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On the density of S-adic integers
near some projective G-varieties

Youssef Lazar

Abstract. We provide some general conditions which ensure that a system of inequalities

involving homogeneous polynomials with coefficients in a S-adic field has nontrivial S-integral solu-

tions. The proofs are based on the strong approximation property for Zariski-dense subgroups and

adelic geometry of numbers. We give some examples of applications for systems involving quadratic

and linear forms.

S-adisten kokonaislukujen tiheydestä projektiivisten G-varistojen läheisyydessä

Tiivistelmä. Esitämme joitakin yleisiä ehtoja sille, että homogeenisiä polynomeja käsittä-

vällä epäyhtälösysteemillä, jonka kertoimet ovat S-adisen kunnan alkioita, on epätriviaaleja S-

kokonaislukuratkaisuita. Todistukset perustuvat Zariskin topologian suhteen tiheiden aliryhmien

vahvaan likiarvoistusominaisuuteen ja adeliseen geometriseen lukuteoriaan. Annamme joitakin esi-

merkkejä sovelluksista neliöllisiä ja lineaarisia muotoja käsittäviin systeemeihin.

1. Introduction

Given a finite set of valuations S of Q which contains the archimedean one, we
consider a finite family of homogeneous polynomials (fi,p)p∈S(1 6 i 6 r) where each
fi,p has coefficients in the completion of Q relative to the place p ∈ S. We are
interested in the following problem, given any real ε > 0, can we find an nonzero
S-integral vector x such that

(1) 0 < |fi,p(x)|p ≤ ε for every p ∈ S and i = 1, . . . , r?

Despite its apparent simplicity, this question is extremely difficult to solve in general
and as far as we know, only few cases have been settled. Our point of departure is the
case of a single isotropic quadratic form f1 = Q for which a solution was found only
quite recently by Borel and Prasad [5] for S = {∞} and completed in the general
case as soon Ratner gave a complete solution to the Raghunathan conjecture [4] in
full generality. Their result is an S-arithmetic generalization of Margulis’ proof of
the Oppenheim conjecture [21]. For the reader interested in such dynamical methods
and the applications of Ratner’s theory to number theoretical problems we refer to
[14].

The main tool we are going to use in order to treat the question (1) with the high-
est level of generality is the strong approximation property for algebraic groups (see
[32, 16]). In other words, we will be merely focusing on the arithmetical properties
of groups actions rather than their ergodic behaviour. It is not very surprizing that
strong approximation could solve the same density problems as Ratner’s orbit closure
theorem does since both results take place in groups generated by one-dimensional
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unipotent elements. The bridge between these two notions is the Kneser–Tits con-
jecture [15, 16] which asserts that any simply-connected group which is simple and
isotropic over a local field, is generated by its one dimensional unipotent elements.
This conjecture was solved by Platonov for such groups ([30], see also [31, §7.2]). Our
main purpose is to provide a substitute in the case when Ratner’s theorem fails to
hold. One illustration of the great advantage of using strong approximation rather
than Ratner’s theory is that we get rid of the heavy task of classifying intermediate
Lie groups. Indeed in the most cases such classification is unfeasible unless in the
very rare cases when we are able to reduce to lower dimension. Fortunately, this is
the case of the original proof of the Oppenheim conjecture which has been proved
for n = 3 and for Gorodnik’s result for pairs (Q,L) which reduces to the dimension
four but for pairs the classification of intermediate, the latter classification is much
more involved (see [13]).

In the same circle of ideas, recently Ghosh, Gorodnik and Nevo developped in
[11, 9, 10, 12]) the metric theory of diophantine approximation on homogeneous va-
rieties of semisimple groups in the S-arithmetic setting. Among many other results,
they proved analogs of Khintchine’s and Jarnik’s theorems for S-adic homogeneous
spaces using both ergodic theory and strong approximation for algebraic groups com-
bined with deep concepts coming from the theory of automorphic forms and repre-
sentation theory. Their method also provides a quantitative version of the strong
approximation theorem in homogeneous spaces of semisimple groups.

Finally one should mention that for higher degrees, i.e. when the number of
variables and the degrees of the fi’s are greater than the number of r of polynomials,
the circle method of Hardy and Littlewood still remains the most powerful method
for proving (1) in great generality. In fact, it is providing also sharp quantitative
estimate of the numbers of solutions with bounded heights of the number of points
lying exactly on a variety following the program promoted by Manin in the seventies.

