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Off-diagonal estimates for bi-parameter commutators

TuoMAS OIKARI

Abstract. We study the boundedness of commutators of bi-parameter singular integrals be-
tween mixed spaces
[b,T]: LP*LP? — L9 [
in the off-diagonal situation ¢;,p; € (1,00) where we allow ¢; # p;. Boundedness is fully charac-
terized in terms of oscillatory testing conditions on the function b for a total seven out of the nine
possible arrangements of the integrability exponents.

Fraktionaalisia estimaatteja kahden parametrin kommutaattoreille

Tiivistelm&. Tutkimme kahden parametrin singulaari-integraalien kommutaattoreiden rajoit-
tuneisuutta iteroitujen avaruuksien

[b,T]: LP*LP> — L9 L%

valilld kun g;, p; € (1, 00) ja erityisesti fraktionaalisessa tilanteessa ¢; # p;. Yhteensé seitseméssé ta-
pauksessa yhdeksésta saavutamme tédyden karaterisoinnin rajoittuneisuudella symbolia b koskevilla
oskillatorisilla testiehdoilla.

1. Introduction and preliminaries

The first commutator results concern the commutator of the Hilbert transform
b, H|f =bHf — H(bf)

whose boundedness was characterized in the classical theorem of Nehari in [15]
through Hankel operators. Later, Coifman, Rochberg and Weiss [3| generalized Ne-
hari’s result and showed that

d

(1.1) [Ibllsvio S Y Mbs Rilll oy oy S 1blleao == Sl}pﬂb— ()r], p € (1,00),
i=j

where the supremum is taken over all cubes I C R? and (b); = ‘—}‘ / ;0. The upper
bound in (1.1) was proved for a wide class of bounded singular integrals, while the
lower bound especially involved the Riesz transforms. Later, the lower bound in
(1.1) was improved separately by both Janson [10] and Uchiyama [17] by finding
non-degeneracy assumptions on the kernel that cover any single Riesz transform (in
contrast to (1.1) involving all the d Riesz transforms). Janson [10] also covers the
off-diagonal situation when 1 < p < ¢ < oo and provides the characterization

6. T lros 0 ~ sup £(Q) ]2 b= (bl = (1 _ 1) |

Q p q
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The remaining range with 1 < ¢ < p < oo was characterised through an approximate
weak factorization (awf) argument by Hytonen in [7],

: 1 1 1
16 Tl o510 ~ ig(f: 16— ¢l p == + =

In this article we will also use the awf argument, but now in the bi-parameter setting,
we recall the basic idea below in Section 2.

The p = ¢ characterization yields factorizations of the Hardy space H', see
[3], and implies div-curl lemmas relevant for compensated compactness, see [2]. In
Lindberg [13] and Hytonen [7] the characterization of the case ¢ < p is connected
with a conjecture of Iwaniec [9] on the prescribed Jacobian problem. It is crucial in
all of these applications that we have both commutator upper and lower bounds.

In this article, we work in the product ambient space R? = R% xR% and study the
boundedness of the bi-parameter commutators [b, T'], where T" is now a bi-parameter
singular integral operator. Due to the product space nature of the problem, it is
natural to allow different integrability exponents in the first and the second parameter
slots, thereby leading to the question of LP' LP?-to- L% L% boundedness. With LP' [P?
or LPLLP2 we denote the mixed-norm space LP'(R%; LP>(R%)). More precisely, we
identify f: R? — C satisfying

p1/p2 1/p1
(/d </d |f($1,$2)|p2 d$2) d$1) < 0
R% Ré2

with the function ¢; € LPr(R%; LP2(R%)), ¢¢(x;) = f(x1,-), and similarly for the
other iterated function spaces appearing in this article, see e.g. the table below in
Theorem 1.2.

In accordance with the three qualitatively different regimes p < ¢, p = ¢ and
p > q in the one-parameter setup, there will now be nine cases depending on the
relative size of both of the pairs p1, g1 and ps, g2. The exact statements of our results
are spread throughout the text; the following Theorem 1.2 is a condensed version of
the obtained results.

1.2. Theorem. Let T be a non-degenerate bi-parameter Calderén—Zygmund
operator on RY = R4 x R% fix the exponents pi, p2, q1,q2 € (1,00) and set

o; = d; (i—l), if pi < q; l=l+l, if p; > g
bi 4 4G T D

Let b: RY — C be a function with some local integrability depending on pi, ps, q1, ¢

(Lge. works in all cases, for example). Then, denoting ||[b, T||| iz pnpe = Npg

we have the upper- and lower bounds

P1<q P1=q P1 > q1
P2 < g2 b = constant, b(-, z9) = constant, b = constant,
Npg =0 Np,q ~ [[b(z1, ‘)Hc'gv;vz Npq =0
b(z1,-) = constant, Np,g ~ Hbemo(Rdl xRd2) infeec [|b— CHngLgll S Npg
P2 =q2 | Npg~ Hb(-,m)\lcgaal S infeec [|b— CHLQIng
P2 > G2 = constant Ny g ~ infeec ||b— cHLg(i L2 Npq Sinfeec||b— c||L;11L;22
Npq =0
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Our main focus is on the off-diagonal cases (p1,p2) # (q1,¢2) with the diagonal
being well-known and lately studied e.g. by Holmes, Petermichl and Wick [6], and
by Li, Martikainen and Vuorinen [12].

While some of the upper bounds in the off-diagonal situations in the table of
Theorem 1.2 are quick by few applications of Holder’s inequality, or completely trivial
in the constant cases, the rest are not effortless and require for example the use of
the representation theorem and other tools inherent to the bi-parameter setting.
Especially, the results do not follow as corollaries of the one-parameter theory. This
being said, the most work is found with the lower bounds. We prove the lower
bounds through the awf argument but now in the bi-parameter setting. In the two
cases where we fail to achieve a full characterization, the problems are mainly due to
the fact that the awf argument is symmetric with respect to both of the parameters,
while the norm || - ||z; r; has a built-in order to it. This limitation is not new and
was expected, as we already saw it in Airta, Hytonen, Li, Martikainen and Oikari [1],
where we provided a similar table as in Theorem 1.2 above, but for the bi-parameter
commutator [T, [b, T1]], where each T; is a singular integral on R%. In [1] we achieved
a fully satisfactory characterization of the boundedness of the commutator in only
four cases, this is in line with [T5, [b, T1]] being generally considered a harder operator
to work with than [b,T|. Perhaps this difference is best reflected through the fact
that the diagonal characterization (p; = p2 = ¢1 = ¢2) in terms of the proposed
product BMO is open in the first case, see for example the discussion in [1], whereas
the boundedness of [b, T] on the diagonal is fully understood and captured by the
simpler little bmo.

Acknowledgements. We thank Henri Martikainen, Emil Vuorinen and Tuomas
Hytonen for discussions and comments that improved the article.

In the remaining part of this section we provide the relevant definitions. The
reader who is familiar with this material may immediately skip them and move to
the next Section 2.

1.1. Singular integrals. We denote the diagonal with A = Aldidi) = {(z; 4,) €
R% x R%: 2; = y;} and call

Ki:R% xR%\ A = C

a standard Calderén-Zygmund kernel on R% if the size estimate

C
Ki iy Ji S )
| K, y5)| |z — yi| @
and, for some ¢ > 0, the regularity estimates
|z — at]°
| Ki(i,y:) — K2, )| + | K (yi, 71) — Kiyi, )] < Cm EENTEY

whenever |z; — 2| < |z; —y;|/2, are satisfied. The best constant in these estimates is
denoted by || K||cz4,,s) and the collection of all such kernels is denoted as CZ(d;, 9).

