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On the Karlsson–Nussbaum conjecture
for resolvents of nonexpansive mappings

Aleksandra Huczek and Andrzej Wiśnicki

Abstract. Let D ⊂ Rn be a bounded convex domain and F : D → D a 1-Lipschitz mapping

with respect to the Hilbert metric d on D satisfying condition d(sx + (1 − s)y, sz + (1 − s)w) ≤

max{d(x, z), d(y, w)}. We show that if F does not have fixed points, then the convex hull of the

accumulation points (in the norm topology) of the family {Rλ}λ>0 of resolvents of F is a subset

of ∂D. As a consequence, we show a Wolff–Denjoy type theorem for resolvents of nonexpansive

mappings acting on an ellipsoid D.

Karlssonin–Nussbaumin konjektuuri venyttämättömien kuvausten resolventeille

Tiivistelmä. Olkoon D ⊂ Rn rajallinen konveksi alue ja F : D → D Lipschitzin kuvaus vakiol-

la 1 alueen D Hilbertin metriikan d suhteen, joka toteuttaa ehdon d(sx+(1− s)y, sz+ (1− s)w) ≤

max{d(x, z), d(y, w)}. Osoitamme, että jos kuvauksella F ei ole kiintopisteitä, niin sen resolvent-

tiperheen {Rλ}λ>0 (normitopologian määräämien) kasautumispisteiden konveksi verho on reunan

∂D osajoukko. Tämän seurauksena osoitamme Wolffin–Denjoyn-tyyppisen lauseen ellipsoidin D

venyttämättömien kuvausten resolventeille.

1. Introduction

The study of dynamics of nonlinear mappings started by considering iterates of
holomorphic mappings on one-dimensional bounded domains. In this field, one of
the first theorem is the classical Wolff–Denjoy theorem which describes dynamics
of iteration of holomorphic self-mappings on the unit disc of the complex plane. It
asserts that if f : ∆ → ∆ is a holomorphic map of the unit disc ∆ ⊂ C without a
fixed point, then there is a point ξ ∈ ∂∆ such that the iterates fn converge locally
uniformly to ξ on ∆. Generalizations of this theorem in different directions have
been obtained by numerous authors (see [1, 6, 9, 15, 13] and references therein).
One such generalization was formulated by Beardon who noticed that the Wolff–
Denjoy theorem can be considered in a purely geometric way depending only on the
hyperbolic properties of a metric and gave its proof using geometric methods (see
[4]). In [5], Beardon extended his approach for strictly convex bounded domains
with the Hilbert metric. Considering the notion of the omega limit set ωf (x) as the
set of accumulation points of the sequence fn(x) and the notion of the attractor
Ωf =

⋃

x∈D ωf(x), we can formulate a generalization of the Wolff–Denjoy theorem
known as the Karlsson–Nussbaum conjecture, which was formulated independently
by Karlsson and Nussbaum (see [10, 15]). This conjecture states that if D is a
bounded convex domain in a finite-dimensional real vector space and f : D → D is
a fixed point free nonexpansive mapping acting on the Hilbert metric space (D, dH),
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then there exists a convex set Ω ⊆ ∂D such that for each x ∈ D, all accumulation
points ωf(x) of the orbit O(x, f) lie in Ω.

The aim of this note is to show a variant of the Karlsson–Nussbaum conjecture
for resolvents of nonexpansive (1-Lipschitz) mappings. For this purpose we construct
in Section 3 the family of resolvents of a nonexpansive mapping and prove its main
properties: nonexpansivity and the resolvent identity. In the literature, the resolvents
usually occur in the context of Banach spaces or geodesic spaces that are Busemann
convex, see e.g., [3, 17]. Then their construction is based on the Banach contraction
principle. Since a Hilbert metric space (D, dH) is in general not Busemann convex,
our construction of resolvents is a little more complicated and exploits the argument
related to Edelstein’s theorem [8].

In Section 4 we formulate and prove the main theorem of this work. We show
that if D ⊂ Rn is a bounded convex domain and F : D → D is a fixed point free non-
expansive mapping with respect to the Hilbert metric dH on D satisfying condition

(D) dH(sx+ (1− s)y, sz + (1− s)w) ≤ max{dH(x, z), dH(y, w)},

then the convex hull of the accumulation points of the family {Rλ}λ>0 of resolvents
of F is a subset of ∂D. Since a Hilbert metric space (D, dH) is Busemann convex if
and only if D is ellipsoid, we obtain as a corollary a Wolff–Denjoy type theorem for
resolvents of nonexpansive mappings acting on an ellipsoid D.

