ K∗w, where K∗w denotes the union of
Kw and all its adjacent n-simplices. Thenˆ

B(x0,r)

ˆ
B(x,R)∩B(x0,r)

|f(x)− f(y)|p dµ(y) dµ(x)

≤
∑
w∈Ak

ˆ
Kw

ˆ
B(x,R)∩B(x0,r)

|f(x)− f(y)|p dµ(y) dµ(x)

≤
∑
w∈Ak

ˆ
Kw

ˆ
K∗w∩B(x0,r)

|f(x)− f(y)|p dµ(y) dµ(x).

For any x ∈ Kw and y ∈ K∗w ∩B(x0, r), Theorem 3.13 gives

|f(x)− f(y)| ≤ C3−k(p−1)EK∗w,p(f).

We also observe the following two facts:
• There exists a constant c > 1 such that for any w ∈ Ak, K∗w ⊂ B(x0, cr);
• The family {K∗w}w∈Ak

has bounded overlap property.
Hence ∑

w∈Ak

ˆ
Kw

ˆ
K∗w∩B(x0,r)

|f(x)− f(y)|p dµ(y) dµ(x)

≤ C
∑
w∈Ak

ˆ
Kw

ˆ
K∗w∩B(x0,r)

3−k(p−1)EK∗w,p(f) dµ(y) dµ(x)

≤ C5−2k3−k(p−1)
∑
v∈Ak

EK∗w,p(f) ≤ CRp−1+2dhEB(x0,cr),p(f),

and

(5)
ˆ
B(x0,r)

ˆ
B(x,R)∩B(x0,r)

|f(x)− f(y)|p dµ(y) dµ(x) ≤ CRpαp+dhEB(x0,cr),p(f).

We conclude from (4) and (5) that for f ∈ Fp and R > 0

1

Rpαp+dh

ˆ
B(x0,r)

ˆ
B(x,R)∩B(x0,r)

|f(x)− f(y)|p dµ(y) dµ(x) ≤ CEB(x0,cr),p(f)

and the proof is finished by taking supR>0 in the left side. �

As a consequence of Propositions 4.1 and 4.4, we record the following estimate
which will be a key ingredient in a next section regarding the real interpolation of
the Besov spaces.

Corollary 4.5. Let 1 < p < +∞. There exists a constant C > 0 such that for
every f ∈ W 1,p(K)

sup
r>0

1

rpαp

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x) ≤ C‖f‖pW 1,p(K).

4.2. Maximal functions and triviality of the Hajłasz–Sobolev spaces.
Let p > 1. For f ∈ W 1,p(X) we introduce the following maximal function

gf (x) := sup
r>0

1

µ(B(x, r))1/p

(ˆ
B(x,r)

|∂f |p dν
)1/p

.
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As in [4] or [25] it is easy to see that for p > 1 the maximal function gf is weak
Lp(K,µ) bounded and that the Poincaré inequality in Corollary 3.14 implies the
following Lusin–Hölder estimate:

Proposition 4.6. Let p > 1. Then there exists a constant C such that for every
f ∈ W 1,p(X),

|f(x)− f(y)| ≤ Cd(x, y)αp(gf (x) + gf (y)).(6)

Remark 4.7. It is interesting to note that the estimate (6) implies (and is
therefore equivalent to) the Poincaré inequality on balls in Corollary 3.14. This can
be proved as in the proof of Lemma 5.15 in [15]. We thank an anonymous referee for
this remark.

The following proposition shows that the maximal function gf can not be in
Lp(X,µ) unless f is constant.

Proposition 4.8. Let p > 1. Let f ∈ C(K). If there exists g ∈ Lp(K,µ) such
that µ-almost everywhere

|f(x)− f(y)| ≤ d(x, y)αp(g(x) + g(y)),

then f is constant.

Proof. We first obtain that for every w ∈ Wn

|f(Ψw(x))− f(Ψw(y))| ≤ 3−nαpd(x, y)αp(g(Ψw(x)) + g(Ψw(y))),

Then,

‖f ◦Ψw‖W 1,p(K) = lim sup
r→0+

1

rαp

(ˆ
K

ˆ
B(x,r)

|f(Ψw(y))− f(Ψw(x))|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

≤ C3−nαp lim sup
r→0+

(ˆ
K

ˆ
B(x,r)

|g(Ψw(y))|p + |g(Ψw(x))|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

≤ C3−nαp

(ˆ
K

(g ◦Ψw)p dµ

)1/p

From Theorem 2.9 we get that for every w ∈ Wnˆ
S
|∂(f ◦Ψw)|p dν ≤ C3−npαp

ˆ
K

(g ◦Ψw)p dµ.

