
Annales Fennici Mathematici
Volumen 48, 2023, 27–42

Space of chord-arc curves and
BMO/VMO Teichmüller space

Katsuhiko Matsuzaki and Huaying Wei

Abstract. This paper focuses on the structure of the subspace Tc of the BMO Teichmüller

space Tb corresponding to chord-arc curves, which contains the VMO Teichmüller space Tv. We

prove that Tc is not a subgroup with respect to the group structure of Tb, but it is preserved under

the inverse operation and the left and the right translations by any element of Tv. Moreover, we

show that Tb has a fiber structure induced by Tv, and the complex structure of Tb can be projected

down to the quotient space Tv\Tb. Then, we see that Tc consists of fibers of this projection, and its

quotient space also has the induced complex structure.

Jännekaarikäyrien avaruus ja Teichmüllerin BMO/VMO-avaruus

Tiivistelmä. Tämä työ keskittyy Teichmüllerin BMO-avaruuden Tb jännekaarikäyriin liittyvän

aliavaruuden Tc rakenteeseen. Tämä Tc sisältää Teichmüllerin VMO-avaruuden Tv. Osoitamme, että

Tc ei ole aliryhmä avaruuden Tb ryhmärakenteen suhteen, mutta Tc on kuitenkin suljettu sekä kään-

teisoperaation että aliavaruuden Tv suuntaisten vasemman- ja oikeanpuoleisten siirtojen suhteen.

Lisäksi osoitamme, että Tv antaa avaruudelle Tb säierakenteen, ja että avaruuden Tb kompleksinen

rakenne voidaan projisoida tekijäavaruuteen Tv\Tb. Sen jälkeen näemme, että Tc koostuu tämän

projektion säikeistä, ja että myös sen tekijäavaruudella on johdettu kompleksinen rakenne.

1. Introduction

Chord-arc curves have been studied with great interest in the fields of harmonic
analysis and complex analysis. This concept is related to BMO and VMO functions.
Astala and Zinsmeister [3] brought chord-arc curves and BMO functions into the
theory of Teichmüller spaces and introduced the BMO Teichmüller space Tb as an
analogous space with the universal Teichmüller space T . A brief summary concerning
the background on this classical Teichmüller space of quasicircles and quasiconformal
maps is given in Section 2. In this paper, we consider the structure of the space of
chord-arc curves. We realize this space Tc in the BMO Teichmüller space Tb so that
it contains the VMO Teichmüller space Tv. The precise definitions of these spaces
are given in Section 3. The main theme of this paper is the investigation of the fiber
structure of Tc with respect to the projection of Tb onto Tv.

In the universal Teichmüller space T , the little subspace T0 is defined by a certain
vanishing property of its elements, and the quotient T0\T was considered by Gar-
diner and Sullivan [13]. By taking the projection of the Bers embedding providing
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a complex Banach manifold structure for T and its closed submanifold structure for
T0, they showed that the asymptotic Teichmüller space AT = T0\T possesses the
quotient Banach manifold structure. A formulation of this result in terms of the
foliation of T by T0 is given in Theorem A and Corollary B. Our first result stated
in Theorem 1 is an analogue of this formulation in the relation between Tb and Tv,
which is based on Theorem C about the Bers embedding and the complex Banach
manifold structures of Tb and Tv proved in [26].

The main results in this paper are Theorem 4 and its corollaries. Having the
projection from Tb onto Tv compatible with their complex structures, we will prove
that the subspace Tc of chord-arc curves is composed as a union of the fibers of this
projection. This can be shown by investigating the set Tc in view of the group struc-
tures of Tv and Tb. Then, we see that Tc and its quotient have desirable structures
in this fiber space. The precise statements are put in Section 4, where a motivation
of our study of Tc and related problems are also mentioned.

We organize this paper by dividing it into sections. Some background on the
original theory and preliminaries for some necessary material are summarized in
Sections 2 and 3, respectively. The new results are all gathered in Section 4. Instead
of giving an introduction of these results in the first section, we ask the reader to
refer to the content developed in Sections 2 and 3. The rest of the paper after Section
4 is all devoted to the proofs of the main theorems.

2. Background on the universal Teichmüller space

In this section, we review the theory of the universal Teichmüller space (see
[1, 16, 20] for the details). In particular, we explain the construction and the structure
of the quotient space by the little universal Teichmüller space, called the asymptotic
Teichmüller space (see [10, 12] for the details). The purpose of this paper is to give
an analogue of the asymptotic Teichmüller space for the BMO and VMO Teichmüller
spaces defined in the next section.

2.1. The universal Teichmüller space. A sense-preserving homeomorphism
h of the unit circle S = {z ∈ C | |z| = 1} is said to be quasisymmetric if there exists
a least positive constant C(h), called the quasisymmetry constant of h, such that the
quasisymmetry quotient

mh(x, t) =
| h(ei(x+t))− h(eix) |

| h(eix)− h(ei(x−t)) |

takes values in the interval [1/C(h), C(h)] for all x ∈ [0, 2π) and t ∈ (0, π). Let
QS denote the group of all quasisymmetric homeomorphisms of S. Beurling and
Ahlfors [4] proved that a sense-preserving homeomorphism h of S is quasisymmetric
if and only if there exists some quasiconformal homeomorphism of the unit disk
D = {z ∈ C | |z| < 1} onto itself that has boundary value h. Later, Douady and
Earle [9] gave a quasiconformal extension of a quasisymmetric homeomorphism of S,
called the Douady–Earle extension, in a conformally natural way.

The universal Teichmüller space T can be defined as the group QS modulo the left
action of the group Möb(S) of all Möbius transformations of S, i.e., T = Möb(S)\QS.
Alternatively, T can be identified with the set of representatives h ∈ QS fixing three
points, 1, −1 and i, which can be realized as a subgroup of QS. The topology on T
is induced from that on QS defined by the quasisymmetry constant. This is the real
model of the universal Teichmüller space T .
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The universal Teichmüller space T is also represented by quasiconformal maps.
Let

M(D) = {µ ∈ L∞(D) | ‖µ‖∞ < 1}

denote the open unit ball of the Banach space L∞(D) of all essentially bounded
measurable functions on D. An element in M(D) is called a Beltrami coefficient. By
the measurable Riemann mapping theorem, for any µ ∈ M(D), there is a unique
normalized quasiconformal map fµ of D onto itself whose complex dilatation is µ,
where the normalization is given by fixing 1, −1 and i. Two elements µ and ν in
M(D) are equivalent, denoted by µ ∼ ν, if fµ|S = f ν |S. Then, the set M(D)/∼
of all equivalence classes [µ] is the Beltrami coefficient model of T . Let π be the
Teichmüller projection from M(D) onto T defined by π(µ) = [µ]. This is continuous
and open, which induces a homeomorphism between M(D)/∼ and Möb(S)\QS.

