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Conformal structure of autonomous
Leray–Lions equations in the plane and
linearisation by hodograph transform

Erik Duse

Abstract. We give sufficient conditions for when an autonomous elliptic Leray–Lions equation

in the plane has a conformal structure. This allows the Leray–Lions equation to be linearised in a

special form through the hodograph transform.

Tasoalueen autonomisten Lerayn–Lionsin yhtälöiden konforminen

rakenne ja linearisointi nopeuskäyrämuunnoksen avulla

Tiivistelmä. Annamme riittävät ehdot sille, että tasoalueen autonomisella elliptisellä Lerayn–

Lionsin yhtälöllä on konforminen rakenne, mikä mahdollistaa yhtälön linearisoimisen erityiseen muo-

toon nopeuskäyrämuunnoksen avulla.

1. Introduction and motivation

Consider a general autonomous second order equation in the plane of the form

divA(∇u(z)) = 0, z ∈ Ω,(1.1)

for some domain Ω ⊂ C and some continuous monotone field A ∈ W 1,2
loc (R

2,R2) ∩
C(R2,R2), whose precise assumption we defer to Definition 3.2. In particular

〈A(ξ)−A(ζ), ξ − ζ〉 > 0

for all ξ 6= ζ ∈ C. These are very weak assumptions on A, and it implies that
the equation can be a highly degenerate elliptic equation. Assume that u is a weak
solution of (1.1) such that ∇u ∈ W 1,2

loc (Ω,R
2). Then by looking at the complex

gradient f = uz one can show (and we will recall later how in section 3) that the
complex gradient solves the Beltrami equation

fz = ν(f)fz + ν(f)fz,(1.2)

where

ν(f) := − Aw(f)

2Re[Aw(f)]

and

A(ξ) = A(2ξ).

The resulting Beltrami equation for the complex gradient is uniformly elliptic if
and only if

2|ν(w)| ≤ k < 1
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for all w ∈ C. Interestingly, one can show that the equation for the complex gradient
is uniformly elliptic even though the structure field A does not satisfy the standard
uniform ellipticity condition

|ξ|2 + |A(ξ)|2 ≤
(
K +

1

K

)
〈A(ξ), ξ〉(1.3)

for all ξ ∈ C and some K ≥ 1. This happens in particular for the p-Laplacian
when p 6= 2, which shows that this notion of uniform ellipticity is distinct form (1.3).
Assuming that the Beltrami equation is uniformly elliptic on some domain Ω ∈ C it
follows that f is K-quasiregular for some 1 ≤ K < +∞. This means that f belongs
to W 1,2

loc (Ω,C) and also solves a C-linear Beltrami equation

fz(z) = µ(z)fz(z),

but where µ depends on f and is different for different solutions of (1.2). In partic-
ular the Stoilow factorization theorem implies that f = h(χ) for some holomorphic
function h and a quasiconformal map χ. In many instances this is enough if one only
wants to deduce interior regularity of solutions as in [IM89].

More precisely, assume that we insert f = h ◦ χ into (1.2), with χ being a
quasiconformal homeomorphism and h holomorphic, then we get the equation

χz(z) = ν(h(χ(z)))χz(z) + ν(h(χ(z)))
hw(χ(z))

hw(χ(z))
χz(z).

Applying the hodograph transform gives the equation for the inverse map η = χ−1

ηw(w) = −ν(h(w))ηw(w)− ν(h(w))
hw(w)

hw(w)
ηw(w)

which is a linear equation of course, but whose coefficients depend on the holo-
morphic map and its derivative hw. In some instances, especially when one wants
to consider boundary behaviour and highly degenerate elliptic equations, this may
cause difficulties.

We are however in no way restricted to only considering the complex gradient
uz of solutions (1.1), but we could also consider complex fields of the form F (z) =
Φ(uz(z)) for some homeomorphism Φ ∈ W 1,2

loc (C,C). If we could find a Φ so that
F solves an autonomous C-quasilinear equation, then when linearising using the
Stoilow factorization and the hodograph transform we would get a linear equation
whose coefficients depend on a holomorphic function but not on its derivative. In
particular in the works [ADPZ20, Ki73] this feature was decisive.

Moreover, if in addition solutions to (1.1) are C1 but the structure field A ∈ C1

does not satisfy
∥∥∥∥

Aw(w)

2Re[Aw(w)]

∥∥∥∥
∞

= k < 1

we could consider a connected component N of
{
z ∈ C :

∣∣∣∣
Aw(w)

2Re[Aw(w)]

∣∣∣∣
∞
< 1

}

and solutions u of (1.1) and open subsets U ⊂ Ω such that f = uz : U → N . We will
now consider a number of instructive examples where this is possible.
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Example 1.1. (p-Laplacian) The p-Laplace equation is

div |∇u(z)|p−2∇u(z) = 0.

In this case A(ξ) = |ξ|p−2ξ and one can see that the structure field A is not uniformly
elliptic. Yet, the complex gradient f = uz solves

fz(z) =

(
1

p
− 1

2

)[
f

f
fz +

f

f
fz

]
,

and so

µ(f) =

(
1

p
− 1

2

)
f

f
, ν(f) =

(
1

p
− 1

2

)
f

f
.

which is uniformly elliptic! Let Φδ(z) = |z|δ−1z where δ =
√
p− 1. Then it is shown

in [AIM09, Ch. 16] that F = Φδ(f) solves the C-quasilinear Beltrami equation

Fz =
1− δ

1 + δ

F

F
Fz.

Using the Stoilow factorization theorem F = φ ◦ χ for some holomorphic φ and
a homeomorphic solution χ of

χz =
1− δ

1 + δ

F

F
χz.

If we let g(z) = χ−1(z), then the hodograph transform gives the linear equation

gz(z) = −1− δ

1 + δ

φ(z)

φ(z)
gz(z)

Example 1.2. (Minimal surfaces) In this case the autonomous Leray–Lions
equation equals

div
∇u(z)√

1 + |∇u(z)|2
= 0

and A(ξ) = ξ√
1+|∇ξ|2

. If one lets

Φ(z) =
2z

1 +
√

1 + 4|z|2
then it was shown in [Ki73] (see also [KS87, Lemma 5.1, p. 169]) that F = Φ(uz)
solves the C-quasilinear Beltrami equation

Fz = F
2
Fz.

Using the Stoilow factorisation, F = φ ◦ χ where χ is a homeomorphic solution to

χz = F
2
χz,

the hodograph transform then gives that g = χ−1 solves the linear equation

gz(z) = −φ(z)2gz(z).
Example 1.3. (Dimer models) When studying the asymptotic behaviour of ran-

dom height functions in dimer models, e.g. [KOS06, CKP01, ADPZ20] one is lead to
the study of the Euler–Lagrange equation

div∇σ(∇u(z)) = 0
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where σ is an in general inexplicit convex function that solves a boundary value
problem for the Monge–Ampère equation, see [ADPZ20]. By considering the Lewy

transform

Lσ(z) = z +∇σ(z),

it is shown in [ADPZ20] that the complex valued field

F (z) = Lσ(∇u(z)) = Lσ(2zu(z))

solves a C-quasilinear equation of the form

Fz(z) = H′(F (z))Fz(z),

where H′ is a proper holomorphic map. The Stoilow factorisation and the hodograph
transform then shows that for F = φ◦χ, with φ holomorphic and χ a homeomorphic
solution of

χz = H′(F )χz

the inverse g = χ−1 solves the linear Beltrami equation

gz(z) = −H′(φ(z))gz(z).