1.3. Definition. Let ¥; = X(R%) be the linear span of the indicator functions of
cubes. A singular integral operator (SIO) is then a linear mapping 7;: 3; — Li (R%)
such that

@ta)= [ [ K@it dyds, s st =0, f.g €,

where K € CZ(d;,6).
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1.4. Definition. A Calderén—Zygmund operator (CZO) is simply an SIO T; that
is bounded from LP(R%) — LP(R%) for all (equivalently, for some) p € (1, 00). Given
a CZO T; with akernel K; € CZ(d;, 9), let us denote ||T||czo(,.5) = 11| L2(raiy— 12 (i) +
1Kl cz(d.0)-

1.2. Bi-parameter singular integrals. We give the definition of Martikainen
[14] of bi-parameter SIOs, see also the last Section 5 for the original definition by
Journé. Now we start working in the ambient space R? = R4 x R%. Again, we let
¥; = %(R%) be the linear span of the indicator functions of the cubes of R% and
then let 3 = X(RY) be the linear span of X1 ® ¥y = {f1 ® fo: f; € ¥;}. We assume
that we are given a linear operator T along with a full adjoint 7" and partial adjoints
Ty, Ty, i.e., four operators T, T, Ty, Ty : ¥ — LL (R%) that satisfy

loc
(T(f1® f2),91 @ g2) = (T7 (01 ® f2), 1 @ g2) = (T5(f1 ® 92), 91 ® f2)
= (T"(91 ® g2), 1 ® [a)-
These operators will be assumed to have bi-parameter kernels, recalled next.
1.2.1. Bi-parameter kernels. Let 6 > 0. We assume to have a kernel
K:RYxR*\ A = C,
where A = {(z,y) € (R xR%)?: 21 =y, or x5 = ¥}, that satisfies the size estimate
(1.5) |K (2,y)] < Clay — g™ ay — | ™%,
the regularity estimate
K (2,y) = K((21,25),y) — K((a}, 22), ) + K(',y)]

lz1 — 55'1\6 |29 — 55'2\6

<C

|x1 — y1|d1+5 ‘x2 _ y2|d2+5’

whenever |z; — z}| < $|z; — y;] for i = 1,2, and the mixed size-regularity estimate

|K(($1,l‘2),y)—K((Zfll,l‘g),y” <C _y2|_d27

whenever |z — 2| < i]z1 — y1|. We also assume the symmetric estimates to the
stated regularity and size-regularity estimates to hold in the other parameter slots.
The collection of all such kernels is denoted CZ((dy,ds),d) and the best constant C'
in these estimates is denoted with || K||cz((d;,d2),6)-

1.2.2. Full kernel representation. Let f = f; ® fo,9 = g1 ® go € X be such
that for both indices i € {1,2} we have spt(f;) Nspt(g;) = . Then we assume the
representation

wro= [ [ K@ )0 ) dyd,

where K € CZ((dy, dz), ). Note that this implies the analogous kernel representations
for T, T, T*.

1.2.3. Partial kernel representations. Now, let f = fi ® fo, g =91 ® gs €
be such that for one index j € {1,2} we have spt(f;) Nspt(g;) = 0. Then, we assume
the representation

(T(f1 ® f2), 91 ® g2) = / Ky, 0:(75,95) i (y5) 95 (x5) dy; dj,

R% JR%
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where Ky, , € CZ(9,d;) is such that ||Ky, . llczea,) < C(fi, i) for some positive
constant that depends on the functions f;, g;. We also assume these constants to
have the following bounds

C(lp,lp) —|—C(1P,ap) —|—C(CLP,1P) S C‘P|

for all functions ap € ¥; such that ap = 1pap, |ap| < 1, and fap = 0, where P is a
cube on R%.

1.6. Definition. A linear operator T with the full and partial kernel representa-
tions as described in this section, is called a bi-parameter singular integral operator.

1.7. Definition. A bi-parameter singular integral operator T such that

IT || Lo mey Loy + 1T || o Rty Lo Ry < 00

for some p € (1,00) (equivalently, for all p) is called a bi-parameter Calderén—
Zygmund operator.

1.3. Basic notation. We write all identities almost everywhere. For example,
if a function can be made to satisfy a property (e.g. to be a constant, or continuous,
etc.) by redefining it in a set of Lebesgue measure zero, we say that the function
satisfies that property.

We denote cubes in R% by I, and cubes in R% by J—that is, the dimension of
the cube can be read from which symbol we are using. Various rectangles then take
the form I x J. The side-length and the diameter of a cube I are denoted respectively
by £(I) and diam([). Centre-points of cubes and rectangles are denoted as cg, cg.

Often integral pairings need to be taken with respect to one of the variables only.
For example, if f: R x R% — C and h;: R®" — C, then (f, h;): R% — C is defined
by

(fihr)(w2) = | f(yr, 22)h(yr) dys.

R
On several occasions we use operators that only act on one of the variables, e.g.
the maximal function M: L2 — L and we denote it acting on a function of two
parameters as M f(z1,x2) = M(f(x1,-))(z2). If it is unclear on what parameter slots
these auxiliary operators are acting, we denote M?, M% etc.

Throughout the exponents p1, p2, q1, g2 will always be in the range (1, 00) but this
will not always be mentioned. We will sometimes write p = (p1, p2) and ¢ = (q1, ¢2)
to shorten notation and this will be clear from the context.

We denote A < B, if A < CB for some constant C' > 0 depending only on
the dimension of the underlying space, on the integrability exponents and on other
unimportant absolute constants appearing in the assumptions. Then A ~ B, if
A < B and B < A. Subscripts on constants (Cyp...) and quantifiers (Sgpe,..)
signify their dependence on those subscripts.

2. Approximate weak factorization in the bi-parameter setting

We will next go through the awf argument for proving commutator lower bounds
in the bi-parameter setting. We refer the reader to consult [7]| for a lengthier dis-
cussion in the standard one-parameter setting. Still, let us recall some important
points.

When a commutator lower bound is proved, the full norm ||[b, T]|| LELLP2 L0 12
is not actually needed but so-called off-support versions of the norm we denote as
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Opq(b;K) and O (b; K) are used and these can be defined even if we only have
b € L. . Indeed, in defining these off-support norms what we use is the assumption

Tf(x)= | K(z,y)f(y)dy, «¢&spt(f),

Rd
and this only involves the kernel. It is actually true in all cases that we are estimating
the testing conditions on b by the off-support norms rather than with the full operator
norm. Consequently, where we achieve a full characterization we also obtain as
immediate corollaries the information

(2.1) Opr.p2),(ar.2) (0 K) ~ 110, T o1 g2y s g2
At the heart of the business lies the notion of non-degeneracy.
2.2. Definition. A bi-parameter kernel K is called non-degenerate, if for each
x = (z1,72) € R? and two radii 71,75 > 0, there exists y = (y1,y2) such that
|K (21, 2), (1, 92))| Z 77y, Jor =il >, 2a — o] > 7o

To obtain commutator lower bounds, we will also assume that the kernel K
satisfies the size estimate (1.5) and the mixed size-regularity conditions

2.3 K((z1,12),y) — K((2),22),y)| < C w( ,
whenever |z; — x| < 1/2|x; — y1|, of which we also have the three other variants.

Notice that given the points x,y as in Definition 2.2, it follows from the size
estimate that

(2.4) ry My SIK(2,y)] S o — yi| M we — yol 7% Sy — | My ®,

hence |r1 — y1| < 71, and similarly we see that |zo — ys| < 79, and consequently that

Of the functions w; appearing in the mixed- and full regularity estimates we
ask that they are increasing, subadditive and satisfy w;(a) — 0 as @ — 0. We
will use a single function w to deal with all the parameter slots, as we have w; <
max;e(1,2,34} W; =: w, and w is a function that satisfies the same assumptions as each
single w;.

Obviously the class of standard bi-parameter CZ-kernels is encompassed here,
however, it is a larger class in another sense also: we do not require any kind of full
regularity conditions, see Section 1.2.

2.6. Proposition. Let K be a non-degenerate bi-parameter kernel as in Defini-
tion 2.2 that satisfies the size estimate (1.5) and the mixed size-regularity estimates
(2.3). Fix a constant A > 3 and let R = I x J be a rectangle. Then, there exists a

rectangle R = I x J such that ¢(I) = ¢(I) and ((J) = ¢(J), and that is localized as
(2.7) dist(1,1) ~ Adiam(I), dist(J,.J) ~ Adiam(J)

and which satisfies the following: for all xt € R and y € R we have that

(2.8) K (2,y) — K(cr, cp)| S A_(d1+d2)|R|_1w(1/A),

and if we choose A large enough, we also have,

/K<f’3’3/)014’j N’/ K@ay)dy'N/U{(azy)\de/|K(x,y)\dy~A<d1+d2>.
R B R =
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Proof. Let cg = (cr,cy) € RU+% be the centre of a rectangle R. By the non-
degeneracy of K, we find a point ¢z = (cj, ¢5) such that

(2.9) ler — el 2 AUT), ey — 5l = Al(J)
that is the centre of a rectangle R =1 x J and satisfies
[Klencq) 2 A™H0(1) he(7) % = A-(04) R

The claims on the line (2.7) follow immediately from the remarks following the defi-
nition of non-degeneracy, see the lines (2.4) and (2.5). Moreover, by the size estimate
and (2.9) we have that |K(cg, cz)| < A~ +9)|R|~! and consequently that

(2.10) |K (cr,cp)| ~ A=) RI~L,

Now let z € R and y € R be arbitrary. To see why (2.8) holds, we use the mixed
size-regularity conditions (2.3). We have

|K(.I', y) - K(CR7 CR)| < ‘K([l’l,xQ], [y17y2]) - ([C[,.TQ], [yla yQ])‘
+ |K([CI7 2]7 [yla 92]) - K([CI7 CJ]a [?/17 y2])|
+ |K([CI7 J]7 [y17y2]) - K([CI7 CJ]? [CT7 92])‘
+ |K([CI7 J]7 [prz]) - K([Clu CJ]7 [Cfu Cj])|
SA—(d1+d2)|R| -1 (I/A)
where for example the estimate for the first of the four intermediate terms derives as
1 |ZL‘1 — C[| 1
K - K <
‘ ([xlvx?}v [y17y2]> ([Cfva]v [y17y2]>| ~ |CI _ y1|d1w(|01 _ y1|> |l‘2 — y2|d2
SATHUL) MW (CJA) AR e(T) %
< A_(d1+d2)|R|_1w(1/A),

where used the fact that A > 3 to apply the mixed size-regularity estimates, and also

the sub-additivity of w.
Now, the last four claims involving the integrals follow by choosing A sufficiently
large, by subtracting and adding K (cg, c3), and using the estimates (2.8) and (2.10).
O