1.1. Background and notations. Let us denote by Σ the set of all places in Q,
these are given by the set of all prime numbers and the archimedean place correspond-
ing to ∞. Let S be a finite set of places in Σ which contains the archimedean one, and
let us denote by Sf the subset of all finite (prime) places in S, thus S = Sf ∪ {∞}.
For each prime p, we can define the p-adic absolute value is denoted by | · |p over Q

and we denote by Qp the corresponding completion of Q. The product QS is defined
by
∏

p∈S Qp. The set of p-adic integers, denoted by Zp, is defined to be the set of

x ∈ Q such that |x|p ≤ 1. The ring of S-integers of Q is the set ZS which elements
are integral outside S i.e. such that x ∈ Zp for p /∈ S. For each p ∈ Sf , Qp is a locally
compact (additive) group, hence it is equipped with a Haar measure characterized
by the formula µp(aΩp) = |a|pµp(Ωp) for all a ∈ Qp and Ωp is a measurable subset of
Qp of finite measure. We normalize it by prescribing the value of the measure µp over
the basis of open sets in Qp by taking µp(a+ pnZp) = p−n, in particular, µp(Zp) = 1.
The set of adeles A of Q is the subset of the direct product

∏
pQp over all the places

of Q consisting of those x = (xp) such that x ∈ Zp for all but finitely many places.
The set of adeles A is a locally compact ring with respect to the adele topology given
by the base of open sets of the form

∏
p∈S Qp ×

∏
p/∈S Zp where S ⊂ Σ is finite with

S ⊃ S∞. For any finite subset S ⊂ Σ with S ⊃ S∞, the ring of S-integral adeles is
defined by:

AS =
∏

p∈S

Qp ×
∏

p/∈S

Zp, thus we can see that A =
⋃

S⊃S∞

AS.
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By definition ZS = AS ∩ Q, in addition, it can be proved that ZS is a lattice
in QS i.e. a discrete subgroup of finite invariant covolume. We can also realize ZS

as a cocompact lattice in AS. One of most fundamental result in arithmetic is the
following fact which says that for any nonempty set of places S, the image of Q

under the diagonal embedding is dense in AS (see e.g. [19, Theorem 1, II, §1]). This
property is called the strong approximation for the field Q and it can be seen as a
refinement of the Chinese remainder theorem [19, I, §4]. For a brief review about
this property in the framework of algebraic groups, we invite the reader to read the
recent account about this question in [32], for more details we advice one the most
complete reference about this topic [31].

Quadratic forms over local fields. A quadratic form in n variables over a
local field k of characteristic zero is given by a symmetric bilinear form B over k such
that Q(x) = B(x, x) for any x ∈ kn. We say that Q is nondegenerate in kn if the rank
of the matrix associated to B has maximal rank. For each p ∈ S, a quadratic form
Qp(x) is isotropic over Qp if there exists a nonzero vector x such that Qp(x) = 0.
Over S-adic products, a quadratic Q = (Qp)p∈S over QS is said to be nondegenerate
(resp. isotropic) if and only if Qp is nondegenerate (resp. isotropic) over Qp for each
p ∈ S. The special orthogonal group of a quadratic form (Qp)p∈S is the product
of S of orthogonal groups SO(Qp), the latter is a Lie group which is semisimple as
soon as Qp is nondegenerate. The orthogonal group SO(Qp) is said to be isotropic
over Qp if it has a nontrivial split subtorus over Qp [3, §20.1]. The group SO(Qp) is
isotropic over Qp if and only if Qp is isotropic [3, §23.4]. It is well-known that over
local fields, SO(Qp) is isotropic if and if it is has no compact factors. If H =

∏
p∈SHp

is a product of p-adic Lie groups and S1 ⊆ S be a finite subset of places, then H is
said to be isotropic over S1 if for every p ∈ S1, Hp is isotropic over Qp. A quadratic
form (Qp)p∈S is said to be (globally) rational if there exists a form Q0 with rational
coefficients such that Q = λQ0 for some nonzero λ ∈ QS, and irrational otherwise.
Note that it can happen that a quadratic form Q = (Qp)p∈S is irrational while being
rational at some place p ∈ S. More precisely, the fact that Q = (Qp)p∈S is irrational
over QS does not prevent Qp to be proportional to a form with rational coefficients
for some p ∈ S.