Given these examples one can ask if it is always possible to find a homeomorphism
Φ such that the complex field F = Φ(uz) solves an elliptic C-quasilinear Beltrami
equation if u is a solution of (1.1)?

Assuming for now the existence of such a Φ it follows that F would solve a
C-quasilinear equation of the form

Fz(z) = γ(F (z))Fz(z).(1.4)

If we assume that u solves (1.1) on an open set U ⊂ C we also need to assume here,
to get a viable theory, that |γ(F (z))| ≤ kV < 1 on any relatively compact set V ⊂ U .
If this holds we call γ the conformal Beltrami coefficient associated the structure field
A.

We may now apply the Stoilow factorization which says that every solution F of
(1.4) is of the form

F = h ◦ χ

where h is a holomorphic function and χ is a homeomorphic solution to

χz(z) = γ(h(χ(z)))χz(z)

If we let g = χ−1 the hodograph transformation yields (see [AIM09, Ch. 16.3])
that g solves the anti-C-linear Beltrami equation

gz(z) = −γ(h(z))gz(z)(1.5)

In particular, if the regularity of γ is known so is γ ◦ h and does not depend on g
itself which is major advantage. Moreover, the equation degenerates precisely when
|γ ◦ h(z)| = 1.
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2. Main results

Definition 2.1. Let N ⊂ C be open and let A : N → C be a locally δ-monotone
field according to Definition 3.2. Let A(z) = A(2z) and define

ν(z) := − Az(z)

2Re[Az(z)]
.(2.1)

Define

η(z) =





0, if ν(z) = 0,

−1 +
√
1− 4|ν(z)|2
2ν(z)

otherwise,
and γ(z) = −η(z).(2.2)

We now come to the main results of this paper:

Theorem 2.1. Let A : C → C be a δ-monotone field (see Definition 3.1) and let
ν and γ be given by Definition 2.2. Let Ω ⊂ C be a bounded domain and consider
all weak solutions u ∈ W1,Υ(Ω) of the autonomous Leray–Lions equations

divA(∇u(z)) = 0, z ∈ Ω,

where W
1,Υ(Ω,C) is the homogenous Orlicz–Sobolev space associated to A as in

[AIM09, Ch. 16.4.1]. Then there exists a quasiconformal map Φ: C → C that solves
the uniformly elliptic linear Beltrami equation

Φz(z) = η(z)Φz(z)

where η is given by (2.2) such that the associated field

F (z) = Φ(uz)

solves the uniformly elliptic C-quasilinear equation

Fz(z) = γ(Φ−1(F (z))Fz(z)(2.3)

for a.e. z ∈ Ω. In particular, Φ is independent of u and only depends on ν.

Remark 2.1. By [AIM09, Theorem 16.4.5] any weak solution in W
1,Υ(Ω) of the

Leray–Lions equation (1.1) is C1,α, in particular the complex gradient uz is continu-
ous. In addition W1,Υ(Ω) ⊂W 1,p

loc (Ω) for p = 2
1+

√
1−δ2

> 1.

Before we state the next theorem we recall the definition of a Koebe domain.

Definition 2.2. A Koebe domain, also called circle domain, is a planar domain
such that each connected component of its boundary is either a circle or a point.

Theorem 2.2. LetN ⊂ C be a finitely connected domain conformally equivalent
to a bounded Koebe domain and and let A : N → C be a locally δ-monotone field
according to Definition 3.2. Furthermore, let ν and γ be given as in Theorem 2.1.
Let Ω ⊂ C be a domain and consider all weak solutions u of the autonomous Leray–
Lions equations such that in addition uz ∈ C1(Ω) ∩W 1,2

loc (Ω) and uz : Ω → N . Then
there exists a homeomorphism (of finite distortion) Φ: N → N independent of u that
solves the linear Beltrami equation

Φz(z) = η(z)Φz(z)

where η is given by (2.2) such that the associated field

F (z) = Φ(uz)
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solves the C-quasilinear equation

Fz(z) = γ(Φ−1(F (z))Fz(z)(2.4)

for a.e. z ∈ Ω.

The proof of Theorem 2.1 and Theorem 2.2 will be given in several steps in
Section 4.

Remark 2.2. The same result as Theorem 2.2 was proven in the special case
in [KP20, Prop. 2.1, Thm. 2.2 ] when A = ∇σ and σ is a smooth strictly convex
function on the interior of N using a different proof. However, they make a different
choice of homeomorphism Φ, with their Φ being orientation reversing. In section 6
we give a counter example, showing that one cannot always chose Φ to be orientation
reversing when σ is not real analytic.

Definition 2.3. (Conformal structure) Let A and Φ be as in either Theorem 2.1
or Theorem 2.2. The conformal Beltrami coefficient µ associated to the Leray–Lions
equation (1.1) is defined according to

µ = γ ◦ Φ−1.(2.5)

The conformal structure of the Leray–Lions equation is given by

µ(F (z)) = γ(uz).(2.6)

In fact the proofs of Theorem 2.1 and Theorem 2.2 show that the conformal
Beltrami coefficient µ is unique up to post-composition by conformal maps. Moreover
it is independent of u. Note that on the other the conformal structure depends on u.

Proposition 2.1. Let Ω ⊂ N be a finitely connected bounded domain. Let
N , η, Φ and F be given as in Theorem 2.2. Let D be a bounded Koebe domain
conformally equivalent to Ω. Then every non-constant continuous bounded solution
F ∈ W 1,2

loc of

Fz(z) = µ(F (z))Fz(z)

factorises according to F = ϕ ◦ g−1 where g : D → Ω is a homeomorphic solution of
the linear equation

gz = −µ(ϕ(z))gz(z)(2.7)

and ϕ : D → N is a holomorphic function. In particular the Beltrami coefficient of
in the linear equation for g depends only on a holomorphic function h but not on its
derivative.

Proof. The proof is a direct generalisation of the first part of the proof of
[ADPZ20, Thm. 4.1]. See also the diagram below. �

D

g

��

ϕ
// N 	 Φ

Ω

F=Φ(uz)

<<
②
②
②
②
②
②
②
②
②
②
②
②
②
②
②
②
②
②
②
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Theorem 2.3. Let N , η, Φ, D, µ and ϕ be given as in Theorem 2.2 and Propo-
sition 2.1. Assume that φ := µ◦ϕ ∈ W 1,p(D, N) for some p > 2. Then every solution
of (2.7), is of the form

g(z) =
1

1− |φ(z)|2 (h(z)− φ(z)h(z))

where h is a generalised analytic function in the sense of Vekua and solves the equation

hz(z) =
φz(z)

1− |φ(z)|2 (h(z)− φ(z)h(z))(2.8)

In addition every solution of (2.8) is of the form

h(z) = ψ(z)eω(z)

where ψ is holomorphic and ω is given by (4.21).

The proof is given in Subsection 4.2.