There is also a unique normalized quasiconformal map fµ of the Riemann sphere

Ĉ with complex dilatation µ in D and 0 in D∗ = Ĉ − D. The normalization of a

holomorphic map f : D∗ → Ĉ is given by

(1) f(z) = z +
b1
z
+ · · · (z → ∞).

We consider the Bers map Φ: M(D) → B(D∗) sending µ to the Schwarzian derivative
S(fµ|D∗) of the conformal map fµ|D∗ , where

B(D∗) = {ϕ | ‖ϕ‖B = sup
z∈D∗

(|z|2 − 1)2|ϕ(z)| <∞}

is the Banach space of all holomorphic mappings ϕ on D∗ = Ĉ − D with the norm
‖ϕ‖B. The Bers embedding β : T → B(D∗) is given by the factorization of the map Φ
by the Teichmüller projection π, i.e., β ◦ π = Φ. This is a well-defined injection due
to the fact that fµ|D∗ = fν |D∗ is equivalent to fµ|S = f ν |S. It can be proved that Φ is
a holomorphic split submersion (see [16, Theorem V.5.3], [20, Sections 3.4, 3.5]). In
particular, there is a local holomorphic right inverse of Φ at every point of Φ(M(D)).
This implies that the Bers embedding β is a homeomorphism onto its image, and
thus it induces a complex structure of T as a domain in the Banach space B(D∗).
This is the unique complex structure on T such that the projection π is holomorphic.

It is well known that a quasiconformal homeomorphism of D onto itself induces
a biholomorphic automorphism of the universal Teichmüller space T . Precisely, the
normalized quasiconformal homeomorphism fµ for µ ∈ M(D) induces a biholomor-
phic automorphism rµ : M(D) → M(D) which sends ν to

ν ∗ µ−1 =

(
ν − µ

1− µ̄ν

∂fµ

∂fµ

)
◦ (fµ)−1.

This is the complex dilatation of the composition f ν ◦ (fµ)−1. We denote by ν ∗ µ
the complex dilatation of the composition f ν ◦fµ, and by µ−1 the complex dilatation
of the inverse (fµ)−1. The map rµ descends down to a biholomorphic automorphism
R[µ] of T defined by R[µ] ◦ π = π ◦ rµ (see [16, Section V.5.4], [20, Section 3.6.2]).

The group operation ∗ on M(D) also descends down to the operation ∗ on T by
[µ] ∗ [ν] = [µ ∗ ν]. Combined with the inverse operation [µ]−1 = [µ−1], this turns out
to be the group structure (T, ∗) of the universal Teichmüller space, which is the same
as the group structure of T regarded as a subgroup of QS. Then, R[µ] is the right
translation of T by [µ] which sends [ν] to [ν] ∗ [µ]−1.
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2.2. The asymptotic Teichmüller space. A quasisymmetric homeomorphism
h ∈ QS of S is called symmetric if, in addition, the quasisymmetry quotient satisfies
mh(x, t) → 1 as t → 0 uniformly. We denote the subgroup of QS consisting of all
symmetric homeomorphisms of S by Sym. It was proved by Gardiner and Sullivan
[13] that Sym is the characteristic topological subgroup of QS. This in particular
implies that, for any h ∈ Sym, fn converges to f in QS if and only if h ◦ fn converges
to h◦f . The little universal Teichmüller space is defined by T0 = Möb(S)\Sym. This
can be regarded as a closed topological subgroup of (T, ∗).

It it known that h is symmetric if and only if h can be extended to an asymp-
totically conformal homeomorphism f of the unit disk D onto itself. In fact, the
Douady–Earle extension of h is asymptotically conformal when h is symmetric. Here,
by an asymptotically conformal homeomorphism f of the unit disk D, we mean that
its complex dilatation µ vanishes at the boundary, that is, ess.supr6|z|<1|µ(z)| → 0 as
r → 1. The closed subspace of M(D) consisting of all Beltrami coefficients vanishing
at the boundary is denoted by M0(D). Then, π(M0(D)) is a closed subspace of T ,
which coincides with T0. The image of M0(D) under the Bers map Φ: M(D) → B(D)
is contained in the Banach subspace B0(D∗) of B(D∗) consisting of those holomor-
phic functions ϕ such that (|z|2 − 1)2|ϕ(z)| → 0 as |z| → 1 uniformly. Moreover, the
local holomorphic inverse of Φ at every point of Φ(M0(D)) maps its neighborhood in
B0(D∗) toM0(D). Thus, T0 has the structure of the complex Banach submanifold of T
modeled on B0(D∗). In particular, we have that β(T0) = Φ(M0(D)) = β(T )∩B0(D∗).

We consider the quotient space AT = T0\T , which is called the asymptotic Teich-

müller space (see [10, 13]). If we regard T = Möb(S)\QS and T0 = Möb(S)\Sym, then
AT can be realized as the set of all cosets Sym\QS in the group QS. Alternatively,
the equivalence class in T under the quotient of T0 containing τ ∈ T is given by
R−1
τ (T0). In order to introduce a complex structure to AT modeled on the quotient

Banach space B0(D∗)\B(D∗), we have to verify the compatibility of the quotients
T0\T and B0(D∗)\B(D∗) under the Bers embedding β : T → B(D∗).

It was proved in [13] that the quotient Bers embedding

β̂ : T0\T → B0(D∗)\B(D∗)

is well-defined and locally injective. Then, AT = T0\T becomes a complex manifold
having local coordinates in the quotient Banach space B0(D∗)\B(D∗). Later, Kahn

(see [12, Section 16.8]) proved further that β̂ is globally injective. Earle, Markovic
and Saric [11, Theorem 4] gave a different proof for this by using the Douady–Earle
extension and generalized the result in a compatible way with Fuchsian group action.
As in the following theorem, we can formulate these claims so that the decomposition
of T into the submanifolds R−1

τ (T0) corresponds bijectively to the decomposition of
β(T ) ⊂ B(D∗) into the intersections of the affine subspaces isometric to B0(D∗). We
call this decomposition the affine foliated structure of T induced by T0. See [18] for
a comprehensive exposition.