2. Preliminaries

Let V be a finite dimensional real vector space, D ⊂ V a convex bounded do-
main and (D, d) a metric space. A curve σ : [a, b] → D is said to be geodesic if
d(σ(t1), σ(t2)) = |t1 − t2| for all t1, t2 ∈ [a, b]. We will use the same name for the
image σ([a, b]) ⊂ D of σ, denoted by [σ(a), σ(b)]. We say that D is a geodesic space if
every two points of D can be joined by a geodesic. A map F : D → D is called con-

tractive if d(F (x), F (y)) < d(x, y) for any distinct points x, y ∈ D. A map F : D → D
is called nonexpansive if for any x, y ∈ D, d(F (x), F (y)) ≤ d(x, y).

We recall the definition of the Hilbert metric space. If x, y ∈ D, consider the
straight line passing through x and y that intersects the boundary of D in precisely
two points a and b. Assuming that x is between a and y, and y is between x and b,
we define the cross-ratio metric

dH(x, y) = log

(

‖y − a‖ ‖x− b‖

‖x− a‖ ‖y − b‖

)

, x 6= y.

Furthermore, we put dH(x, y) = 0 if x = y.
Following Beardon [5] we consider the subsequent lemmas.

Lemma 2.1. Let D1, D2 ⊂ V , D1 ⊂ D2 be bounded convex domains and
(D1, d1), (D2, d2) be Hilbert metric spaces, then d2 ≤ d1. Furthermore, for dis-
tinct points x, y ∈ D1, d1(x, y) = d2(x, y) iff the segment Lxy ∩ D1 coincides with
Lxy ∩D2.

Lemma 2.2. Suppose that (D, dH) is a Hilbert metric space, x0 ∈ D and l ∈
[0, 1). Then the mapping g(x) = x0 + l(x− x0) is contractive.

Proof. Fix x0 ∈ D and l ∈ [0, 1). Let x, y ∈ D and consider the straight line
passing through x and y that intersects ∂D in two points x′ and y′ such that x is
between x′ and y, and y is between x and y′. Take two points z′ = (1− l)x0 + lx′ ∈
∂g(D), w′ = (1 − l)x0 + ly′ ∈ ∂g(D), and note that the points z′, g(x), g(y), w′



On the Karlsson–Nussbaum conjecture for resolvents of nonexpansive mappings 155

are collinear such that g(x) is between z′ and g(y), and g(y) is between g(x) and
w′. Since g(D) lies in a compact subset of D, it follows from Lemma 2.1 that
dH(g(x), g(y)) < d2(g(x), g(y)), where d2 denotes the Hilbert metric in g(D). By
definition of the Hilbert metric space we have

dH(x, y) = log

(

‖x′ − y‖ ‖x− y′‖

‖x′ − x‖ ‖y − y′‖

)

= log

(

‖z′ − g(y)‖ ‖w′ − g(x)‖

‖z′ − g(x)‖ ‖w′ − g(y)‖

)

= d2(g(x), g(y)).

Therefore we get dH(g(x), g(y)) < dH(x, y). �

Note that if D ⊂ V is a bounded convex domain, then the Hilbert metric dH is
locally equivalent to the euclidean norm in V . Furthermore, for any w ∈ D, if {xn}
is a sequence in D converging to ξ ∈ ∂D = D \D, then

dH(xn, w)→∞

(see [5, 9]). The above property is equivalent to properness of D, that is, every
closed and bounded subset of (D, dH) is compact. It is not difficult to show that for
x, y, z ∈ D and s ∈ [0, 1],

(C) dH(sx+ (1− s)y, z) ≤ max{dH(x, z), dH(y, z)}.

In what follows, we will assume a more restrictive condition: for all x, y, z, w ∈ D
and s ∈ [0, 1],

(D) dH(sx+ (1− s)y, sz + (1− s)w) ≤ max{dH(x, z), dH(y, w)}.

3. Resolvents of nonexpansive mappings

In this section we describe the construction of a resolvent of a nonexpansive
mapping acting on a Hilbert metric space. Let D ⊂ V be a convex bounded domain
and F : D → D a nonexpansive mapping with respect to the Hilbert metric d on D.
Recall that the topology of (D, d) coincides with the Euclidean topology and (D, d)
is proper metric space, that is, every closed ball B̄(x0, r), x0 ∈ D, is compact. We
fix x ∈ D, λ > 0, and define a mapping

Gx,λ(y) =
1

1 + λ
x+

λ

1 + λ
F (y), y ∈ D.