Any vector space V over k equipped with a quadratic form Q, can be decomposed
in virtue of the Witt’s decomposition theorem as follows

V = rad(Q)⊥Van⊥P1⊥ . . .⊥Pr

where the restriction Q to Van is anisotropic over k, rad(Q) is the radical of Q, which
is equal to zero if Q is nondegenerate and Pi(1 6 i 6 r) are hyperbolic planes such
that the restriction of Q to each Pi is isotropic (see e.g. [18, §4, I]). In particular,
P1⊕ . . .⊕Pr is the maximal isotropic subspace, 2r is called the isotropy index and r
is called the Witt index denoted i(Q), remark that Q is isotropic over k if and only
if i(Q) ≥ 1.

Algebraic projective varieties. If we consider an algebraic variety defined
over Q by a prime ideal I = 〈f1, . . . , fr〉 for which closed points of given by

X =
{
x ∈ Q

n | fi(x) = 0, 1 ≤ i ≤ r
}

where Q is an algebraic closure of Q. The polynomials defining the prime ideal I
are supposed to be homogeneous in n variables with rational coefficients. For each
1 ≤ i ≤ r, if we denote di = deg fi thus we must have that for any λ ∈ Q, fi(λx) =
λdifi(x), in particular the zero locus X = V (I) can be seen an algebraic projective
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variety. Neverthless for practical reasons we need our varieties to be embedded in
vectors spaces, therefore we will be stuck with the affine point view.

Let us consider a variety X/Q embedded diagonally in a finite product of comple-
tions relative to a finite set of places S in Q containing the archimedean one. Using
this embedding we can consider the family of polynomials (fi,p)p∈S over QS and for
each p ∈ S we define Xp to be the zero set of the (fi,p) (1 ≤ i ≤ r), this defines an
affine variety over Qp. Therefore XS is the direct product of the completions of Xp

(p ∈ S) in
∏

s∈S Q
n

p where Qp is an algebraic closure of Qp.

Algebraic groups and their actions. Let G be the special linear algebraic
group

SLn|Q := {(gij) ∈ Mn(Q) | det(g)− 1 = 0} .
It is defined over Q, in the sense that the coefficients of det(g) viewed as a polynomial
in the n2 variables g11, g12, . . . , gnn has rational coefficients. Here we can simply write
SLn instead of SLn|Q since the context is clear. For any ring A, the set of A-points
of SLn denoted SLn(A) is just the set SLn ∩Mn(A).

Let us consider the left action of SLn on the Q-vector space V = Q[x1, . . . , xn]
which is given for each g ∈ G and f ∈ V by

g.f(x) = f(g−1x) for all x ∈ Qn.

We would like to define a subgroup of G which leaves globally invariant the variety
X = V (I) but also every element of the ideal of definition I. For this purpose, we
introduce the subgroup H of G defined over Q given by

H =
{
h ∈ G | h · fi = fi, 1 ≤ i ≤ r

}
.

From its very definition H is an algebraic group which acts linearly on the variety
X. The automorphism group of X under the action of G (PSLn in the projective
setting) is defined as

AutG(X) = {x ∈ X | g · x = x}.
It is immediate to see that we have the following inclusions

AutG(X) ⊆ H ⊆ G.

In particular, one can note that X can have a large group H while having a small or
maybe even finite a automorphsim group. For this reason, we prefer to consider the
action of H rather than AutG(X) which in the ideal case would be a large enough
Lie group in order to apply the strong approximation property.

Near vectors to a variety. At some point, we will have to consider the set
of Qp-points of Xp which is given by Xp(Qp) = Xp ∩ Qn

p , it is equipped with the
p-adic topology induced by the base field Qp. For each p ∈ S the set Xp(Qp) of
Qp-points of Xp can endowed with a structure of analytic variety over Qp. Using
some analogy with analytic complex geometry, given any real ε > 0 we define the
ε-tubular neighborhood of XS for the S-adic topology by

Xε
S =

{
x ∈ Qn

S : |fj,p(x)|p ≤ ε for every 1 ≤ j ≤ r and every p ∈ S
}
.