3. Complex gradient method

In this section, for the convenience of the reader, we will survey the complex
gradient method and how it is applied to autonomous Leray–Lions equations. This
will provide the necessary background for section 4. More details about the complex
gradient method can be found in [AIM09, Ch. 16]. We begin by recalling the concept
of δ-monotonicity from [Kov07].

Definition 3.1. A mapping A : C → C is δ-monotone if there exists a that there
exits a 0 < δ ≤ 1 such that

〈A(ξ)−A(ζ), ξ − ζ〉 ≥ δ|A(ξ)−A(ζ)||ξ − ζ |
for all ζ, ξ ∈ C.

We recall [AIM09, Theorem 3.11.6].

Theorem 3.1. Let 0 < δ ≤ 1. A mapping A ∈ W 1,2
loc (C) is δ-monotone if and

only if

|Az(z)| + δ|Im[Az(z)]| ≤
√
1− δ2Re[Az(z)](3.1)

for a.e. z. In particular, A is K-quasiconformal where

K =
1 +

√
1− δ2

1−
√
1− δ2

,

and where the bound on distortion is sharp.

One can use [AIM09, Theorem 3.11.6] to define a δ-monotone map on domains
as follows.

Definition 3.2. Let 0 < δ ≤ 1 and assume N ⊂ C is a domain. A mapping A ∈
W 1,2

loc (N,C) is δ-monotone if (3.1) holds for a.e. z ∈ N and A is a homeomorphism.

A mapping A ∈ W 1,2
loc (N,C) is locally δ-monotone if for every U ⋐ N there exists a

δ = δ(U) such that A|U is δ-monotone.

Remark 3.1. It follows from the proof of [AIM09, Theorem 3.11.6] that any
solution of (3.1) is locally injective. If N is convex it then follows that A is automat-
ically a homeomorphism.
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We now consider a general autonomous second order elliptic equation of the form

divA(∇u(x)) = 0

where A is δ-monotone. We will follow the exposition in [AIM09, Ch. 16.4.3, pp.
445–447].

Define the new structure field

A(ξ) = A(2ξ).

Then A is monotone as well. Set f = uz. Then A(∇u(z)) = A(2uz) = A(f). Thus

divA(∇u) = divA(f).

Moreover, 0 = curl∇u(z) = 2 curl uz = 2 curl f . Thus the equation (1.1) becomes
equivalent to

divA(f) = 0

and then the above together with curl∇u(z) = 0 becomes equivalent to the system
{
divA(f(z)) = 0,

curl f(z) = 0.
(3.2)

We now recall that for any vector field v,

div v(z) = 0 ⇐⇒ Re[∂zv(z)] = 0,

curl v(z) = 0 ⇐⇒ Im[∂zv(z)] = 0.

Since ∂zf(z)) = ∂zf(z) the system (3.2) is equivalent to
{
Re[∂zA(f(z))] = 0,

Im[∂zf(z)] = 0.
⇐⇒

{
Re[∂zA(f(z))] = 0,

Im[∂zf(z)] = 0.
(3.3)

By [AIM09, Theorem 16.4.5], both f and A(f) belong to W 1,2
loc and in addition are

quasiregular on relatively compact subset of Ω. In particular the chain rule applies
in the pointwise sense and we get

∂zA(f) = Aw(f)fz +Aw(f)fz.

and hence Re[∂zA(f(z))] = 0 is equivalent to

Aw(f)fz +Aw(f)fz +Aw(f)fz +Aw(f)fz = 0(3.4)

Moreover Im[∂zf(z)] = 0 implies ∂zf(z) = ∂zf(z). Inserting this into (3.4) gives

Aw(f)fz +Aw(f)fz +Aw(f)fz +Aw(f)fz = 0.

If Aw(f) +Aw(f) 6= 0 or equivalently Re[Aw(f)] 6= 0 we can solve for fz giving

fz = − Aw(f)

Aw(f) +Aw(f)
fz −

Aw(f)

Aw(f) +Aw(f)
fz

= − Aw(f)

2Re[Aw(f)]
fz −

Aw(f)

2Re[Aw(f)]
fz.

If on the other hand Re[Aw(f(z))] = 0, one can argue as follows. The set {w ∈
N : Re[Aw(w)] = 0} is a null set by (3.1) or else A is constant which is a contra-
diction. Let ZA := {w ∈ N : Re[Aw(w)] = 0}. Since f = uz is quasiregular, it
follows by Stoilow factorization and [AIM09, Corollary 3.7.6] that f satisfies Lusin
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condition N−1. Consequently, |f−1(ZA)| = 0, and so Re[Aw(f(z))] 6= 0 for a.e. z.
In particular, if ZA is a finite set, then can we use [GT01, Lemma 7.7, p. 152] which
implies that any f ∈ W 1,1, on the set where f is constant we have fz = fz = 0 a.e.
Thus on that set f automatically solves any R-quasilinear Beltrami equation of the
form

fz = ν(f)fz + ν(f)fz for a.e. z(3.5)

and we are free to define ν(f) in whatever way we want provided |ν(f)| < 1/2. We
may take ν = 1

4
for example. Otherwise, whenever ν is well-defined we let

ν(f) := − Aw(f)

Aw(f) +Aw(f)
= − Aw(f)

2Re[Aw(f)]
.

On the other hand at those points w for which ν(w) is not defined, which happens
in particular for the p-Laplace equation at w = 0, we can again argue as before to
see that if B is the set where ν is not defined, then |f−1(B)| = 0, and so ν(f(z)) is
well-defined for a.e. z and we may let ν(z) = 1/4 in those cases. Thus we see that
the complex gradient f = uz solves the R-quasilinear Beltrami equation

fz = ν(f)fz + ν(f)fz.

The equation is uniformly elliptic if and only if

2|ν(w)| ≤ k < 1.

for all w ∈ C. This holds if A is δ-monotone on N . Otherwise, the equation is
uniformly elliptic on relatively compact subsets if A is locally δ-monotone.

4. Reduction to C-quasilinear equation and linearised equation

4.1. Reduction to C-quasilinear equation. Let N ⊂ C be an open set and
let µ, ν ∈ C(N,C) and assume that

|µ(w)|+ |ν(w)| < 1, w ∈ N.

Consider an autonomous R-linear equation

fz = µ(f)fz + ν(f)fz,(4.1)

on a domain Ω ⊂ C. Consider all solutions f : Ω → N such that f ∈ C(Ω,C) ∩
W 1,2

loc (Ω,C). Set

F = Φ(f),

where Φ: N → N is a homeomorphism in W 1,2
loc . Is it possible to choose Φ such that

the new field F solves a C-quasilinear equation? In particular is this possible when
f solves the complex gradient equation (1.2)?