Theorem A. β ◦R−1
τ (T0) = β(T ) ∩ {B0(D∗) + β(τ)} for every τ ∈ T .

The inclusion ⊂ in the above equality implies that the quotient Bers embedding

β̂ is well-defined. The converse inclusion ⊃ implies that β̂ is injective. Combining

the well-definedness and the injectivity of β̂ with the homeomorphy of β from T onto
its image in B(D∗), we have the following result naturally.

Corollary B. The quotient Bers embedding β̂ : T0\T → B0(D∗)\B(D∗) is a

homeomorphism onto its image. Consequently, AT = T0\T possesses a complex
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structure such that β̂ is a biholomorphic homeomorphism from T0\T onto its image

in B0(D∗)\B(D∗).

In this paper, we will obtain the analogous results to these two claims in the
setting of the BMO theory of the universal Teichmüller space.

3. Preliminaries on the BMO and VMO Teichmüller spaces

In this section, we give basic definitions and fundamental results on the BMO
theory of the universal Teichmüller space (see [3, 25, 26] for the details). We explain
these in an analogous way to those for the universal Teichmüller space given in the
previous section.

3.1. The BMO Teichmüller space. A sense-preserving homeomorphism h of
the unit circle S is called strongly quasisymmetric if for any ε > 0 there is some δ > 0
such that for any arc I ⊂ S and any Borel set E ⊂ I,

|E| 6 δ|I| ⇒ |h(E)| 6 ε|h(I)|.

By this definition, a strongly quasisymmetric homeomorphism is quasisymmetric,
and the composition of strongly quasisymmetric homeomorphisms is strongly qua-
sisymmetric. Moreover, it is known that the inverse of a strongly quasisymmetric
homeomorphism is strongly quasisymmetric (see [7]). We denote by SQS the sub-
group of QS consisting of all strongly quasisymmetric homeomorphisms of S.

Any strongly quasisymmetric homeomorphism h is absolutely continuous with
log h′ ∈ BMO(S) (see [14, Chap. 6]), but the converse is not true. Here, an integrable
function φ on S belongs to BMO(S) if

‖φ‖BMO = sup
I⊂S

1

|I|

ˆ

I

|φ(eiθ)− φI |
dθ

2π
<∞,

where the supremum is taken over all arcs I on S, |I| =
´

I
dθ/2π is the normalized

length of I, and φI denotes the average of φ over I. The BMO Teichmüller space is
defined by Tb = Möb(S)\SQS. This can be regarded as a subgroup of (T, ∗). The
topology on Tb is induced from that on SQS given by the BMO norm, that is, by the
distance d(h1, h2) = ‖ log h′1 − log h′2‖BMO.

As in the case of the universal Teichmüller space, the BMO Teichmüller space Tb
has the corresponding space for Beltrami coefficients. A measure λ = λ(z) dx dy on
D is called a Carleson measure if

‖λ‖c = sup
λ(Sh,θ0)

h
<∞

where the supremum is taken over all sectors

Sh,θ0 = {reiθ ∈ D | 1− h 6 r < 1, |θ − θ0| 6 πh}

for h ∈ (0, 1] and θ0 ∈ [0, 2π). We denote by CM(D) the set of all Carleson measures

on D. For D∗ = Ĉ − D, the set CM(D∗) of the Carleson measures on D∗ can be
defined similarly. For µ ∈ L∞(D) and for the Poincaré density ρD(z) = (1 − |z|2)−1

(with curvature constant equal to −4) on D, we set

λµ = |µ(z)|2ρD(z) dx dy.

Then the linear subspace L(D) ⊂ L∞(D) consisting of all µ with λµ ∈ CM(D) is

a Banach space with a norm ‖µ‖∗ = ‖µ‖∞ + ‖λµ‖
1/2
c . Moreover, we consider the

corresponding space of Beltrami coefficients as M(D) = M(D) ∩ L(D). Then, Tb is
the image of M(D) under the Teichmüller projection π : M(D) → T . The quotient
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topology on Tb induced from M(D) by π coincides with the topology on Tb induced
from the BMO norm.

There is also a subspace of holomorphic mappings corresponding to Tb. For

ϕ ∈ B(D∗), another norm is given by ‖ϕ‖B = ‖λ̃ϕ‖
1/2
c , where

λ̃ϕ = |ϕ(z)|2ρ−3
D∗ (z) dx dy

is a Carleson measure on D∗ for the Poincaré density ρD∗(z) = (|z|2 − 1)−1. We
consider the Banach space B(D∗) ⊂ B(D∗) consisting of all such elements ϕ that

λ̃ϕ ∈ CM(D∗) equipped with the norm ‖ϕ‖B. The following result was proved in [26,
Theorem 5.1].

Theorem C. The Bers map Φ restricted to M(D) is a holomorphic map into

B(D∗) with a local holomorphic right inverse at every point of the image Φ(M(D)).
The Bers embedding β of Tb is a homeomorphism onto the domain β(Tb) = Φ(M(D))
in B(D∗). In particular, Tb has a complex structure modeled on B(D∗).

3.2. The VMO Teichmüller space. We say that a strongly quasisymmetric
homeomorphism h ∈ SQS is strongly symmetric if log h′ ∈ VMO(S), where a function
φ ∈ BMO(S) belongs to VMO(S) if

lim
|I|→0

1

|I|

ˆ

I

|φ(eiθ)− φI |
dθ

2π
= 0

uniformly. In fact, VMO(S) is a closed subspace of BMO(S), and it is precisely the
closure of the space of all continuous functions on S under the BMO topology (see
[23]). We denote by SS the subgroup of SQS consisting of all strongly symmetric
homeomorphisms. It is easy to see that the inclusion relation SS ⊂ Sym holds. It
was proved in [28] that SS is the characteristic topological subgroup of SQS. This in
particular implies that, for any h ∈ SS, fn converges to f in SQS if and only if h ◦ fn
converges to h◦f . The VMO Teichmüller space Tv is defined to be Tv = Möb(S)\SS,
which can be regarded as a closed topological subgroup of (Tb, ∗).

