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When the algebraic difference of two
central Cantor sets is an interval?

Piotr Nowakowski

Abstract. Let C(a), C(b) ⊂ [0, 1] be the central Cantor sets generated by sequences a, b ∈

(0, 1)
N. The first main result of the paper gives a necessary and a sufficient condition for sequences

a and b which inform when C(a)−C(b) is equal to [−1, 1] or is a finite union of closed intervals. One
of the corollaries following from this results shows that the product of thicknesses of two central
Cantor sets, the algebraic difference of which is an interval, may be arbitrarily small. We also show
that there are sets C(a) and C(b) with the Hausdorff dimension equal to 0 such that their algebraic
difference is an interval. Finally, we give a full characterization of the case, when C(a) − C(b) is
equal to [−1, 1] or is a finite union of closed intervals.

Milloin kahden keskitetyn Cantorin joukon algebrallinen erotus on väli?

Tiivistelmä. Olkoot C(a), C(b) ⊂ [0, 1] jonojen a, b ∈ (0, 1)N virittämät keskitetyt Cantorin
joukot. Tämän tutkimuksen ensimmäinen päätulos antaa jonoille a ja b riittävän ja välttämättömän
ehdon sille, että C(a) − C(b) on väli [−1, 1] tai suljettujen välien äärellinen yhdiste. Eräs tämän
tuloksen seurauksista osoittaa, että silloinkin, kun kahden keskitetyn Cantorin joukon algebrallinen
erotus on väli, niiden paksuuksien tulo voi olla mielivaltaisen pieni. Osoitamme myös, että on ole-
massa Hausdorffin mielessä nollaulotteiset joukot C(a) ja C(b), joiden algebrallinen erotus on väli.
Lopuksi kuvailemme täydellisesti tilanteen, jossa C(a) − C(b) on väli [−1, 1] tai suljettujen välien
äärellinen yhdiste.

1. Introduction

For A,B ⊂ R, we denote by A ± B the set {a± b : a ∈ A, b ∈ B}. The set
A − B is called the algebraic difference of sets A and B. The set A − A is called
the difference set of a set A. We will also write a + A instead {a} + A for a ∈ R. If
I ⊂ R is an interval, then by l(I), r(I) we will denote, respectively, the left and the
right endpoint of I.

By a Cantor set we mean a nonempty, bounded, perfect and nowhere dense subset
of R. Given any set C ⊂ R, every bounded component of the set R \ C is called a
gap of C. A component of C is called proper if it is not a singleton.

Let us recall the definition of a Cantorval (specifically, an M-Cantorval). A
perfect set E ⊂ R is called a Cantorval if it has infinitely many gaps and both
endpoints of any gap are accumulated by gaps and proper components of E.

Algebraic differences and sums of Cantor sets were considered by many authors
(e.g. [1, 9, 11, 15, 17, 23, 18, 25, 29]). They appear for example in dynamical systems
(see [19]), spectral theory (see [6, 27]) or number theory (see [9]). One of the most
known results is the Newhouse gap lemma from [18] (see Theorem 2.2). This is
a condition which implies that the sum of two Cantor sets is an interval. Also
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other mathematical operations on Cantor sets are in the area of interests of many
mathematicians (see e.g. [4, 12]). The most popular types of examined Cantor sets
are central Cantor sets. In our paper we will continue this trend.

Every central Cantor subset C of [0, 1] can be uniquely described by a sequence
a = (an) ∈ (0, 1)N (the details are given in Section 2). We then say that C is
generated by a and write C = C(a). If a is a constant sequence with all terms equal
to α, then we say that the set C(a) is a middle-α Cantor set or just a middle Cantor
if α is not given. The algebraic difference of two central Cantor sets can be either
a Cantor set, a finite union of closed intervals or a Cantorval (see [2]). In the paper
[14], Kraft proved that the difference set of a middle-α Cantor set is equal to [−1, 1]
if α ≤ 1

3
, and is a Cantor set if α > 1

3
. Later, it was proved (see [2], [8]) that the

difference set of a central Cantor set C(a), where a ∈ (0, 1)N, is equal to [−1, 1] if and
only if an ≤ 1

3
for all n ∈ N. In [25], the author proved that if an > 1

3
for all n ∈ N,

then the difference set of C(a) is a Cantor set. In [8] there was given a condition,
which implies that the set C(a) − C(a) is a Cantorval. In our paper, we will focus
only on the case, when the algebraic difference of two central Cantor sets is a finite
union of closed intervals. Although the characterization of this case is known for
the difference C(a) − C(a), there was not such characterization for the sets of the
form C(a)− C(b) for arbitrary sequences a, b ∈ (0, 1)N. There are only some partial
results like Newhouse gap lemma or theorem of Pourbarat from [22], which gives
an equivalent condition for the algebraic difference of middle Cantor sets to be an
interval (see also Corollary 3.5). There are also some results for more general Cantor
sets. In [16] there are considered continuous images of pairs of Moran sets. Results
obtained there are very interesting, but if we use them for the case of the algebraic
difference of central Cantor sets, we will only obtain the known characterization for
the set C(a) − C(a) to be an interval. The main goal of this paper is to give a
characterization of the case, where the set C(a)− C(b) is a finite union of intervals.

In Section 2, we start from proving a weaker theorem which concerns the al-
gebraic difference of two different central Cantor sets, but which is easier to apply
than the characterization given later. It is a generalization of the earlier mentioned
theorem concerning the difference set of a central Cantor set. It also gives examples
of central Cantor sets which do not satisfy the assumptions of the Newhouse gap
lemma (Theorem 2.2), and still their algebraic difference is equal to [−1, 1]. We also
show that there are central Cantor sets C(a), C(b) with Hausdorff dimension equal
to 0 such that C(a)−C(b) = [−1, 1]. In Section 3. we give a full characterization of
the case, when the set C(a)−C(b) is a finite union of intervals along with corollaries
concerning middle Cantor sets.

2. Sufficient and necessary conditions for the algebraic

difference of central Cantor sets to be an interval

Let us recall the construction of a central Cantor subset of [0, 1] (see e.g. [5]). An
interval I is called concentric with an interval J if they have a common centre.

Let a = (an) be a sequence such that an ∈ (0, 1) for any n ∈ N and I := [0, 1].
In the first step of the construction, we remove from I the open interval P centred
at 1

2
of length a1. Then by I0 and I1 we denote, respectively, the left and the right

components of I \ P (each of length d1 = 1−a1
2

). Generally, assume that for some
n ∈ N and t1, t2, . . . , tn ∈ {0, 1} we have constructed the interval It1,...,tn of length dn.
Denote by Pt1,...,tn the open interval of length an+1dn, concentric with It1,...,tn . Now,
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let It1,...,tn,0 and It1,...,tn,1 be, respectively, the left and the right components of the set
It1,...,tn \ Pt1,...,tn . By dn+1 denote the common length of both components.

For every n ∈ N, denote

In := {It1,...,tn : (t1, . . . , tn) ∈ {0, 1}n} and Cn(a) :=
⋃

In.

Let C(a) :=
⋂

n∈N Cn(a). Then C(a) is called a central Cantor set. Define the
thickness of a Cantor set C by (see [28])

τ(C) = inf
G1<G2

max

{
l(G2)− r(G1)

|G1|
,
l(G2)− r(G1)

|G2|

}
,

where G1, G2 are gaps of the set C, and G1 < G2 means that G1 is on the left of
G2. In the case of central Cantor sets, we have an explicit formula for the thickness,
if gaps which appear in any step of the construction are shorter than those which
appeared on earlier steps.

Lemma 2.1. [11] If for any n ∈ N, an+1 <
2an
1−an

, then τ(C((an))) = infn∈N
1−an
2an

.

The following theorem is a version for central Cantor sets of a known result about
the algebraic difference of two Cantor sets, which uses the notion of thickness.

Theorem 2.2. (The Newhouse gap lemma; [18, 3]) If a, b ∈ (0, 1)N and

τ(C(a))τ(C(b)) ≥ 1, then C(a)− C(b) = [−1, 1].