Lemma 4.1. Let Φ ∈ N → N be a homeomorphism in W 1,2
loc such that for every

U ⋐ N , Φ ∈ R(U,C), where R(U,C) is the Royden algebra of U , equal to

R(U,C) = C(U,C) ∩ L∞(U,C) ∩W
1,2(U,C),

and where W1,2(U,C) = {v ∈ L1
loc(U,C) : Dv ∈ L2} is the homogeneous Sobolev

space. Let f be a solution of (4.1) on Ω. Then F = Φ(f) solves the equation

(|Φw(f) + Φw(f)ν|2 − |Φw(f)µ|2)Fz = µ
[
|Φw(f)|2 − |Φw(f)|2

]
Fz

+
[
Φw(f)

2ν + Φw(f)Φw(f)(|ν|2 − |µ|2 + 1) + Φw(f)
2ν
]
Fz.
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Proof. By the assumption on Φ the chain rule holds, and implies that

Fz = Φw(f)fz + Φw(f)fz,(4.2)

Fz = Φw(f)fz + Φw(f)fz.(4.3)

Using (4.1) we get

Fz = Φw(f)fz + Φw(f)(µfz + νfz) = (Φw(f) + Φw(f)ν)fz + Φw(f)µfz,(4.4)

Fz = Φw(f)(µfz + νfz) + Φw(f)fz = Φw(f)µfz + (Φw(f)ν + Φw(f))fz.(4.5)

If we introduce the linear maps Lw = ((Φw(f) + Φw(f)ν))w + Φw(f)µw and
Mw = Φw(f)µw + (Φw(f)ν + Φw(f))w we can write the equations as

Fz = Lfz , Fz =M(fz)

and so

Fz =M ◦ L−1(Fz).

Using that for a general linear invertible map Tw = αw+βw the inverse is given
by T−1w = 1

|α|2−|β|2 (αw − βw) we get

fz =
1

|Φw(f) + Φw(f)ν|2 − |Φw(f)µ|2
((Φw(f) + Φw(f)ν)Fz − Φw(f)µFz)(4.6)

Inserting this into (4.5) gives

(|Φw(f) + Φw(f)ν|2 − |Φw(f)µ|2)Fz

= Φw(f)µ((Φw(f) + Φw(f)ν)Fz − Φw(f)µFz)

+ (Φw(f)ν + Φw(f))((Φw(f) + Φw(f)ν)Fz − Φw(f)µFz)

= µ
[
Φw(f)Φw(f) + Φw(f)Φw(f)ν − Φw(f)Φw(f)ν − Φw(f)Φw(f)

]
Fz

+
[
− |µ|2Φw(f)Φw(f) + (Φw(f)ν + Φw(f))(Φw(f) + Φw(f)ν)

]
Fz

= µ
[
|Φw(f)|2 − |Φw(f)|2

]
Fz

+
[
Φw(f)

2ν + Φw(f)Φw(f)(|ν|2 − |µ|2 + 1) + Φw(f)
2ν
]
Fz

= µ
[
|Φw(f)|2 − |Φw(f)|2

]
Fz

+
[
Φw(f)

2ν + Φw(f)Φw(f)(|ν|2 − |µ|2 + 1) + Φw(f)
2ν
]
Fz. �

Thus F = Φ ◦ f solves a C-quasilinear if and only if

Φw(f)
2ν + Φw(f)Φw(f)(|ν|2 − |µ|2 + 1) + Φw(f)

2ν = 0(4.7)

provided

|Φw(f) + Φw(f)ν|2 − |Φw(f)µ|2 6= 0.(4.8)

We now make the ansatz that a homeomorphic solution of (4.8) Φ, should it
exist, solves a C-linear Beltrami equation

Φz(z) = η(z)Φz(z)(4.9)
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where the coefficient η is to be determined from the equation (4.8). This ansatz does
not infer any loss of generality since any homeomorphism Φ ∈ W 1,1

loc (Ω) satisfy either

J(z,Φ) ≥ 0 for a.e. z ∈ Ω, or J(z,Φ) ≤ 0 for a.e. z ∈ Ω,

by [AIM09, Theorem 3.3.4], where J(z,Φ) = det[DΦ(z)] = |Φz(z)|2 − |Φz(z)|2. If we
define

η(z) :=
Φz(z)

Φz(z)

if Φz(z) 6= 0 and if Φz(z) = 0 we define η(z) = 0 if J(z,Φ) ≥ 0 a.e. and η(z) = ∞ ∈ Ĉ

if J(z,Φ) ≤ 0 a.e. Then any homeomorphism solves (4.9). In particular either
|η(z)| ≤ 1 a.e. or |η(z)| ≥ 1.

Inserting this into (4.7) gives

ν(z)Φz(z)
2 + Φz(z)Φz(z)(|ν(z)|2 − |µ(z)|2 + 1) + ν(z)Φz(z)

2(4.10)

=

[
ν(z) + (|ν(z)|2 − |µ(z)|2 + 1)η(z) + ν(z)η(z)2

]
Φz(z)

2 = 0.(4.11)

We impose the condition that

ν(z) + (|ν(z)|2 − |µ(z)|2 + 1)η(z) + ν(z)η(z)2 = 0.(4.12)

which is a quadratic equation provided ν(z) 6= 0.

Lemma 4.2. Assume Φ solves the Beltrami equation (4.9) and (4.12) holds. Let
Ψ = Φ−1. Then F = Φ(f) solves the C-quasilinear equation

Fz =
(1− |η(Ψ(F ))|2)µ(Ψ(F ))

|1 + η(Ψ(F ))ν(Ψ(F ))|2 − |η(Ψ(F ))µ(Ψ(F ))|2
Fz.

Proof.

Fz =
|Φw(f)|2 − |Φw(f)|2

|Φw(f) + Φw(f)ν(f)|2 − |Φw(f)µ(f)|2
µ(f)Fz

=
|Φw(f)|2 − |η(f)|2|Φw(f)|2

|Φw(f) + η(f)Φw(f)ν(f)|2 − |η(f)Φw(f)µ(f)|2
µ(f)Fz

=
(1− |η(f)|2)µ(f)

|1 + η(f)ν(f)|2 − |η(f)µ(f)|2
Fz

=
(1− |η(Ψ(F ))|2)µ(Ψ(F ))

|1 + η(Ψ(F ))ν(Ψ(F ))|2 − |η(Ψ(F ))µ(Ψ(F ))|2
Fz. �

We now consider the case when the Beltrami equation is of the form fz = ν(f)fz+
ν(f)fz. Then (4.12) becomes

ν(z) + η(z) + ν(z)η(z)2 = 0.(4.13)

Solving the quadratic equation for η provided ν(z) 6= 0 gives

η±(z) = − 1

2ν(z)
±

√
1

4ν(z)
2 − ν(z)

ν(z)
(4.14)

using the principal branch of the square root.
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Lemma 4.3. Let ν(z) = reiθ. Then

η±(z) =





−
(

1

2r
∓

√((
1

2r

)2

− 1

))
eiθ if θ ∈ [−π/2, π/2],

−
(

1

2r
±

√((
1

2r

)2

− 1

))
eiθ if θ ∈ (−π,−π/2) ∪ (π/2, π).

Proof. If −π
2
≤ θ ≤ π

2
, then

1

4ν(z)
2 − ν(z)

ν(z)
=

1

4r2e−2iθ
− reiθ

re−iθ
=

((
1

2r

)2

− 1

)
e2iθ

and

η±(z) = − 1

2ν(z)
±

√
1

4ν(z)
2 − ν(z)

ν(z)
= −

(
1

2r
∓

√((
1

2r

)2

− 1

))
eiθ

using the principal argument. If π
2
< θ ≤ π, we write θ = π

2
+ φ with 0 < φ ≤ π

2
.

