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Some remarks on the Gehring–Hayman theorem

Sari Rogovin, Hyogo Shibahara and Qingshan Zhou

Abstract. In this paper we provide new characterizations of the Gehring–Hayman theorem

from the point of view of Gromov boundary and uniformity. We also determine the critical exponents

for the uniformized space to be a uniform space in the case of the hyperbolic spaces, the model

spaces M
κ

n
of the sectional curvature κ < 0 with the dimension n ≥ 2 and hyperbolic fillings.

Huomioita Gehringin–Haymanin lauseesta

Tiivistelmä. Tässä työssä annamme uusia Gromov-reunaan ja avaruuden uniformisuuteen pe-

rustuvia yhtä pitäviä ehtoja Gehringin–Haymanin lauseelle. Lisäksi näytämme, mikä on kriittinen

eksponentti sille, että uniformisaatio johtaa uniformiseen avaruuteen seuraavissa tapauksissa: hy-

perbolinen avaruus, malliavaruus M
κ

n
sektionaalisella kaarevuudella κ < 0 ja ulottuvuudella n ≥ 2

sekä hyperbolisen täytteen muodostama avaruus.

1. Introduction

The aim of this paper is to provide some remarks on the uniformizations of δ-
Gromov hyperbolic spaces developed by Bonk, Heinonen and Koskela in [BHK]. For a
δ-Gromov hyperbolic space (X, d) with a distinguished point p ∈ X, they introduced
the metric defined by

(1.1) dǫ(x, y) := inf
γ

ˆ

γ

ρǫ ds,

where ρǫ(·) = e−ǫd(p, · ) and the infimum is taken over all rectifiable curves γ from
x to y. The metric space (X, dǫ) is called a uniformized space of X and is denoted
simply by Xǫ. This uniformization technique has led to numerous applications, see
[BB], [BHK] and [BBS] and references therein. Another uniformization procedure
using Busemann functions has been also established, see [B] and [Z].

It was shown in [BHK, Proposition 4.5] that if a δ-Gromov hyperbolic space
(X, d) is uniformized with a sufficiently small parameter ǫ > 0, then Xǫ is a uniform
space. The key to prove the above result was to show the following Gehring–Hayman
theorem.

Theorem 1.1. [BHK, Section 5] Let (X, d) be a δ-Gromov hyperbolic space.

Then there exists ǫ(δ) > 0 such that for every 0 < ǫ ≤ ǫ(δ), there exists A > 0 such

that for each pair of points x, y ∈ Xǫ,

(1.2) ldǫ([x, y]) ≤ Adǫ(x, y),

where [x, y] is a geodesic curve with respect to d from x to y and ldǫ([x, y]) denotes

the length of [x, y] with respect to dǫ.
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In this paper we say that the Gehring–Hayman theorem holds for Xǫ if (1.2)
holds for all x, y ∈ Xǫ. We prove that Xǫ being uniform implies the Gehring–
Hayman theorem for Xǫ through quasihyperbolization, see Subsection 3.3. We also
study the following two localized Gehring–Hayman properties.

Definition 1.2. (Localized Gehring–Hayman property) We say that the Gehring–

Hayman property for Gromov sequences holds if for each Gromov sequence (xn)n,
there exists C ≥ 1 such that for all n,m ∈ N

(1.3) ldǫ([xn, xm]) ≤ Cdǫ(xn, xm).

Note that the constant C may depend on (xn)n. See Remark 2.5 for the equivalence
relation among Gromov sequences. We also say that the Gehring–Hayman property

for metric boundary points holds if for all (xn)n and x ∈ ∂dǫX
ǫ such that dǫ(xn, x) → 0

as n → ∞, there exists C ≥ 1 such that (1.3) holds for all n,m ∈ N.

It is clear that the original Gehring–Hayman theorem implies the localized Geh-
ring–Hayman properties and the bijectivity of the canonical boundary map Φ: ∂GX
→ ∂dǫX

ǫ, see [BHK, Proposition 4.13] and also Definition 2.6 for the construction
of the map Φ. We obtain further characterizations of the Gehring–Hayman theorem
from these properties. The first two conditions in Theorem 1.3 can be seen as a
boundary pointwise decomposition of the Gehring–Hayman theorem. The following
is the list of equivalent conditions of the Gehring–Hayman theorem.

Theorem 1.3. Let (X, d) be an M-roughly starlike δ-Gromov hyperbolic space

and Xǫ be the uniformized space with ǫ > 0. Then the following are equivalent.

1. The Gehring–Hayman property for metric boundary points holds.

2. The canonical boundary map Φ: ∂GX → ∂dǫX
ǫ is bijective and the Gehring–

Hayman property for Gromov sequences holds.