2.11. Proposition. Let K be a non-degenarate bi-parameter kernel as in Propo-
sition 2.6. Let R = I x J be a fixed rectangle and let f be a locally integrable function
such that spt(f) C R, [ f = 0. Then, for a choice of the constant A large enough,
the function f can be written as

(212) f = [thgl — ng*hl] + [hQT*gg — gQThQ] + f,

where the appearing auxiliary functions satisfy

(2.13) g =1g, go=1g, spt(h1) C R, spt(hy) C R, spt(f) CR
and

(2.14) [h(2)] S AYf (@)l |ha(@)] S AU D RLR(), 1 (2)] SW(%XVDRIR(@,

and we have ff = 0.
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Proof. Let R = I x J be the rectangle as obtained by Proposition 2.6 and let
g1 := 1. We decompose the function f as

S
Tgl ’
The only problem with the above factorization is that h; might a priori involve a

division by zero, the following estimates show that this is not the case. Let x € R,
then

Tgi(x /K:L’ydy—/(K( y) — K(cR,cé))dy+/~K(cR,c§)dy:[+[[.
R
It follows by Proposition 2.6 that
115 A1), 11|~ A=)

and hence for A sufficiently large that |Tg;(z)| ~ A=(417492) making h; well-defined.
Also, by the above we have

f=mTg —@Thy+ f, hy= U= g T"hy.

[P ()] S AT f(2)],

which establishes the left-most estimate on the line (2.14). Then, to estimate the
first iteration error term w, let y € R and write

L(y):(f / )( TR f(y) — = [T +1V.
R

Tgl Tgl fR CRucR CR7CR

By Proposition 2.6 it follows that
/ Ky, 2) dz/ K(cg,cp)dz
R R

-1

117] = ‘f [ (50.2) ~ Klenc)d| x

d,(Li
< M j‘f =t (5

and hence, we have with x € R that
<T91 [ K(enendy)| = 1)) K@)l @)l dy

St () AU btale) = () A Datato)

where we simply used the size estimate.

By the zero mean of f on R we have
- ( f ) ()] = WelE . ) — Klcg, cn)f(y) dy]
Ja K (cr, ) dy |J7 K (e ) dy|

<o) AN ata@) - A'=w( ) - (7D,

where we used the mixed size-regularity estimates and Proposition 2.6. Hence, com-
bining the above parts, we obtain

()| S w(5) (7 Dalz().

It is also immediate from the definitions that

(2.15) /ﬁw:/ng* <Tigl) :/Tngigl:/f:o.

T (1V)(y)] =
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Now, let go = 1z. By repeating the above argument, but now starting with the
function f supported on the rectangle R we write

N " =z w
W = hoT™go — g2Ths + f, hQZT—a [ = 92Ths.
g2

With the same arguments and proofs as above, the function hy is well-defined and
for x € R we have that

ha(a)] £ AYF@)] S A% ()1 al5le) S AY 7Dl 5(2)

and for x € R, with A large enough, that
- 1 - 1 1
F@)l Sw() - AR atal) Sw(5) (atat) S w(5) (N ala).

Moreover, as in (2.15), the secont iteration error term finherits the zero mean from
w. O

Let us notate the oscillation of a function b € L{ . over a rectangle R = I x .J
with

osc(b: R) :]i\b— ) Al

2.16. Proposition. Let K be a symmetrically non-degenerate bi-parameter ker-
nel and b € L{,.. Then, for all rectangles R = I x J we have

| Rl osc(b; R) < [([b, T]gy, ha)| + [{[b, Tha, g2,
where the appearing functions are as in 2.11,

=1 g2=1r |h(x)] Sa lr(z), |ha(z)] Sa 1g(2).
Proof. As b € Li ., we find a function f of zero mean supported on R such that
[f]lee <1 and

| R| osc(b; R) N/bf.

By Proposition 2.11 we write and estimate the right-hand side as

/bf = /b[thgl — Ty +/b[h2T*g2 — ¢5Thy) +/bf

< (b, Thgr, Bl + (I, Tlhs, )] + ' / bf’
and the error term further to

/ bf’ < il | 0= ®)al S (/)R] osc(t: )

By having the above estimates together we obtain
(2.17)  [Rfosc(b; R) S [{[b, Tlg1, hn)| + [([b, TTha, g2)| + w(1/A)| R| osc(b; R).

As b € Li_, by choosing A large enough, we absorb the common term in (2.17) to

locy

the left-hand side. O

The first off-support norm we use is
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2.18. Definition. Let b € L] . and define

or (b; K) = sup fRded<b(37) —b(y) K (2, y)f(y)g(z) dydx
(t1,t2),(s1,82)\s Rl ‘[|1/t1+1/s’1‘J|1/t2+1/5’2 )
R=IxJ

where the supremum is taken over rectangles R = I x J and R =1 x J with

dist(Z,1) ~ A0(I) and dist(J, J) ~ AC(J)

and over functions f € L*(R) and g € L*(R) with

[fllze <1 and |[g[lr= < 1.

2.19. Remark. When p = (p1,p2),q¢ = (q1,92) we may write Oﬁq(b; K) =
(’)éhm%(qh qQ)(b; K). From this point onwards we will fix the constant A large enough
so that we may always use the conclusions of all the above stated propositions
where the constant A appears and we will drop the superscript A and simply write

O,4(b; K).

Relating the oscillation to the off-support norm, we have the following

1
loc

2.20. Proposition. Let K be a non-degenerate bi-parameter kernel, b € L
and s;,t; € (1,00). Then, for all rectangles R = I x J we have

05¢(0; R) S Ot o), (s1.00) (03 KT,
Proof. By Proposition 2.16 we write
| Rl osc(b; R) < [([b, T]gy, ha)| + [{[b, Tha, g2,

for functions h;, g; as in Proposition 2.16. By the definition of the off-support norm
we estimate

‘<[b7 T]glv h1>| < O(tl,tQ)(SLSQ)‘[|1/t1+1/s,1|t]‘1/t2+1/s,2
= |R|O(t1,t2),(s1,52)(b; K) |I|1/t1_1/81 |J|1/t2_1/52

and similarly for the other term. Dividing with |R|, the claimed estimate follows. [

3. Upper and lower bounds

In this section we prove all the stated lower bounds and those upper bounds that
admit a short proof, with the remaining upper bounds postponed to Sections 4 and

d.

3.1. The case p; = q; > 1, ¢ = 1,2. This case is not new, other proofs are
contained e.g. in [6] and [12] both that treat the problem in the Bloom setup. Given
the awf argument prepared in the previous section, the arguments are shortly stated
and we gather them here in the unweighted off-diagonal setting in Proposition 3.1.
Also, when in addition all the exponents are the same, we record how to derive the bi-
parameter Bloom type lower bound directly from Proposition 2.20. Proposition 3.2
is not new either, the special case with the Riesz transforms is contained in [6] and
the result with the same non-degeneracy assumptions as we use is in [12]. In [12]
the slightly simpler median method is used which limits their considerations to real-
valued functions b, on the other hand the median method works also for iterated
commutator.
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3.1. Proposition. Let 1 < p; = ¢; < 00, i = 1,2 and assume that b € Li .
Then,

[1Bllbmo(ras xriz) S Oty pa) 1) (03 K) < b Tl o1 12 121 22 S 10l [omoes xcme)

Proof. The first estimate is immediate from 2.20, while the second follows by a
simple application of Holders’ inequality. Hence, the only claim left to show is the
upper bound

I[b, T ||L§}L’;§—>L§}L’;§ N ||b||bmo(Rdl xRd2)

This, is proved with exactly the same argument as the commutator upper bounds are
proved in [12], the fact that we have mixed norms appear, contrary to the non-mixed
cases, plays no significant role in the proof at all. O

Let us then turn to the Bloom type lower bound. Recall that a positive function
f¢ is in the bi-parameter A, if

5
1] 4, (R1 xR2) = S%p<N>R<N P)p <00,

and for a positive locally integral function v we write b € bmo,, if

1
Bl =10 | b= Bhal <0 w(R) = [ v

Notice that if we have two weights A, n € A,, then by a simple application of Holder’s
inequality we have that v = (u/A\)Y? € A,.