From Remark 3.11 this yields

3−np3n
ˆ
S∩Kw

|∂f |p dν ≤ C3−npαp3ndh
ˆ
Kw

gp dµ.

We obtain therefore that for every simplex Kwˆ
S∩Kw

|∂f |p dν ≤ C

ˆ
Kw

gp dµ.

Consider then an edge e(u, v), u, v ∈ Vn, u ∼ v. For m ≥ n, one can cover this
edge with a union Am of Nm m-simplices with Nm ≤ 3m−n. One has thenˆ

e(u,v)

|∂f |p dν ≤ C

ˆ
Am

gp dµ.
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Since µ(Am) ≤ Nm5−m goes to zero when m→ +∞, one obtains
´
e(u,v)

|∂f |p dν = 0.
Since it is true for every edge e(u, v), we deduce that ν almost everywhere ∂f = 0
and thus that f is constant. �

5. Real interpolation theory of the Besov–Lipschitz and Sobolev spaces

5.1. Basics of the K method for real interpolation. In this section, mostly
to fix notations, we recall some basic definitions and results of the K method for real
interpolation. Those definitions are mostly taken from [10, Section 2]. For details,
we refer for instance to [6, Chapters 3 and 5]. In the following we will use the
interpolation theory for seminormed spaces as in [10].

Let X0 and X1 be two Banach spaces. Assume that the pair (X0, X1) is a
compatible couple, i.e., there is some Hausdorff topological vector space in which
each of X0 and X1 is continuously embedded. Then the sum X0 + X1 is a Banach
space under the norm

‖f‖X0+X1 := inf{‖f0‖X0 + ‖f1‖X1 , f = f0 + f1}.

The K-functional of (X0, X1) is defined for each f ∈ X0 +X1 and t > 0 by

K(f, t,X0, X1) := inf{‖f0‖X0 + t‖f1‖X1 , f = f0 + f1}.

Suppose that 0 < θ < 1, 1 ≤ q <∞ or 0 ≤ θ ≤ 1, q =∞. Then the interpolation
space (X0, X1)θ,q consists of functions f ∈ X0 +X1 such that

‖f‖θ,q =

{(´∞
0

(t−θK(f, t,X0, X1))q dt
t

)1/q
, 0 < θ < 1, 1 ≤ q <∞,

supt>0 t
−θK(f, t,X0, X1), 0 ≤ θ ≤ 1, q =∞,

is finite. In that context, the reiteration theorem (see [6, Chapter 5, Theorem 2.4])
writes as follows:

Theorem 5.1. Let (X0, X1) be a compatible couple and suppose 0 ≤ θ0 < θ1 ≤
1. Let Xθj be an intermediate space of class θj, j = 0, 1. Then for 0 < θ < 1 and
1 ≤ q ≤ ∞, one has (Xθ0 , Xθ1)θ,q = (X0, X1)θ′,q, where θ′ = (1− θ)θ0 + θθ1.

5.2. Besov–Lipschitz spaces. We consider the Besov Lipschitz spaces that
were studied in [3, 2], see also [11].

Definition 5.2. For p ≥ 1 and α > 0, the Besov Lipschitz space Bαp,∞(K) is
defined by

Bαp,∞(K) =

f ∈ Lp(K,µ), sup
r>0

1

rα

(ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

< +∞

.
We note that by definition, for p > 1, Bαp

p,∞(K) = W 1,p(K).

5.3. Interpolation of the Besov–Lipschitz spaces, p > 1. The goal of this
section is to prove the following theorem:

Theorem 5.3. For every p > 1 and 0 ≤ α ≤ αp = 1− 1
p

+ dh
p

Bαp,∞(K) = (Lp(K,µ),W 1,p(K))α/αp,∞.
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The key ingredient to prove this interpolation result is the following estimate
that follows from our previous results (see Corollary 4.5):

sup
r>0

1

rαp

(ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

≤ C lim sup
r→0+

1

rαp

(ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

.