3. The Gehring–Hayman theorem holds.

4. Xǫ is a uniform space.

We remark that the equivalence among the first three conditions in Theorem 1.3
holds true without the roughly starlike property. An immediate consequence of The-
orem 1.3 together with [B, Proposition 4.12] is the following.

Corollary 1.4. Let (X, d) be an M-roughly starlike δ-Gromov hyperbolic space

and Xǫ be the uniformized space with ǫ > 0. Suppose that Xǫ is a uniform space.

Then Xǫ′ is a uniform space for all 0 < ǫ′ ≤ ǫ.

Due to Theorem 1.3, looking at boundary behavior makes it easy to check that
Xǫ is not a uniform space. Using the results in [B] and [BBS], we determine the
sharp uniformization parameter for the uniformized space to be a uniform space in
the case of the hyperbolic spaces, the model spaces M

κ
n of the sectional curvature

κ < 0 with the dimension n ≥ 2 and hyperbolic fillings, see Section 4. We note that
in the case of the hyperbolic spaces, Butler has already shown the same result by a
different argument, see [B, Remark 1. 11]. He employed the results of the asymptotic
curvature upper bound [BF, Definition 1.1 and Theorem 1.5] and the fact that the
Gehring–Hayman theorem induces a visual metric on the Gromov boundary ∂GX.
Our argument is more elementary in that we only use the polar coordinate expression
of the hyperbolic metric.
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2. Preliminaries

We fix some notation. Let (X, d) be a metric space. We say that (X, d) is proper
if all bounded closed sets are compact. For x ∈ X and r > 0, we set Bd(x, r) := {y ∈
X | d(x, y) < r}. We also set distd(x,A) := infy∈A d(x, y) for any A ⊆ X and x ∈ X.
The minimum of n real numbers (ai)

n
i=1 is denoted by a1 ∧ · · · ∧ an. The length of

a curve γ is denoted by ld(γ). A curve γ is said to be rectifiable if ld(γ) < ∞. For
a, b ∈ (−∞,∞), we say that a curve γ : [a, b] → X is geodesic if d(γ(a), γ(b)) = ld(γ).
A geodesic curve from x to y is often denoted by [x, y]. A curve γ : [0,∞) → X
is called a geodesic ray if γ|[0,t] is geodesic for every t > 0. We first introduce the
M-roughly starlike property.

Definition 2.1. (M-Roughly starlike property) Let M ≥ 0. We say that a
metric space (X, d) is M-roughly starlike if there exists a base point p ∈ X such that
for every x ∈ X, there exists a geodesic ray γ : [0,∞) → X with γ(0) = p satisfying
distd(x, γ) ≤ M .

We define δ-Gromov hyperbolic spaces and Gromov boundary.

Definition 2.2. (Gromov product) Let (X, d) be a metric space. The Gromov

product of two points x, y ∈ X with respect to p ∈ X is defined by

(x|y)p :=
1

2
(d(p, x) + d(p, y)− d(x, y)).

Definition 2.3. (Gromov hyperbolic space) Let (X, d) be a metric space and
δ ≥ 0. We say that X is a δ-Gromov hyperbolic space if X is unbounded, proper,
geodesic metric space such that for all x, y, z, p ∈ X,

(x|z)p ≥ (x|y)p ∧ (y|z)p − δ.

Definition 2.4. (Gromov boundary) We say that two geodesic rays γ and γ̃ in
X with γ(0) = γ̃(0) = p are equivalent if supt≥0 d(γ(t), γ̃(t)) is finite. Then we can
consider a quotient space of the set of all geodesic rays emanating from p ∈ X by
the above equivalence relation, denoted by ∂GX.

Remark 2.5. Let (X, d) be a δ-Gromov hyperbolic space and p ∈ X be a
fixed point. There is another construction of Gromov boundary through Gromov
sequences. Recall that we say that (xn)n ⊆ X is a Gromov sequence if (xn|xm)p →
∞ as n,m → ∞. We consider the quotient space of all Gromov sequences where
equivalence relation ∼ between two Gromov sequences (xn)n and (yn)n is given by
(xn|yn)p → ∞ as n → ∞. There is a canonical bijective map between the above two
Gromov boundaries, see [BH, Lemma 3.13].