It follows from Lemma 2.2 that Gx,λ is contractive.
We show that Gx,λ(D) is bounded. For this purpose, we select w ∈ Gx,λ(D). Note

that there exists y ∈ D such that w = 1

1+λ
x+ λ

1+λ
F (y). We show that B(w, 1

1+λ
d) ⊂

D, where d = infv∈∂D ‖v−x‖. Choose any w′ ∈ B(w, 1

1+λ
d). Then there exists z ∈ D

such that w′ = 1

1+λ
z + λ

1+λ
F (y). Note that

‖w − w′‖ =

∥

∥

∥

∥

1

1 + λ
x+

λ

1 + λ
F (y)−

1

1 + λ
z +

λ

1 + λ
F (y)

∥

∥

∥

∥

=
1

1 + λ
‖x− z‖.

If ‖w − w′‖ < 1

1+λ
, then ‖x− z‖ = (1 + λ)‖w − w′‖ < d. It implies that z ∈ D and

hence w′ ∈ D. It follows that for all w ∈ Gx,λ(D),

(3.1) inf
v∈∂D

‖v − w‖ ≥
1

1 + λ
d.

Take a sequence {wn} ⊂ Gx,λ(D). Since D is compact in the Euclidean topology,
there exists a subsequence {wnk

} and x0 ∈ D such that ‖wnk
−x0‖ → 0, if k →∞. It

follows from (3.1) that x0 ∈ D, and hence d(wnk
, x0)→ 0 since the topology of (D, d)
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coincides with the Euclidean topology. Therefore, Gx,λ(D) is bounded in (D, d) and

by properness of D we have that Gx,λ(D) is compact in (D, d).
Note that D ⊃ Gx,λ(D) ⊃ G2

x,λ(D) ⊃ · · · , which means that the orbits of Gx,λ

are bounded. Fix y ∈ D. Since Gx,λ(D) is compact, there exists a subsequence
{Gnk

x,λ(y)} of {Gn
x,λ(y)} converging to some z ∈ D. Let

dn = d(Gn
x,λ(y), G

n+1

x,λ (y)).

Since Gx,λ is contractive, the sequence {dn} is decreasing and hence it converges to
some ζ , as n→∞. Hence

ζ ← dnk
= d(Gnk

x,λ(y), G
nk+1

x,λ (y))→ d(Gx,λ(z), z),

and

ζ ← dnk+1 = d(Gnk+1

x,λ (y), Gnk+2

x,λ (y))→ d(G2

x,λ(z), Gx,λ(z)).

We get

d(G2

x,λ(z), Gx,λ(z)) = d(Gx,λ(z), z) = ζ.

Since the map Gx,λ is contractive, Gx,λ(z) = z. Moreover, z is the unique fixed point
of Gx,λ. Indeed, otherwise if z1, z2 ∈ D, z1 6= z2 are fixed points of Gx,λ, then

d(z1, z2) = d(Gx,λ(z1), Gx,λ(z2)) < d(z1, z2),

and we obtain a contradiction. Define z = Rλ(x). We refer to the mapping Rλ : D →
D as the resolvent of F. We have

z = Gx,λ(z) =
1

1 + λ
x+

λ

1 + λ
F (z), x ∈ D, λ > 0,

and hence

(3.2) Rλ(x) =
1

1 + λ
x+

λ

1 + λ
F (Rλ(x)), x ∈ D, λ > 0.

Furthermore, any converging subsequence Gmk

x,λ(y) has the limit z (the unique fixed
point), as k →∞. This gives the formula:

(3.3) lim
n→∞

Gn
x,λ(y) = Rλ(x), y ∈ D.

It turns out that if (D, d) is sufficiently regular, then the resolvent of a nonex-
pansive mapping is also nonexpansive.

Lemma 3.1. Let (D, d) be a Hilbert metric space satisfying condition (D),
F : D → D a nonexpansive mapping, and λ > 0. Then the resolvent Rλ : D → D is
nonexpansive.