We note that this estimate implies that for α > αp the space Bαp,∞(K) is trivial, i.e.,
Bαp,∞(K) only consists of constant functions. Therefore the interpolation scale given
by Theorem 5.3 is optimal with the endpoints Lp(K,µ) and W 1,p(K).

Following the notation in Section 5.1, the K-functional of the couple (Lp(K,µ),
W 1,p(K)) is defined for f ∈ Lp(K,µ) +W 1,p(K) by

K(f, t) = inf{‖g‖Lp(K,µ) + t‖h‖W 1,p(K), f = g + h}.

For any 0 ≤ θ ≤ 1, the interpolation space (Lp(K,µ),W 1,p(K))θ,∞ consists of all
f ∈ Lp(K,µ) +W 1,p(K) such that supt>0 t

−θK(f, t) <∞.
For simplicity, we adopt the notation Ep(f, r) for f ∈ Lp(K,µ) and r > 0 as in

[10], that is,

Ep(f, r) =

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x).

Adapting to our framework techniques from [10, Theorem 4.1], we obtain the follow-
ing main result of this section.

Theorem 5.4. Let p > 1. There exist C1, C2 > 0 such that for any f ∈
Lp(K,µ) +W 1,p(K) and r > 0,

C1Ep(f, r)
1
p ≤ K(f, rαp) ≤ C2Ep(f, r)

1
p .

Proof. It is easy to show the inequality

C1Ep(f, r)
1
p ≤ K(f, rαp).

Indeed, suppose that f = g + h, where g ∈ Lp(K,µ) and h ∈ W 1,p(K). Then by
Minkowski’s inequality and Corollary 4.5, we obtain

Ep(f, r)
1
p ≤ Ep(g, r)

1
p + Ep(h, r)

1
p ≤ C

(
‖g‖Lp(K,µ) + rαpr−αpEp(h, r)

1
p

)
≤ C

(
‖g‖Lp(K,µ) + rαp‖h‖W 1,p(K)

)
.

Now turn to the proof of the second inequality, that is, K(f, rαp) ≤ C2Ep(f, r)
1
p .

Given a function f ∈ Lp(K,µ), we first define a sequence of piecewise affine functions
{Φn}n≥1 associated with f on the cable systems {V̄n}n≥1 as follows.

For any fixed n ≥ 1, we define the function fn on Vn by

fn(v) :=
1

µ(K∗n+1(v))

ˆ
K∗n+1(v)

f dµ, v ∈ Vn,

where K∗n+1(v) is the union of the (n + 1)-simplices containing v. Then, let Φn be
the unique piecewise affine function that coincides with fn on Vn. More precisely,
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one writes

Φn(x) =
∑
v∈Vn

(
1

µ(K∗n+1(v))

ˆ
K∗n+1(v)

f dµ

)
uv(x) =

∑
v∈Vn

fn(v)uv(x),

where uv is the unique piecewise affine function on the cable system V̄n that takes the
value 1 on v and zero on the other vertices. We have 0 ≤ uv ≤ 1, suppuv ⊂ K∗n(v),
where K∗n(v) is the union of n-simplices containing v and∑

v∈Vn

uv(x) = 1, ∀x ∈ K.

Set g = f − Φn and h = Φn so that f = g + h. We claim that g ∈ Lp(K,µ)
and h ∈ W 1,p(K). Moreover, we claim that both ‖g‖Lp(K,µ) and ‖h‖W 1,p(K) can be
bounded in terms of Ep(f, r)1/p where r has order 3−n.

We begin with estimating ‖g‖Lp(K,µ). Note that the covering {K∗n(v)}v∈Vn has the
bounded overlap property. Also, for any x ∈ K∗n(v), there exists a constant c1 > 1
(c1 = 3 will do) such that K∗n+1(v) ⊂ B(x, c13−n). Therefore by Hölder’s inequality
one has

‖g‖pLp(K,µ) ≤ C
∑
v∈Vn

ˆ
K∗n(v)

|f(x)− fn(v)|p(uv(x))p dµ(x)

≤ C
∑
v∈Vn

ˆ
K∗n(v)

−
ˆ
K∗n+1(v)

|f(x)− f(y)|p dµ(y) dµ(x)

≤ C

ˆ
K

−
ˆ
B(x,c13−n)

|f(x)− f(y)|p dµ(y) dµ(x).