Our purpose is to study the algebraic difference C(a)−C(b) of two central Cantor
sets. Observe that since C(b) is symmetric with respect to 1

2
we have C(a) +C(b) =

C(a) + 1− C(b) = C(a)− C(b) + 1, so the algebraic sums and differences of central
Cantor sets are topologically the same. We will use some ideas from [8].

Let t and s be some finite sequences. To denote the concatenation t and s, we
write tˆs. For n ∈ N, by tn we denote the n-th term of the sequence t and by t|n we
denote the sequence of n first terms of the sequence t.

Let dn =
∏n

i=1
1−ai
2

and gn =
∏n

i=1
1−bi
2

. By Ias (Ibs , respectively) we will de-
note the interval Is from the construction of the set C(a) (C(b), respectively). Let
{0, 1}0 = ∅ (the empty sequence), Ia∅ = Ib∅ = [0, 1] and d0 = g0 = 1. Then we have

Cn (a)− Cn (b) =
⋃

p,q∈{0,1}n

(
Iap − Ibq

)
.

For p, q ∈ {0, 1}n we define the sequence s ∈ {0, 1, 2, 3}n and the interval Js, putting
si := 2pi − qi + 1 for i = 1, . . . n, and Js := Iap − Ibq . Then

Cn (a)− Cn (b) =
⋃

s∈{0,1,2,3}n

Js

and |Js| = dn + gn for s ∈ {0, 1, 2, 3}n. Observe that

J0 = Ia0 − Ib1 = [−1,−1 + d1 + g1],

J1 = Ia0 − Ib0 = [−g1, d1],

J2 = Ia1 − Ib1 = [−d1, g1],

J3 = Ia1 − Ib0 = [1− d1 − g1, 1].
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Moreover, if for some n ∈ N and s ∈ {0, 1, 2, 3}n we have Js = Iap − Ibq , then

Jsˆ0 = Iapˆ0 − Ibqˆ1 = [l(Iap ), l(I
a
p ) + dn+1]− [r(Ibq)− gn+1, r(I

b
q)]

= [l(Js), l(Js) + dn+1 + gn+1],

Jsˆ1 = Iapˆ0 − Ibqˆ0 = [l(Iap ), l(I
a
p ) + dn+1]− [l(Ibq ), l(I

b
q) + gn+1]

= [l(Js) + gn − gn+1, r(Js)− dn + dn+1],

Jsˆ2 = Iapˆ1 − Ibqˆ1 = [r(Iap )− dn+1, r(I
a
p )]− [r(Ibq)− gn+1, r(I

b
q)]

= [l(Js) + dn − dn+1, r(Js)− gn + gn+1],

Jsˆ3 = Iapˆ1 − Ibqˆ0 = [r(Iap )− dn+1, r(I
a
p )]− [l(Ibq), l(I

b
q) + gn+1]

= [r(Js)− dn+1 − gn+1, r(Js)].

Put J∅ = Ia∅ −Ib∅ = [−1, 1] and observe that the above formulas remain true for n = 0
and s = ∅.

Lemma 2.3. For any a ∈ (0, 1)N, n, k ∈ N ∪ {0}, where n > k, we have dn −
dn+1 < dk − dk+1.

Proof. It suffices to show that dn − dn+1 < dn−1 − dn, for n > 1, or equivalently
2dn − dn+1 < dn−1. Dividing both sides of the last inequality by dn−1, we get

1− an −
(1− an)(1− an+1)

4
< 1,

which holds for all n. �

Lemma 2.4. Assume that a = (an) ∈ (0, 1)N, b = (bn) ∈ (0, 1)N, n ∈ N ∪ {0}
and s ∈ {0, 1, 2, 3}n. The following equivalences hold:

(1) gn
dn

≥ an+1 ⇔ l (Jsˆ2) ≤ r (Jsˆ1);

(2) dn
gn

≥ bn+1 ⇔ l (Jsˆ1) ≤ r (Jsˆ2);

(3)
(

dn
gn

≥ bn+1 and gn
dn

≥ an+1

)
⇔ Jsˆ1 ∩ Jsˆ2 6= ∅;

(4) dn+1

gn
≥ bn+1 ⇔ Jsˆ0 ∩ Jsˆ1 6= ∅ ⇔ Jsˆ2 ∩ Jsˆ3 6= ∅;

(5) gn+1

dn
≥ an+1 ⇔ Jsˆ0 ∩ Jsˆ2 6= ∅ ⇔ Jsˆ1 ∩ Jsˆ3 6= ∅.

Proof. Ad (1) We have

r (Jsˆ1)− l (Jsˆ2) = r(Js)− dn + dn+1 − l(Js)− dn + dn+1

= dn + gn − 2dn + 2dn+1 = gn − dn + 2dn+1.

Hence l (Jsˆ2) ≤ r (Jsˆ1) if and only if gn − dn + 2dn+1 ≥ 0, which is equivalent to
gn
dn

≥ an+1.
Ad (2) The proof is analogous to that of (1).
Ad (3) The assertion follows from (1), (2) and the equivalence

(l (Jsˆ2) ≤ r (Jsˆ1) and l (Jsˆ1) ≤ r (Jsˆ2)) ⇔ Jsˆ1 ∩ Jsˆ2 6= ∅.

Ad (4) Of course, Jsˆ0 ∩ Jsˆ1 6= ∅ if and only if r(Jsˆ0) ≥ l(Jsˆ1). We have

r(Jsˆ0)− l(Jsˆ1) = l(Js) + dn+1 + gn+1 − l(Js)− gn + gn+1 = dn+1 + 2gn+1 − gn.

Thus, Jsˆ0 ∩ Jsˆ1 6= ∅ if and only if dn+1 + 2gn+1 − gn ≥ 0, which is equivalent to
dn+1

gn
≥ bn+1.

The equivalence Jsˆ0 ∩ Jsˆ1 6= ∅ ⇔ Jsˆ2 ∩ Jsˆ3 6= ∅ follows from the equality

r (Jsˆ0)− l (Jsˆ1) = dn+1 + 2gn+1 − gn = r (Jsˆ2)− l (Jsˆ3) .
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Ad (5) The proof is similar to that of (4). �

Lemma 2.5. Assume that a = (an) ∈ (0, 1)N, b = (bn) ∈ (0, 1)N and n ∈ N∪{0}.
If

dn
gn

≥ bn+1 and
gn
dn

≥ an+1, and

(
dn+1

gn
≥ bn+1 or

gn
dn

≥ an+1

)
,

then Cn+1 (a)− Cn+1 (b) = Cn (a)− Cn (b).

Proof. Let s ∈ {0, 1, 2, 3}n. From Lemma 2.4 we infer that

Jsˆ1 ∩ Jsˆ2 6= ∅ and Jsˆ0 ∩ Jsˆ1 6= ∅ and Jsˆ2 ∩ Jsˆ3 6= ∅

or
Jsˆ1 ∩ Jsˆ2 6= ∅ and Jsˆ0 ∩ Jsˆ2 6= ∅ and Jsˆ1 ∩ Jsˆ3 6= ∅.

In both cases we have Jsˆ0 ∪ Jsˆ1 ∪ Jsˆ2 ∪ Jsˆ3 = Js. Hence

Cn (a)− Cn (b) =
⋃

s∈{0,1,2,3}n

Js =
⋃

s∈{0,1,2,3}n

(Jsˆ0 ∪ Jsˆ1 ∪ Jsˆ2 ∪ Jsˆ3)

=
⋃

t∈{0,1,2,3}n+1

Jt = Cn+1 (a)− Cn+1 (b) . �

We need one more useful lemma. The proof can be found in [8, Proposition 1.1.
(9)].

Lemma 2.6. For any nonincreasing sequences (An) and (Bn) of compact subsets

of R we have ⋂

n∈N

An −
⋂

n∈N

Bn =
⋂

n∈N

(An − Bn).

In particular, for any a, b ∈ (0, 1)N we have

C(a)− C(b) =
⋂

n∈N

(Cn(a)− Cn(b)).

Now, we can prove the main theorem of this section.

Theorem 2.7. Let a = (an) ∈ (0, 1)N, b = (bn) ∈ (0, 1)N.