Proof. Fix z0, z1, z2 ∈ D. First we show that d(Gn
z1,λ

(z0), G
n
z2,λ

(z0)) ≤ d(z1, z2)
for each n. We proceed by induction. For n = 1, it follows from condition (C) that

d(Gz1,λ(z0), Gz2,λ(z0)) = d

(

1

1 + λ
z1 +

λ

1 + λ
F (z0),

1

1 + λ
z2 +

λ

1 + λ
F (z0)

)

≤ max{d(z1, z2), d(F (z0), F (z0))} = d(z1, z2).
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Fix n ∈ N and suppose that d(Gn
z1,λ

(z0), G
n
z2,λ

(z0)) ≤ d(z1, z2). Then it follows from
(D) that

d(Gn+1

z1,λ
(z0), G

n+1

z2,λ
(z0))

= d

(

1

1 + λ
z1 +

λ

1 + λ
F (Gn

z1,λ
(z0)),

1

1 + λ
z2 +

λ

1 + λ
F (Gn

z2,λ
(z0))

)

≤ max{d(z1, z2), d(G
n
z1,λ

(z0), G
n
z2,λ

(z0))} = d(z1, z2).

Now the formula (3.3) yields

d(Rλ(z1), Rλ(z2)) = lim
n→∞

d

(

Gn
z1,λ

(z0), G
n
z2,λ

(z0)

)

≤ d(z1, z2),

which shows that Rλ is a nonexpansive mapping. �

We will also use the following property called the resolvent identity.

Proposition 3.2. Suppose that F : D → D is a nonexpansive mapping. Then
its resolvent Rλ satisfies

Rλ(x) = Rµ

(

λ− µ

λ
Rλ(x) +

µ

λ
x

)

, x ∈ D,

for all λ > µ > 0.

Proof. Fix x ∈ D and λ, µ > 0 such that λ > µ. Define

(3.4) y :=
λ− µ

λ
Rλ(x) +

µ

λ
x.

It follows from (3.2) that there exists the unique point

(3.5) z := Rµ(y) =
1

1 + µ
y +

µ

1 + µ
F (Rµ(y)).

On the other hand, we have

(3.6) z̃ := Rλ(x) =
1

1 + λ
x+

λ

1 + λ
F (Rλ(x)).

From the above and (3.4) we get λy−µz̃(1+ λ) = (λ−µ)z̃−λµF (z̃), which implies

z̃ =
1

1 + µ
y +

µ

1 + µ
F (z̃).

Therefore, from the uniqueness of the construction of the point z and by (3.5) and
(3.6), we have

Rµ(y) = z = z̃ = Rλ(x). �

For any x ∈ D, F : D → D, the set of accumulation points (in the norm topology)
of the sequence {F n(x)} is called the omega limit set of x and is denoted by ωF (x).
In a similar way, if Rλ : D → D, λ > 0, is a family of resolvents of F , we define

ω{Rλ}λ>0
(x) = {y ∈ D : ‖Rλn

(x)− y‖ → 0

for some increasing sequence {λn}, λn →∞},

and the attractor of {Rλ}λ>0,

Ω
{Rλ}λ>0

=
⋃

x∈D

ω
{Rλ}λ>0

(x).

Lemma 3.3. Suppose that F : D → D is a nonexpansive mapping without fixed
points and Rλ : D → D, λ > 0 is a family of resolvents of F . Then Ω

{Rλ}λ>0

⊂ ∂D.
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Proof. On the contrary, we suppose that there exists y ∈ D such that ‖Rλn
(x)

−y‖ → 0 for some x ∈ D and an increasing sequence {λn}, λn →∞. Then

(3.7) ‖Rλn
(x)− F (Rλn

(x))‖ =
1

1 + λn

‖x− F (Rλn
(x))‖ → 0,

as n→∞. Since the topology of (D, d) coincides with the norm topology, F : D → D
is norm-continuous, and hence

‖F (y)− y‖ ≤ ‖F (y)− F (Rλn
(x))‖ + ‖F (Rλn

(x))−Rλn
(x)‖+ ‖Rλn

(x)− y‖ → 0,

as n→∞. Thus F (y) = y, and we obtain a contradiction. �

4. Main theorem

We begin by recalling one of the fundamental properties of a Hilbert metric
space that allows Karlsson and Noskov to extend Beardon’s Wolff–Denjoy theorem
for bounded strictly convex domains (see [11, Theorem 5.5],[14, Proposition 8.3.3]).

Lemma 4.1. Let D ⊆ V be an open bounded convex set and d a Hilbert metric
on D. If {xn} and {yn} are convergent sequences in D with limits x and y in ∂D,
respectively, and the segment [x, y] * ∂D, then for each z ∈ D we have

lim
n→∞

[d(xn, yn)−max{d(xn, z), d(yn, z)}] =∞.