A Carleson measure λ ∈ CM(D) is called a vanishing Carleson measure if

lim
h→0

λ(Sh,θ0)

h
= 0

uniformly for θ0 ∈ [0, 2π). We denote the set of all vanishing Carleson measures
on D by CM0(D). The set CM0(D∗) of the vanishing Carleson measures on D∗ can
be defined similarly. Let M0(D) be the closed subspace of M(D) consisting of all
Beltrami coefficients µ such that λµ ∈ CM0(D). Then, π(M0(D)) is a closed subspace
of Tb, which coincides with Tv. We denote by B0(D∗) the Banach subspace of B(D∗)

consisting of all elements ϕ such that λ̃ϕ = |ϕ(z)|2ρ−3
D∗ (z) dx dy ∈ CM0(D∗). Then

B0(D∗) ⊂ B0(D∗) by [26, Lemma 4.1]. It was proved in [26, Theorems 4.1, 5.2] that
Φ maps M0(D) into B0(D∗) and the Bers embedding β of Tv is a homeomorphism
onto a domain β(Tv) = Φ(M0(D)) in B0(D∗).

3.3. The chord-arc curve space. A rectifiable closed Jordan curve Γ in the
complex plane C is called a chord-arc curve if

(2) lΓ(z1, z2)/|z1 − z2| 6 K

for any z1, z2 ∈ Γ, where lΓ(z1, z2) denotes the Euclidean length of the shorter arc
of Γ between z1 and z2. The smallest such constant K > 1 is called the chord-arc
constant for Γ. A chord-arc curve is in particular a quasicircle. Further, if the ratio
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in (2) tends to 1 uniformly as |z1− z2| → 0, then the curve Γ is called asymptotically

smooth in the sense of Pommerenke [21].
The following fact is well-known as the characterization of a chord-arc curve (see

[15, Proposition 1.13]).

Proposition D. A chord-arc curve is the image of S under a bi-Lipschitz home-

omorphism f of C onto itself with respect to the Euclidean distance. That is, there

exists a homeomorphism f : C → C with a constant C > 1 such that f(S) = Γ and

C−1|z − w| 6 |f(z)− f(w)| 6 C|z − w| for all z, w ∈ C.

If Γ is a simple curve passing through ∞ satisfying the chord-arc condition (2), we
can transfer it to a bounded chord-arc curve by a Möbius transformation because the
chord-arc condition is Möbius invariant, or equivalently, the distance in the chord-arc
condition can be replaced with the spherical distance (see [17, p. 877]). This also
implies that Proposition D can be stated equivalently for an unbounded chord-arc
curve by the same bi-Lipschitz condition.

Let Γ be a bounded Jordan curve in the Riemann sphere Ĉ, let Ω and Ω∗ denote

its inner and outer domains in Ĉ, respectively, and let g and f be conformal maps of D
and D∗ onto Ω and Ω∗, respectively. We always assume that f : D∗ → Ω∗ is normalized
so that it satisfies (1). These two maps extend homeomorphically to the boundary,
and hence h = (g|S)

−1 ◦ (f |S) determines a sense-preserving homeomorphism of S
onto itself, which is called the conformal welding homeomorphism with respect to Γ.

It is well known that h is strongly quasisymmetric if and only if the curve Γ is
a quasicircle satisfying the so-called Bishop–Jones condition (see [6]): for any z ∈ Ω
there exists a domain Ωz(⊂ Ω) containing z bounded by a chord-arc curve with
constant K such that the diameter of Ωz is uniformly comparable to dist(z,Γ) and
the Hausdorff linear measure of Γ∩∂Ωz is bounded from below by Cdist(z,Γ), where
K > 1 and C > 0 depend only on Γ. The Bishop–Jones condition is invariant under
a bi-Lipschitz homeomorphism of C onto itself in the Euclidean metric, and hence,
any chord-arc curve satisfies this condition. It was proved in [21] that h is strongly
symmetric if and only if the curve Γ is asymptotically smooth. However, although
chord-arc curves are in a very special class of quasicircles, no characterization has
been found in terms of their conformal welding homeomorphisms of S.

We denote the set of all these conformal welding homeomorphisms for chord-
arc curves by CQS. Then, we have the following proper inclusion relations: SS $
CQS $ SQS. Here, the strictness of the second inclusion is seen by a fact that a
quasicircle satisfying the Bishop–Jones condition is not necessarily rectifiable (see
[5, 24]). Similarly to Tb = Möb(S)\SQS and Tv = Möb(S)\SS, we define Tc =
Möb(S)\CQS. The following fact was essentially shown by Zinsmeister [31] (see also
[3]).

Proposition E. Tc is an open subset of Tb containing Tv.

4. Statement of the results

We state our results in this paper, which fall into two parts. The first part is
concerning the affine foliated structure of the BMO Teichmüller space Tb by the VMO
Teichmüller space Tv. This is an analogous result with Theorem A, which gives a
foundation to investigate the structure of the quotient Teichmüller space.

Theorem 1. β ◦R−1
τ (Tv) = β(Tb) ∩ {B0(D∗) + β(τ)} for every τ ∈ Tb.
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We note that R−1
τ (Tv) for each τ ∈ Tb is an equivalence class of the quotient space

Tv\Tb ∼= SS\SQS containing τ , which is also a closed subspace of Tb biholomorphically
equivalent to Tv. By this theorem, we have the decomposition of the Bers embedding
as

β(Tb) =
⊔

[τ ]∈Tv\Tb

β ◦R−1
τ (Tv) =

⊔

[ψ]∈B0(D∗)\B(D∗)

β(Tb) ∩ {B0(D∗) + ψ}.

Based on Theorems 1 and C, the quotient space Tv\Tb is provided with a complex
structure modeled on the quotient Banach space B0(D∗)\B(D∗). The argument for
this is the same as that for Corollary B in the case of the asymptotic Teichmüller
space.

Corollary 2. The quotient Bers embedding

β̂ : Tv\Tb → B0(D∗)\B(D∗)

is well-defined and injective to be a homeomorphism of Tv\Tb onto its image. Con-

sequently, Tv\Tb possesses a complex structure such that β̂ is biholomorphic.