Let (X, d) be a metric space and p ∈ X. For any ǫ > 0, by a simple argument
using the triangle inequality, we have a Harnack type inequality

(2.1) e−ǫd(x,y) ≤ e−ǫd(p,x)

e−ǫd(p,y)
≤ eǫd(x,y)

for every x, y ∈ X, see also [BHK, Chapter 5].
We next recall the construction of the canonical boundary map Φ.
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Definition 2.6. (Canonical boundary map Φ) Let (X, d) be a δ-Gromov hy-
perbolic space and p ∈ X be a fixed point for uniformization with the parameter
ǫ > 0. Let ∂dǫX

ǫ := Xǫ \ Xǫ be the metric boundary of Xǫ. It is easy to see that
for each geodesic ray γ : [0,∞) → X, (γ(k))k is a sequence converging to some point
x ∈ ∂dǫX

ǫ with respect to dǫ. The limit point x is independent of the choice the geo-
desic rays in the same equivalence class. Hence we define the map Φ: ∂GX → ∂dǫX

ǫ

by [γ] 7→ limk→∞ γ(k) where [γ] ∈ ∂GX is the equivalence class of a geodesic ray γ.

We next review uniform spaces.

Definition 2.7. (A-uniform curve) Let A > 0 and a metric space (X, d) be
given. Let ∂dX := X \X be the metric boundary of X. For a, b ∈ R with a < b, we
say that a curve γ : [a, b] → X is an A-uniform curve if the curve γ satisfies

1. ld(γ) ≤ Ad(γ(a), γ(b)),
2. ld(γ|[a,t]) ∧ ld(γ|[t,b]) ≤ A distd(γ(t), ∂dX) for every t ∈ [a, b].

Definition 2.8. (A-uniform space) A noncomplete locally compact metric space
(X, d) is called an A-uniform space if every pair of points in X can be connected by
an A-uniform curve.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Remark that the Gehring–Hayman theorem
implies the other conditions in Theorem 1.3. The rest of implications will be proved
one by one.

3.1. (1) ⇒ (2). In this subsection we prove that the Gehring–Hayman prop-
erty for metric boundary points implies the Gehring–Hayman property for Gromov
sequences and the bijectivity of the canonical boundary map Φ.

Lemma 3.1. Let (X, d) be a δ-Gromov-hyperbolic space and Xǫ be the uni-

formized space. If the Gehring–Hayman property for metric boundary points holds,

then the Gehring–Hayman property for Gromov sequences holds.

Proof. Let (xn)n be an arbitrary Gromov sequence. Then by the first inequality
of [BHK, Proof of Lemma 4.10], there exists x ∈ ∂dǫX

ǫ such that xn → x as n → ∞
with respect to dǫ. The conclusion follows by the Gehring–Hayman theorem for
metric boundary points. �

Lemma 3.2. Let (X, d) be a δ-Gromov-hyperbolic space and Xǫ be the uni-

formized space with the distinguished point p ∈ X. Suppose that the Gehring–

Hayman property for metric boundary points holds. Then the canonical boundary

map Φ : ∂GX → ∂dǫX
ǫ is bijective.

Proof. Take x ∈ ∂dǫX
ǫ and geodesic rays γ and γ̃ such that

γ(0) = γ̃(0) = p and lim
n→∞

γ(n) = lim
n→∞

γ̃(n) = x

with respect to dǫ. The sequence (zn)n := (γ(1), γ̃(1), γ(2), γ̃(2), · · · ) is a sequence
converging to x ∈ ∂dǫX

ǫ. Thus by the Gehring–Hayman theorem for metric boundary
points and the second inequality of [BHK, Proof of Lemma 4.10], we have (zn|zm)p →
∞ as n,m → ∞, which implies (γ(n))n ∼ (γ̃(n))n as Gromov sequences. Hence the
geodesic rays γ and γ̃ are in the same equivalence class. Therefore, Φ is injective.

The surjectivity of Φ directly follows from the Gehring–Hayman property for
metric boundary points and [BHK, Lemma 4.10]. �
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3.2. (2) ⇒ (3). In this subsection we will prove that the second condition
in Theorem 1.3 implies the Gehring–Hayman theorem. We first give a remark on
Gromov sequences.

Remark 3.3. Let (X, d) be a δ-Gromov-hyperbolic space. For given (xn)n,
(yn)n ⊆ X, suppose that (yn)n is a Gromov sequence and (xn|yn)p → ∞ as n → ∞.
Then (xn)n is a Gromov sequence which is equivalent to (yn)n. In fact, since X is a
δ-Gromov hyperbolic space,

(xn|xm)p ≥ (xn|yn)p ∧ (yn|xm)p − δ

≥ (xn|yn)p ∧
(

(yn|ym)p ∧ (ym|xm)p − δ
)

− δ

→ ∞ (n,m → ∞),(3.1)

which tells us that (xn)n is a Gromov sequence.

Next we derive some properties from the map Φ: ∂GX → ∂dǫX
ǫ. Note that the

only one thing we know is that Φ is a bijective map. For each x ∈ ∂dǫX
ǫ, take (xn)n

and (yn)n such that xn → x and yn → x as n → ∞ with respect to dǫ. We then show
that

• we can extract Gromov sequences from (xn)n and (yn)n,
• the extracted Gromov sequences are equivalent to each other.