We also need the following standard argument that can be found for example in
[7, Lemma 5.4].

Lemma 4.2. Let (D, d) be a separable metric space and let an : D → R be a
nonexspansive mapping for each n ∈ N. If for every x ∈ D, the sequence {an(x)}
is bounded, then there exists a subsequence {anj

} of {an} such that limj→∞ anj
(x)

exists for every x ∈ D.

Fix x0 ∈ D and consider a sequence {xn ∈ D : n ∈ N} contained in D. Define
an(x) = d(x, xn)− d(xn, x0) for any n ∈ N. Note that

|an(y)− an(x)| ≤ d(x, y),

i.e., an is nonexpansive and the sequence {an(y)} is bounded (by d(y, x0)) for every
y ∈ D. It follows from Lemma 4.2 that there exists a subsequence {xnj

} of {xn} such
that limj→∞ anj

(x) exists for any x ∈ D, i.e.,

(4.1) lim
j→∞

d(x, xnj
)− d(xnj

, x0)

exists for every x ∈ D.
Now we are in a position to prove a variant of the Karlsson–Nussbaum conjecture

for resolvents of nonexpansive mappings.

Theorem 4.3. Let D ⊂ V be a bounded convex domain. Suppose that (D, d)
is a Hilbert metric space satisfying condition (D) and Rλ : D → D, λ > 0, is a family
of resolvents of a nonexpansive mapping F : D → D without fixed points. Then
coΩ{Rλ}λ>0

⊆ ∂D.

Proof. Suppose on the contrary that there exist z1, . . . , zm ∈ D, ζ1 ∈ ω{Rλ}λ>0
(z1),

. . . , ζm ∈ ω{Rλ}λ>0
(zm) and 0 < α1, . . . , αm < 1 with

∑m
i=1

αi = 1 such that
∑m

i=1
αiζ

i ∈ D. Since F does not have fixed points, it follows from Lemma 3.3
that the omega limit sets ω{Rλ}λ>0

(zi) ⊆ ∂D, i = 1, . . . , m, and, following [14,
Theorem 8.3.11], we can assume that m ≥ 2 is minimal with the property that



On the Karlsson–Nussbaum conjecture for resolvents of nonexpansive mappings 159

∑m

i=1
αiζ

i ∈ D. It follows that Rλi
j
(zi) → ζ i ∈ ∂D for some increasing sequences

{λi
j}j, λ

i
j → ∞, as j → ∞, i = 1, . . . , m. We put ζ = ζ1 and η =

∑m
i=2

µiζ
i, where

µi =
αi

1−α1

for i ∈ [2, m]. Let ηj =
∑m

i=2
µiRλi

j
(zi) for all j ≥ 1. Since m is minimal, we

have ζ, η ∈ ∂D and α1ζ+(1−α1)η ∈ D. Since D is convex, we get αζ+(1−α)η ∈ D
for all α ∈ (0, 1). By passing to a subsequence we can assume from (4.1) that for
every x ∈ D there exists the limit

(4.2) g(x) = lim
j→∞

d(x,Rλ1

j
(z1))− d(Rλ1

j
(z1), z1).

Since
∣

∣

∣

∣

∣

∣

∣

∣

y −
λ1
j − µ

λ1
j

y −
µ

λ1
j

z1

∣

∣

∣

∣

∣

∣

∣

∣

=
µ

λ1
j

‖y − z1‖ → 0, as λ1

j →∞,

and topologies of (D, d) and (D, ‖ · ‖) coincide on D, we have

(4.3) d

(

y,
λ1
j − µ

λ1
j

y +
µ

λ1
j

z1

)

→ 0,

if λ1
j → ∞. According to Lemma 3.1, Proposition 3.2, (4.3) and condition (C), we

get

g(Rµ(y)) = lim
j→∞

d(Rµ(y), Rλ1

j
(z1))− d(Rλ1

j
(z1), z1)

= lim
j→∞

d

(

Rµ(y), Rµ

(

λ1
j − µ

λ1
j

Rλ1

j
(z1) +

µ

λ1
j

z1

))

− d(Rλ1

j
(z1), z1)

≤ lim sup
j→∞

d

(

y,
λ1
j − µ

λ1
j

Rλ1

j
(z1) +

µ

λ1
j

z1

)

− d(Rλ1

j
(z1), z1)

= lim
j→∞

d

(

λ1
j − µ

λ1
j

y +
µ

λ1
j

z1,
λ1
j − µ

λ1
j

Rλ1

j
(z1) +

µ

λ1
j

z1

)

− d(Rλ1

j
(z1), z1)

≤ lim
j→∞

d(y, Rλ1

j
(z1))− d(Rλ1

j
(z1), z1) = g(y).