Moreover, we have the following result on biholomorphic automorphisms of Tv\Tb
with respect to its complex structure. This is well-known in the theory of asymptotic
Teichmüller space (see [19, Proposition 4.1]).

Corollary 3. Let p : Tb → Tv\Tb be the quotient projection from Tb onto Tv\Tb.
For every τ ∈ Tb, the biholomorphic automorphism Rτ of Tb induces a biholomorphic

automorphism R̂τ of Tv\Tb satisfying p ◦Rτ = R̂τ ◦ p.

The second part of our results is concerning the structure of the space of chord-arc
curves. We will show that CQS does not carry a group structure under the composi-
tion. This follows from the claim that every element of SQS can be represented as a
finite composition of elements in CQS. However, CQS is preserved under the inverse
operation and under the left and right actions of SS. In particular, CQS is preserved
under the conjugation by SS. We state these claims in the framework of Teichmüller
spaces; the chord-arc curve space is identified with a subspace Tc = Möb(S)\CQS of
the BMO Teichmüller space (Tb, ∗). For each σ ∈ Tb, the left translation Lσ : Tb → Tb
is defined by Lσ(τ) = σ ∗ τ for every τ ∈ Tb.

Theorem 4. The following statements hold.

(a) Each element of Tb can be represented as a finite composition of elements in

Tc. Hence, Tc is not a subgroup of Tb.
(b) The inverse element τ−1 belongs to Tc for every τ ∈ Tc.
(c) Lσ(Tc) = Tc and Rσ(Tc) = Tc for every σ ∈ Tv.

Remark. Statement (a) is a general fact not only for U = Tc but also for any
open neighborhood U $ Tb of the origin o = [0] of the Teichmüller space. This is seen
from its proof. Statement (b) does not assert that the inverse operation τ 7→ τ−1 is
continuous. In fact, this is not necessarily continuous on Tc but continuous on Tv. For
statement (c), we have only to show the inclusion Lσ(Tc) ⊂ Tc. The inverse inclusion
follows from the facts that L−1

σ = Lσ−1 and σ−1 ∈ Tv. The equality for the right
translation is obtained by taking the inverse of the equality for the left translation
and applying statement (b).

The above condition Lσ(Tc) ⊂ Tc for every σ ∈ Tv is equivalent to that R−1
τ (Tv) ⊂

Tc for every τ ∈ Tc. We verify this property in the proof. Concerning the fiber
structure of Tc with respect to the projection p : Tb → Tv\Tb, this condition implies
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that Tc consists of all fibers of p that intersect Tc. Moreover, if we consider this as
the property of the right translation Rσ by σ ∈ Tv preserving Tc, the projection p
restricted to Tc is also obtained as the quotient by the group action of Tv.

Corollary 5. For each τ ∈ Tc, the fiber R−1
τ (Tv) of the projection p : Tb → Tv\Tb

is entirely contained in Tc. Hence, Tc =
⊔

[τ ]∈p(Tc)
R−1
τ (Tv). For each σ ∈ Tv, the right

translation Rσ acts on Tc as a biholomorphic automorphism, and p(Tc) is given as

the quotient Tv\Tc of this group action.

Problem. We have seen that Tv acts on Tc as a group of biholomorphic auto-
morphisms. Then, we may ask about whether this property characterizes Tv, namely,
if the stabilizer subgroup

{τ ∈ Tb | Rτ (Tc) = Tc = Lτ (Tc)}

containing Tv coincides with Tv or not. As a related question, for any τ ∈ Tc − Tv,
we ask about the existence of an integer n such that τn = τ ∗ · · · ∗ τ /∈ Tc.

Corollary 5 implies the following equation in the Bers embedding. Combined
with Theorem 1, this yields the affine foliated structure of Tc by Tv.

Corollary 6. β(Tb)∩{B0(D∗)+β(τ)} = β(Tc)∩{B0(D∗)+β(τ)} for every τ ∈ Tc.

The quotient Bers embedding from Tv\Tc into B0(D∗)\B(D∗), considered in [29,
Theorem 2.2], is well-defined and injective. This can be extended to the embedding
of Tv\Tb as in Corollary 2. Then, we provide the quotient space Tv\Tc with a complex
structure modeled on the quotient Banach space B0(D∗)\B(D∗).

Corollary 7. The quotient Bers embedding β̂ maps Tv\Tc homeomorphically

onto its image in B0(D∗)\B(D∗), and Tv\Tc possesses a complex structure as a domain

in Tv\Tb.

Connectivity of Tc is an open problem (see [2], [3, p. 614]). Since Tv is connected,
Corollary 5 also implies the following reduction on this problem.

Corollary 8. Tc is connected if and only if Tv\Tc is connected.

Corollaries 5, 6, 7, and 8 follow directly from the preceding results. The remainder
of this paper is devoted to the proofs of Theorem 1 with Corollaries 2 and 3 and
Theorem 4.

5. Proof of Theorem 1

For every τ ∈ Tb, let f ν : D → D be a normalized quasiconformal extension of
τ with complex dilatation ν ∈ M(D) (i.e. π(ν) = τ) that is bi-Lipschitz under the
Poincaré metric on D (for instance, the Douady–Earle extension of τ satisfies this
condition; see [8]). Let ψ = Φ(ν) ∈ B(D∗).

5.1. Proof of the inclusion ⊂. We divide the arguments into two steps. We
first deal with the special case that µ ∈ M0(D) has a compact support. Then, we
extend this to the general case by means of an approximation process.

We take such a Beltrami coefficient µ ∈ M0(D) with compact support. We will
show that Φ(µ ∗ ν)− Φ(ν) ∈ B0(D∗). Then, the inclusion ⊂ follows from

Φ(µ ∗ ν)− Φ(ν) = β ◦ π(µ ∗ ν)− β ◦ π(ν) = β ◦R−1
τ (π(µ))− β(τ).