Also in the Bloom case, we use an off-support norm. The only difference com-
pared to Definition 2.18 is that now the normalization is modified and we consider
the quantity

Jrara(0(x) = 0(y)) K (2,9) f(y)g(x) dy dz
H(R)PINY (R)] Y

where the supremum is taken over all such functions f and g as in the Definition 2.18.

Owppy(b; K p1; X) = sup

3.2. Proposition. Let b € Li_ and let i, A be bi-parameter A, weights. Then,
we have that

18l bmow) Stiay sy Olpp) (0 K15 X) < N1b Tl 2005208 Sy, [1Bllbmog);
where v := (&)1,
Proof. By Proposition 2.16 we estimate
[ o= el = Rlosc(bs 7)< 3 1Tl )
i=1,2
< Oy (03 K5 15 A) ((BR)P N7 (R)]P 4 p(R)P N7 ()P,

Since A, weights are doubling and

dist(1,I) ~ diam(I), dist(J, J) ~ diam(J),
it follows that
(3.3) (R) ~p (R, MR) ~pg,, MR), V(R) ~pa s, VIR):

P
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Hence, we estimate the left-term of the previous estimate with the index ¢ = 1
as

B , , B NV N
R P i ([ aF) T g, e (2
R R

* 2\ 1 1
< P AR ( / Ap) < WYY (R)

Sl Na, V(1)

A

where in the estimate marked with * we used that
p(R)PAR) P < (1] {P (v) g,

which follows by a few applications of Holder’s inequality and a rearranging of the
estimate

1< (a1 R < W ROVYP G DY < ) m (VP P[P

Using the other estimates from the line (3.3) it follows that pu(R)Y?[\™ 7 (R)]'/”
satisfies the same estimate, and hence, we have shown the first estimate,

[ = O] S 14, Ot K A(R)
For the middle estimate, by Holder’s inequality we immediately have that
Of (0 K 5 N) < b, T Loy 20 (3)
and the right-most estimate [|[b, T(| o) - zr(x) S |0/lbmo(res xre2) 15 Proved in exactly

the stated form in [12]. O

3.2. The three cases p; < q;, t = 1,2 and p; < g1, p2 > g2, and ps < qo,
Pp1 > q1. In these three cases we find that the commutator is bounded if and only if
b is a constant function almost everywhere. By redefining b in a set of measure zero
we may assume that b is a constant.

3.4. Proposition. Let b € L ., p; < q;, i = 1,2, and assume that O, ,(b; K) <
oo. Then, b is a constant. Conversely, if b is a constant, then [b,T] = 0.

Proof. Only one direction is non-trivial. Fix a point x5 € R? and consider a
sequence of cubes R% O J, — {x3}. The Lebesgue differentiation theorem shows
that

k—o0

][|b(x1,:p2) — (b(+,22)) | dxy = lim osc(b; I x J,)
I

for almost every z; € R%. By Proposition 2.20 we dominate the right-hand side with
Opalb FOUITHM fim |20 =0,

where in the last step we used that 1/py — 1/g2 > 0. This shows that b(-,z3) is a
constant on all cubes I C R hence on R%. Similarly we see that b(x1, -) is a constant
almost everywhere on R%. It follows that b is a constant almost everywhere. O

3.5. Proposition. Let p; < g1, p» > ¢2 and assume that O, ,(b; K) < co. Then,
b is a constant. Conversely, if b is a constant, then [b,T] = 0.
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Proof. By the same argument as above we see that b(xq,-) is a constant and
hence for any choice of a cube J C R% we have that

f baran) = Ozl dar = £ b= Br

< Opq b K)|]|1/p1 1/q1|J|1/p2 1/q2
As 1/py — 1/q2 < 0, letting |J| — oo shows that

ﬁ‘bm’x?) — (b, 22)) 1 day = 0.

Hence, also b(+, z5) is a constant and consequently b is a constant. O]
The symmetric case with a symmetric proof is

3.6. Proposition. Let p; > ¢, p» < ¢2 and assume that O, ,(b; K) < co. Then,
b is a constant. Conversely, if b is a constant, then [b, T| = 0.

3.3. The cases p; < q1, P2 = @2, and py < g2, P1 = q1. In these cases the
function b is constant in one variable slot and Holder continuous in the other.

3.7. Proposition. Let b € Li.., p1 < q1 and py = ¢ and O, ,(b; K) < co. Then,
b(xy,-) is a constant and there holds that

(3.8) 16Cs z2) lpo.er S Opg(b; K).
Conversely, if b satisfies the above properties, then
16, Tl 21 222 5 pan 222 S 116G 22) || gen -

Proof. We see by the same argument as above that b(xy, -) is a constant for almost
every 1 € R% | and by redefining in a set of measure zero, constant everywhere. Thus,
for every x5 € R% there holds that

f baroan) = bzl dos = f o 1b= (Bhrn

<Opq(b K)‘”l/pl 1/q1|J‘1/P2 1/p2 _ (b K)‘[|1/P1 1/q1

Opq
and this implies (3.8). The converse direction is proved in Proposition 5.5 of Section 4.

0

The symmetric case with a symmetric proof is

3.9. Proposition. Let py < ¢o and p; = ¢ and assume that O, ,(b; K) < oo
Then, b(-,z5) is a constant and

1b(z1; oo S Opg(bs K).
Conversely, if the above conclusions hold, then
1[0, T o1 2y po1 g2 S esssup [[b(@, -) [ so.0z-
IleRdl 2

Proof. The proof for the first part of the claim is completely symmetric with proof

in the previous case. The converse direction is proved in Section 5, see Proposition 4.3.
O

Recapping, in all the above cases where we concluded the function b to be a
constant, we have the corresponding upper bounds as stated in Theorem 1.2 (i.e.
b = constant implies that [b,7] = 0 which implies that N,, = 0) and hence have
constituted a full characterization of the boundedness of [b, T], in these cases. Both
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upper bounds for the cases where we concluded the function b to be constant in one
and have the Holder continuity criterion in the other variable are lengthier and will
be presented later in sections 4 and 5.

3.4. The case p; = q; and ps > g2. We first recall some basic background. A
dyadic grid on R? is a collection D = D(R?) of cubes with side-lengths in the powers
of two such that:

(1) for each k € Z the collection {Q € D: £(Q) = 2*} is a disjoint cover of R,
(2) for Q, P € D there holds that Q N P € {Q, P,0}.

Given a cube @, we let D(Q) denote the system of dyadic cubes inside @) that is
attained from iteratively bisecting the sides of (); we use sparse collections made up
of elements of D(Q). A collection of sets .7 is said to be -sparse, if each ) € .% has
a major subset Eg such that |Eg| > v|@Q| and these sets E¢ are pairwise disjoint.

The stopping time family inside a fixed cube )y is given by the following algo-
rithm. For a given cube @) € D we denote

S(f;Q)={P e D, PcCQ is maximal with {|f])p > 2(|f])o}

and let
S =JA Fn= U SUP), S ={Q}
k

Pe,

For a given collection . C D of dyadic cubes and for each @) € . we let ch »(Q)
consist of the maximal cubes P € .% such that P C (). For a given cube P € . we
denote Ep = P\ Ugea,,, p @, and for each P € D we let ILP := IL» P denote the
minimal cube @ in . such that P C @ (on the condition that it exists). With this
notation then,

chy(P)={Qe.7:QC P, 1IQ =P}
A variant of the following lemma is contained in [7].

3.10. Lemma. Fix a cube () and let f be a bounded function of zero mean
supported on (). Then, there exists a sparse collection . = Uszl % C Dg such

that
N
F=Y_>fe fr= > Aqof,

k=0 Pe.% IyQ=P

where the number N is finite and depends only on || f| =), and moreover, there
holds that

(1) [fp=0, forall P € .7,
(2) Yreo Spes, Ifpllide So (Mf)* for all s > 0.

In the remaining lower bounds we use the off-support norm given in the following

3.11. Definition. We let
SN e (0(2) = b)) K (2, y) fi(y)gi(x) dy dz

N N
1 2iza MilloeLrllizy 2l 2ica Ngilloe L7 M ot o

A 7Y
O, (b; K) = sup

where the supremum is taken over rectangles R; = I; x J; and El = 7@ X :f; with
0(L;) = ¢(L;) and dist(L;, L;) ~ A(L;) for L=1,J

and over functions f; € L*(R;), g; € L*(R;),i=1,...,N.
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3.12. Remark. Again, we will suppress the superscript A from O;;IA and just
write (’)ﬁq. Using that for linear operators U there holds

Z<Uf¢7gz> =K <U (Zngz> 7Z€j9j> :

i=1
for Rademacher random signs ¢;, it follows by Holder’s inequality that

O]%iq(b; K) < ||[b,T] ||L£}L’;§—>L‘;11 LE-
Consequently, this is a reasonable off-support constant.