From the above we have g(Rµ(y)) ≤ g(y) ≤ d(y, z1) for every y ∈ D and µ > 0. It
follows from (C) that for any k ∈ N,

g(ηk) = g

( m
∑

i=2

µiRλi
k
(zi)

)

≤ max
i=2,...,m

g(zi) ≤ max
i=2,...,m

d(zi, z1) = M.

Consequently, by diagonal method, there exists a subsequence λ1
j1
≤ λ1

j2
≤ . . . ≤

λ1
jk
≤ . . . of {λ1

j} such that

(4.4) lim sup
k→∞

d(ηk, Rλ1

jk

(z1))− d(Rλ1

jk

(z1), z1) ≤M + 1.

Since Rλi
j
(zi)→ ζ i, as j →∞ for any i = 1, . . . , m, we have

‖ηj − η‖ =

∥

∥

∥

∥

∥

m
∑

i=2

µiRλi
j
(zi)−

m
∑

i=2

µiζ
i

∥

∥

∥

∥

∥

≤
m
∑

i=2

µi‖Rλi
j
(zi)− ζ i‖ → 0, j →∞,

which implies that ‖ηj − η‖ → 0, j →∞. Moreover, since [ζ, η] * ∂D it follows from
Lemma 4.1 that

lim inf
k→∞

d(ηk, Rλ1

jk

(z1))− d(Rλ1

jk

(z1), z1) =∞.

However, the above formula contradicts (4.4). �
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We can use Theorem 4.3 to show a Wolff–Denjoy type theorem for resolvents
of nonexpansive mappings. Let (D, d) be a geodesic metric space and [x, y], [x′, y′]
two arbitrary geodesic segments in D. For every α ∈ [0, 1], consider the point z =
αx+(1−α)y on segment [x, y] such that d(αx+(1−α)y, y) = αd(x, y) and in the same
way, the point z′ = αx′+(1−α)y′ on segment [x′, y′] such that d(αx′+(1−α)y′, y′) =
αd(x′, y′). Recall that a geodesic space (D, d) is called Busemann convex if

d(z, z′) ≤ (1− α)d(x, x′) + αd(y, y′)

for every x, y, x′, y′ ∈ D and α ∈ [0, 1].
Combining Corollary 3.3 and Proposition 3.4 in [2], we obtain the following propo-

sition (see also [12], [16, p. 191]).

Proposition 4.4. Let D ⊂ V be a bounded convex domain. A Hilbert metric
space (D, d) is Busemann convex if and only if D is an ellipsoid.

Since in Hilbert’s metric spaces every straight-line segment is a geodesic, it follows
from Proposition 4.4 that (D, d) satisfies condition (D), whenever D is an ellipsoid.
This leads to the following Wolff–Denjoy type theorem for resolvents of nonexpansive
mappings.

Corollary 4.5. Suppose that D ⊂ V is an ellipsoid and Rλ : D → D, λ > 0,
is the resolvent of a nonexpansive mapping F : D → D (with respect to Hilbert’s
metric) without fixed points. Then there exists ξ ∈ ∂D such that {Rλ}λ>0 converge
uniformly on bounded sets of D to ξ.

Proof. It follows from Theorem 4.3 that coΩ{Rλ}λ>0
⊆ ∂D. Since D is strictly

convex, Ω{Rλ}λ>0
consists of a single element ξ ∈ ∂D. The proof of uniform conver-

gence on bounded sets is standard (see, e.g., [5]): suppose, on the contrary, that there
exist an open neighbourhood U ⊂ D of ξ, a bounded set K ⊂ D and a sequence
{yλn
} ⊂ K (λn →∞) such that Rλn

(yλn
) /∈ U for each n. Then

d(Rλn
(yλn

), Rλn
(y)) ≤ d(yλn

, y) ≤ diamK

for any y ∈ K and, since Rλn
(y)→ ξ, we deduce from Lemma 4.1 that Rλn

(yλn
)→

ξ ∈ D \ U , a contradiction. �
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