Let fµ∗ν : Ĉ → Ĉ be the quasiconformal homeomorphism with complex dilatation

µ ∗ ν on D that is conformal on D∗. Set f̂ = fµ∗ν ◦ f
−1
ν . Then, f̂ is a quasiconformal
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homeomorphism with complex dilatation µ̂ on Ω = fν(D) whose support is contained
in a Jordan domain Ω0 with Ω0 ⊂ Ω, and is conformal on Ω∗ = fν(D∗) with

(3) |S(f̂)|2ρ−3
Ω∗ =

(
|S(fµ∗ν)− S(fν)|

2ρ−3
D∗

)
◦ f−1

ν |(f−1
ν )′|.

In fact, f̂ is conformal on the larger domain Ω∗
0 = Ĉ− Ω0.

It is known that |S(f̂)(z)|ρ−2
Ω∗

0

(z) 6 12 for z ∈ Ω∗
0 (see [16, p. 67]). Since the

Poincaré density is monotone with respect to the domain, we have ρΩ∗

0
(z) 6 ρΩ∗(z).

Then, there exists a constant C such that

|S(f̂)(z)|2ρ−3
Ω∗ (z) 6 144ρ4Ω∗

0

(z)ρ−3
Ω∗ (z) 6 144ρΩ∗

0
(z) 6 C

for z ∈ Ω∗. From this, we deduce that |S(f̂ )|2ρ−3
Ω∗ ∈ CM0(Ω

∗). By (3) and well-
definedness of the pull-back operator from CM0(Ω

∗) into CM0(D∗) (see [29, Theo-
rem 3.1]), we have that |S(fµ∗ν)−S(fν)|

2ρ−3
D∗ ∈ CM0(D∗), and thus Φ(µ∗ν)−Φ(ν) ∈

B0(D∗).
Next, we consider the general case. For any σ ∈ Tv, the complex dilatation

of the Douady–Earle extension of σ is denoted by µ. Then, µ ∈ M0(D) by [27,
Theorem 3.7] (see also [30]). We take an increasing sequence of positive numbers
rn < 1 (n = 1, 2, . . .) tending to 1. Let ∆n be an open disk of radius rn centered at
the origin, and set An = D−∆n. We define

µn =

{
µ on ∆n,

0 on An.

Then, {µn} is a sequence of complex dilatations with compact support such that

‖µ− µn‖∗ = ‖µ− µn‖∞ + ‖λµ−µn‖
1/2
c = ‖µ|An

‖∞ + ‖λµ|An
‖1/2c → 0(4)

as n→ ∞. Indeed, it was proved in [11] that the complex dilatation of the Douady–
Earle extension of a symmetric homeomorphism is in M0(D). Combining this with
the inclusion relation SS ⊂ Sym, we see that µ belongs to M0(D), which implies that
the first term of the second line of (4) tends to 0. By the definition of M0(D), the
second term also tends to 0.

Since f ν is bi-Lipschitz under the Poincaré metric as we mentioned at the begin-
ning of this section, ν induces a biholomorphic automorphism r−1

ν : M(D) → M(D)
(see [26, Remark 5.1]). Then, we have

‖r−1
ν (µ)− r−1

ν (µn)‖∗ = ‖µ ∗ ν − µn ∗ ν‖∗ → 0

as n→ ∞. The continuity of Φ yields that

‖(Φ(µ ∗ ν)− Φ(ν))− (Φ(µn ∗ ν)− Φ(ν))‖B = ‖Φ(µ ∗ ν)− Φ(µn ∗ ν)‖B → 0

as n→ ∞. We have proved that Φ(µn ∗ ν)− Φ(ν) ∈ B0(D∗) in the first step. Then,
it follows that Φ(µ∗ν)−Φ(ν) ∈ B0(D∗) from the fact that B0(D∗) is closed in B(D∗).
This proves the inclusion ⊂. �

5.2. Proof of the inclusion ⊃. This can be proved by using the following
claim, which is shown in [18, Proposition 3.3].

Claim. Let fν : Ĉ → Ĉ be a quasiconformal homeomorphism with complex di-
latation ν ∈M(D) that is bi-Lipschitz between D and Ω = fν(D) under their Poincaré
metrics, and is conformal on D∗ with S(fν |D∗) = ψ. Then, for every ϕ ∈ B0(D∗), there

exists a quasiconformal homeomorphism f̂ : Ĉ → Ĉ with complex dilatation µ̂ on Ω
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vanishing at the boundary that is conformal on Ω∗ = fν(D∗) with S(f̂ ◦fν |D∗) = ϕ+ψ

such that the following statements are valid: f̂ is decomposed into two quasiconfor-

mal homeomorphisms f̂0 and f̂1 of Ĉ with f̂ = f̂0 ◦ f̂1, where f̂1 is conformal on Ω∗

with S(f̂1 ◦ fν |D∗) = ϕ1 + ψ, satisfying the following properties:

(i) the complex dilatation µ̂1 of f̂1 on Ω satisfies

|µ̂1 ◦ fν(z)| 6
1

ε
ρ−2
D∗ (z

∗)|ϕ1(z
∗)| (z∗ = z̄−1)

for some ε > 0 and for every z ∈ D;
(ii) the support of the complex dilatation µ0 of the normalized quasiconformal

homeomorphism f0 : D → D, which is conformally conjugate to f̂0 : f̂1(Ω) →

f̂(Ω), is contained in a compact subset of D;
(iii) for the complex dilatation µ1 of the normalized quasiconformal homeomor-

phism f1 : D → D, which is conformally conjugate to f̂1 : Ω → f̂1(Ω), we
have

ϕ− ϕ1 = Φ(µ0 ∗ µ1 ∗ ν)− Φ(µ1 ∗ ν).

Combining all those maps in the claim above, we have the following commutative
diagram, where gν , g1, and g are the conjugating conformal maps:

D D D D

Ω f̂1(Ω) f̂(Ω)

f ν f1 f0

fν

f̂1 f̂0

gν g1 g

f = f0 ◦ f1

f̂ = f̂0 ◦ f̂1

We take ϕ ∈ B0(D∗) such that ϕ + ψ ∈ β(Tb). Since B0(D∗) ⊂ B0(D∗), there

is a quasiconformal homeomorphism f̂ : Ĉ → Ĉ conformal on Ω∗ and asymptotically

conformal on Ω such that S(f̂ ◦ fν |D∗) = ϕ + ψ. According to the claim above, we

consider the decomposition f̂ = f̂0 ◦ f̂1 together with other maps that appear in it,
and apply the properties shown there.