The elements of Qn
S which are in Xε

S are called ε-near vectors to XS. The fact
that we have chosen the fi’s to be homogeneous implies that for any ε > 0, the
intersection of Xε

S with the lattice Zn
S contains at least the null vector. Thus for any

ε > 0, showing that Xε
S ∩ Zn

S 6=
{
0
}

amounts to find a nonzero x ∈ Zn
S such that for

every p ∈ S and 1 ≤ i ≤ r we have,

|fi,p(x)|p ≤ ǫ.
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If we consider the polynomial map φ : Qn
S −→ Qr

S associated to XS, given by

φ(x) = (f1(x), . . . , fr(x)) ,

then Xε
S ∩Zn

S 6=
{
0
}

if and only if the origin in Qr
S is an accumulation point in φ(Zn

S)
for the S-adic topology. A more ambitious question regarding our initial problem
in (1) is to ask the density of φ(Zn

S) in Qr
S, note that for real places (1), i.e. non-

discreteness at the origin, is equivalent to density.
For each p ∈ S, we define the p-adic Lie subgroup

Hp =
{
h ∈ SLn(Qp) | h · fi,p = fi,p, 1 ≤ i ≤ r

}
.

and let denote the S-product by HS =
∏

p∈SHp. Clearly the action of H on X
induces an equivariant action of HS on XS with respect to the diagonal embedding.
For each p ∈ S, we say that Hp is rational over Q when the ideal Ip of defintion of
H consists in polynomials with rational coefficients. This definition applies to any
other algebraic group.

Notations.

• If A is a subset of Q, we denote by A
(p)

its p-adic closure in Qp and for any

set of places S in ΣQ, A
(S)

=
∏

p∈S A
(p)

.
• If A and B are two sets, we denote A+B by

A+B = {a + b | a ∈ A and b ∈ B}.
More generally if A1, . . . , Al are sets, their Minkowski sum is denoted

A1 + . . .+ Al =

(M)∑

1≤i≤l

Ai = {a1 + . . .+ an | ai ∈ Ai for 1 ≤ i ≤ l}.

In particular for every integer n > 0, the n-times sum A+ . . .+A is denoted
by n ∗ A.

• For each p ∈ S, we denote by Sym2(Qn
p ) the set of bilinear symmetric forms

with coefficients in Qp with n variables. We identify this set with the set
of all quadratic forms in n variables with coefficients in Qp since we are in
characteristic zero.

1.2. Main results. Our main result, namely, Theorem 1.1 gives sufficient
conditions in order to ensure that the system (1) has nontrivial solutions. These
conditions are realized if we can find a rational triple (H0, X0, f0) where H0 acts
on X0 = V (f0) and where H0 satisfies some assumptions prior to the application
of the strong approximation property. As an application, we provide an answer to
(1) for systems involving one quadratic form and one/several linear form(s) which
are well-understood in the real case, i.e. S = {∞}. The three dimensional case
was treated by Dani and Margulis in [8] where solutions to (1) was provided for pairs
(f1, f2) = (Q,L). In higher dimensions, a similar result has been proved by Gorodnik
[13]. The case of values of quadratic forms restricted to affine subspaces defined
linear forms has been treated by Dani [7]. Very recently for the case concerning
the values of linear forms on a quadric hypersurfaces, Sargent was able to prove an
Oppenheim type density result in the real case [35]. All these results relies on deep
results from the ergodic theory of unipotent flows on homogeneous spaces. The most
powerful tool to prove such density results is Ratner’s orbit closure theorem. The
Oppenheim conjecture [29] is a direct consequence of the Raghunathan conjecture,
but this conjecture was not yet proved at the time when Margulis [21] and then
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Borel–Prasad [5] published their results. The Raghunathan conjecture was proved
by Ratner in full generality [33], and also for p-adic Lie groups [34]. The p-adic version
of the Raghunathan conjecture has been proved by different methods by Margulis
and Tomanov [23].

The main results of the work of Borel–Prasad [5] and Borel [4] can be summa-
rized as follows: given any isotropic nondegenerate quadratic form F = (Fs)s∈S with
coefficients in QS in n ≥ 3 variables such that F is not proportional to a quadratic
form with coefficients in Q then F (Zn

S) is dense in QS.
Our theorem 1.1 is a generalization of the result of Borel and Prasad given above

in the most general setting so that we can ensure solutions of (1) for homogeneous
polynomials of arbitrary degrees. To give some credit to the point of view made by
Borel and Prasad, we apply our main theorem to find sufficient conditions so that (1)
holds when the polynomials involded are quadratic forms and linear forms together.
In our appplications, we only focus in low degree polynomials (i.e. less than 3) since
there exists better methods to treat such problems in higher dimension, among those
the Hardy–Littlewood circle method is better suited when for cubics for instance.

Theorem 1.1. Let S be a finite set of places in Q containing the archimedean

one. For each s ∈ S, we are given a projective algebraic variety Xs over Qs de-

fined by a homogeneous prime ideal Is of Qs[x1, . . . , xn] and let Hs be the algebraic

Qs-subgroup of SLn(Qs) leaving invariant every generator of Is. Assume that the

following subset of places S1 ⊂ Sf is nonempty,

S1 = {p ∈ Sf | Hp is rational over Q}.