The second property derived from the bijectivity of Φ plays an important role to
prove Proposition 3.7.

Lemma 3.4. Let x ∈ ∂dǫX
ǫ. For each sequence (xn)n ⊆ X converging to x with

respect to dǫ, there always exists a Gromov subsequence (xnk
)k.

Proof. By taking a subsequence if needed, we may assume that d(p, xn) ≥ n for
each n ∈ N. Take a geodesic curve γn from p to xn. Applying Arzela–Ascoli theorem
and doing a diagonal argument, there exist a subsequence (γnk

)k and a geodesic ray
γ such that

(3.2) lim
k→∞

sup
t∈[0,m]

d(γnk
(t), γ(t)) = 0 and sup

t∈[0,m]

d(γnm
(t), γ(t)) ≤ 1.

for each m ∈ N. Set ym = γnm
(m). Note that

(ym|xnm
)p =

1

2

(

d(p, ym) + d(p, xnm
)− d(ym, xnm

)
)

=
1

2

(

m+ d(p, xnm
)− (d(p, xnm

)−m)
)

≥ m → ∞ (m → ∞).(3.3)

Also, we have

(ym|γ(m))p =
1

2

(

d(p, ym) + d(p, γ(m))− d(ym, γ(m))
)

≥ 1

2
(m+m− 1) → ∞ (m → ∞).(3.4)

where we used (3.2) to obtain the last inequality. Therefore, combining Remark 3.3,
(3.3) and (3.4) and the fact that (γ(m))m is trivially a Gromov sequence, we conclude
that (xnm

)m is a Gromov sequence. This completes the proof. �
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Lemma 3.5. Let x ∈ ∂dǫX
ǫ. Suppose that Φ: ∂GX → ∂dǫX

ǫ is bijective. If

there are sequences (xn)n and (yn)n that converge to x with respect to dǫ, then any

Gromov subsequences (xnk
)k and (ynk

)k are equivalent to each other.

Proof. Fix x ∈ ∂dǫX
ǫ. Let (xn)n and (yn)n be sequences converging to x ∈ ∂dǫX

ǫ.
We will first prove that there exist Gromov subsequences (xnk

)k and (ynk
)k that are

equivalent to each other as Gromov sequences. Applying the proof of Lemma 3.4
to (xn)n and (yn)n, there exist Gromov subsequences (xnk

)k and (ynk
)k and geodesic

rays γ and γ̃ such that

(3.5) (xnk
)k ∼ (γ(k))k, (ynk

)k ∼ (γ̃(k))k,

as Gromov sequences and

(3.6) lim
k→∞

γ(k) = lim
k→∞

γ̃(k) = x

with respect to dǫ. Since Φ: ∂GX → ∂dǫX
ǫ is injective, γ and γ̃ are equivalent to

each other, i.e., (γ(k))k ∼ (γ̃(k))k as Gromov sequences. Hence we conclude that
(xnk

)k ∼ (ynk
)k. By the above argument and noting that every Gromov sequence

(xn)n is equivalent to its subsequence (xnk
) [V, Lemma 5.3], we can prove that any

Gromov subsequences (xnk
)k and (ynk

)k are equivalent to each other. �

The following proposition tells us that the Gehring–Hayman property always
holds for any ǫ > 0 if the distance between points is bounded above by a uniform
constant. This will be used to prove Proposition 3.7.

Proposition 3.6. Let (X, d) be a geodesic metric space. Let ǫ > 0 and M > 0.
Then there exists C := C(ǫ,M) ≥ 1 such that for every pair of points x, y ∈ X with

d(x, y) ≤ M ,

ldǫ([x, y]) ≤ Cdǫ(x, y)

holds. In particular, we can take C = e2ǫM .

Proof. Let z ∈ [x, y], then d(x, p) ≤ d(x, z) + d(z, p) ≤ M + d(z, p). Thus

ldǫ([x, y]) =

ˆ

[x,y]

ρǫ(s) ds ≤ e−ǫ(d(p,x)−M)d(x, y).(3.7)

Let λ be a rectifiable curve from x to y. We examine two cases.
Case 1 : λ ⊆ Bd(x,M). For z ∈ λ, we have d(p, z) ≤ d(p, x) + d(x, z) ≤ d(p, x) +

M . Hence

ldǫ(λ) ≥ e−ǫ(d(p,x)+M)ld(λ) ≥ e−ǫ(d(p,x)+M)d(x, y).(3.8)

Case 2 : λ 6⊆ Bd(x,M). In this case we have

ldǫ(λ) ≥
ˆ

λ∩Bd(x,M)

ρǫ ds ≥ e−ǫ(d(p,x)+M)d(x, y).(3.9)

Combining (3.7), (3.8), and (3.9), we have

ldǫ([x, y]) ≤ e2ǫMdǫ(x, y). �

Lastly, we prove the following.