(1) If for any n ∈ N ∪ {0}

(∗)
gn+1

dn
≥ an+1 or

dn+1

gn
≥ bn+1

and

(∗∗)
dn
gn

≥ bn+1 and
gn
dn

≥ an+1,

then C(a)− C(b) = [−1, 1].
(2) If conditions (∗) and (∗∗) hold for sufficiently large n, then C(a)− C(b) is a

finite union of closed intervals.

(3) If C(a)− C(b) = [−1, 1], then condition (∗) holds for all n ∈ N ∪ {0}.
(4) If C(a) − C(b) is a finite union of closed intervals, then condition (∗) holds

for sufficiently large n.

Proof. Ad (1)–(2) Assume that there is n0 ∈ N such that conditions (∗) and (∗∗)
hold for all n ≥ n0. From Lemma 2.5 it follows that

Cn (a)− Cn (b) = Cn0 (a)− Cn0 (b)
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for n ≥ n0, and thus

C (a)− C (b) =
⋂

n∈N

(Cn (a)− Cn (b)) = Cn0 (a)− Cn0 (b) =
⋃

s∈{0,1,2,3}n0

Js,

so C (a)−C (b) is a finite union of closed intervals. If n0 = 0, that is, conditions (∗)
and (∗∗) hold for all n, then C (a)− C (b) = C0 (a)− C0 (b) = [−1, 1] .

Ad (3) Assume on the contrary that condition (∗) does not hold for some n ∈
N ∪ {0}. Let s := 0(n). From Lemma 2.4 it follows that Jsˆ0 ∩ Jsˆ1 = ∅ and
Jsˆ0 ∩ Jsˆ2 = ∅. Put L := min{l (Jsˆ1) , l (Jsˆ2)}. Of course, L > r (Jsˆ0) = r (J0(n+1)).
Let x ∈ (r (J0(n+1)) , L). Since C(a) − C(b) = [−1, 1], there exists a sequence u ∈
{0, 1, 2, 3}n+1 such that x ∈ Ju. Then u /∈ {sˆi : i = 0, 1, 2, 3}, so uk > 0 for some
k ≤ n. In consequence, x ≥ l (J0(k−1)ˆ1) or x ≥ l (J0(k−1)ˆ2). Using Lemma 2.3, in the
first case we get

L > x ≥ l (J0(k−1)ˆ1) = −1 + gk−1 − gk > −1 + gn − gn+1 = l (Jsˆ1) ≥ L,

a contradiction. In the second case, a contradiction is obtained similarly.
Ad (4) Assume on the contrary that (∗) does not hold for infinitely many n ∈ N,

and C(a) − C(b) is a finite union of closed intervals. Then there exists w > 0 such
that [−1,−1+w] ⊂ C(a)−C(b). Let n ∈ N be such that condition (∗) does not hold
and w > dn+gn = r (J0(n))+1. Let s := 0(n). Then Js ⊂ [−1,−1+w] ⊂ C(a)−C(b).
The rest of the proof is the same as in (3). �

The next example shows that the above theorem gives examples of Cantor sets
whose algebraic difference is the interval [−1, 1], despite not satisfying assumptions
of the Newhouse gap lemma.

Example 1. Let a = (1
2
, 1
4
, 1
2
, 1
4
, . . . ), b = (1

4
, 1
2
, 1
4
, 1
2
, . . . ). Then for n ∈ N ∪ {0}

we have
d2n
g2n

=
(1
4
· 3
8
)n

(3
8
· 1
4
)n

= 1,
d2n+1

g2n+1

=
(1
4
· 3
8
)n · 1

4

(3
8
· 1
4
)n · 3

8

=
2

3
.

Hence for all n ∈ N,

g2n
d2n−1

=
g2n−1

d2n−1
·
1− b2n

2
=

3

2
·
1

4
=

3

8
> a2n,

d2n−1

g2n−2
=

d2n−2

g2n−2
·
1− a2n−1

2
= 1 ·

1

4
= b2n−1,

bn <
2

3
≤

dn−1

gn−1
, an < 1 ≤

gn−1

dn−1
.

Therefore, conditions (∗) and (∗∗) hold for every n ∈ N∪{0}, so C(a)−C(b) = [−1, 1].
Moreover, observe that for any n ∈ N, an+1 <

2an
1−an

and bn+1 <
2bn
1−bn

. So, by Lemma
2.1, τ(C(a)) = τ(C(b)) = min{1

2
, 3
2
} = 1

2
, and thus τ(C(a)) · τ(C(b)) = 1

4
< 1, so the

sufficient condition from the Newhouse gap lemma does not hold.

Actually, using similar reasoning as in the example above, we can prove the
more general result. Prof. Franciszek Prus-Wiśniowski asked the question if for any
ε > 0 there exist sequences a, b ∈ (0, 1)N such that τ(C(a)) · τ(C(b)) ≤ ε and
C(a)−C(b) = [−1, 1]. The following proposition provides a positive answer for that
question.

Proposition 2.8. Let ε > 0. Then there exist sequences a, b ∈ (0, 1)N such that

τ(C(a)) · τ(C(b)) ≤ ε and C(a)− C(b) = [−1, 1].
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Proof. We will define sequences a = (a1, a2, . . . ), b = (b1, b2, . . . ) ∈ (0, 1)N. Put
a1 := 1

3
, b1 := 1

3
. Of course, a1, b1 ∈ (0, 1). We have d0 = g0 = 1, so (∗∗) holds for

n = 0. Moreover,
d1
g0

= d1 =
1− a1

2
=

1

3
= b1,

thus (∗) also holds for n = 0.
Put a2 :=

1
2ε+1

, b2 := ε
2ε+1

. Then,

g1
d1

= 1 > a2

and
d1
g1

>
d2
g1

=
1− a2

2
=

1− 1
2ε+1

2
=

ε

2ε+ 1
= b2,

therefore (∗) and (∗∗) hold for n = 1. Now, suppose that for some n ≥ 2 we have
defined ai, bi ∈ (0, 1), for i ≤ n in such a way that conditions (∗) and (∗∗) hold for
i ≤ n − 1. Choose bn+1 ∈ (0, 1) such that bn+1 ≤

dn
gn

and bn+1 ≤
2bn
1−bn

. Then, choose
an+1 ∈ (0, 1) such that an+1 ≤

gn+1

dn
and an+1 ≤

2an
1−an

. Since gn+1

dn
≤ gn

dn
, conditions (∗)

and (∗∗) are satisfied for n.
This way we have inductively constructed sequences a, b ∈ (0, 1)N for which

conditions (∗) and (∗∗) are satisfied for any n ∈ N∪{0}. Hence C(a)−C(b) = [−1, 1].
In the same time we have an+1 ≤ 2an

1−an
and bn+1 ≤ 2bn

1−bn
for all n ∈ N (for n = 1,

2a1
1−a1

= 2bn
1−a1

= 1). Hence

τ(C(a)) = inf
n∈N

1− an
2an

≤
1− a2
2a2

=
1− 1

2ε+1
2

2ε+1

= ε,

τ(C(b)) = inf
n∈N

1− bn
2bn

≤
1− b1
2b1

=
1− 1

3
2
3

= 1,

so
τ(C(a)) · τ(C(b)) ≤ ε. �

The characterization of the cases when the set C(a)−C(a) is the interval [−1, 1]
or a finite union of closed intervals has been already proved with use of various
methods (see [2, 8, 16]). However, this result also easily follows from Theorem 2.7.

Corollary 2.9. Let a = (an) ∈ (0, 1)N. Then C(a)− C(a) is equal to:

(1) the interval [−1, 1] if and only if an ≤ 1
3

for all n ∈ N;

(2) a finite union of closed intervals if and only if the set {n ∈ N : an > 1
3
} is

finite.

Proof. For any n we have dn
gn

= dn
dn

= 1 and an < 1, so condition (∗∗) holds for
all n ∈ N ∪ {0}. Since dn

dn−1
= 1−an

2
, the inequality dn

dn−1
≥ an is equivalent to an ≤ 1

3
.

From Theorem 2.7 we obtain the assertion. �

In the end of this section let us recall the notion of the Hausdorff dimension (see
[7]). For s > 0, the s-dimensional Hausdorff measure of a set E ⊂ R is defined by
the formula Hs(E) := limδ→0+ Hs

δ (E) where

Hs
δ (E) := inf

{
∞∑

i=1

(diam Ii)
s : E ⊂

∞⋃

i=1

Ii, diam Ii ≤ δ

}
.
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The Hausdorff dimension of E is then given by the formula

dimH(E) := sup{s > 0: Hs(E) > 0} = inf{s > 0: Hs(E) < ∞}.