If there exists a connected algebraic subgroup H0 of G rational over Q and a hyper-

surface X0 = V (f0) defined over Q such that

(1) H0 is a semisimple absolutely almost simple algebraic Q-group.

(2) For every prime p ∈ S1, Xp = X0 and Hp = H0.

(3) Every Q-simple factor of H0 is isotropic over S1.

Then for any ǫ > 0, there exists a nonzero S-integral vector lying ǫ-near XS i.e.

Xε
S ∩ Zn

S 6=
{
0
}
.

As an application we use this theorem in order to prove the existence of near
integral vectors to a variety of the form XS = {Q = L = 0} which is seen as the
nondegenerate quadric Q = 0 cutted out by the hyperplane of equation {L = 0}.
In the following result we extend the validity of a previous result of the author [20,
Corollary 2.2] proved under the condition that any nontrivial linear combinaison
αsQs + βsL

2
s should be irrational at all places s ∈ S. Indeed we are able to prove

that the same result holds if we only assume that αQ + βL2 is (globally) irrational
over QS allowing αQ+ βL2 to be rational at some nonarchimedean place.

Corollary 1.2. Assume S is as before and let Q = (Qs)s∈S be a quadratic form

and L = (Ls)s∈S be a linear form on Qn
S with n ≥ 4 and Ls 6= 0 for all s ∈ S. Suppose

that the pair (Q,L) satisfies the following conditions,

(1) Q is nondegenerate.

(2) Q|L=0 is nondegenerate and isotropic.

(3) For any choice α, β in QS with (α, β) 6= (0, 0), the form αQ+βL2 is irrational

with at least one place v ∈ Sf where αvQ+βvL
2 is proportional to a rational

form.
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Then for any ε > 0, there exists a nonzero x ∈ Zn
S such that

|Qs(x)|s < ε and |Ls(x)|s < ε for each s ∈ S.

In the same vein, we are also able to treat the case when we consider several
linear forms instead of one. This result is a variation of a recent result due to O.
Sargent [35], which gives a S-arithmetic version of using Theorem 1.1.

Corollary 1.3. Assume S is a finite set of places in Q containing the archimedean

one and suppose that Q is an isotropic nondegenerate quadratic form in n ≥ 3 vari-

ables over QS with rational coefficients. Let M = (L1, . . . , Lr) be a linear map

M : Qn
S → Qr

S where (Li,s)s∈S (1 6 i 6 r) are linear forms of rank r over Qn
S in n ≥ 3

variables which satisfies the following conditions:

(1) n > maxs∈S(dim kerMs) + 2.
(2) rank (Qs|KerMs

) = r and Q|KerMs
is isotropic and , for every s ∈ S. .

(3) For each choice of α1, . . . , αr in QS with (α1, . . . , αr) 6= (0, . . . , 0), the linear

form α1L1+ . . .+αrLr is irrational and at some place v ∈ Sf , α1,vL1,v + . . .+
αr,vLr,v is proportional to a rational form.

Then for any ε > 0, there exists a nonzero x ∈ Zn
S such that

Qs(x) = 0 and |Li,s(x)|s < ε for each s ∈ S and 1 6 i 6 r.

Remarks. (1) The method used in Theorem 1.1 is an adaptation of the work
of Borel–Prasad in the case when S contains at least one place where the form is
rational (see [5, §4]).

(2) The proof of Theorem 1.1 is based on a strenghtening of the strong approxi-
mation theorem which apply to Zariski dense subgroups of reductive groups proved
by Matthews, Vaserstein and Weisfeiller [24, 37] and later by Nori [28]. In the mean-
while, Venkataramana [36, Proposition (5.3)] proved that there exists Zariski dense
subgroup of integral points of SLn which contains no unipotent elements and thus
such subgroup might be eligible for strong approximation even if it is far from being
unipotent or generated by unipotents elements. For more general details about strong
approximation in algebraic groups and more particularly this version, we advice the
reader the recent survey of Rapinchuk [32].

(3) A nice feature of the proof of Corollaries 1.2 and 1.3 is that we do not have
to reduce to lower dimension. Indeed, the reduction process was prerequisted for
proceeding to the classification of intermediate subgroups arising from the application
Ratner’s theorem.