(7)

It remains to control ‖h‖W 1,p(K). By Proposition 4.4, it is equivalent to estimate
the p-energy Ep(h). Since h is an n-piecewise affine function, one has Emp (h) = Enp (h)
for any m ≥ n (see Lemma 2.8). We thus need to estimate Enp (h). Observe that for
any x ∈ Vn, one has h(x) = fn(x) by definition. Hence

Enp (h) =
1

2
3(p−1)n

∑
x,y∈Vn,x∼y

|fn(x)− fn(y)|p.

For any neighboring vertices x, y ∈ Vn, Hölder’s inequality yields

|fn(x)− fn(y)| ≤ 1

µ(K∗n+1(x))µ(K∗n+1(y))

ˆ
K∗n+1(x)

ˆ
K∗n+1(y)

|f(z)− f(w)| dµ(z) dµ(w)

≤ C

(
1

52n

ˆ
K∗n+1(x)

ˆ
K∗n+1(y)

|f(z)− f(w)|p dµ(z) dµ(w)

) 1
p

.

Thanks to the fact that x, y ∈ Vn are adjacent, there exists a constant c2 > 1 (c2 = 3
will do) such that K∗n+1(y) ⊂ B(z, c23−n) for any z ∈ K∗n+1(x).

Therefore we get

|fn(x)− fn(y)|p ≤ C

52n

ˆ
K∗n+1(x)

ˆ
B(z,c23−n)

|f(z)− f(w)|p dµ(z) dµ(w).
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By the bounded overlap property of {K∗n+1(v)}v∈Vn , we then have

Enp (h) ≤ C
3(p−1)n

52n

∑
x,y∈Vn,x∼y

ˆ
K∗n+1(x)

ˆ
K∗n+1(y)

|f(z)− f(w)|p dµ(z) dµ(w)

≤ C
3(p−1)n

52n

ˆ
K

ˆ
B(z,c23−n)

|f(z)− f(w)|p dµ(z) dµ(w).

Set rn = c33−n where c3 = max{c1, c2}. We can rewrite the above inequality as

Enp (h) ≤ C

r
pαp
n

ˆ
K

−
ˆ
B(z,rn)

|f(z)− f(w)|p dµ(z) dµ(w).

Consequently,

‖h‖pW 1,p(K) ≤ CEp(h) ≤ C

r
pαp
n

ˆ
K

−
ˆ
B(z,rn)

|f(z)− f(w)|p dµ(z) dµ(w).

On the other hand, (7) also gives that

‖g‖Lp(K) ≤ C

(ˆ
K

−
ˆ
B(x,rn)

|f(x)− f(y)|p dµ(y) dµ(x)

) 1
p

.

We conclude that for every t > 0 and n ≥ 1

K(f, t) ≤ C

(
1 +

t

r
αp
n

)
Ep(f, rn)

1
p .

On the other hand the decomposition f = g + h with h =
´
K
f yields that for every

t > 0

K(f, t) ≤ CEp(f, 2)1/p.

The conclusion follows. �

We thus get as a corollary, the theorem stated at the beginning of the section.

Corollary 5.5. For every p > 1 and 0 ≤ α ≤ αp, we have

Bαp,∞(K) = (Lp(K,µ),W 1,p(K))α/αp,∞.

Proof. By Corollary 4.5

sup
r>0

1

rα

(ˆ
K

ˆ
B(x,r)∩K

|f(y)− f(x)|p

µ(B(x, r))
dµ(y) dµ(x)

) 1
p

' sup
r>0

r−αK(f, rαp)

' sup
t>0

t−α/αpK(f, t). �

By the reiteration Theorem 5.1, we obtain therefore as a corollary the following
interpolation result for the Besov–Lipschitz spaces: For p > 1, 0 ≤ θ1 < θ2 ≤ αp,
0 < β < 1

Bθ3p,∞(K) = (Bθ1p,∞(K),Bθ2p,∞(K))β,∞, θ3 = (1− β)θ2 + βθ1.(8)

Such interpolation results for the Besov–Lipschitz spaces are not new: We refer to
[10, 14, 23, 27] for versions of the interpolation (8) in different settings.