The determination of the exact Hausdorff measure of various types of Cantor sets or
their sum is an important problem, investigated by many authors (see e.g. [24, 10,
20]). For a central Cantor set we have the formula for its Hausdorff dimension, given
by Kardos.

Theorem 2.10. [13] The Hausdorff dimension of a symmetric Cantor set C(a)
is equal to

lim inf
n→∞

n ln 2

− ln dn
.

Let C(a) and C(b) be the middle-α and middle-β Cantor sets, respectively.

In [21] the authors proved that if ln 1−α
2

ln 1−β

2

is irrational, then dimH(C(a) + C(b)) =

min{dimH(C(a)) + dimH(C(b)), 1}. The following result shows that this is not gen-
erally true for arbitrary central Cantor sets.

Proposition 2.11. There are sequences a, b ∈ (0, 1)N such that C(a) − C(b) =
[−1, 1] and dimH(C(a)) = dimH(C(b)) = 0.

Proof. We will define sequences a and b inductively. First, let a1 = 1 − 2
22

= 1
2

and b1 =
1−a1
2

. Then a1 < 1 = g0
d0

and b1 =
d1
g0
, so conditions (∗) and (∗∗) are satisfied

for n = 0. Suppose that for some n, k ∈ N we have defined ai, bi for i ≤ n in such a
way that conditions (∗) and (∗∗) are satisfied for all i < n and an ≥ 1− 2

dn−1·2n·2k
. We

will define terms an+i, bn+i for i ∈ N, until we can choose bn+j ≥ 1− 2

gn+j−1·2(n+j)·2k+1

for some j ∈ N. If dn
gn

≥ 1, then put bn+1 = 1 − 2

gn·2(n+1)·2k+1 . If dn
gn

< 1, then put

bn+1 =
dn
gn

. Choose an+1 < bn+1 such that an+1 ≤
gn+1

dn
. Observe that

dn+1

gn+1
=

dn
gn

·
1− an+1

1− bn+1
>

dn
gn

.

If dn+1

gn+1
≥ 1, then put bn+2 = 1 − 2

gn+1·2(n+2)·2k+1 . If dn+1

gn+1
< 1, then put bn+2 = dn+1

gn+1
.

Choose an+2 < an+1 < bn+1 < bn+2 such that an+2 ≤
gn+2

dn+1
. Repeating this procedure,

we find j ∈ N such that dn+j

gn+j
≥ 1. Indeed, observe that a sequence

(
1−an+i

1−bn+i

)
i

is
increasing with terms greater than 1, thus there is j ∈ N such that

dn+j

gn+j

=
dn
gn

·
1− an+1

1− bn+1

· · · · ·
1− an+j

1− bn+j

≥ 1.

Put bn+j+1 = 1 − 2

gn+j ·2(n+j+1)·2k+1 and an+j+1 =
gn+j+1

dn+j
. Since dn+j

gn+j
≥ 1, we have

bn+j+1 <
dn+j

gn+j
. So, because bn+i ≤

dn+i−1

gn+i−1
and an+i ≤

gn+i

dn+i−1
for i ≤ j + 1, conditions

(∗) and (∗∗) hold for 0, 1, . . . , n+ j.
Now, we analogously define ai, bi for i ∈ {n + j + 2, n + j + 3, . . . , m}, where m

is sufficiently large, in such a way that gm−1

dm−1
≥ 1, bi ≤ di

gi−1
for n + j + 1 < i ≤ m,

ai =
gi−1

di−1
for n+ j + 1 < i < m and am = 1− 2

dm−1·2m·2k+1 .

We have defined inductively sequences a and b ∈ (0, 1)N such that (∗) and (∗∗)
hold for n ∈ N ∪ {0} and for every N, k ∈ N there are m, j ≥ N such that am ≥
1− 2

dm−1·2m·2k
and bj ≥ 1− 2

gj−1·2j·2
k .
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If an ≥ 1− 2

dn−1·2n·2k
, then

n · ln 2

− ln dn
=

n · ln 2

ln 2
dn−1(1−an)

≤
n · ln 2

ln 2n·2k
= log

2n·2k 2n =
1

2k
.

Therefore, for any k ∈ N

dimH(C(a)) = lim inf
n→∞

n · ln 2

− ln dn
≤

1

2k
,

and so dimH(C(a)) = 0. Similarly, dimH(C(b)) = 0. �

3. Equivalent condition for the algebraic difference

of central Cantor sets to be an interval

Theorem 2.7 from the previous section is useful, but it does not give us an equiv-
alent condition for the algebraic difference of central Cantor sets to be an interval.
The condition (∗∗) is not necessary. For instance, it cannot be satisfied for all n if
C(a) and C(b) are different middle Cantor sets and we know from the Newhouse gap
lemma that their difference can be an interval for some proper constant sequences a
and b. In this section we will introduce another condition, which will then let us give
the characterization of the case, when the algebraic difference of central Cantor sets
is an interval.

First, we introduce some new notation. Take a, b ∈ (0, 1)N. To consider less
cases, we will sometimes use symbols 1̂ and 2̂ instead of 1 and 2 in sequences with
elements from the set {0, 1, 2, 3}. If 1̂ appears on the n-th place of a sequence, then
it is equal to 1 if gn−1− gn ≤ dn−1−dn or it is equal to 2 otherwise. Then, 2̂ = 3− 1̂.
That is, 1̂ is equal to 1 and 2̂ = 2 if l(Jsˆ1) ≤ l(Jsˆ2) for any s ∈ {0, 1, 2, 3}n−1.
Otherwise, 1̂ = 2 and 2̂ = 1. We will use a standard arithmetic on the set {0, 1̂, 2̂, 3}.
In particular, 0 + 1̂ = 1̂, 1̂ + 1̂ = 2̂ and 2̂ + 1̂ = 3. Also put

Ln := min{dn−1 − dn, gn−1 − gn}

and
Mn := max{dn−1 − dn, gn−1 − gn}.

So,
l(Jsˆ1̂) = l(Js) + Ln = l(Jsˆ0) + Ln

and
l(Jsˆ2̂) = l(Js) +Mn.

Moreover,

l(Jsˆ3) = r(Js)−dn+1−gn+1 = l(Js)+dn+gn−dn+1−gn+1 = l(Js)+Ln+Mn = l(Jsˆ2̂)+Ln.

Now, suppose that for some n ∈ N condition (∗) is satisfied, but (∗∗) is not. Then,
by Lemma 2.4, for any s ∈ {0, 1, 2, 3}n we have Jsˆ1 ∩ Jsˆ2 = ∅. Also Jsˆ0 ∩ Jsˆ1̂ 6= ∅
and Jsˆ2̂ ∩ Jsˆ3 6= ∅. This way there appears a gap (r(Jsˆ1̂), l(Jsˆ2̂)) in Js. We will
denote it by Gs. So,

Gs = (l(Js) + Ln+1 + dn+1 + gn+1, l(Js) +Mn+1).

Proposition 3.1. Assume that a ∈ (0, 1)N, b ∈ (0, 1)N and n ∈ N ∪ {0}. If

condition (∗) holds for n and

(∗ ∗ ∗) ∃m∈N∪{0},m≤n

{
∀k∈N∪{0},k<m

∑k

i=0 Ln+1−i + gn+1 + dn+1 ≥ Ln−k,∑m

i=0 Ln+1−i + gn+1 + dn+1 ≥ Mn+1,
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then Cn+1 (a)− Cn+1 (b) = Cn (a)− Cn (b).

Proof. Assume that (∗) and (∗ ∗ ∗) hold for n. If m from (∗ ∗ ∗) is equal to 0,
then we have

Ln+1 + gn+1 + dn+1 ≥ Mn+1,

that is, for any s ∈ {0, 1, 2, 3}

l(Js) + Ln+1 + gn+1 + dn+1 ≥ l(Js) +Mn+1,

so
l(Jsˆ1̂) + gn+1 + dn+1 ≥ l(Jsˆ2̂).