2. Proof of Theorem 1.1

Let us consider as in the assumptions of the theorem and denote by S2 the set of
places of S which are disjoint from S1, in particular S1 contains only nonarchimedean
places with let us say S1 = {p1, . . . , ps} and S2 = {q1, . . . , ql−1,∞}. Let us introduce
Λ the stabilizer of the standard lattice Zn

S under the action of H0(Q) i.e.

Λ = {h ∈ H0(Q) | h(Zn
S) = Zn

S}.
Under the diagonal embedding, Λ can be seen as an S-arithmetic subgroup which
is discrete in H0(QS) for the product topology. Consider the universal Q-isogeny

π : H̃0 → H0, here H̃0 is a semisimple simply connected group defined over Q such
isogeny always exists in this case [31, Theorem 2.6]. Let us choose an arbitrary

S-arithmetic subgroup Λ̃ of H̃0(Q) embedded as a discrete subgroup in H̃0(QS) for

the product topology. Since H̃0 is absolutely almost simple over Q and every simple
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factor Hi of H̃0 is noncompact at every place in S1 by definition of S1, in particular∑
s∈S rankQs

Hi ≥
∑

s∈S1
rankQs

Hi > 0. Borel’s density theorem (see e.g. [22, Propo-

sition 3.2.10] applied to H̃0 with K = k = Q gives us that the discrete subgroup Λ̃

is Zariski-dense in H̃0. A special instance of the strong approximation for Zariski-

dense subgroups (see e.g. [31, Theorem 7.14] applied in H̃0 for the set of primes

S1 = {p1, . . . , ps} implies that the closure Λ̃ is open in H̃0(AS1
). The latter adelic

group is described by the following product
∏

p∈S1

H̃0(Qp)×
∏

q∈S2

H̃0(Zq)×
∏

q /∈S1∪S2

H̃0(Zq).

Thus for every q ∈ S2, the projection Λ̃
(q)

is open in H̃0(Zq). The latter fact can also

be deduced from the fact that H̃0(Zp) is a virtually pro p-group for every p ∈ S2 (see
[32, Lemma 2.7 and §3A]).

The universal Q-isogeny π transforms Λ̃ into an arithmetic subgroup π(Λ̃) in

H0(Q) such that π(Λ̃)
(S2)

is open in H0(QS2
). The two arithmetic subgroups π(Λ̃)

and Λ are commensurable in H0, thus π(Λ̃)∩Λ is a finite index subgroup in π(Λ̃) (see

e.g. [22, Cor. 3.2.9]). For each p ∈ S, we define Up to be the projection of π(Λ̃) ∩ Λ
onto its p-component, that is,

(2) Up := (π(Λ̃) ∩ Λ)p.

As we have seen above, the p-adic closure Up
(p)

lies in the open subgroup π(Λ̃)
(p)

of

H0(Qp) for each p ∈ S2 and US2
is contained in Λ

(S2)
by definition.

Now let us introduce the following subset of vectors in Qn
p defined for each p ∈ S2,

by

Xp = U−1
p Xp(Qp)−X0(Qp)

where U−1
p = {a−1

p |ap ∈ Up} is an open subset of invertible matrices in H0(Qp) where
Up was defined in (2). We claim that Xp is a nonempty open cone in Qn

p for p ∈ S2

which does not contains the null vector i.e. 0 /∈ Xp. Indeed, since Xp is not rational
over Q for each p ∈ S2 while X0 is, this forces Xp 6= X0 for p ∈ S2. The Zariski
density of Xp(Qp) (resp. X0(Qp)) in Xp (resp. X0) implies that Xp(Qp) 6= X0(Qp)
for each p ∈ S2. In particular for each p ∈ S2, there exists an x ∈ Xp(Qp)−X0(Qp),
thus taking ap = In we get that x ∈ Xp. Now let us fix x ∈ Xp and consider y ∈ Qn

p

sufficiently close to x, so that we can find a g ∈ SLn(Qp) such that y = gx where g is
close to In in SLn(Qp). Since In ∈ Up then we can assume that g is arbitrarily close
to In in the open set Up. We have fi,p(gpx) = 0 for some gp ∈ Up close to In and
since y = gx we get fi,p((gpg

−1)y) = fi,p(gpx) = 0 with gpg
−1 ∈ Up this implies that

y ∈ Xp − {0}. By definition Xp does not contains the origin. For any λ ∈ Q∗
p and

x ∈ Xp, λx ∈ Xp by homogeneity of the fi’s. The claim is proved.
For each p ∈ S1, denote by ∆p(r) the hypercube centered at 0 with radius r in

Qn
p , i.e.