Thus

2θ = π + 2φ = −π + 2φ

using the principal argument. This gives

η±(z) = −e
iπ/2+iφ

2r
± e−iπ/2+iφ

√((
1

2r

)2

− 1

)
= −

(
1

2r
±

√((
1

2r

)2

− 1

))
eiπ/2+iφ.

Similarly, if −π < θ < −π
2

we write θ = −π/2− φ, with 0 < φ ≤ π
2
. Thus

2θ = −π − 2φ = π − 2φ

using the principal argument. This gives

η±(z) = −e
−iπ/2−iφ

2r
± eiπ/2−iφ

√((
1

2r

)2

− 1

)

= −
(

1

2r
±
√((

1

2r

)2

− 1

))
e−iπ/2−iφ. �

On the other hand whenever ν(z) = 0 (4.13) implies that η(z) = 0. In order for
Φ to solve a locally uniformly elliptic Beltrami equation on N we want either that
|η(z)| < 1 or |η(z)| > 1 or locally. Since we may need to choose η(z) = 0 where
ν(z) = 0, the only root compatible with this condition is the root whose modulus is
less than 1. Thus we define

η(z) =





0, if ν(z) = 0,

η−(z), if arg(ν(z)) ∈ [−π/2, π/2],
η+(z), if arg(ν(z)) ∈ (−π,−π/2) ∪ (π/2, π),

=





0, if ν(z) = 0,

−
(

1

2|ν(z)| −
√(

1

2|ν(z)|

)2

− 1)

)
ei arg(ν(z)) otherwise,

(4.15)
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=





0, if ν(z) = 0,

−
(

1

2|ν(z)| −
√(

1

2|ν(z)|

)2

− 1

)
ν(z)

|ν(z)| otherwise,

=




0, if ν(z) = 0,

− 1

2ν(z)
+

1

2ν(z)

√
1− 4|ν(z)|2 otherwise.

Lemma 4.4. (Ellipticity of η) Whenever |ν(z)| < 1/2, |η(z)| < 1. Moreover,
η(z) → 0 as ν(z) → 0.

Proof. For r 6= 0

|η(z)| = 1

2r
−

√((
1

2r

)2

− 1

)
.

In addition,

1

2r
+

√((
1

2r

)2

− 1

)
>

1

2r
> 1.

Since |η+(z)||η−(z)| =
∣∣∣∣
ν(z)

ν(z)

∣∣∣∣ = 1 it follows that |η(z)| < 1. Since

lim
r→0+

1

2r
+

√((
1

2r

)2

− 1

)
= +∞

it follows that η(z) → 0 as ν(z) → 0. �

Lemma 4.5. (Existence of Φ) Let N ⊂ C be a finitely connected domain con-
formally equivalent to a bounded Koebe domain. Let η ∈ L∞(N,C) and assume that
for every V ⋐ N there exists a k = k(V ) such that ‖η‖L∞(V ) = k < 1. Then there

exists an orientation preserving homeomorphic solution in W 1,2
loc (N,N) to

Φz(z) = η(z)Φz(z).

If ‖η‖L∞(N) = k < 1 the assumption that N is necessarily conformally equivalent to
a bounded Koebe domain can be removed, in particular when N = C.

Proof. The proof is a direct generalisation of the first part of the proof of
[ADPZ20, Theorem 4.1]. In the case when Φ solves a uniformly elliptic equation and
N is not necessarily conformally equivalent to a bounded Koebe domain, this follows
from the measurable Riemann mapping theorem, see [AIM09, Theorem 5.3.4]. �

By the theory of quasiregular maps [AIM09, Corolllary 3.10.3], it follows that
Φ is locally Hölder continuous and one verifies that Φ satisfies the assumptions of
Lemma 4.1, justifying the use of the chain rule.

Remark 4.1. In fact for the application of Lemma 4.5 to Lemma 4.2 any home-
omorphism Φ will do, not necessarily ones such that Φ: N → N . Moreover, if N is
not conformally equivalent to a bounded Koebe domain and the Beltrami equation
is degenerate, then [ADPZ20, Theorem 4.1] does not apply and we do not know of
a general theorem which guarantees the existence of homeomorphic solutions. How-
ever, in some cases one can prove existence directly by explicit methods. This is the
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case for the minimal surface equation in Example 1.2. There

Φ(z) =
2z

1 +
√

1 + 4|z|2

is a homeomorphism Φ: C → D which solves the degenerate Beltrami equation

Φz(z) = − 2|z|2
2|z|2 + 1 +

√
1 + 4|z|2

z

z
Φz(z),

since | 2|z|2

2|z|2+1+
√

1+4|z|2
| → 1 as |z| → +∞.

Remark 4.2. If we had chosen the rot such that |η(z)| > 1 whenever ν(z) 6= 0
we would still have to choose η(z) = 0 whenever ν(z) = 0. If ν is such that there
exists an open set U ⊂ N , with U 6= N and ν(z) = 0 for z ∈ U but ν(z) 6= 0 for
a.e. z ∈ N \ U then, there can exists no homeomorphism Φ solving (4.9). Indeed,
by [AIM09, Theorem 3.3.5] for any homeomorphism Φ ∈ W 1,1

loc (Ω,C), the Jacobian
J(z,Φ) = det(DΦ(z)) does not change sign if Φ is a homeomorphism. On the other
hand if Φ solves (4.9) with η chosen as described, then

J(z,Φ) = |Φz(z)|2 − |Φz(z)|2 =
{
|Φz(z)|2 > 0 for a.e. z ∈ U,

(1− |ν−(z)|2)|Φz(z)|2 < 0 for a.e. z ∈ N \ U,

a contradiction, since Φz(z) 6= 0 for a.e. z ∈ N . Even though the approach in [KP20]
is different from ours, they choose an orientation reversing map in [KP20]. Since this
map is unique up to composition with holomorphic maps, this means that they have
chosen ν such that |ν(z)| > 1 whenever ν(z) = 0 instead. However, if A is merely
smooth, rather than real analytic we may have ν(z) = 0 on a set of positive measure,
which means that we cannot chose η such that |η(z)| > 1 for a.e. z in this case. This
possibility does not seem to have been considered in [KP20]. Indeed, in section 6 we
give an example of structure field A where this happens.

The equation for F in this case becomes

Fz =
(1− |η(Ψ(F ))|2)ν(Ψ(F ))

|1 + η(Ψ(F ))ν(Ψ(F ))|2 − |η(Ψ(F ))ν(Ψ(F ))|2
Fz

which holds for a.e. z ∈ Ω provided the denominator is nonzero.

Definition 4.1. We define for z ∈ N

γ(z) =
(1− |η(z)|2)ν(z)

|1 + η(z)ν(z)|2 − |η(z)ν(z)|2
.(4.16)

Lemma 4.6. (Ellipticity of γ) |1 + η(z)ν(z)|2 − |η(z)ν(z)|2 6= 0 for a.e. z ∈ N .