3.13. Proposition. Let p; = q1, g2 < p and set 1/qa = 1/r9+1/ps, and assume
thatbe Lt L2 Then, there holds that

loc,z1 ~loc,za"

(3.14) (1}6% 16— CHL%{L% S Of,q(b; K) < ||[b, T]HLQ%L%HLQL% S igé 16— C”LgﬁL%'

Proof. Let ¢ € C be a constant and denote g(lj,l‘g) = b(xy1,2z2) — c¢. Then, let
f:R% — C be such that

(315) f =1 [ £=00 Wl <1

Then, according to Lemma 3.10, we let .%? be the sparse collection of cubes inside
J with respect to the function f and with R = I x J write

/R?Jf:/?;.h@) ipr :iZ/g'h@fp-

k=0 pe.s? k=0 pe.7?

The last step follows from that the left-hand side is integrable and that > Peykgﬁl;

1;® fp are disjointly supported for each fixed k. Then, as the functions 1;® fp satisfy
the assumptions of Proposition 2.11 on the cubes [ x P we write

/E 1;® fp={[b,Tlgp, hp) + ([b,T)hp, gp) + /EJ?P’

where in line with Proposition 2.11 we notate g1 = g3, g2 = gp, hi = hp, hy = hp,

and where we use that the commutator annihilates constants to change b to b inside
the commutator. Consequently,

][5 S aria o)+ 00 + [
)

(3 16 k=0 pes}?
<30 [ Tlaphe)| + 32 S (T + | [ 55
k=0 pe.s? k=0 pes}?

where we denote fs; = SV Pes? fr.

Let us then focus on the first sum on the right-hand side. The collection .7 is
not necessarily finite and the off-support norm 3.11 only controls finite sums. Hence
we write

S =sing S =77 S A
j=1
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for some finite collections 5@2 C .#? and
Z > Kb, Tlgp. hp)| = lim Z > (b, Tlgp. he)]
k=0 pe.7? % k= 0 Pe. /2

Notice that the term <[b, T)gs, h p> is bilinear and hence that we may replace g3

!
2

with apgs and hp with a;lhp, for any ap # 0. We choose ap = || fp||5 and estimate
N
S Y Tt =3 S [T g Il )|
k=0 Peyli, k= OPE/Q’J
(3.17) N o
SO (b K) Z > HfPH”levp SN llfellR e ;
k=0 Pes2, Lo ppz [1F=0 PESE; L

in the last step we used the Definition 3.11 of qu,

and the identity 1 — % = 2—%. By Lemma 3.10 we have
2

the estimate ||hh|leo < |1/Pllco

Z Z HfPHq211xpN1I®(|\/|f)r2/q2

k= 0P€/2]

and this is enough to control the right-most term of the display (3.17). To obtain
the similar estimate for the other term we argue as follows. With the rectangle I x P

fixed, write the reflected rectangle as I x P = TIX p X ZSIX p. Then, by Proposition 2.6
we have

dist(I;xp, I) ~ diam(I), dist(P;xp, P) ~ diam(P),

and hence, there exists some absolute bounded positive constant C' such that C'I x P D

I x P D I x Ep. This shows that the collection {C’I/;TD: P e 5”} of rectangles is
sparse with the major subsets I x Ep. Hence, we have

Z Z HfPHézlfxTD Z Z HfPHoo CIxP

k=0 Pe.72 k=0 pe.#2

P1 1 P2
Ly Las

S5 1R s,

k=0 pPe.72

P1 1 P2
Ly Lo

N "
> > el tie

k=0 pPe.72

)

P17 P2 Py rP2
Llex2 Llex2

where the estimate marked with x can be seen by dualizing and using sparseness,

indeed, we have with any function such that ||g|| ,» , < 1, with any constants a;,
Lot Ly
and with any sparse collection {R;, Eg, }; of rectangles, that

/Zalejg = a;(g)r, | Rl S la;l{|gl) g, | Er,| < /Msgz |a;[1 5y,
i i j i

> laslte,
i

)

P1 7 P2
Ly Lz

<
o ||Msg||L5/11LZgN
Lt L2
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where Mg is the bi-parameter strong maximal functlon Hence, we have agam re-

duced to the pointwise estimate S0 02 pes? prHP2 lixp S 1, ® (I\/If)P2 true by
Lemma 3.10. The same estimates also holds for the other term on the line (3.16).
Putting the above together, we have now shown that

S 1Tk 305 (T e

k=0 pe.7? k=0 pes?
(3.18) )
< 02,01y M g1 D
< O3y (b KT = OF (b K|,
where we used the boundedness of the maximal function and that || f]| <1

Lr2 RdQ) -~
The estimate (3.18) is uniform in j and hence from (3.16) we find that

/szz.

To have control over the error term, we use Proposition 2.11 and Lemma 3.10 to find

B) (<3 Y 7ol 5w (5 )1I®ZZ Ifelletr o () 1M,

k=0 pe.7? k=0 pe.7?

(3.19)

bf
R

< OF, (b K)|1| +

By (3.20) and Hoélder’s inequality we have

~ - 1
35| < [zl 5 [l ()M,

o (3) [ 180

and hence continuing from the line (3.19) after dividing by || that

bf‘<(92 (b; K) +w( )7[||b||L

Hence, by having I — {:L‘l}, the Lebesgue differentiation theorem shows that

[]g(xl, xo) f(xg) dag

1. .~
S Oy (b 1) + () l[b(w1, 2) 1230

Since b(xy,-) € L™(J) we have

/J by, 20) f(22) ds

sup

= |lb(z1, 22) 172 (1),
(3.15) Lea()

where the supremum is taken over all such f as were considered on the line (3.15).
Consequently, we have shown that

1 -
1b(z1, 22) 22 ) S Oy (b3 K) Wbz, 22l ).

The term shared on both sides of the estimate is finite almost everywhere and hence
by absorbing the common term to the left-hand side we conclude with the left-most
estimate of (3.14).
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The estimate on the middle was already discussed earlier in section 3.11 and it
remains to show the right-most estimate. As the commutator is unchanged modulo
constants, we find that

[0, T]f”L’;{LZg = I[b—c, T]f”L%ng < |I(b— C)TfHLﬁ}Lﬁg +[|7(b — C)f”LﬁiL;%'
From here, by the mixed norm estimates of 7', it is enough to estimate
16—z < 16— cllyzz 1£]2

where we used that 1/g = 1/ry + 1/p,. Taking the infimum over all ¢ € C shows the
claim. 0

}Lg% <lb— C||Lgo1L;22 ||f||L’;{L’;§a

3.21. Proposition. Let po = ¢ and ¢; < p; and assume that b € L%OC’mQLECM.
Then, there holds that

EE% 1b— C||L;3L;11 S O]%iq(b; K) < ||[b, T ||L§}L’;§—>L211L’;§ S tlzgé b — CHL;lngg-

Proof. The left-most estimate is completely symmetric with the proof of Propo-
sition 3.13 and the estimate on the middle is immediate by Holder’s inequality. The
right-most estimate follows by the invariance of the commutator modulo additive
constants, the mixed norm estimates of T, and Holders inequality. O

3.5. The case p; > g1 and ps > q». In this case, again, it follows immediately
by Holder’s inequality, the invariance of the commutator modulo additive constants,
and the mixed norm estimates of T, that

O}?,q(b; K) <|[[b, T]HLQ}L%HL%L% < igé 16— C”L;llL;?Q-

Then, we would like to prove a lower bound for Oiq(b; K) that gets as close to
inf.cc ||b — ¢| piprz as possible. Let us first discuss the non-mixed case, where we
have a full characterization.

3.22. Proposition. Let p; = ps > q1 = qq, define 1/r = 1/q; —1/py, and assume
that b € L . Then, there holds that
inf |[b — ¢f| - ey ~ Oy (0 K) ~ |I[b, T || o ety La(rat -
Proof. The following oscillatory characterization is recorded e.g. as Proposi-
tion 3.2. in [1]. Let r € (1,00), then there holds that

fl;gqu 16— cll1rra)

(3.23) N S};p{ > AlQosc(b, Q): 7 is 1/2-sparse, Y |Q|A, < 1}>

Qe Qes

where the sparse collections .# consist of cubes of R?. Now, fix any sparse collection
. as in the supremum. Then, identically as in the proof of Proposition 3.24, we can
bound

D Aol@ose(b Q) < O (b: K).

Qe
The remaining bounds O, (b; K) < ||[b, Tl 1o ®e)— poray < infeec ||b — ¢l 1rray were
already discussed above in the mixed case. O

In the mixed case we are unable to prove the desired lower bound and what we
have is the following
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3.24. Proposition. Let p; > q1,p2 > q2 and let b € Ll .. Let .#* denote a 1/2-

sparse collection on R% with associated coefficients {\r,} such that > Lesi )\7} |L;| < 1.
Then,there holds that

sup | > > ApAplhlb]ose(b, Iy x L) | < O3 (b K).
S 72 _ _
) LEeSL [,eF?2

Technically this limitation is due to the failure of finding any useful rectangular
sparse oscillatory characterization of the mixed space L3 LY , when s # t, that would
correspond with that of the one on the line (3.23).