∆p(r) =
{
x ∈ Qn

S1
| |xi|p ≤ r

}

and denote ∆S1
(r) =

∏
p∈S1

∆p(r). Our aim is to show that
⋂

ε>0X
ε
S ∩ Zn

S 6= {0},
a first step consists to show the existence of nonzero lattice point for the domain
(∆S1

(δ)× XS2
) which can be seen as a sort of approximation of Xε

S.



On the density of S-adic integers near some projective G-varieties 195

Lemma 2.1. For every δ > 0, we have

(∆S1
(δ)× XS2

) ∩ Zn
S 6= {0}.

Proof of the lemma. Let us fix a place p ∈ S2 whether it is archimedean or not,
and set l = |S2|. Let v1,p ∈ Qn

p be a nonzero in vector Xp and complete it to a basis
{v1,p, v2,p, . . . , vp,n} of Qn

p . For each real a > 0 we introduce the hypercubes Vp(a) in

Qn
p and Wp(a) in Qn−1

p defined as

Vp(a) =

{
n∑

i=1

αivi,p | |αi|p ≤ a

}
and Wp(a) =

{
n∑

i=2

αivi,p | |αi|p ≤ a

}
.

Since we know that Xp is open, we can find an infinitesimal hypercube v1,p⊕Wp(α)
for some small enough real α > 0 so that it is contained in Xp. However we have
the following fact: the resulting infinitesimal hypercube v1,p ⊕Wp(α) remains in the
cone Xp if we perform a translation in the direction of v1,p away from Zp

1. In other
words, we can find an real positive α small enough so that for each p ∈ S2 and for
any given arbitrary η ∈ Qp with |η|p > 1 (i.e. η /∈ Zp) we have simultaneously

(3) ηv1,p ⊕Wp(α) ⊂ Xp and Vq(α) ⊂ Xp.

Indeed, let us set u = ηv1,p +
∑n

i=2 αivi,p ∈ ηv1,p ⊕Wp(α) for η ∈ Q∗
p − Zp. Thus u

can be written as

u = η

(
v1,p +

n∑

i=2

η−1αivi,p

)
.

It is clear that for every 2 ≤ i ≤ n, |η−1αi|p < α, thus

v1,p +

n∑

i=2

η−1αivi,p ∈ v1,p ⊕Wp(α).

Therefore using the cone invariance for Xp, we infer that u ∈ Xp, which proves the
claim (3). For this choice of α and for each reals δ, t > 0 we introduce the S-adelic
domain

Cp(δ, t) = ∆S1
(δ/2l)× [0, t]v1,p ⊕Wp(α/2)×

∏

q∈S2\{p}

Vq(α/2l)×
∏

s/∈S

Zp ⊂ An
S.

Let us define Cp(δ) to be 2∗Cp(δ, 1). It is a compact subset of An
S and thus it meets

the discrete subgroup Zn
S in finitely many points at a number of k = |Cp(δ) ∩ Zn

S|.
The set of S-integral vectors Zn

S is a cocompact lattice in An
S i.e. An

S/Z
n
S is a compact

space of finite volume for the measure µ induced by volAS
on the quotient space.

Let us denote by D a fundamental domain for the quotient An
S/Z

n
S and by µ(D) its

volume, in particular we have

An
S =

⋃

y∈D

y + Zn
S.

We can find some τ large enough so that exists k+2 disctinct points y0, . . . , yk+1

in Cp(δ, τ/2) such that yi − yj ∈ Zn
S for any 1 6 i < j 6 k + 1. Indeed, for this it

1Note that if p is nonarchimedean, Qp is not an ordered field neither even partially, so one has
to be careful with the meaning of this assertion. The real meaning is arithmetical rather than
geometrical as it can be seen just below.
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suffices to remark that the function t 7→ volAS
(Cp(δ, t)) in increasing, so for τ large

enough we have the inequality

volAS
(Cp(δ, τ/2)) > (k + 1)µ(D).

Now applying the adelic Blichfeldt’s principle in An
S (see e.g. [25, Lemma 4, §5.2])

we obtain the required yi’s. Let us put K = An
S − Cp(δ) and xi = y0 − yi for

1 ≤ i ≤ k+1. The previous assertion tells us that x1, . . . , xk+1 are nonzero elements
of Zn

S, namely we have a set of k + 1 integral vectors. But there are only k elements
in Cp(δ)∩Zn

S , thus exactly one of them must lie in the complement Kp∩Zn
S , call this

unique element x(p). By definition x(p) is the difference of two elements in Cp(δ, τ/2),
thus x(p) ∈ 2 ∗ Cp(δ, τ/2).