Moreover, |γ(z)| < 1 whenever 2|ν(z)| < 1. Furthermore, γ(z) = −η(z).
Proof. Using that same ν(z) = reiθ and

η(z) = −
(

1

2r
−

√((
1

2r

)2

− 1

))
eiθ
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we get that η(z)ν(z) ∈ R and η(z)ν(z) = −|η(z)ν(z)|.

|1 + η(z)ν(z)|2 − |η(z)ν(z)|2 = 1 + 2η(z)ν(z) = 1− 2r

(
1

2r
−

√((
1

2r

)2

− 1

))

= 2r

√((
1

2r

)2

− 1

)
=

√
1− (2r)2 > 0

for all r < 1/2. Thus |1 + η(z)ν(z)|2 − |η(z)ν(z)|2 6= 0 for a.e. z ∈ N . Furthermore,

(1− |η(z)|2)|ν(z)| = r

(
1−

(
1

2r
−

√((
1

2r

)2

− 1

))2)

= r

(
1−

(
1

2r

)2

+
1

r

√((
1

2r

)2

− 1

)
−

(
1

2r

)2

+ 1

)

= r

(
2− 2

(
1

2r

)2

+
1

r

√((
1

2r

)2

− 1

))
.

If we let p =

√((
1

2r

)2

− 1

)
, then we can write the above as

(1− |η(z)|2)|ν(z)| = −2rp2 + p.

Thus

|γ(z)| = −2rp2 + p

−2rp
= − 1

2r
+

√((
1

2r

)2

− 1

)
.(4.17)

Thus |γ(z)| = |η(z)| and so |γ(z)| < 1 whenever |ν(z)| < 1/2. In addition

γ(z) = − 1

2r
−

√((
1

2r

)2

− 1

))
e−iθ = −η(z). �

Remark 4.3. By Lemma 4.6 ‖µ(w)‖L∞(U) = kU < 1 for all U ⋐ N .

Thus, to conclude the complex valued field F = Φ ◦ f = Φ ◦ uz solves the C-
quasilinear Beltrami equation

Fz(z) = µ(Φ−1(F (z)))Fz(z)(4.18)

for a.e. z ∈ Ω and where µ is given as in Definition 2.5.
This concludes the proof of Theorem 2.2.

4.2. The anti-C-linear Beltrami equation and pseudo-analytic func-

tions. Consider the anti-C-linear Beltrami equation

gz(z) = −φ(z)gz(z), z ∈ U,(4.19)

where ‖φ‖L∞(V ) = kV < 1 for all V ⋐ U . Dimer models (see [ADPZ20]) have the
special property that the Beltrami coefficient φ is a holomorphic function. This makes
equation (4.19) exact in the sense

gz(z) + φ(z)gz(z) = (g(z) + φ(z)g(z))z = 0,

and so the function h = g + φg is holomorphic. This allows one to parametrise
solutions of (4.19) by means of holomorphic functions. We could ask if something
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similar is true for more general anti-C-linear Beltrami equation where φ is no longer
holomorphic. If φz exists in a distributional sense as an L1 function and φzg, φgz ∈
L1
loc(U), the Leibniz rule implies

(−φ(z)g(z))z = −φz(z)g(z)− φ(z)gz(z)

and equation (4.19) can be written as

gz(z) = (−φ(z)g(z))z + φz(z)g(z)

or equivalently

(g(z) + φ(z)g(z))z = φz(z)g(z).

Define the function

h(z) := g(z) + φ(z)g(z).

Then elementary algebra yields

g(z) =
1

1− |φ(z)|2 (h(z)− φ(z)h(z))

and h solves the inhomogeneous linear ∂-equation

hz(z) =
φz(z)

1− |φ(z)|2 (h(z)− φ(z)h(z)).

Let Ω ⊂ C be a bounded domain. A function h which satisfy the equation

hz(z) + α(z)h(z) + β(z)h(z) = 0(4.20)

in Ω for some α, β ∈ Lp(Ω,C), p > 2 is a generalized analytic function in the sense

of Vekua, see the monograph [V62]. In particular, [V62, Ch. 3, pp. 144–146] shows
that every solution of (4.20) belongs to W 1,p(Ω,C). Moreover every solution h is of
the form

h(z) = ψ(z)eω(z),

where

ω(z) =
1

π

ˆ

Ω

α(z) + β(z)(χh(z)=0 +
h(z)
h(z)

χh(z)6=0)

w − z
dA(w)(4.21)

and ψ is a holomorphic function on Ω. Thus we have shown that if ‖φ‖L∞(V ) = kV < 1
for all V ⋐ U and in addition φ ∈ W 1,p(U), then every solution g of (4.19) is of the
form

g(z) =
1

1− |φ(z)|2 (h(z)− φ(z)h(z)),

where h is a solution of (4.20). This completes the proof of Theorem 2.3.

4.3. Comparison to other types of linearisations. We will now conclude
this section by discussing other types of linearisations and how they differ from the
aforementioned one. These methods will not be employed in this paper but merely
serve as a comparison. Rather than considering the complex gradient and applying
the chain rule to derive the equation (1.2) from the (1.1), we could instead consider
the A-harmonic conjugate v of u defined according to

∇v(z) = ⋆A(∇u(z)),
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where the Hodge star ⋆ is given by multiplication by the matrix
[
0 −1
1 0

]
.

Such v always exists and is unique up to constant on a simply connected domain.
Defining the complex valued field F = u + iv and the considering the nonlinear
Cayley transform

H(w) = (I −A) ◦ (I +A)−1(w)

as in [ACFJK17, ACFJK20, ADPZ20], one can show that F solves the fully nonlinear
Beltrami equation

Fz(z) = H(Fz(z)).(4.22)

From here one can do an Iwaniec–Sbordone linearisation as in [AIM09, Ch. 16] as
follows: Define

k(z) =
|Fz(z)|
|Fz(z)|

and let

n(z) =
Fz(z)− k(z)Fz(z)

|Fz(z)− k(z)Fz(z)|
if Fz(z)−k(z)Fz(z) 6= 0, and otherwise let n(z) be a unit vector orthogonal to both
Fz(z) and Fz(z). Define the measurable linear transformation M(z) to be

M(z) = k(z)[I − 2n(z)⊗ n(z)].

Then any solution to (4.22) also solves the linear equation

Fz(z) = M(z)Fz(z).(4.23)

Unfortunately the regularity of the coefficients of the linearised equation depends

on F itself. Furthermore, it also fails if H is not a k-Lipschitz function for some
k < 1 as the resulting linear equation becomes degenerate. If one does not have an
a priori estimate of Fz itself, which is what one wants to achieve one has no way
of controlling the degeneracy of the resulting linear equation. This is the case for
example when (1.1) is the p-Laplace equation. In the case when p = 3, H can be
explicitly computed to give

H(w) =
2(1 +

√
1 + 4|w| − 2|w|)

(1 +
√

1 + 4|w|)2
w.