Proof of Proposition 3.24.  Without loss of generality we may assume that the
collections . are finite. First, by Proposition 2.16 we have

(3:25) LD osc(b, Iy x I2) S ([0, T)g1, pyr Bty sry )+ {6, TIT, 1y Gy )|

where we write kY ;.. g5 ;. for the functions g;, h;. Also, let R(R} ;) and R(g} ;)
stand respectively for the rectangles on which h@lx 1, and g}lx 1, are supported. Then,
by (3.25), the relation 1/r; = 1/¢; — 1/p;, and the Definition 3.11 of the off-support
norm, we estimate

> > MAnlLlL] ose(b, I x I)

Les [re?

5 Z Z >‘I1>‘12|<[b7T]g}1><127 11><127>|+ Z Z >‘I1)‘f2|<[b7T]h%xlgvgixlgﬂ

Les [,es? Les I,es?

and let us estimate the sums as

Z Z )\Il)\b‘ b T] 11><127911><12>|

Lest I,es?

- Z Z Z | b T Tl/pl)‘TQ/thZIlXIQ) )\rl/ql)\TQ/ng}1><IQ>|

=12 L1l [,e.7?

SCAUIODIY DIRD DRV L P

1=1,2 || €71 [,e.7?

Z Z )\7'1/Q1)\T2/(121R(g3 0
131z

Les [,e?

P1 P2
Ly Las

! !
a4y y 93
Ly Lo,

Using that the coefficients are of product form, we can then, for example, estimate
one of the terms as

Z Z )\7"1/‘11)\7’2/‘121}%(9%1“2) Z Z )\7"1/‘11>\7"2/Q21 il

Iléyl 126y2 Lq,lLQQ Ileyl ]26§ﬂ2
Ty HT2

Z )\7’1/‘111 Z )\7’2/‘121 51’

Iies? q) || I[2e.72 q5
1 Lxll 2 Lx22

! /
4y 79
Lgcngc2

where in the last step we used the sparseness of the collections .#* and the assumed
bounds » ;. o )\;Z|IZ| < 1. The remaining three terms are estimated in the same
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fashion, basically repeating the arguments that we already went through in the proof
of Proposition 3.13. U

4. Upper bound for the case p; = q1, p2 < q2

We are now left with two cases and we first deal with this one. We will use
the representation of bi-parameter CZQO’s as dyadic model operators; this is maybe
surprising as the corresponding lower bound obtained in Proposition 3.9 seems simple
and should perhaps yield an easier proof. We will prove

4.1. Proposition. Let p; = ¢ and ps < ¢o, let b(zy,-) € C%2(R%) and
b(-,z5) = constant. Then, we have
116, T]f 21 r92 S N0(z1, <)l o, sy 1121 122 -

The dyadic representation theorem of bi-parameter CZO’s of Martikainen [14] is
the following

4.2. Theorem. Given a bi-parameter CZO, it can be written as an expectation

(Tf,g) =CrE,E,, Z o~ max(i1,i2) § 9 — max(j1.j2) <S;§J1

W17
i=(i1,i2)EN?
j=(j1,42)€N?

D32f7g>7

Z’7j
where S33) D3,

UJ17
to the randomized dyadic grids D/, and D2,.
By Theorem 4.2 to have estimates for [b, T, it is enough to have them for [b, S*7],
where S is a dyadic model operator, and with constants of at most polynomial
growth in the parameters 7, j, namely, it is enough to prove the following

are bi-parameter dyadic model operators (detailed below) associated

4.3. Proposition. Let p; = ¢ and py < ¢, let b(zy,-) € C%2(R%) and
b(-,z5) = constant. Then, we have

159917 Ly s S 00, Yoo L Py
with an implied constant of at most polynomial growth in i, j.

We have that S%/ is either a shift, a partial paraproduct or a full paraproduct, to
detail each of which we first recall few basic facts about martingale differences and
Haar functions, the reader familiar with these may skip to Section 4.1.4.

4.0.1. Haar functions, basic facts. Given a dyadic grid D and a cube [ € D
the martingale difference on I is

Arf = Z ((fye—(f)1)Lp.
Pech()

These are naturally useful as f = >, ., A f, where each element is nicely localized
and has zero mean. For a given interval [ = [;|J I, C R, with a left- and a right half,
respectively the cancellative and non-cancellative Haar functions supported I are

b L =1 Y
I = |[‘1/2 ) I_|[‘1/2'

Given a rectangle I = I; x --- x I; C R? the Haar functions on I are

he =@ hyy, by, € {hy, B9}
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on the condition that at least one component is a cancellative Haar function. Hence,
all in all, there are 2¢ — 1 Haar functions on any given rectangle of dimension d, along
with the non-cancellative Haar function 1;/|I|*/2. It is a basic fact that

2d_1

(4.4) Arf = (fhihi

where we enumerate all 2¢ — 1 cancellative Haar functions on the rectangle I. Hence,
when proving upper bounds we just write Ay = h% for a generic cancellative Haar
function on I and it is customary to ignore the i = 1,...,2% — 1 summation in (4.4).

Fix a rectangle R = I x J C R% x R%. Fully cancellative Haar functions of
product form are the tensor products hg = h;®h, where both hj, h; are cancellative
Haar functions respectively on I and J. Then, simply,

2d1 12421 2d1 12421

Bl = 8i(300) = 3 (I = X 3 () o

=1 j=1 =1 j=1
and again each Haar function hy = h% ® hf] carries enough cancellation for bound-
edness of bi-parameter square functions etc.

4.1. Model operators. A pair of intervals we denote (1) = (I;, [3) and with
I* = I® = @ we mean that I,Q € D, I C Q and ((I) = 27%¢(Q). Now, the
bi-parameter dyadic model operators of Theorem 4.2 have the generic form

(Sf9)="2_ > awwrv(f (g hye).

Kep'  VeD?
IN=I2=K j]'=J?=V

where the coefficients o)y xv have sizes according to which dyadic model operator
we have: There are in total three different kinds of model operators that appear
in 4.2.

4.1.1. Shifts. We have
<f777111><J1><9777112><J2> = <f7 h11><J1><g7 h'12><J2>

where each of the Haar functions is cancellative and the coefficients have the size
(I11]|12]] Ju ] Jo] )1/
|K x V|

4.1.2. Partial paraproducts. We have i; = i3 = 0 and

~ ~ 1k
<f7 h11><J1><g7h12><J2> = < ‘K‘ ® h'J1> <g7hK ® h'J2>7

or the symmetric case,

<f777’11><J1><g777’12><J2> = <f7 h ®hJ1> < |1](| ® h'J2>7

and in both cases the coefficients have the size

|0é(1)(J)Kv| 5

1/2

1 2
YKV )K d Sup E YKV
||( (J) ) ||BM02(R 1) |K0|1/2 | | ‘K‘

KeD
KCKy LQ(Rdl)
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< |J1|1/2|J2|1/2
~oovE
There is also the other symmetry of j; = jo = 0, and then

<f777’11><J1><g777’12><J2> = <f7 hll |1Vv|> <g7hlz®hv>

and its symmetric case

<f>’;L11><J1><gv7l12><J2> = <fv hh ® hV) <g7 hf2 |1‘/|>

and in both of these two cases the coeflicients have the size

1/2
1
[(ayxv)viiBmosrez) = SUP 75 v |?
(1) BMO3(R?2) veepr |Vo| /2 ‘; () |V‘
VW LQ(RdQ)

< |[1|1/2|[2|1/2.
~ K]
4.1.3. Full paraproducts. We have i; =15 = j; = jo = 0 and

(f, z[1><J1><g7z12><J2> = (f)rxv(g, hx ® hy)

or the symmetric case

<f777111><J1><9777112><J2> = <f7 hik ® hV><g>K><V7

or we have the other symmetry

<f777’11><J1><g777’12><J2> = <f hK X ‘1‘>/‘> < ‘1;((‘ ® h'V>

and its symmetric case

(B o han) = <f e hv> <g’ e @ |1vv|>

The boundedness of full paraproducts bootstraps directly to Proposition 4.5 below
and to the boundedness of fractional operators. Hence, we will not record their
coefficient size, nonetheless, we mention that the coefficient size is measured by the
product BMO space of Chang and Fefferman, see e.g. Section 7 in [1].

The following Proposition 4.5 is e.g. contained as a part of Hyténen—Martikainen—
Vuorinen [8].

4.5. Proposition. All the above described dyadic model operators, the shifts,
the partial paraproducts and the full paraproducts, are bounded

||Si,jf||L§}Lﬁ% S ||f||L’;§L§§
with an implied constant of at most polynomial growth in i, j.