Since ϕ ∈ B0(D∗), if ϕ− ϕ1 ∈ B0(D∗), then ϕ1 ∈ B0(D∗). By property (ii), µ0 in
particular belongs to M0(D), and by property (iii), ϕ−ϕ1 = Φ(µ0∗µ1∗ν)−Φ(µ1∗ν).
By the previous arguments showing the inclusion ⊂, we see that ϕ − ϕ1 ∈ B0(D∗).
Hence, ϕ1 ∈ B0(D∗).

By property (i), ϕ1 ∈ B0(D∗) implies that µ̂1 ◦ fν ∈ M0(D). Since |µ̂1 ◦ fν | =
|µ1 ◦ f

ν |, we have µ1 ◦ f
ν ∈ M0(D). It follows from the bi-Lipschitz continuity of

f ν and [27, Proposition 3.5] that µ1 ∈ M0(D). By property (ii), the support of the
complex dilatation µ0 of f0 is contained in a compact subset of D. Hence, we see
that the complex dilatation µf = µ0 ∗ µ1 of f = f0 ◦ f1 belongs to M0(D). Since the

complex dilatation of the quasiconformal homeomorphism f̂ ◦ fν on D is r−1
ν (µf), we

have that

ϕ+ ψ = Φ(µ0 ∗ µ1 ∗ ν) = Φ ◦ r−1
ν (µf) ∈ Φ ◦ r−1

ν (M0(D)) = β ◦R−1
τ (Tv),
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which proves the inclusion ⊃. �

6. Proofs of Corollaries 2 and 3

6.1. Proof of Corollary 2. For the quotient maps p : Tb → Tv\Tb and
P : B(D∗) → B0(D∗)\B(D∗), the following commutative diagram holds:

Tb B(D∗)

Tv\Tb B0(D∗)\B(D∗)

β

p

β̂

P

The well-definedness and the injectivity of β̂ are direct consequences from The-
orem 1. Since P is the projection onto the quotient Banach space, the image

P (β(Tb)) = β̂(Tv\Tb) is an open subset of B0(D∗)\B(D∗). Moreover, β̂ : Tv\Tb →

β̂(Tv\Tb) is open and continuous because so is β : Tb → β(Tb). Combined with the

injectivity of β̂, this implies that β̂ is a homeomorphism of Tv\Tb onto its image. �

6.2. Proof of Corollary 3. For each σ ∈ Tb, we have that Rτ (Tv ∗ σ) =
Tv ∗ (σ ∗ τ−1). This shows that the correspondence [σ] 7→ [σ ∗ τ−1] yields a well-

defined map R̂τ : p(Tb) → p(Tb) that satisfies p ◦ Rτ = R̂τ ◦ p. By considering the

inverse mapping R−1
τ = Rτ−1 , we see that R̂τ is bijective. In the same way as the

proof of Corollary 2, R̂τ is shown to be a homeomorphism. Thus, it suffices to prove

that R̂τ is holomorphic.

We may identify Tb with the domain β(Tb) in B(D∗). The conjugate R̃ϕ =
β ◦ Rτ ◦ β

−1 for ϕ = β(τ) is a biholomorphic automorphism of β(Tb) ⊂ B(D∗). We

use its projection R̂ϕ to P (β(Tb)) = β̂(p(Tb)) as a replacement of R̂τ , which satisfies

P ◦ R̃ϕ = R̂ϕ ◦ P . Let φ1, φ2 ∈ β(Tb) with φ1 − φ2 ∈ B0(D∗) and let ψ1, ψ2 ∈ B(D∗)

with ψ1 − ψ2 ∈ B0(D∗). The derivative of R̃ϕ satisfies

dφ1R̃ϕ(ψ1) = lim
t→0

1

t
(R̃ϕ(φ1 + tψ1)− R̃ϕ(φ1));

dφ2R̃ϕ(ψ2) = lim
t→0

1

t
(R̃ϕ(φ2 + tψ2)− R̃ϕ(φ2)),

where the limits refer to the convergence under the norm ‖ · ‖B. From this, we see

that dφ1R̃ϕ(ψ1)− dφ2R̃ϕ(ψ2) belongs to B0(D∗) because B0(D∗) is closed and

{R̃ϕ(φ1 + tψ1)− R̃ϕ(φ1)} − {R̃ϕ(φ2 + tψ2)− R̃ϕ(φ2)}

= {R̃ϕ(φ1 + tψ1)− R̃ϕ(φ2 + tψ2)} − {R̃ϕ(φ1)− R̃ϕ(φ2)}

belongs to B0(D∗). Thus, for every [φ] ∈ P (β(Tb)), a linear map Aϕ[φ] : B0(D∗)\B(D∗)

→ B0(D∗)\B(D∗) is well-defined by Aϕ[φ]([ψ]) = [dφR̃ϕ(ψ)]. This satisfies Aϕ[φ] ◦ P =

P ◦ dφR̃ϕ.
The linear operator Aϕ[φ] is bounded and the operator norm satisfies ‖Aϕ[φ]‖ 6

‖dφR̃ϕ‖. Indeed, for every [ψ] ∈ B0(D∗)\B(D∗) and every ε > 0, we may choose
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ψ ∈ B(D∗) such that P (ψ) = [ψ] and ‖ψ‖ 6 ‖[ψ]‖+ ε. Then,

‖Aϕ[φ]([ψ])‖ = ‖P ◦ dφR̃ϕ(ψ)‖ 6 ‖dφR̃ϕ(ψ)‖ 6 ‖dφR̃ϕ‖ · ‖ψ‖ 6 ‖dφR̃ϕ‖(‖[ψ]‖+ ε).

Making ε > 0 arbitrarily small, we obtain the claim.
Moreover, since we may assume that ‖ψ‖ 6 2‖[ψ]‖ in the above choice of ψ, we

have that

‖R̂ϕ([φ] + [ψ])− R̂ϕ([φ])− Aϕ[φ]([ψ])‖

= ‖P ◦ R̃ϕ(φ+ ψ)− P ◦ R̃ϕ(φ)− P ◦ dφR̃ϕ(ψ)‖

6 ‖R̃ϕ(φ+ ψ)− R̃ϕ(φ)− dφR̃ϕ(ψ)‖ = o(‖[ψ]‖).