Differentiating (4.22) with respect to ∂z and setting f = Fz give the quasilinear
equation

fz(z) =
Hw(f)

1− |Hw(f)|2(f)
fz(z) +

Hw(f)Hw(f)

1− |Hw(f)|2
fz(z),

which is not uniformly elliptic in the case of the p-Laplacian despite the fact that
the complex gradient solves the uniformly elliptic Beltrami equation (1.2).
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5. Applications to highly degenerate elliptic equations

Example 5.1. This example is from [BS82] and arises in the study of maximal
spacelike hypersurfaces in Minkowski space. Let Ω ⊂ Rn be a domain and let A =
{u ∈ W 1,∞(Ω) : ∇u(x) ∈ B1(0)} denote the space of admissible Lipschitz functions
on Ω whose gradient lie in the unit ball. Consider the functional

I[u] =

ˆ

Ω

−
√

1− |∇u(x)|2 dx

defined on A . We want to study the associated Euler–Lagrange equations in the
case when Ω ⊂ C is a domain in the plane and B1(0) = D. We have

∇σ(z) = A(z) =
z√

1− |z|2
=

|z|√
1− |z|2

z

|z| .

This gives

A(z) =
2|z|√

1− 4|z|2
z

|z|
and N = 1/2D. Let

ρ(t) =
2t√

1− 4t2
, ρ̇(t) =

2

(1− 4t2)3/2

so that A(z) = ρ(|z|)z/|z|. Then

Az(z) =
1

2

4− 8|z|2
(1− 4|z|2)3/2 , Az(z) = −1

2

z

z

8|z|2
(1− 4|z|2)3/2 .

Thus

ν(z) =
1

2

z

z

8|z|2
4− 8|z|2 =

z

z

2|z|2
1− 2|z|2 .

This gives

η(z) = −1 − 2|z|2 −
√
1− 4|z|2

2|z|2
z

z

and hence the conformal structure of the Euler–Lagrange equation is

−1 − 2|uz|2 −
√

1− 4|uz|2
2|uz|2

uz
uz
.

We want to find a homeomorphic solution Φ: 1
2
D → 1

2
D of Φz = ηΦz. Exploiting

the fact that η is of the form η(z) = γ(|z|) z
z

where

γ(t) = −1− 2t2 −
√
1− 4t2

2t2
,

we make the ansatz that Φ is a radial stretching map, i.e., Φ(z) = ρ(|z|) z
|z| . This

gives

Φz(z) =
1

2

z

z

[
ρ̇(|z|)− ρ(|z|)

|z|

]
, Φz(z) =

1

2

[
ρ̇(|z|) + ρ(|z|)

|z|

]

which implies that

1

2

z

z

[
ρ̇(|z|)− ρ(|z|)

|z|

]
=

1

2
γ(|z|)z

z

[
ρ̇(|z|) + ρ(|z|)

|z|

]
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which reduces to the ODE

ρ̇(t) =
1

t

1 + γ(t)

1− γ(t)
ρ(t).

This ODE is separable and we find that

ln |ρ(t)| =
ˆ

1

t

γ(t) + 1

γ(t)− 1
dt =

ˆ

1

t
+

4t√
1− 4t2 − 1

dt

= log |t| −
√
1− 4t2 − log |1−

√
1− 4t2|+ C.

Thus, the solution Φ(z) is given by

Φ(z) =
eC |z|e−

√
1−4|z|2

1−
√

1− 4|z|2
z

|z| =
eCe−

√
1−4|z|2

1−
√

1− 4|z|2
z.

Choosing C = log(1/2) gives a homeomorphism Φ: 1
2
D → 1

2
D. We cannot invert

Φ explicitly in terms of elementary functions, however, all regularity of Φ−1 can be
deduced. To conclude, F = Φ(uz) solves the C-quasilinear Beltrami equation

Fz(z) = −η(Φ−1(F (z))Fz(z).

Example 5.2. We again consider the example of the p-orthotropic Laplacian in
the plane. Let Ω ⊂ C be a bounded domain and consider the p-orthotropic functional

I[u] =

ˆ

Ω

(|ux|p + |uy|p) dx dy(5.1)

defined on W 1,p(Ω). Any critical point of (5.1) is a weak solution of the Euler-
Lagrange equations

(|ux|p−2ux)x + (|uy|p−2uy)y = 0.(5.2)

By [BS82] every weak solution is in C1(Ω). With σ(x, y) = |x|p + |y|p we have

A(z) = ∇σ(z) = 21−p(|z + z|p−2(z + z) + |z − z|p−2(z − z))

where z = x+ iy. Thus

A(z) = A(2z) = |z + z|p−2(z + z) + |z − z|p−2(z − z).

We see that A(z) is the sum of the compositions of the radial stretching map

R(z) = ρ(|z|) z|z|

with ρ(|z|) = |z|p−1 with the maps z 7→ z + z and z 7→ z − z. Using the chain rule
and the formulas

Rz(z) =
1

2

[
ρ̇(|z|) + ρ(|z|)

|z|

]
, Rz(z) =

1

2

z

z

[
ρ̇(|z|)− ρ(|z|)

|z|

]



62 Erik Duse

for the radial stretching maps we get

Az(z) = Rz(z + z) +Rz(z + z) +Rz(z − z)− Rz(z − z)

=
1

2

[
ρ̇(z + z) +

ρ(z + z)

|z + z|

]
+

1

2

[
ρ̇(z + z)− ρ(z + z)

|z + z|

]
z + z

z + z

+
1

2

[
ρ̇(z − z) +

ρ(z − z)

|z − z|

]
− 1

2

[
ρ̇(z − z)− ρ(z − z)

|z − z|

]
z − z

z − z

=
1

2

[
ρ̇(z + z) +

ρ(z + z)

|z + z|

]
+

1

2

[
ρ̇(z + z)− ρ(z + z)

|z + z|

]

+
1

2

[
ρ̇(z − z) +

ρ(z − z)

|z − z|

]
+

1

2

[
ρ̇(z − z) +

ρ(z − z)

|z − z|

]

= ρ̇(z + z) + ρ̇(z − z)

and

Az(z) = Rz(z + z) +Rz(z + z)− Rz(z − z) +Rz(z − z)

=
1

2

[
ρ̇(z + z) +

ρ(z + z)

|z + z|

]
+

1

2

[
ρ̇(z + z)− ρ(z + z)

|z + z|

]
z + z

z + z

− 1

2

[
ρ̇(z − z) +

ρ(z − z)

|z − z|

]
+

1

2

[
ρ̇(z − z)− ρ(z − z)

|z − z|

]
z − z

z − z

=
1

2

[
ρ̇(z + z) +

ρ(z + z)

|z + z|

]
+

1

2

[
ρ̇(z + z)− ρ(z + z)

|z + z|

]

− 1

2

[
ρ̇(z − z) +

ρ(z − z)

|z − z|

]
− 1

2

[
ρ̇(z − z)− ρ(z − z)

|z − z|

]

= ρ̇(z + z)− ρ̇(z − z).

We observe that both Az and Az are real valued. Hence ν(z) becomes

ν(z) = − Az(z)

2Re[Az(z)]
= − ρ̇(|z + z|)− ρ̇(|z − z|)

2(ρ̇(|z + z|) + ρ̇(|z − z|)) .