4.1.4. Decomposition of products. Notice that as the function b bears no
important information in the first variable, we only need to analyse it carefully in the
second parameter, which we do according to the commutator decomposition strategy
from [12]:
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(i) Whenever a product bf (or bg) is paired against a cancellative Haar function
hy and J € D?, we expand with respect to the dyadic grid D? as

bf =D ABAF+ Y ADEf+ Y EbAf

JeD? JeD2 JeD?
= A1<b7 f) + A2(b7 f) + A3(b7 f)7

where we denote E;b = (b);1,. It should be understood that the operators
A; depend on the fixed dyadic grid D? even though we omit this detail from
the notation. Especially, if our model operators S* are defined on the grid
D! x D2, then we will expand in the grid D?.

(ii) If bf is averaged in the second parameter, then we add and subtract (bf) 1,

bfly = (bf — (0f)s)1;+ (bf)s1,.

The proof of Proposition 4.3 splits into several cases of which some are symmetric;
as there are too many cases to present here fully, we go through a proof of each rep-
resentative case for each model operator after which it is clear how to carry through
the remaining cases.

The first step is to establish the boundedness for the auxiliary operators.

4.6. Proposition. Let 1 <p < g < oo and o =d(1/p—1/q). Then,

(4.7) [ A5 (b, )l zaway S 10ll oo ayll f 1 ora)-
Proof. Let us first estimate
(b, hg)| (b= (b)q, hq)]
A1) < 30 REEE I ele = S0 PG5 ol
(4.8) QeD QeD
<> (b= Behollfhele < Ibllgoamsy Y U™ fDole:

QeD QeD
Then, we show that the positive operator
(4.9) ABF = UQ) (| fele

QeD

satisfies the desired bound. Fix a top cube @y € D and let .¥ C D(Q) be the
stopping time sparse collection inside the cube )y as described in the beginning of
Section 3.4. By the stopping condition and sparseness of ., we estimate

IAS, fllzaes = | D D €Q)*(fDele SID_Ahe > 4@ 1q
pPes 11IQ=P La(Rd) Pev QEDQO
QCP La(Rd)
< Z<|f\>p<22k°‘>€(P)°‘1P SIS «P)y (| fhete
Pev k=0 La(Rd) pPey L1(R%)
. 1/q
S aP)(fhele, (Z “(I£1) >)
pPes La(R%) pey  EP
<M fll paray S 1l e (way,

where at the estimate marked with * we used the sparseness of . to get the norm
estimate (for details, see the similar estimate in the proof of Proposition 3.13), and
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where the boundedness of the fractional maximal operator,
M (2) = sup Lo(@)(@)" f 1]

where the supremum is taken over all cubes Q C R¢, was used. As the demonstrated
bound is independent of the choice of the top cube @)y, we get the boundedness for
A% and hence (4.7). O

We will also have use of the following fractional Fefferman—Stein inequality due
to Blasco and Hernandez [16].

4.10. Lemma. Let 1 < p < g<oo,a=d(l/p—1/q) <d, and 1 < r < oc.
Then, there holds that

1/r 1/r
(Z(M“fk)r> Sdpar <Z|fk )

F La(R) Lp(RY)
4.11. Remark. Lemma 4.10 becomes Fefferman—Stein inequality when p = q.
For the following two lemmas see e.g. [8].

4.12. Lemma. Let 1 < p1,ps < oo. Then, there holds that
~s?
1772

hold, where

1/2

1/2
2 _ I><J
(L%;\fmm) CSE= | D @by Tx ]

IeD?t
JeD?

4.13. Lemma. Let 1 < s,t,r < co. Then, there holds that

1/r 1/r
(Z MlMka> Nstr <Z|fl€>
k

L L, Ls, L,

Proof of Theorem 4.3, part 1/3, shifts. Let S™ stand for the model operator

(414) <Si’jf,g> = Z Z a([)(J)KV<f7 hI1><J1><gvh12><J2>'

_Kep!  VeD?
IN'=I2=K Jl'=J2=V

By the above described decomposition strategy, we find that the summand (without
the scaling factor o)y in front) in (4.14) writes out as

[<f7 h’h ® hJ1><bg7 h'IQ ® h'J2> - <bf7 hll ® hJ1><g7h12 ® th)}
= Z <fv hr, ® hJ1><Az(bv 9)7 hr, ® hJ2> - Z <Al(ba f)v hr, ® hJ1><g> hr, ® hJ2>

i=1,2 i=1,2
+ [<fa hh ® hJ1><A3(ba g)a hf2 ® hJ2> - <A3(b7 f)a hh ® hJ1><ga hf2 ® hJ2>] :
The terms with the first four summands are bounded by the mixed norm estimates
of bi-parameter model operators and Proposition 4.6. Indeed, for the first two terms
we use that A;(b,-): L3> — L2 boundedly, and for the following two terms directly



Off-diagonal estimates for bi-parameter commutators 105

Proposition 4.6. For the bracketed difference on the last line we utilise the cancella-
tion of the commutator, hence writing it out as

<f7 hr, ® hJ1><b>J2 <gv hp, ® h'J2> - <b>J1 <f7 hr, ® hJ1><gv hp, ® th)
= (<b>J2 - <b>J1)<f> hh ® hJ1><ga h12 ® hJ2>'
Recall, that we may assume the slice b(-,79): R — C to be a constant for all

To € R,
Then, similarly as in e.g. (4.8), we estimate |(b) s, — (b) s, | < [|[b(21, )| po.02 €(V)2
x

for any z; € R™. Let us simply notate [|b(zy,-)|| 000 = [|]|z0.00. Then, we estimate

(4.15)

the remaining part of the commutator,

> > awmwrv(b),, — O )y ® huy) (g, b, © ha,)

_Kep'  VeD?
IN'=I?=K Jl'=J2=V

< [lbll g / > VAR sy (AT oy 1 @ 1y
KeD!
VeD?

1/2

«a 11,] 2
< blleges ||| Do (O 2(ARES) ) 1 ® Ly
K6D21
VeD e

1/2

<A D2 (ARl ik ® 1y
KeD!?

vep? d

/
P
Lzleg

S Wllegea gyl
where in the last step we estimate as follows: first, for the fractional term, we note
that as

. 2 . 2
()8R D) ) T @ 1w S (M2 (AR 1 @ 1v))

by applying Lemma 4.10, we have

1/2

S (V) (AR D iexv) 1k © Ly

Kep?
veD?
L L3

1/2

S DS AR vl ® v
KeD!

VeD?
LY LE2
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1/2 1/2
: Zl ]1 o
S E ARV Pk © 1y < E |A *1g @ 1y
KeD! KeD!
VeD? VeD
L 32 L 32

where the #-estimate follows by Lemma 4.13, and the xx-estimate follows as

N[

1
2 2

» 0.0
Z ARV Pk @1y | = Z Z Ay | 1k @1y
KeD! KeD! |I'1=K
VeD? veDp? | Ji=v
3 3
< Z Z |Am J11f|21K ®ly | = Z |AKVf| lg®ly
KeD! I'=K KeD!
VeD? Jii=v VeD?
The remaining non-fractional term estimates in the same fashion and we leave the
details to the reader. O

With partial paraproducts we will use the following side of the classical and
well-known H!'-BMO -duality.

4.16. Lemma. Let D be a dyadic grid. Then, for any arbitrary sequences (ag),
(Bq) there holds that

> lagllBal £ l(eQ)llsmo|Sp(B) || 11 may:
(R4)

QeD

where,

N[

> 16a \2|Q|>

QeD

(@) llBMo = S |1/2 > Jag IQI (

QeD

QCQo 2R

Proof of Theorem 4.3, part 2/3, partial paraproducts. We choose the symmetry
11 = 1o = 0 and consider the model operator

. 1
(SOOI f g) = Z Z QKV <f, ﬁ ® th> (9, hic @ huy).

KeD! veDp?
Jt=J2=V

Writing out the main term, we find out that the summand (without the scaling factor
ok in front) in ([b, S™|f, g) is

|:<f |1[?| ®hJ1> <bg7hK®hJ2> <bf |K| ®hJ1> <g, hK®hJ2>:|

Z< e th> (Abrg) b @ h) -3 <Ai(b, Do hJ1> (g hic @ o)

=1 1=1,2

f< |K|®th><A3bg hie ® hy,) — <A3(b N |®hJ1><g,hK®hJ2>}
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The terms with the first four summands are bounded by the mixed norm estimates
of bi-parameter model operators and Lemma 4.6, as in the previous case, and the
difference on the last line writes out to reduce us to bounding the form

Z Z a(J)KV(<b>J2 - <b> ) <f |1I(| & hJ1> (g, hK ® hJ2>.

Vep? KeD!
Jt=J2=V

Then, as above, we estimate |(b) s, — (b) s, | < [|b]| z0.02 (V)2 and this gives the desired
z9
factor ||b][ 0., in front. It remains to estimate as follows. By Lemma 4.16 and the
T

coefficient size of the partial paraproduct, we find the first estimate in the following,
with the rest being straightforward or follow by Lemmas 4.10 and 4.12,

2. 2 e

vVep2 KeD!