Hence
r(Jsˆ1̂) ≥ l(Jsˆ2̂),

which means that Jsˆ1 ∩ Jsˆ2 6= ∅ and this is equivalent to (∗∗), by Lemma 2.4.
Therefore, we have the assertion.

Now, suppose that m > 0. Of course, Cn+1(a) − Cn+1(b) ⊂ Cn(a) − Cn(b) =⋃
s∈{0,1,2,3}n Js. From Lemma 2.4 we infer that for any s ∈ {0, 1, 2, 3}n

Jsˆ0 ∩ Jsˆ1̂ 6= ∅ and Jsˆ2̂ ∩ Jsˆ3 6= ∅.

Hence
Js = Jsˆ0 ∪ Jsˆ1 ∪ Jsˆ2 ∪ Jsˆ3 ∪Gs.

By the definition, Jsˆ0∪Jsˆ1∪Jsˆ2∪Jsˆ3 ⊂ Cn+1(a)−Cn+1(b). So, to finish the proof,
we need to show that Gs ⊂ Cn+1(a)−Cn+1(b) for any s ∈ {0, 1, 2, 3}n. First, we will
inductively prove that for every k ∈ {1, 2, . . . , m} we have

(
l(Gtˆj1ˆj2ˆ...ˆjk), l(Jtˆj1ˆj2ˆ...ˆjk) +

k∑

i=0

Ln+1−i + gn+1 + dn+1

]

⊂ Cn+1(a)− Cn+1(b)

(3.1)

for all t ∈ {0, 1, 2, 3}n−k and j1, j2, . . . , jk ∈ {0, 2̂}.
By (∗ ∗ ∗), we have

Ln+1 + gn+1 + dn+1 ≥ Ln.

Hence for any t ∈ {0, 1, 2, 3}n−1

l(Jt) + Ln+1 + gn+1 + dn+1 ≥ l(Jt) + Ln,

so
l(Gtˆ0) ≥ l(Jtˆ1̂ˆ0).

Also
l(Jt) +Mn + Ln+1 + gn+1 + dn+1 ≥ l(Jt) + Ln +Mn,

so
l(Gtˆ2̂) ≥ l(Jtˆ3ˆ0).

Since (∗) holds for n, we know that [l(Jtˆ(j+1̂)ˆ0), r(Jtˆ(j+1̂)ˆ1̂] ⊂ Cn+1(a) − Cn+1(b),

where j ∈ {0, 2̂}. Thus,

(l(Gtˆj), l(Jtˆj) + Ln + Ln+1 + dn+1 + gn+1] = (l(Gtˆj), r(Jtˆ(j+1̂)ˆ1̂]

⊂ [l(Jtˆ(j+1̂)ˆ0), r(Jtˆ(j+1̂)ˆ1̂] ⊂ Cn+1(a)− Cn+1(b),

which proves that (3.1) is satisfied for k = 1.
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Now, suppose that (3.1) is satisfied for some k < m. Then, by (∗ ∗ ∗)

k∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Ln−k,

and therefore for any t ∈ {0, 1, 2, 3}n−k−1 and j1, j2, . . . , jk+1 ∈ {0, 2̂} we have

l(Jtˆj1ˆj2ˆ...ˆjk+1
) +

k∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ l(Jtˆj1ˆj2ˆ...ˆjk+1
) + Ln−k

= l(Jtˆ(j1+1̂)ˆj2...ˆjk+1
).

Since (∗) holds for n we have
[
l(Jtˆ(j1+1̂)ˆj2...ˆjk+1ˆ0

), r(Jtˆ(j1+1̂)ˆj2...ˆjk+1ˆ1̂
)
]
⊂ Cn+1(a)− Cn+1(b).

Moreover, since (3.1) is satisfied for k, we have
(
l(Gtˆ(j1+1̂)ˆj2ˆ...ˆjk+1

), l(Jtˆ(j1+1̂)ˆj2ˆ...ˆjk+1
) +

k∑

i=0

Ln+1−i + gn+1 + dn+1

]

⊂ Cn+1(a)− Cn+1(b)

and(
l(Gtˆj1ˆj2ˆ...ˆjk+1

), l(Jtˆj1ˆj2ˆ...ˆjk+1
) +

k∑

i=0

Ln+1−i + gn+1 + dn+1

]
⊂ Cn+1(a)−Cn+1(b).

Because

l(Jtˆj1ˆj2ˆ...ˆjk+1
) +

k∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ l(Jtˆ(j1+1̂)ˆj2...ˆjk+1
)

and
l(Jtˆ(j1+1̂)ˆj2ˆ...ˆjk+1

) = l(Jtˆj1ˆj2ˆ...ˆjk+1
) + Ln−k,

we obtain(
l(Gtˆj1ˆj2ˆ...ˆjk+1

), l(Jtˆj1ˆj2ˆ...ˆjk+1
) +

k+1∑

i=0

Ln+1−i + gn+1 + dn+1

]
⊂ Cn+1(a)−Cn+1(b).

By induction, (3.1) holds for all k ≤ m.
By (∗ ∗ ∗),

m∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Mn+1.

Hence for any t ∈ {0, 1, 2, 3}n−m and all j1, j2, . . . , jm ∈ {0, 2̂} we have

l(Jtˆj1ˆ...ˆjm) +

m∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ l(Jtˆj1ˆ...ˆjm) +Mn+1 = r(Gtˆj1ˆ...ˆjm).

Therefore, knowing that (3.1) holds for m, we get

Gtˆj1ˆ...ˆjm ⊂

(
l(Gtˆj1ˆj2ˆ...ˆjm), l(Jtˆj1ˆj2ˆ...ˆjm) +

m∑

i=0

Ln+1−i + gn+1 + dn+1

]

⊂ Cn+1(a)− Cn+1(b).
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Similarly, we prove that for any k ≤ m, t ∈ {0, 1, 2, 3}n−m and all j1, j2, . . . , jm ∈
{1̂, 3},
[
r(Jtˆj1ˆj2ˆ...ˆjk)−

k∑

i=0

Ln+1−i − gn+1 − dn+1, r(Gtˆj1ˆj2ˆ...ˆjk)

)
⊂ Cn+1(a)− Cn+1(b)

and thus, using (∗ ∗ ∗), we obtain

Gtˆj1ˆ...ˆjm ⊂ Cn+1(a)− Cn+1(b).

Now, we will show that for any s ∈ {0, 1, 2, 3}n, Gs ⊂ Cn+1(a) − Cn+1(b). For
s ∈ {0, 1, 2, 3}n put Ns := max{i ≤ n : si ∈ {1̂, 3}} if sn ∈ {0, 2̂} or Ns := max{i ≤
n : si ∈ {0, 2̂}} if sn ∈ {1̂, 3}. If {i ≤ n : si ∈ {1̂, 3}} = ∅ or {i ≤ n : si ∈ {0, 2̂}} = ∅,
then we put Ns := 0. Using induction with respect to Ns, we will prove that if
Ns ≥ 0, then Gs ⊂ Cn+1(a)− Cn+1(n). If Ns ≤ n−m, then we have already proved
that Gs ⊂ Cn+1(a)−Cn+1(b). Assume that for some k ≥ n−m we have proved that
if Ns ≤ k, then Gs ⊂ Cn+1(a)−Cn+1(b). Let s ∈ {0, 1, 2, 3}n be such that Ns = k+1.
Suppose that sn ∈ {0, 2̂} (the proof when sn ∈ {1̂, 3} is similar). By (3.1), we have

(
l(Gs), l(Js) +

n−k−1∑

i=0

Ln+1−i + gn+1 + dn+1

]
⊂ Cn+1(a)− Cn+1(b).

Observe that

l(Js) +

n−k−1∑

i=0

Ln+1−i + gn+1 + dn+1 = r(Jtˆ1̂) = l(Gt),

where t = (s|(k + 1))ˆ(sk+2 + 1̂)ˆ . . . ˆ(sn + 1̂). Since tk+1 = sk+1 ∈ {1̂, 3}, we have
Nt ≤ k. Therefore, by induction hypothesis, Gt ⊂ Cn+1(a)− Cn+1(b). Hence

Gs ⊂ (l(Gs), l(Gt)] ∪Gt ⊂ Cn+1(a)− Cn+1(b).