Moreover, ρ̇(|z|) = (p− 1)|z|p−2. This gives

ν(z) = −1

2

|z + z|p−2 − |z − z|p−2

|z + z|p−2 + |z − z|p−2

which is real valued. We see that |ν(z)| = 1
2

whenever either Re[z] = 0 or Im[z] = 0.
Thus A : C → C is not δ-monotone. However, A is locally δ-monotone in any
connected component of the set {z ∈ C : Re[z] 6= 0 and Im[z] 6= 0}. Let

N = Q1 := {z ∈ C : Re[z] > 0 and Im[z] > 0}
be the first quadrant which is conformally equivalent to the unit disc. In view of the
C1-regularity result in [BS82], the set U1 = {z ∈ Ω: uz ∈ Q1} is open. Thus the
equation (4.18) is uniformly elliptic on any open set V ⋐ U . Moreover, the equation
for η becomes

η(z)2 +
1

ν(z)
η(z) + 1 = 0
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and we find that

η(z) =
|x|p−2 − |y|p−2

|x|p−2 + |y|p−2 − 2
√

|x|p−2|y|p−2

where z = x + iy. In particular, η(z) = 0 when x = y and z ∈ Q1. In addition,
η(z) = −1 for x = 0 and η(z) = 1 for y = 0 and x, y > 0.

We would like to study the interior regularity of a weak solution u of (5.2) up
to the boundary of Γ1 = ∂U1 ∩ Ω as well as the regularity of Γ1 itself. Assume that
z0 ∈ Γ1 and that Br(z0) ∩ U1 is simply connected for some r > 0. We can now
first apply Theorem 2.2 to solutions of (5.2) on the open set simply connected set
V = Br(z0) ∩ U1. This shows that F = Φ(uz) solves the C-quasilinear equation

Fz(z) = −η(Φ−1(F (z))Fz(z),(5.3)

where Φ: Q1 → Q1 is a homeomorphic solution to

Φz(z) = η(z)Φz(z).

We now linearise (5.3) using Theorem 2.2. Let ψ : V → D be a homeomorphic
solution of

ψz(z) = −η(Φ−1(F (z))ψz(z)

and set g = ψ−1. Then g solves the linear equation

gz(f) = η(Φ−1(h(z)))gz(z),

where h : D → Q1 is holomorphic. To use these methods to actually deduce regularity
of the p-orthotropic Laplacian is something that will be done in future work.

6. Counterexample

In Section 4, when we consider the reduction to a C-quasilinear equation we
consider solutions η of the algebraic equation

ν(z) + η(z) + ν(z)η(z)2 = 0.

We have two choices of roots, η1 and η2 such that |η1(z)| < 1 and |η2(z)| > 1 locally,
unless ν(z) 6= 0, in which case η1(z) = η2(z) = 0. If η is real analytic then, then
ν(z) = 0 on a null set and both equations

Φz(z) = η1(z)Φz(z), Ψz(z) = η2(z)Ψz(z)(6.1)

are locally uniformly elliptic, and solutions to the first equation are orientation pre-

serving and solutions to the second equation are orientation reversing and we could
choose either one of them for the reduction to a C-quasilinear Beltrami equation. If
on the other hand ν is merely smooth or worse, then ν(z) = 0 need not be a null set.
Then the second equation is no longer elliptic.

Moreover, there exists no such homeomorphic solution Ψ ∈ W 1,1
loc (D). Indeed, by

[AIM09, Theorem 3.3.5 ] the Jacobian J(z,Ψ) = det(DΨ(z)) does not change sign if
Ψ is a homeomorphism. On the other hand if Ψ solves Beltrami equation then

J(z,Ψ) = |Ψz(z)|2 − |Ψz(z)|2 =
{
|Ψz(z)|2 > 0 for a.e. |z| < 1,

(1− |η2(z)|2)|Ψz(z)|2 < 0 for a.e. |z| > 1,

since Ψz(z) 6= 0 for a.e. z ∈ D.
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We will now construct a δ-monotone field for which ν(z) = 0 on a set of positive
measure. Let

A(z) =




z, |z| ≤ 1,

z + ε
1− |z|
1 + |z|

z

|z| , |z| > 1,

where ε > 0 is to be determined. One verifies that A : C → C is Lipschitz continuous.
Indeed, let w ∈ D and z ∈ Dc. Then

|A(z)−A(w)| =
∣∣∣∣z + ε

1− |z|
1 + |z|

z

|z| − w

∣∣∣∣ ≤ |z − w|+ ε
|z| − 1

|z|+ 1
,

and so

|A(z)−A(w)|
|z − w| ≤ 1 +

ε

|z| + 1

|z| − 1

|z − w| ≤ 1 +
ε

|z| + 1

|z| − |w|
|z − w|

≤ 1 +
ε

|z| + 1

|z| − |w|
|z| − |w| ≤ 1 +

ε

2
.

Moreover, a computation yields

Az(z) =




1, |z| < 1,

1 +
ε

2

1− 2|z| − |z|2
|z|(1 + |z|)2 , |z| > 1,

Az(z) =




0, |z| < 1,
ε

2

z

z

|z|2 − 2|z| − 1

|z|(1 + |z|)2 , |z| > 1.

One notes that Az(z) is real. By choosing ε > 0 sufficiently small we can ensure
that Az(z) >

1
2

for a.e. z ∈ 2D. Moreover, for ε > 0 sufficiently small we can make

|Az(z)| < 1/4. Thus A satisfies (3.1) with δ =
√
3/2. In addition, Az(z) = 2Aw(2z)

and Az(z) = 2Aw(2z). This gives

ν(z) =




0, |z| < 1/2,
1

2

z

z

|2z|2 − 2|2z| − 1

2|2z|(1 + |2z|)2 + ε(1− 2|2z| − |2z|2) , |z| > 1/2.

Let φn be a sequence of radially symmetric non-negative mollifiers with compact
support, i.e. for all n ≥ 0

(i) φn(z) = ρn(|z|) for some ρn : [0,+∞) → [0,+∞),
(ii) φn(z) ≥ 0 for z and φn ∈ C∞

0 (C),
(iii)
´

C
φn(z) dA(z) = 1,

(iv) supp(φn) ⊂ rnD, limn→∞ rn = 0 and limn→∞ φn = δ0.

Consider the convolution

An(z) =

ˆ

R2

A(z − w)φn(w)dA(w)

Then An ∈ C∞(2D). Furthermore,

|∂zAn(z)| ≤
ˆ

2D

|Az(z − w)|φn(w) dA(w) ≤
1

4

ˆ

2D

φn(w) dA(w) =
1

4
,

Re[∂zAn(z)] =

ˆ

2D

|Az(z − w)|φn(w) dA(w) ≥
1

2

ˆ

2D

φn(w)dA(w) =
1

2
,
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and so An are δ-monotone on 2D.
Finally, for |z| ≤ 1/4

∂zAn(z) =

ˆ

2D

Aw(w)φn(z − w) dA(w) =

ˆ

rnD+z

Aw(w)φn(z − w) dA(w) = 0

for n sufficiently large and |z| < 1/4. Thus νn(z) = 0 for |z| < 1/8. Moreover,
since ∂zAn(z) is real for all n, it follows that Im[∂zAn(z)] = 0 which is equivalent
to curlAn(z) = 0. Thus there exists a convex function σn : 2D → R such that
∇σn(z) = An(z). In this case one cannot use the second equation in (6.1) to do the
reduction.
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