Proposition 3.7. Let (X, d) be a geodesic metric space and Xǫ be the uni-

formized space. Suppose the Gehring–Hayman property for Gromov sequences holds

and Φ: ∂GX → ∂dǫX
ǫ is bijective. Then the Gehring–Hayman theorem holds.
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Proof. Suppose that the Gehring–Hayman theorem does not hold. Then there
exist (xn)n, (yn)n ⊆ Xǫ such that

(3.10) ldǫ([xn, yn]) ≥ ndǫ(xn, yn).

Note that by the proof of [BHK, Lemma 4.10], we know that the LHS of (3.10) is
bounded above by a uniform constant C > 0 which only depends on ǫ and δ. Dividing
both sides of (3.10) by n implies that

(3.11) dǫ(xn, yn) ≤ C/n → 0,

as n → ∞. We first claim that both (xn)n and (yn)n are unbounded with respect to d.
For this sake, it is enough to prove that either of these two sequences is unbounded.
In fact, if one of these two sequences is unbounded and the other one is bounded, then
by taking a subsequence if needed, dǫ(xn, yn) is uniformly bounded from below by
a positive constant, which contradicts (3.11). If both (xn)n and (yn)n are bounded,
then Proposition 3.6 gives us a contradiction for a large enough n ∈ N. Hence the
claim follows.

By Arzela–Ascoli theorem, there exist a subsequence (xnk
)k and a geodesic ray

γ such that dǫ(xnk
, γ(∞)) → 0 as k → ∞ where γ(∞) ∈ ∂dǫX

ǫ is the limit of the
sequence (γ(k))k with respect to dǫ. We note that dǫ(γ(∞), ynk

) → 0 as k → ∞ since
dǫ(xnk

, ynk
) → 0 as k → ∞. By Lemma 3.4, we can extract further subsequences

(xnk
)k and (ynk

)k that are Gromov sequences. By Lemma 3.5, (xnk
)k and (ynk

)k are
equivalent to each other as Gromov sequences. By [V, Lemma 5.3 (3)], the sequence
(zn)n := (xn1

, yn1
, xn2

, yn2,···) is a Gromov sequence. Since the Gehring–Hayman
property for Gromov sequences holds, there exists a constant C ≥ 1 such that for all
k, l ∈ N,

ldǫ([xnk
, ynl

]) ≤ Cdǫ(xnk
, ynl

),

which contradicts (3.10). This completes the proof. �

3.3. (4) ⇒ (3). In this subsection we prove that Xǫ being uniform implies the
Gehring–Hayman theorem. To do this, we first recall the quasihyperbolization of a
uniform space.

Definition 3.8. (Quasihyperbolization) Let (Ω, d) be an A-uniform space. The
quasihyperbolic metric k is defined by

k(x, y) := inf
γ

ˆ ld(γ)

0

1

d(γ(t))
dt

where the infimum is taken over all rectifiable curves γ from x to y and d(·) :=
distd(·, ∂Ω).

By [BHK, Theorem 3.6], if (Ω, d) is an A-uniform space, then (Ω, k) is a proper ge-
odesic δ-Gromov hyperbolic space for some δ = δ(A). Moreover, if (Ω, d) is bounded,
then (Ω, k) is M-roughly starlike for some M = M(A).

Definition 3.9. Let (X, d) be a metric space and C > 0. We say that a curve
γ : [a, b] → X is a C-quasigeodesic if

(3.12)
1

C
|t− t′| ≤ d(γ(t), γ(t′)) ≤ C|t− t′|

holds for all t, t′ ∈ [a, b].

The following is essentially [BHK, Proposition 4.37]. We remark that the restric-
tion on the unifromization parameter ǫ is not needed to prove it.
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Proposition 3.10. Let (X, d) be an M-roughly starlike δ-Gromov hyperbolic

space. Then for ǫ > 0 there exists C = C(ǫ,M) such that for all x, y ∈ X

(3.13)
1

C
d(x, y) ≤ kǫ(x, y) ≤ Cd(x, y),

where kǫ is the quasihyperbolic metric of Xǫ.