By induction, Gs ⊂ Cn+1(a) − Cn+1(b) for any s ∈ {0, 1, 2, 3}n, which finishes the
proof. �

Lemma 3.2. Assume that a ∈ (0, 1)N, b ∈ (0, 1)N, n ∈ N. Then there is

m ∈ N ∪ {0}, m ≤ n such that

(3.2)
m∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Mn+1.

Proof. Without loss of generality assume that Mn+1 = gn − gn+1. If there is
k ∈ {0, 1, . . . , n} such that Ln+1−k = gn−k − gn−k+1, then, by Lemma 2.3, Ln+1−k ≥
Mn+1, so (3.6) holds for m = k. If there is no such k, then Li = di−1 − di for all
i ≤ n+ 1. Therefore,

n∑

i=0

Ln+1−i + dn+1 + gn+1 = d0 − d1 + d1 − d2 + · · ·+ dn − dn+1 + dn+1 + gn+1

= d0 + gn+1 > 1 > gn − gn+1 = Mn+1,

so (3.2) holds for m = n. �

Lemma 3.3. Assume that a ∈ (0, 1)N, b ∈ (0, 1)N. For all n, k ∈ N such that

n < k we have Ln > Lk and Mn > Mk.
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Proof. It suffices to show that for all n ∈ N we have Ln+1 < Ln and Mn+1 < Mn.
Without loss of generality assume that Ln = dn−1−dn. If Ln+1 = dn−dn+1, then the
assertion follows from Lemma 2.3. Suppose that Ln+1 = gn − gn+1. Then we have

Ln+1 = gn − gn+1 ≤ dn − dn+1 < dn−1 − dn = Ln

and

Mn+1 = dn − dn+1 < dn−1 − dn ≤ gn−1 − gn = Mn,

which finishes the proof. �

Now, we can prove the main theorem of this section.

Theorem 3.4. Assume that a ∈ (0, 1)N, b ∈ (0, 1)N. Then

(1) C(a) − C(b) = [−1, 1] if and only if conditions (∗) and (∗ ∗ ∗) hold for all

n ∈ N ∪ {0},
(2) C(a)− C(b) is a finite union of closed intervals if and only if there is n0 ≥ 0

such that conditions (∗) and (∗ ∗ ∗) hold for all n ≥ n0.

Proof. Ad (1)–(2) “⇐” Assume that there is n0 ∈ N such that conditions (∗) and
(∗ ∗ ∗) hold for all n ≥ n0. From Proposition 3.1 it follows that

Cn (a)− Cn (b) = Cn0 (a)− Cn0 (b)

for n ≥ n0, and thus

C (a)− C (b) =
⋂

n∈N

(Cn (a)− Cn (b)) = Cn0 (a)− Cn0 (b) =
⋃

s∈{0,1,2,3}n0

Js,

so C (a)−C (b) is a finite union of closed intervals. If n0 = 0, that is, conditions (∗)
and (∗ ∗ ∗) hold for all n, then C (a)− C (b) = C0 (a)− C0 (b) = [−1, 1] .

Ad (1) “⇒” Suppose that C(a)−C(b) = [−1, 1]. By Theorem 2.7, we know that
(∗) holds for all n ∈ N∪{0}. Suppose that (∗∗∗) does not hold for some n ∈ N∪{0}.
Take minimal m ∈ {0, 1, . . . , n} such that

m∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Mn+1.

We know that it exists from Lemma 3.2. Since (∗ ∗ ∗) does not hold, we have m > 0
and there is k ∈ N ∪ {0}, k < m such that

k∑

i=0

Ln+1−i + gn+1 + dn+1 < Ln−k.

By the minimality of m, we also have

k∑

i=0

Ln+1−i + gn+1 + dn+1 < Mn+1.

Put K := min{−1 +Mn+1,−1 + Ln−k} = min{r(Gt), l(J0(n−k−1)ˆ1̂)}. Take

x ∈

(
−1 +

k∑

i=0

Ln+1−i + gn+1 + dn+1, K

)
.
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Observe that

l(G0(n)) = −1 + Ln+1 + dn+1 + gn+1 ≤ −1 +

k∑

i=0

Ln+1−i + gn+1 + dn+1

< x < K ≤ −1 +Mn+1 = r(G0(n)),

so x ∈ G0(n) . By the assumption, x ∈ Cn+1(a)−Cn+1(b), so there is t ∈ {0, 1, 2, 3}n+1

such that x ∈ Jt. Since x ∈ G0(n) and

x > −1 +
k∑

i=0

Ln+1−i + gn+1 + dn+1 = r(J0(n−k)ˆ1̂(k+1)),

there is either j ≤ n− k such that tj > 0 or there is j ≤ n such that tj = 2̂ or tj = 3.
Observe that the former case is impossible. Indeed, if tj = 2̂ or tj = 3, then, by
Lemma 3.3,

x ≥ l(Jt) ≥ −1 +Mj > −1 +Mn+1 > x,

a contradiction. So, there is j ≤ n− k such that tj > 0. Hence

x ≥ l(Jt) ≥ −1 + Lj ≥ −1 + Ln−k ≥ K > x,

a contradiction. Therefore, (∗ ∗ ∗) holds for all n ∈ N ∪ {0}.
Ad (2) “⇒” Suppose that C(a) − C(b) is a finite union of intervals. So, there

is w > 0 such that [−1,−1 + w] ⊂ C(a) − C(b). By Theorem 2.7, we know that
there is k ≥ 0 such that (∗) holds for all n ≥ k. Suppose that (∗ ∗ ∗) does not
hold for infinitely many n. Choose n ∈ N such that (∗ ∗ ∗) does not hold for n and
J0(n) ⊂ [−1,−1+w]. The rest of the proof is identical as in the part Ad (1) “⇒”. �

The next result shows that the condition from Newhouse gap lemma is not only
sufficient, but it is also necessary to obtain an interval as an algebraic difference of
middle-α and middle-β Cantor sets if ln 1−α

2

ln 1−β

2

is irrational. This fact has been already

noticed by Pourbarat in [22].

Corollary 3.5. Let a be a sequence with all terms equal to α and let b be

a sequence with all terms equal to β, where α, β ∈ (0, 1) are such that
ln 1−α

2

ln 1−β

2

is

irrational. Then the following conditions are equivalent:

(i) β ≤ 1−α
1+3α

;

(ii) τ(C(a)) · τ(C(b)) ≥ 1;
(iii) C(a)− C(b) = [−1, 1].

Proof. (i) ⇒ (ii) Since obviously α < 2α
1−α

and β < 2β
1−β

, by Lemma 2.1, we have
τ(C(a)) = 1−α

2α
and τ(C(b)) = 1−β

2β
. Therefore

τ(C(a))·τ(C(b)) =
1− α

2α
·
1− β

2β
≥

1− α

2α
·
1− 1−α

1+3α

2 · 1−α
1+3α

=
1− α

2α
·

4α

1 + 3α
·

1 + 3α

2 · (1− α)
= 1.

(ii) ⇒ (iii) It follows directly from Newhouse gap lemma.
(iii) ⇒ (i) Without loss of generality we can assume that α < β, because

β ≤
1− α

1 + 3α
⇔ α ≤

1− β

1 + 3β
.

Now, observe that for n > 1 we have Ln = gn−1 − gn. Indeed, since β > α, we
have 1−β

1−α
< 1, and so the sequence

(
gn
dn

)
=
(

(1−β)n

(1−α)n

)
is decreasing. Therefore, the
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sequence
(

gn−1−gn
dn−1−dn

)
=
(

gn−1

dn−1
·
1− 1−β

2

1− 1−α
2

)
is is also decreasing and

g1 − g2 =
1− β

2
·

(
1−

1− β

2

)
=

1− β

2
·
1 + β

2
=

1− β2

4
<

1− α2

4
= d1 − d2.

Hence Ln = gn−1 − gn for n ≥ 2.
Now, we will prove

Claim. If for given n ∈ N and k < n− 1

k∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Ln−k,

then also
k−1∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Ln−k+1.

By the assumption, we have
k−1∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Ln−k − Ln+1−k.