1k
ayrvl(V <f |K| ®hJ1> (g9, hix @ hy,)

Jt=J2=v
Ji| 1/2 Jo| 1/2 1 "1 :
I O (Z (1 iy o b 13|
JJl‘/i?; v KeD? L (®%)
T [1/2] ], 11/2 .
< D %em / MY((f, 7 ))S (9. husa))
vep? o
le_JJQ_V
|J1|1/2|J2|1/2 - f1 1 J2
X PR e (f svm)s ([ st
J“Vi?jv
g/ y ) /MlA{}f S'Ajzg
R41 V€D2 |V| J1 J2
le_JjQ_V

L3
L.

MlAjvlf/vslegg

\%4

/ VYIS, (S Ag), v
2

: %
<|( 3 ewmaesenn) | (5 s
o | \VeP? CAYE:
: :
< owapnr) | (X orsanny)
P s |l AVeD? L
! !
S(zaer)] (3 ea)
VeD? prpe || \VeD? JRATA:

SIS Fllzs 122 1S9l e S ez ez llgll P O
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Proof of Theorem 4.3, part 3/3, full paraproducts. Now, let i = 7 = (0,0) and
we consider the paraproduct

(OO0 gy = 3" > aky(f)rxvig, hic @ hy).
KeD! veD?
Writing out the main term we find out that the summand (without the scaling factor
oy in front) in (b, S™]f, g) is
() kxv by, hi ® hv> — (bf)kxv (g, hic ® hy)]

= Z Kxv .9), hik ® hy)

+ [<f>va<A3(b, 9), b ® hy) — (bf )k xv (g, hx ® hv>]-

The terms with the first two summands are bounded by the mixed norm estimates of
bi-parameter model operators and Lemma 4.6, as before, and the bracketed difference
on the last line writes out to reduce us to bounding the form

S S v (B — b)) ey (9: T © ).

This is bounded by the known boundedness of the model operator and M*? and the

observation that
(O =8 | < o= OV Dy < 10l gion gy €V s

= Bl ey OV F D < bl s gany (M2 P

Now consider the commutator taken with the other paraproduct with the sum-
mands being

1V 1V Lk
<f e & \vw><bg’ K] ®hv> <bf e © \vw>< K] ®hv>

Again, going through with our decomposition strategy, we reduce to the operator
that originates as a difference through the auxiliary operator As,

S 3w (@ =0 ke ) (o o)

KeDlvVeD?

Again, this is bounded by the known boundedness of the model operator and the
following observations, we have

(@ =010 w7 < (100 =10 R o )

1y
< [l gean 108 ) e 7 )

~ ¥t (VI (147 ) s 72
= ”bHc‘)% Rd2)< £ V)2 (|{f, hr) \>VhL,hK® ‘V‘>
LeD!

1y
< HbHCoQQ(RdQ) Z hy @ M2(f hp), hg @ |V|>

LeD!
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and this time we are done as soon as we show that ®f = >, 1 hy ® M®2(f hp)
satisfies the correct bound. For this, by duality it is enough to estimate as follows

1/2 1/2
[(Df, 9)] < (Z (M2 (f, hﬁ)ﬂ% (Z |<g,hL>l2|%L|>
Lep! 2y |l e L
1/2 1/2
< (Z 7, hL>|2|%|> (Z o, hL>|2|%|)
LeD! rpre || \eD! 7485
=18 Mezy o "0 s g S 10z ol
where we again used lemmas 4.10 and 4.12. U

5. Upper bound for the case p; < q;1, p2 = q>

To treat this case, it is better to work with an alternative definition of bi-
parameter CZOs. By Grau de la Herran [5| an equivalent way to defining bi-
parameter Calderén—Zygmund operators as by Martikainen [14] is the one by Journé
[11]. The definition of Martikainen follows quickly from Journe’s and the main result
in [5] is the reverse direction.

5.1. Definition. (Journé) A pair K = (K, K3) of kernels is said to be a bi-
parameter CZ-kernel if for j € {1,2} and ¢ € {1,2}\ {j} the kernels map
Kj(zi,y:): R x R%\ A — CZO(d;, ),
satisfy the bounds
15

xivyi)cho(dj75) S C|xz - yi‘idiv

and
|z — ]
155 ) = Kt vl o, I 20 = K500 20| cgoa,0 < O ass:

whenever |z; — 2| < 1/2|x; — 4.
An operator T with a bi-parameter CZ-kernel is said to be a bi-parameter SIO
if for i € {1,2} and j € {1,2}\ {¢} we have

(T(f1® f2), 01 ® ga) = /]Rd' /Rdv<K@'(~Tj7yj)fi,gi>fj<yj)gj<xj)dyj dz;,

whenever spt(f;) Nspt(g;) =0 and fi, gr € Zy for k € {3, j}.

The dual 7% of T is given by the identity (T (f1® f2), 1®92) = (T(1 @ f2), [1®
g2>. It is straightforward to see that T'* is a bi-parameter SIO if T is and that the
kernels of T'* are given by K{*(zq,v2) = K;(22,y2) and K3*(z1,91) = Ka(x1, y1).

5.2. Definition. A bi-parameter SIO as in Definition 5.1 is a bi-parameter CZO
if T and T are bounded on L?(R%).

The advantage with this setup is that we can now easily prove the following.

5.3. Lemma. Let T' be a bi-parameter CZO. Suppose that b(xy,-) = constant
and b(-, xq) € LS Then, for all f,g € ¥ we have

loc,z1*

Ty = [ [ ) = o) (Kot Fn. ). ) g i,
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where we denote b(z) = b(z1,v) for some choice of v € R%.

Proof. We first consider the one-parameter setting with the one-parameter space
R™ and let b € L2 (R™). It is a basic part of the one-parameter theory (see e.g.

loc

Grafakos [4], Proposition 4.1.11.) that for each T € CZO(n,d) there exists T €
CZO(n, ) and a function m € L™ so that

(T —m)h=Th, Th(z)= lim K(x,y)h(y)dy
k=yoo lz—y|>ep

where K is the kernel of T" and the limit holds along some sequence ¢, — 0 and for
all bounded and compactly supported functions h.

The above immediately gives the following: suppose that b € L° (R") and f, g €
Yin, 80 that

(b T1f,9) = ([b.T = mlf.g) = (. T)f.9)
5.0 = [t [ 00 = b)) o)y

ak—>0

N / /n(b(x) —b(y)) K (z,y) f(y)g(z) dy dz.

The last step follows by the dominated convergence theorem after the following esti-
mate uniform in g,

[ 106 = b K )0l dy S By [ Lo = 91" L1l

since f is bounded and compactly supported, we see that the right-hand side is finite.
Now with this one-parameter result at hand, we turn to the claim itself.

By linearity it is enough to prove the claim for functions f = fi®f; and g = ¢1®go
of tensor form. If T is an SIO as by Journé, then the size estimate

|<K2($1,?/1)f2,92>| 5 |f751 - yl|d1||f2||LP||92||Lp/

is satisfied, and similarly immediately from the definitions the regularity estimates
also hold. Consequently, since T"is bounded, the function (xy, 1) — (Ka(x1, 1) f2, g2)
is a kernel of the one-parameter CZO defined by

(Ttyg0 f1,91) = (T(f1 ® f2), 91 @ ga)-

Then, it follows by the one-parameter result (5.4) that

<[b<"v)’Tf2,92]flagl>
= /]Rdl /]Rdl (b(l’1,v) - b(yl,U))<K2(SL’17y1)f2,g2>f1(y1)gl(x1)dyl da,

where we note that b(-,v) € L° . However, we also have

loc,z1*

<[baT](f1®f2)791®g2>:<b('aU)T(f1®f2)— T(b(-, )(f1®f2) 91 ® ga)
= <Tf2 g2f1a ( > <Tf2 g2 )fl) >
—< ng g2 f1,91>

and thus the claim follows. O
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5.5. Proposition. Let p; < q and py = gz, let T' be a bi-parameter CZO and
suppose that b(x1,-) = constant and b(-, z;) € C2**. Then, we have

1. T N 22 < 622l £l 21 2.

Proof. It is enough to prove the claim for functions in a dense subset of the space
L2 P2 and clearly X is such a subset. As b(-,z2) € C2*, especially b(-, z5) € L2
and thus by Lemma 5.3 we can estimate

@rral< [ [0 - b<y1,v>><K2<x1,y1>f<y1, )l ).

‘b I,V (y ) ‘
/]Rdl /Rdl 1 ‘dll Hf Y, 2 HLPQHQ T, 2 H pl2 dy1 dx;

loc,z1

d.ﬁlfl

< [l Dl / / 1= £, 2 oo, 2]yl
= Il [t (1762 ) o, 2]
S0l 1701, g,
where in the last step we used the boundedness of the fractional integral. O
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