This implies that R̂ϕ is differentiable at every [φ] ∈ P (β(Tb)) in every direction

[ψ] ∈ B0(D∗)\B(D∗) with the derivative d[φ]R̂ϕ([ψ]) = Aϕ[φ]([ψ]). �

7. Proof of Theorem 4

7.1. Proof of statement (a). Let V denote a subset of Tb consisting of all
τ for which there exists an open neighborhood W such that each τ ′ ∈ W can be
represented as a finite composition of elements in Tc. Since Tb is connected, in order
to prove that V coincides with Tb, it suffices to show that V is non-empty, open, and
closed. By Proposition E, Tc is an open subset of Tb containing the origin o = [0].
We see that o ∈ V , and hence V is non-empty. By the definition of V , this is open.

Now we prove that V is closed. Let {τn} ⊂ V be a sequence such that τn → τ as
n→ ∞. We will show that τ ∈ V . Let U be an open neighborhood of o in Tc. Then,
Rτ (τn) ∈ U for all sufficiently large n, that is, σn = τn ∗ τ

−1 ∈ U . Since σn → o as
n → ∞, we have σ−1

n → o. Thus, we may assume that σ−1
n ∈ U . Let W = R−1

τ (U),
which is a neighborhood of τ . For each τ ′ ∈ W , there exists an element σ′ ∈ U such
that τ ′ ∗ τ−1 = σ′. It follows that τ ′ = σ′ ∗ τ = σ′ ∗ σ−1

n ∗ τn. Therefore, τ ′ ∈ W can
be represented as a finite composition of elements in Tc. This shows that τ ∈ V . �

7.2. Proof of statement (b). If h = g−1 ◦ f is the conformal welding homeo-
morphism corresponding to a chord-arc curve Γ, then h−1 = f−1 ◦ g = (j ◦ f ◦ j)−1 ◦
(j ◦ g ◦ j) is the conformal welding homeomorphism corresponding to j(Γ), where
j(z) = z∗ = z̄−1 is the standard reflection with respect to S. Since j is an isometry

with respect to the spherical metric of Ĉ, j(Γ) is a chord-arc curve. This proves that
if τ = [h] ∈ Tc then τ−1 ∈ Tc. �

7.3. Proof of statement (c). For any τ ∈ Tc and σ ∈ Tv, we will show
that R−1

τ (σ) belongs to Tc. Set σ̂ = R−1
τ (σ) = σ ∗ τ . Let g−1 ◦ f and g−1

1 ◦ f1 be
the conformal welding homeomorphisms such that [g−1 ◦ f ] = τ and [g−1

1 ◦ f1] = σ̂,
respectively. Here, g and g1 are conformal maps on D, and f and f1 are conformal
maps on D∗ with the normalization (1). We set Ω = g(D), Ω∗ = f(D∗), and Γ =
∂Ω = ∂Ω∗ which is a chord-arc curve. Similarly, we set Ω1 = g1(D), Ω∗

1 = f1(D∗),
and Γ1 = ∂Ω1 = ∂Ω∗

1 which is a quasicircle at this moment. Let f ν and fµ be
the normalized quasiconformal self-homeomorphisms of D corresponding to τ and σ,
respectively. As σ ∈ Tv, we can assume that the complex dilatation µ of fµ induces
a vanishing Carleson measure λµ ∈ CM0(D). Then, g ◦ f ν and g1 ◦ f

µ ◦ f ν are
quasiconformal extensions of f and f1 to D, respectively.
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We define

f̂ =

{
f1 ◦ f

−1 on Ω∗,

(g1 ◦ f
µ ◦ f ν) ◦ (g ◦ f ν)−1 = g1 ◦ f

µ ◦ g−1 on Ω.

Then, f̂ : Ĉ → Ĉ is conformal on Ω∗ and asymptotically conformal on Ω whose
complex dilatation µ̂ satisfies |µ̂|2ρΩ = λµ ◦ g

−1|(g−1)
′

| for the Poincaré density ρΩ
on Ω. As λµ ∈ CM0(D), we have that |µ̂|2ρΩ ∈ CM0(Ω) by [29, Theorem 3.2].

We decompose f̂ into f̂0 ◦ f̂1 as follows. The quasiconformal homeomorphism

f̂1 : Ĉ → Ĉ is chosen so that its complex dilatation µ̂1 coincides with µ̂ on Ω − Ω0

for some compact subset Ω0 of Ω homeomorphic to a closed disk, and zero elsewhere.

We may assume that f̂1 satisfies the normalization (1). Then, f̂0 is defined to be

f̂ ◦ f̂−1
1 . We have the following commutative diagram:

D D D

Ω1 Ω f̂1(Ω)

fµ ◦ f ν f ν

g

g 1
◦
f
µ ◦
f
ν

g
◦
f ν

g1

f̂ f̂1

fµ

f̂0

Here, the compact subset Ω0 ⊂ Ω is chosen so that |µ̂1|
2ρΩ ∈ CM0(Ω) has a

sufficiently small norm as a Carleson measure. It follows from [29, Lemma 4.1] that

|S(f̂1)|
2ρ−3

Ω∗ ∈ CM0(Ω
∗) with a small norm. By [29, Theorem 3.1], we have that

|S(f̂1 ◦ f)− S(f)|2ρ−3
D∗ = (|S(f̂1)|

2ρ−3
Ω∗) ◦ f |f ′| ∈ CM0(D∗),

and moreover, we see that it can be of a small norm according to that of |S(f̂1)|
2ρ−3

Ω∗ .
Combined with the facts that Γ is a chord-arc curve and that the subspace Tc is open

in Tb by Proposition E, this implies that ∂f̂1(Ω) is also a chord-arc curve.

Since the complex dilatation µ̂0 of f̂0 has the compact support f̂1(Ω0) ⊂ f̂1(Ω), we

conclude that Γ1 is the image of ∂f̂1(Ω) under f̂0, which is conformal when restricted

to C− f̂1(Ω0). In particular, f̂0 is bi-Lipschitz on the chord-arc curve ∂f̂1(Ω). Then,
this extends to a bi-Lipschitz homeomorphism of C (see [22, Theorem 7.10]), and
thus Γ1 is again a chord-arc curve by Proposition D. This implies that σ̂ ∈ Tc. �
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