Proof. Let γ be a rectifiable curve in (X, d) arc-length parametrized by d. By
Lemmas A.5 and A.7 in Appendix in [BHK] we know that γ is also rectifiable in
(X, dǫ) and moreover there exists a reparametrization γo : [0, ldǫ(γ)] → X of γ with

respect to dǫ such that γ = γo ◦ sǫ, where sǫ(t) := ldǫ(γ|[0,t]) =
´ t

0
ρǫ(γ(t)) dt. Thus

setting dǫ(x) := distdǫ(x, ∂dǫX
ǫ), we have

lkǫ(γ) =

ˆ ldǫ(γ)

0

1

dǫ(γo(t))
dt =

ˆ ld(γ)

0

s′ǫ(t)

dǫ(γo ◦ sǫ(t))
dt =

ˆ ld(γ)

0

ρǫ(γ(t))

dǫ(γ(t))
dt,

where the first equality comes from [BHK, Lemma A.7] and we used the change of
variables in the second equality. By [BHK, Lemma 4.16] there exists C = C(ǫ,M) ≥
1 such that for every x ∈ X we have

(3.14)
1

C
≤ ρǫ(x)

dǫ(x)
≤ C.

Combining the above we get

(3.15)
1

C
ld(γ) ≤ lkǫ(γ) ≤ Cld(γ).

Let x, y ∈ X and let γ be a rectifiable curve joining them. The above gives that
the first inequality of (3.13) by simply taking the infimum over all curves joining x
and y. The second inequality of (3.13) is obtained by choosing γ to be the geodesic
between x and y with respect to d. �

The following lemma is originally stated for geodesics with respect to kǫ in [BHK,
Theorem 2.10]. We note that the consequence of [BHK, Theorem 2.10] still holds
true for quasigeodesics with respect to kǫ by the straightforward modification of their
proof, see also [H, Fact 2.10].

Lemma 3.11. [BHK, Theorem 2.10] Let (Ω, d) be an A-uniform space and k
be the quasihyperbolic metric with respect to d. Then every C-quasigeodesic with

respect to k is a B-uniform curve with respect to d for some B := B(A,C) > 0.

We are now in a position to prove that Xǫ being uniform implies the Gehring–
Hayman theorem.

Proposition 3.12. Let (X, d) be an M-roughly starlike δ-Gromov hyperbolic

space. If Xǫ is an A-uniform space, the Gehring–Hayman theorem holds for Xǫ.

Proof. By Lemma 3.10, there exists C > 0 such that for every geodesic γ : [0, ld(γ)]
→ X with respect to d, we have

1

C
|t− t′| ≤ kǫ(γ(t), γ(t

′)) ≤ C|t− t′|

for any t, t′ ∈ [0, ld(γ)]. This implies that geodesics with respect to d are C-
quasigeodesics with respect to kǫ. Therefore, by Lemma 3.11, we conclude that all
geodesics with respect to d are B-uniform curves in Xǫ for some B = B(A,C). �
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Remark 3.13. By a careful observation of proofs in this subsection, one might
notice that δ-Gromov hyperbolicity does not play any role in proving Proposition 3.12.
This tells us that Proposition 3.12 holds as long as (X, d) is M-roughly starlike and
Xǫ is uniform although we assume δ-Gromov hyperbolicity, following convention.

4. Critical exponents for some examples

In this section we examine critical exponents for the uniformized space to be
a uniform space in the case of the hyperbolic spaces, the model spaces M

κ
n of the

sectional curvature κ < 0 with the dimension n ≥ 2 and hyperbolic fillings.

4.1. The hyperbolic spaces and the model spaces. In this subsection
we first show that the critical exponent for the uniformized space of the hyperbolic
spaces to be a uniform space is ǫ = 1. We first recall that for n ≥ 2, the Poincaré
ball model of the hyperbolic space is the unit open ball Bn ⊆ R

n with the metric
defined by

gBn =
4

(1− (
∑n

i=1 x
2
i ))

2

n
∑

i=1

dx2
i ,

where (x1, · · · , xn) ∈ B
n. Note that in the case of 2-dimensional hyperbolic space,

one can see that in polar coordinates with respect to the hyperbolic metric we have

(4.1) gB2 = dr2 + sinh(r)2dθ2.

Let dBn be the Riemannian distance induced from the metric gBn on B
n. We first

uniformize the metric space (X, d) := (B2, dB2) with the base point p = (0, 0) and
ǫ > 1. Let γ and γ̃ be two geodesic rays with γ(0) = γ̃(0) = (0, 0). From (4.1) and
ǫ > 1, we have

dǫ(γ(k), γ̃(k)) ≤ 2πe−ǫksinh(k) → 0,(4.2)

as k → ∞. This implies that ∂dǫX
ǫ is one point while ∂GX is the unit circle.

Therefore by Theorem 1.3, Xǫ is not a uniform space. Moreover, since we can
isometrically embed (B2, dB2) into (Bn, dBn) for any n ≥ 3, two geodesic rays γ and
γ̃ that are not equivalent in (B2, dB2) can be seen as the ones in (Bn, dBn). The claim
for the higher dimensional case follows by looking at those two geodesic rays γ and
γ̃ and the fact that dǫ(γ(k), γ̃(k)) → 0 as k → ∞. On the other hand, Butler showed
in [B, Proposition 4.11 and Proposition 4.12] that the Gehring–Hayman theorem
holds for any CAT(−1) space if 0 < ǫ ≤ 1. Although his uniformization procedure is
different from the one in [BHK], all the arguments to prove [B, Proposition 4.11 and
Proposition 4.12] are valid for the uniformization developed by Bonk, Heinonen and
Koskela. Hence we obtain the following corollary.