5.4. Interpolation of the Besov–Lipschitz spaces, p = 1. For p = 1, the
endpoint of the interpolation scale is not W 1,1(K) but the larger space BV (K) of
bounded variation functions that was introduced in [3].
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Definition 5.6. The Korevaar–Schoen BV space BV (K) is defined by

BV (K) =

{
f ∈ L1(K,µ), lim sup

r→0+

1

rdh

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|
µ(B(x, r))

dµ(y) dµ(x) < +∞
}
,

and for f ∈ BV (K) we define

‖f‖BV (K) := lim sup
r→0+

1

rdh

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|
µ(B(x, r))

dµ(y) dµ(x).

Remark 5.7. From Proposition 4.4 it is clear that W 1,1(K) ⊂ F1 ⊂ BV (K).
However, all the inclusions are strict since BV (K) also contains non-continuous func-
tions, see [3].

Theorem 5.8. For 0 ≤ α ≤ dh,

Bα1,∞(K) = (L1(K,µ), BV (K))α/dh,∞.

Proof. The proof is relatively similar to that of Theorem 5.3 so we will omit the
details but focus on the main ingredients. The first ingredient which is proved in [3]
for any nested fractal using heat kernel methods is the estimate

sup
r>0

1

rdh

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|
µ(B(x, r))

dµ(y) dµ(x)

≤ C lim sup
r→0+

1

rdh

ˆ
K

ˆ
B(x,r)

|f(y)− f(x)|
µ(B(x, r))

dµ(y) dµ(x).

The second ingredient is Proposition 4.4 for p = 1 and when f is a piecewise affine
function. �

5.5. Real interpolation of the Sobolev spaces. The interpolation with
respect to the parameter p is easier in view of the characterization of W 1,p(K) given
in Theorem 2.9.

Theorem 5.9. For 1 ≤ p1 < p < p2 ≤ +∞,

W 1,p(K) = (W 1,p1(K),W 1,p2(K))θ,p

where θ ∈ (0, 1) is such that
1

p
=

1− θ
p1

+
θ

p2

.

Proof. For every 1 ≤ p ≤ +∞ the map f → ∂f is a bi-Lipschitz isomorphism
W 1,p

0 (K)→ Lp(K, ν), where W 1,p
0 (K) = {f ∈ W 1,p(K), f(0) = 0}. The measure ν is

sigma-finite, and therefore

Lp(K, ν) = (Lp1(K, ν), Lp2(K, ν))θ,p.

The result follows. �

References

[1] Alonso Ruiz, P., and F. Baudoin: Gagliardo–Nirenberg, Trudinger–Moser and Morrey
inequalities on Dirichlet spaces. - J. Math. Anal. Appl. 497:2, 2021, Paper No. 124899, 26.

[2] Alonso Ruiz, P., F. Baudoin, L. Chen, L.G. Rogers, N. Shanmugalingam, and A.
Teplyaev: Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities. -
J. Funct. Anal. 278:11, 2020, 108459, 48.



Sobolev spaces and Poincaré inequalities on the Vicsek fractal 25

[3] Alonso-Ruiz, P., F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam, and A.
Teplyaev: Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-
Gaussian heat kernel estimates. - Calc. Var. Partial Differential Equations 60:5, 2021, Paper
No. 170, 38.

[4] Baudoin, F., and L. Chen: Lp-Poincaré inequalities on nested fractals. - Preprint, arXiv:
2012.03090, 2020.

[5] Baudoin, F., and D. J. Kelleher: Differential one-forms on Dirichlet spaces and Bakry–
Émery estimates on metric graphs. - Trans. Amer. Math. Soc. 371:5, 2019, 3145–3178.

[6] Bennett, C., and R. Sharpley: Interpolation of operators. - Pure and Applied Mathematics
129, Academic Press, Inc., Boston, MA, 1988.

[7] Cao, S., Q. Gu, and H. Qiu: p-energies on p.c.f. self-similar sets. - Adv. Math. 405, 2022,
Paper No. 108517.

[8] Chen, L.: A note on Sobolev type inequalities on graphs with polynomial volume growth. -
Arch. Math. (Basel) 113:3, 2019, 313–323.

[9] Constantin, S., R. S. Strichartz, and M. Wheeler: Analysis of the Laplacian and spec-
tral operators on the Vicsek set. - Commun. Pure Appl. Anal. 10:1, 2011, 1–44.