Hence it suffices to prove that

Ln−k − Ln+1−k ≥ Ln−k+1.

Since n− k ≥ 2, we have

Ln−k − 2Ln+1−k = gn−k−1 − gn−k − 2gn−k + 2gn−k+1.

After division of the expression above by gn−k−1 we obtain

1− 3 ·
1− β

2
+ 2 ·

(1− β)2

4
=

β

2
+

β2

2
≥ 0,

so
Ln−k − 2Ln+1−k ≥ 0.

Therefore,
k−1∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Ln−k − Ln+1−k,

which finishes the proof of Claim.
Now, we will prove that for any n > 1

(3.3) Ln+1 + gn+1 + dn+1 − gn − dn ≥ Mn+1 −Mn.

Since n > 1, (3.3) is equivalent to

gn − gn+1 + gn+1 + dn+1 − gn − dn ≥ dn − dn+1 − dn−1 + dn,

and so to
dn−1 − 3dn + 2dn+1 ≥ 0.

Dividing the above inequality by dn−1, we receive the inequality

1−
3

2
(1− α) +

1

2
(1− α)2 ≥ 0,

which is satisfied, because (1− α) < 1. This proves (3.3).
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Since C(a) − C(b) = [−1, 1], by Theorem 3.4 condition (∗ ∗ ∗) holds for any n,
that is, there is m ≤ n such that

{
∀k∈N∪{0},k<m

∑k

i=0 Ln+1−i + gn+1 + dn+1 ≥ Ln−k,∑m

i=0 Ln+1−i + gn+1 + dn+1 ≥ Mn+1.

Since Mn+1 → 0, there is K ∈ N such that we have
∑K−1

i=0 LK+1−i + gK+1 + dK+1 ≥
MK+1, (that is, m < n for n = K). Moreover, by (3.3), if

m∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Mn+1,

then
m+1∑

i=0

Ln+2−i+gn+2+dn+2 =

m∑

i=0

Ln+1−i+gn+1+dn+1+Ln+2+gn+2+dn+2−gn+1−dn+1

≥ Mn+1 +Mn+2 −Mn+1 = Mn+2.

Thus, for n ≥ K we may assume that m < n. Moreover, from Claim we infer that if
m−1∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Ln−m+1,

then
k∑

i=0

Ln+1−i + gn+1 + dn+1 ≥ Ln−k

for all k < m. If k < n, then n+ 1− k ≥ 2, so we have
k∑

i=0

Ln+1−i + gn+1 + dn+1 =

k∑

i=0

(gn−i − gn−i+1) + gn+1 + dn+1

= gn − gn+1 + gn−1 − gn + · · ·+ gn−k − gn−k+1 + gn+1 + dn+1 = gn−k + dn+1.

Therefore, condition (∗ ∗ ∗) holds for n ≥ K if and only if there is m < n such that

(3.4)

{
gn−m+1 + dn+1 ≥ gn−m − gn−m+1,

gn−m + dn+1 ≥ dn − dn+1.

We have

gn−m+1 + dn+1 ≥ gn−m − gn−m+1 ⇔ 2 ·
gn−m+1

dn
−

gn−m

dn
+

1− α

2
≥ 0

and

2 ·
gn−m+1

dn
−

gn−m

dn
+

1− α

2

= 2 ·

(
1− β

1− α

)n

·

(
2

1− β

)m−1

−

(
1− β

1− α

)n

·

(
2

1− β

)m

+
1− α

2

=

(
1− β

1− α

)n

·

(
2

1− β

)m

· (1− β − 1) +
1− α

2

= −β ·

(
1− β

1− α

)n

·

(
2

1− β

)m

+
1− α

2
.
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Thus, the first inequality in (3.4) holds if and only if
(

2

1− β

)m

≤
1− α

2β
·

(
1− α

1− β

)n

,

which is equivalent to
(

2

1− β

)m−n

≤
1− α

2β
·

(
1− α

2

)n

and finally it is equivalent to

(3.5)
(

2

1− β

)n−m

≥
2β

1− α
·

(
2

1− α

)n

We also have

gn−m + dn+1 ≥ dn − dn+1 ⇔
gn−m

dn
+ 2 ·

dn+1

dn
− 1 ≥ 0

and
gn−m

dn
+ 2 ·

dn+1

dn
− 1 =

(
1− β

1− α

)n

·

(
2

1− β

)m

+ 1− α− 1.

Hence the second inequality in (3.4) holds if and only if
(

2

1− β

)m

≥ a ·

(
1− α

1− β

)n

,

which is equivalent to

(3.6)
(

2

1− β

)n−m

≤
1

α
·

(
2

1− α

)n

.

We will now show that for any n ≥ K there is m < n satisfying (3.5) and (3.6) only
if

(3.7)
1− α

2αβ
≥

2

1− β
.

Suppose that
1− α

2αβ
<

2

1− β
.

It is well known that if for some c, d ∈ R we know that c
d

is irrational, then the
set {n ·mod d c : n ∈ N} is dense in [0, d). Using this fact for c = ln 2

1−α
and d = ln 2

1−β
,

we get that the set {n ·mod ln 2
1−β

2
1−α

: n ∈ N} is dense in
[
0, ln 2

1−β

)
, and thus also the

set

A :=

{
n ·mod ln 2

1−β

2

1− α
+mod ln 2

1−β
ln

2β

1− α
: n ∈ N

}

is dense in
[
0, ln 2

1−β

)
. Since

1− α

2αβ
<

2

1− β
,

we have 4αβ
(1−α)(1−β)

> 1. Because C(a) − C(b) = [−1, 1], we know by Theorem 2.7

that (∗) is satisfied for n = 0, that is, α = a1 ≤
g1
d0

= 1−β

2
or β = b1 ≤

d1
g0

= 1−α
2

. In
the first case we have

4αβ

(1− α)(1− β)
≤

2β

1− α
<

2

1− β
,
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and in the second case,

4αβ

(1− α)(1− β)
≤

2α

1− β
<

2

1− β
.

Therefore in both cases, 4αβ
(1−α)(1−β)

≤ 2
1−β

. Thus, ln 4αβ
(1−α)(1−β)

∈ (0, ln 2
1−β

). Using
the density of the set A, we find n, k ∈ N (we can choose n ≥ K) such that

n · ln
2

1− α
+ ln

2β

1− α
∈

(
k · ln

2

1− β
, k · ln

2

1− β
+ ln

4αβ

(1− α)(1− β)

)
.

Then
2β

1− α
·

(
2

1− α

)n

∈

((
2

1− β

)k

,

(
2

1− β

)k

·
4αβ

(1− α)(1− β)

)
.

Therefore,
(

2

1− β

)k

<
2β

1− α
·

(
2

1− α

)n

<

(
2

1− β

)k+1

,

but

1

α
·

(
2

1− α

)n

<
1

α
·
1− α

2β
·

4αβ

(1− α)(1− β)
·

(
2

1− β

)k

=

(
2

1− β

)k+1

.

Thus, for n there is no m < n such that both inequalities (3.5) and (3.6) hold, a
contradiction. Therefore, (3.7) is satisfied. Hence

(1− α)(1− β) ≥ 4αβ,

and finally

β ≤
1− α

1 + 3α
. �

From Theorem 3.4 we can also infer the equivalent condition to obtain an interval
as an algebraic difference of middle-α and middle-β Cantor sets if ln 1−α

2

ln 1−β
2

is rational.

This result has been also already proved by Pourbarat in [22].

Corollary 3.6. Let a be a sequence with all terms equal to α and let b be a

sequence with all terms equal to β, where α, β ∈ (0, 1) are such that
ln 1−α

2

ln 1−β

2

= n0

m0
,

where n0, m0 are relatively prime and n0 ≤ m0. Then C(a) − C(b) = [−1, 1] if and

only if there is j ∈ {0, 1, . . . , m0 − 1} such that

(3.8)
(
1− α

2

) j

m0

∈

[
2β

1− α
·

(
1− α

2

) 1
m0

,
1− β

2α

]
.