Corollary 4.1. The critical exponent for the uniformized space of the hyperbolic

space (Bn, dBn) to be a uniform space is ǫ = 1.

Let M
κ
n be the model space of the constant sectional curvature κ < 0 with the

dimension n ≥ 2. The space M
κ
n is defined by B

n with the metric gMκ
n
:= (−1/κ)gBn .

We determine the critical exponent for the uniformized space of the model space
M

κ
n to be a uniform space. Note that dMκ

n
= (1/

√−κ)dBn. We first uniformize
(X, d) := (Mκ

2 , dMκ

2
) with p = (0, 0) and ǫ >

√−κ. In the case of Mκ
2 , we have

(4.3) gMκ

2
= dr2 − 1

κ
sinh(

√
−κr)2dθ2
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with respect to the polar coordinates. Hence Xǫ is not a uniform space by The-
orem 1.3 and looking at the circumference of a circle. The proof for the higher
dimensional case follows as in the case of the hyperbolic spaces. We next examine
the case where 0 < ǫ ≤ √−κ. For this sake, we first prove the following simple lemma
regarding the uniformization parameter for the Gehring–Hayman theorem under the
scaling in a metric.

Lemma 4.2. Let (X, d) be a δ-Gromov hyperbolic space. Let K > 0 and ǫ > 0.

Set (X̃, d̃) := (X,Kd) and ǫ̃ := ǫ/K. Then the Gehring–Hayman theorem holds for

Xǫ if and only if the Gehring–Hayman theorem holds for X̃ ǫ̃.

Proof. It is enough to prove one implication. Assume that the Gehring–Hayman
theorem holds for (X, dǫ). Let γ be a rectifiable curve arc-length parametrized with
respect to d and γ̃ be the same curve but with the arc-length parametrization with
respect to d̃. Notice that ld̃(γ) = Kld(γ). Thus

ldǫ(γ) =

ˆ ld(γ)

0

e−ǫd(p,γ(t)) dt =

ˆ ld(γ)

0

e−ǫ̃d̃(p,γ(t)) dt

=
1

K

ˆ l
d̃
(γ)

0

e−ǫ̃d̃(p,γ̃(t)) dt =
1

K
ld̃ǫ̃(γ),

where the second last equality comes from the change of variable formula. Therefore,
for x, y ∈ X we have

ld̃ǫ̃([x, y]) = Kldǫ([x, y]) ≤ KCdǫ(x, y) = Cd̃ǫ̃(x, y),

where the Gehring–Hayman theorem for Xǫ was applied to obtain the above inequal-
ity. This completes the proof. �

Applying Lemma 4.2 to (X, d) := (Bn, dBn), 0 < ǫ ≤ 1 and K := 1/
√−κ, we

conclude that the Gehring–Hayman theorem for the uniformized space of (Mκ
n, dMκ

n
)

holds if 0 < ǫ̃ ≤ √−κ by [B, Proposition 4.11 and Proposition 4.12]. Since the
Gehring–Hayman theorem implies that the uniformized space is a uniform space, we
have the following consequence.

Corollary 4.3. Let n ≥ 2 and κ < 0. The critical exponent for the uniformized

space of the model space M
κ
n to be a uniform space is ǫ =

√−κ.

4.2. Hyperbolic fillings. We briefly recall the construction and the properties
of hyperbolic fillings, following [BBS]. We refer readers to [BBS, Section 3] for more
detailed explanations. Note that there are many slightly different definitions and
variants of hyperbolic fillings appeared in [BSc], [BSa], [BP], [B] and [K]. Before
defining hyperbolic fillings, we recall some terms. Given a metric space (Z, d) and
r > 0, a set E ⊆ Z is called an r-separated set if d(x, y) ≥ r for every pair of points
x, y ∈ E. The existence of a maximal r-separated set is ensured by Zorn’s lemma.
We say that (Z, d) is precompact if the completion of Z is compact. Let (Z, d) be a
precompact metric space with diam(Z) < 1 and α, τ > 1 be given parameters. Take
maximal α−n-separated sets En with the property En ⊆ En+1. Define a vertex set
by

V :=
⋃

Vn,

where Vn := {(x, n) | x ∈ En}. For (x, n), (y,m) ∈ V , there is an edge between them
if and only if either of the following is satisfied:

1. n = m and Bd(x, τα
n) ∩Bd(y, τα

m) 6= ∅.
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2. n = m± 1 and Bd(x, α
n) ∩ Bd(y, α

m) 6= ∅.
The metric graph V with edges defined in the above manner is called a hyperbolic

filling of Z, denoted by X. Note that a metric graph is a graph whose edges are
identified with the unit interval [0, 1]. By [BBS, Corollary 3.2, Theorem 3.4 and
Proposition 4.6], X is a 1/2-roughly starlike δ-Gromov hyperbolic space for some
δ = δ(α, τ). Moreover, it was shown in [BBS, Theorem 5.1] that the uniformized
space Xǫ of X is a uniform space if 0 < ǫ ≤ log(α). We show that Xǫ is not a
uniform space if Z is sufficiently nice and ǫ > log(α).

Corollary 4.4. Let ǫ > log(α). Assume a precompact metric space Z has at

least two points and each pair of points in Z is connected by a curve in Z whose length

is bounded by some uniform constant. Then Xǫ is not a uniform space. Therefore,

the critical exponent for the uniformized space of the hyperbolic filling X to be a

uniform space is ǫ = log(α).

Proof. By our assumption, we know that the metric boundary of the uniformized
space of X with the parameter ǫ > log(α) consists of one point by [BBS, Proposi-
tion 4.1]. Since Z has at least two points, there is no way to construct a bijective
map between ∂GX and ∂dǫX

ǫ. Theorem 1.3 tells us that the uniformized space Xǫ

of a hyperbolic filling X is not a uniform space. �

Remark 4.5. It is well-known that metric trees are 0-Gromov hyperbolic spaces.
Although Corollary 4.4 tells us that the uniformized space of a hyperbolic filling is
not a uniform space for Z sufficiently nice and ǫ > log(α), the uniformized space of
a metric tree is always a uniform space for every ǫ > 0. This is due to the fact that
the Gehring–Hayman theorem always holds for any ǫ > 0.

References

[BB] Balogh, Z., and S. Buckley: Geometric characterizations of Gromov hyperbolicity. -
Invent. Math. 153, 2003, 261–??301.

[BBS] Björn, A., J. Björn, and N. Shanmugalingam: Extension and trace results for doubling
metric measure spaces and their hyperbolic fillings. - Preprint, arxiv:2008.00588, 2020.

[BF] Bonk, M., and T. Foertsch: Asymptotic upper curvature bounds in coarse geometry. -
Math. Z. 253:4, 2006, 753–785.

[BHK] Bonk, M., J. Heinonen, and P. Koskela: Uniformizing Gromov hyperbolic spaces. -
Astérisque 270, 2001.

[BSa] Bonk, M., and E. Saksman: Sobolev spaces and hyperbolic fillings. - J. Reine Angew.
Math. 737, 2018, 161–187.

[BP] Bourdon, M., and H. Pajot: Cohomologie lp et espaces de Besov. - J. Reine Angew.
Math. 558, 2003, 85–108.

[BH] Bridson, M.R., and A. Haefliger: Metric spaces of non-positive curvature. -
Grundlehren Math. Wiss. 319, Springer-Verlag, Berlin, 1999.

[B] Butler, C.: Uniformizing Gromov hyperbolic spaces with Busemann functions. - Preprint,
arXiv:2007.11143, 2020.

[BSc] Buyalo, S., and V. Schroeder: Elements of asymptotic geometry. - EMS Monogr. Math.
3, Eur. Math. Soc., Zürich, 2007.

[H] Herron, D.: Quasiconformal deformations and volume growth. - Proc. London Math. Soc.
92:1, 2006, 161–??199.

[K] Kigami, J.: Weighted partition of a compact metrizable space, its hyperbolicity and Ahlfors
regular conformal dimension. - Preprint, arXiv:1806.06558, 2018.



152 Sari Rogovin, Hyogo Shibahara and Qingshan Zhou

[V] Väisälä, J.: Gromov hyperbolic spaces. - Expo. Math. 23:3, 2005, 187–231.

[Z] Zhou, Q.: Uniformizing Gromov hyperbolic spaces and Busemann functions. - Preprint,
arXiv:2008.01399, 2020.

Received 9 January 2022 • Revision received 26 September 2022 • Accepted 22 November 2022

Published online 10 January 2023

Sari Rogovin

Maunula Secondary School and

Helsinki School of Mathematics

Helsinki, Finland

sari.rogovin@gmail.com

Hyogo Shibahara

University of Cincinnati

Department of Mathematical Sciences

Cincinnati, OH 45221, U.S.A.

shibahho@mail.uc.edu

Qingshan Zhou

Foshan University

School of Mathematics and Big Data

Foshan, Guangdong 528000, P. R. China

qszhou1989@163.com, q476308142@qq.com


	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.3
	4. Critical exponents for some examples
	References