[10] Gogatishvili, A., P. Koskela, and N. Shanmugalingam: Interpolation properties of
Besov spaces defined on metric spaces. - Math. Nachr. 283:2, 2010, 215–231.

[11] Grigor’yan, A.: Heat kernels on metric measure spaces with regular volume growth. - In:
Handbook of geometric analysis, No. 2, Adv. Lect. Math. (ALM) 13, Int. Press, Somerville,
MA, 2010, 1–60.

[12] Grigor’yan, A., and L. Liu: Heat kernel and Lipschitz–Besov spaces. - Forum Math. 27:6,
2015, 3567–3613.

[13] Hajłasz, P.: Sobolev spaces on an arbitrary metric space. - Potential Anal. 5:4, 1996, 403–415.

[14] Han, Y., D. Müller, and D. Yang: A theory of Besov and Triebel-Lizorkin spaces on metric
measure spaces modeled on Carnot–Carathéodory spaces. - Abstr. Appl. Anal., 2008, Art. ID
893409, 250.

[15] Heinonen, J., and P. Koskela: Quasiconformal maps in metric spaces with controlled ge-
ometry. - Acta Math. 181:1, 1998, 1–61.

[16] Heinonen, J., P. Koskela, N. Shanmugalingam, and J.T. Tyson: Sobolev spaces on
metric measure spaces. An approach based on upper gradients. - New Math. Monogr. 27,
Cambridge Univ. Press, Cambridge, 2015.

[17] Herman, P. E., R. Peirone, and R. S. Strichartz: p-energy and p-harmonic functions on
Sierpinski gasket type fractals. - Potential Anal. 20:2, 2004, 125–148.

[18] Hino, M.: Energy measures and indices of Dirichlet forms, with applications to derivatives on
some fractals. - Proc. Lond. Math. Soc. (3) 100:1, 2010, 269–302.

[19] Hu, J.: A note on Hajłasz–Sobolev spaces on fractals. - J. Math. Anal. Appl. 280:1, 2003,
91–101.

[20] Hu, J., Y. Ji, and Z. Wen: Hajłasz–Sobolev type spaces and p-energy on the Sierpinski
gasket. - Ann. Acad. Sci. Fenn. Math. 30:1, 2005, 99–111.

[21] Kigami, J.: Geometry and analysis of metric spaces via weighted partitions. - Lecture Notes
in Math. 2265, Springer, Cham, 2020.

[22] Kigami, J.: Conductive homogeneity of compact metric spaces and construction of p-energy.
- Preprint, arXiv:2109.08335, 2021.

[23] Müller, D., and D. Yang: A difference characterization of Besov and Triebel–Lizorkin spaces
on RD-spaces. - Forum Math. 21:2, 2009, 259–298.

[24] Pietruska-Pałuba, K.: Heat kernel characterisation of Besov–Lipschitz spaces on metric
measure spaces. - Manuscripta Math. 131:1-2, 2010, 199–214.



26 Fabrice Baudoin and Li Chen

[25] Pietruska-Pałuba, K., and A. Stós: Poincaré inequality and Hajłasz-Sobolev spaces on
nested fractals. - Studia Math. 218:1, 2013, 1–26.

[26] Shimizu, R.: Construction of p-energy and associated energy measures on the Sierpiński car-
pet. - Preprint, arXiv:2110.13902, 2021.

[27] Yang, D.: Real interpolations for Besov and Triebel–Lizorkin spaces on spaces of homogeneous
type. - Math. Nachr. 273, 2004, 96–113.

Received 7 July 2022 • Revision received 13 September 2022 • Accepted 22 September 2022
Published online 6 October 2022

Fabrice Baudoin
University of Connecticut
Department of Mathematics
Storrs, CT 06269, USA
fabrice.baudoin@uconn.edu

Li Chen
Louisiana State University
Department of Mathematics
Baton Rouge, LA 70803, USA
lichen@lsu.edu


	1. Introduction
	2. Preliminaries and notations
	3. Weak gradients and Poincaré inequalities
	4. Korevaar–Schoen–Sobolev and Hajłasz–Sobolev spaces
	5. Real interpolation theory of the Besov–Lipschitz and Sobolev spaces
	References