Proof. In the proof of Corollary 3.5 we have already proved that (∗ ∗ ∗) holds
for n ≥ K, where K is as in that proof, if and only if there is m < n such that
inequalities (3.5) and (3.6) are satisfied. Therefore, to finish the proof we need to
show that

a) for every n ≥ K there is m < n such that inequalities (3.5) and (3.6) hold if
and only if there is j < m0 for which (3.8) is satisfied;

b) (3.8) implies (∗) for all n ∈ N ∪ {0};
c) (3.8) implies that (∗ ∗ ∗) holds for all n < K.
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Ad a) By the assumption, m0 ln
1−α
2

= n0 ln
1−β

2
, and so,

n0 ln
2

1− β
= m0 ln

2

1− α
.

Since n0 ≤ m0, we have α ≤ β. Moreover, for any n ∈ N ∪ {0} we have

n · ln
2

1− α
=mod ln 2

1−β

k

m0
ln

2

1− α

for some k ∈ {0, 1, . . .m0 − 1}. Thus, for every n ∈ {0, 1, . . .m0 − 1} there is
k ∈ {0, 1, . . .m0 − 1} such that

ln
2β

1− α
+mod ln 2

1−β
n ln

2

1− α
∈

[
k

m0
· ln

2

1− α
,
k + 1

m0
· ln

2

1− α

)
.

Observe that (3.8) is satisfied if and only if
(

2

1− α

) j

m0

∈

[
2α

1− β
,
1− α

2β
·

(
2

1− α

) 1
m0

]
,

and so
2β

1− α
·

(
2

1− α

) j
m0

∈

[
4αβ

(1− β)(1− α)
,

(
2

1− α

) 1
m0

]
,

and this equivalent to

ln
2β

1− α
+

j

m0
ln

2

1− α
∈

[
ln

4αβ

(1− β)(1− α)
,
1

m0
ln

2

1− α

]

and finally to

ln
2β

1− α
+mod ln 2

1−β
k · ln

2

1− α
∈

[
ln

4αβ

(1− β)(1− α)
,
1

m0

ln
2

1− α

]

for some k ∈ {0, 1, . . . , m0 − 1}. If β ≤ 1−α
1+3β

, then, by the same argument as in
the proof of Corollary 3.5, C(a) − C(b) = [−1, 1]. So, suppose that β > 1−α

1+3β
.

Then 4αβ
(1−α)(1−β)

> 1, and so ln 4αβ
(1−β)(1−α)

> 0. Hence
[
ln 4αβ

(1−β)(1−α)
, 1
m0

ln 2
1−α

]
⊂

[
0, 1

m0
ln 2

1−α

]
. Of course, there is only one k ∈ {0, . . . , m0 − 1} such that

ln
2β

1− α
+mod ln 2

1−β
k · ln

2

1− α
∈

[
ln

4αβ

(1− β)(1− α)
,
1

m0
ln

2

1− α

)
,

so if (3.8) is satisfied, then for any n ∈ {0, . . . , m0 − 1} we have

ln
2β

1− α
+mod ln 2

1−β
n · ln

2

1− α
≥ ln

4αβ

(1− β)(1− α)
,

and thus for any n ∈ N ∪ {0} there is k ∈ N ∪ {0} such that

4αβ

(1− β)(1− α)
·

(
2

1− β

)k

≤
2β

1− α
·

(
2

1− α

)n

≤

(
2

1− β

)k+1

and
1

α
·

(
2

1− α

)n

=
1− α

2αβ
·

2β

1− α

(
2

1− α

)n

≥
1− α

2αβ
·

4αβ

(1− β)(1− α)
·

(
2

1− β

)k

=

(
2

1− β

)k+1

.
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Therefore, for every n ≥ K there is m < n such that inequalities (3.5) and (3.6) hold.
Now, suppose that (3.8) does not hold, but C(a)−C(b) = [−1, 1]. Then condition

(∗) holds for n = 0, so α = a1 ≤ g1
d0

= 1−β

2
or β = b1 ≤ d1

g0
= 1−α

2
. In both cases we

obtain
4αβ

(1− α)(1− β)
<

2

1− β
.

So, there is j ∈ {0, . . . , m0 − 1} such that

ln
2β

1− α
+mod ln 2

1−β
j · ln

2

1− α
∈

[
0, ln

4αβ

(1− β)(1− α)

)
.

Hence for some k ∈ N ∪ {0}
(

2

1− β

)k

≤
2β

1− α
·

(
2

1− α

)j

<
4αβ

(1− β)(1− α)

(
2

1− β

)k

<

(
2

1− β

)k+1

and
1

α
·

(
2

1− α

)j

≤
1− α

2αβ
·

4αβ

(1− β)(1− α)
·

(
2

1− β

)k

<

(
2

1− β

)k+1

.

Therefore, there for all n = j + i ·m0, where i ∈ N∪ {0} there is no m < n such that
inequalities (3.5) and (3.6) hold, which finishes the proof of a).

Ad b) If τ(C(a)) · τ(C(b)) ≥ 1, then (∗) must be satisfied for all n, because
C(a)− C(b) = [−1, 1]. So, suppose that τ(C(a)) · τ(C(b)) < 1, that is,

(1− α)(1− β)

4αβ
< 1.

Hence
1− α− β < 3αβ,

and so
α >

1− β

1 + 3β
.

If β ≤ 1
3
, then τ(C(b)) = 1−β

2β
≥ 1. Because α < β, then also τ(C(a)) ≥ 1, and so

τ(C(a)) · τ(C(b)) ≥ 1, a contradiction. Hence β > 1
3
. Therefore

(3.9) α >
1− β

1 + 3β
>

1− β

2
.

Denote I =
[

2β
1−α

·
(
1−α
2

) 1
m0 , 1−β

2α

]
. Using again the assumption that τ(C(a))·τ(C(b)) <

1, we obtain that r(I)
l(I)

<
(

2
1−α

) 1
m0 , so there is only one j satisfying (3.8). By (3.9)

1−β

2α
< 1, so j for which (3.8) holds is greater than 0. We have

2β

1− α
·

(
1− α

2

) 1
m0

≤

(
1− α

2

) j

m0

,

and so
2β

1− α
≤

(
1− α

2

)n−1
m0

≤ 1.

Therefore, using the fact that α ≤ β, for any n ∈ N ∪ {0} we have

bn+1 = β ≤
1− α

2
≤

(
1− α

1− β

)n

·
1− α

2
=

dn+1

gn
,

so (∗) is satisfied for all n ∈ N ∪ {0}.
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Ad c) For n = 0, (∗ ∗ ∗) holds always, because

L1 + g1 + d1 = d0 − d1 + g1 + d1 = 1 + g1 ≥ 1 > M1 = g0 − g1 = 1− g1.

By (3.8), we have
1− α

2
≤

1− β

2α
.

Hence
1− β

1− α
+ 1− α ≥ 1,

and so
g1
d1

+
2d2
d1

≥ 1,

and thus
g1 − g2 + g2 + d2 ≥ d1 − d2.

Therefore,
L2 + g2 + d2 ≥ M2,

so (∗ ∗ ∗) holds for n = 1, with m = 0. In particular, m < n for n = 1, so we can put
K = 1, which finishes the proof. �

There are still a lot of open questions left regarding the algebraic difference of
central Cantor sets, but now we know exactly, when it is a finite union of intervals.
Although there are some sufficient conditions for the algebraic difference of central
Cantor sets to be a Cantor set or a Cantorval, it is far from the full characterization.
Even in the case of middle Cantor sets there is still “a mysterious region” introduced
by Solomyak in [26]. From Corollaries 3.5 and 3.6 we now exactly know the area,
where the difference of middle Cantor sets is an interval (a nice picture can be found
in [22]). However, most of the “mysterious region” from [25] is still mysterious. It
seems possible to use similar geometrical methods as in Theorem 3.4 to find new
conditions for the algebraic difference of central Cantor sets to be a Cantor set or a
Cantorval. However, there appear some new difficulties which have to be considered.
The first step could be proving that the following statement holds.

Conjecture 3.7. If condition (∗ ∗ ∗) does not hold for almost all n, then C(a)−
C(b) is a Cantor set.

If the above Conjecture is true, then it would be possible to easily find new
examples of Cantor sets which algebraic difference is a Cantor set. For example, it
would imply that the set C(1

2
) + C(1

3
) is a Cantor set.
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