Hence for each p ∈ S2, we assigns a unique nonzero element x(p) of Zn
S which lies

in Kp ∩ 2 ∗ Cp(δ, τ/2), moreover the latter subset satisfies the following inclusion

Kp ∩ 2 ∗ Cp(δ, τ/2) ⊂ ∆S1
(δ/l)× (1, τ ]v1,p ⊕Wp(α)×

∏

q∈S2\{p}

Vq(α/l)×
∏

s/∈S

2 ∗ Zp.

Finally let us set x =
∑

p∈S2
πS(x(p)) where πS is the projection to the S-factor.

It is already clear that x is a nonvector vector in Zn
S. It remains to verify that

x ∈ ∆S1
(δ)× XS2

. For the S1-components, we have

πS1
(x) =

∑

p∈S2

πS1
(x(p)) ∈

(M)∑

p∈S2

πS1
(Kp ∩ 2 ∗ Cp(δ, τ/2)) ⊂ l ∗∆S1

(δ/l) ⊂ ∆S1
(δ).

On S2 side, we isolate the diagonal component in order to obtain

πS2
(x) = x(p)p +

∑

q∈S2\{p}

x(p)q ∈ (1, τ ]v1,p ⊕Wp(α)×
∏

q∈S2\{p}

(M)∑

p′∈S2\{p}

Vq(α/l)p′.

Remembering the choice of α > 0 made in (3), we infer that

πS2
(x) ∈ Xp ×

∏

q∈S2\{p}

Vq(α) ⊂ XS2
.

Hence for any δ > 0, we can always find a nonzero vector x lying in (∆S1
(δ)×XS2

)∩Zn
S

and this achieves the proof of the lemma. �

We are now ready to prove the theorem, for this let us fix an ε > 0. The fact
that the fi’s are homogenous polynomials, in particular with fi(0) = 0, implies the
existence of a real number δ(ε) > 0 small enough so that ∆S1

(δ(ε)) ⊂ Xε
S1

. Using
Lemma 2.1 with δ = δ(ε), one obtains a nonzero S-integral vector x ∈ Zn

S such that
πS1

(x) ∈ Xε
S1

and πS2
(x) ∈ XS2

. The latter condition means that for each p ∈ S2 and
corresponding xp ∈ Xp, there exists some up ∈ Up such that fi,p(upxp) = 0. Since Up

is open there exists gp ∈ Up such that

0 < |fi,p(gpxp)|p ≤ ε/2.

With the help of the strong approximation theorem, we have seen earlier that US2
is

contained in Λ
(S2)

, and incidentally we find (γp)p∈S2
∈ ΛS2

such that for every p ∈ S2

and 1 ≤ i ≤ r, one has

(4) 0 < |fi,p(γpxp)|p ≤ ε.
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∆p(δ)

0
γpxp

xp

Xε
0

Xp = X0 = {f0 = 0}

∆S1
(δ) ⊂ Qn

S1

0
upxp

γpxp

xp

Xp =
⋂

j{fj,p = 0}
Xε

S2

XS2
⊂ Qn

S2

Figure 1. The space between the blue dotted lines is the tubular neighborhood Xε
S.

Consider the projection ΛS ։ ΛS2
and let (γ̃)p∈S be a lift of (γp)p∈S2

, that is,
γ̃p = γp for every p ∈ S2. We claim that y = γ̃x is the solution of our problem.
Indeed, on the one hand the inequalities in (4) imply that πS2

(y) ∈ Xε
S2

.
On the other hand since πS1

(x) ∈ Xε
S1

and Xε
p is H0-invariant with Λp ⊆ H0 for

every p ∈ S1, we deduce that yp = (γ̃pxp) ∈ Xε
p for every p ∈ S1, i.e. πS1

(y) ∈ Xε
S1

.
This allows us to conclude the existence of a nonzero vector y ∈ Xε

S ∩ Zn
S and this

finishes the proof of the theorem.

3. Proof of Corollary 1.2

Let us consider a pair (Qs, Ls)s∈S over QS satisfiying all the assumptions of
Corollary 1.2. For each s ∈ S, we set Xs to be the algebraic (projective) variety
given by {Qs = Ls = 0}, geometrically this can be seen as the cone Qs = 0 cutted
out by the hyperplane of equation Ls = 0 in Qn

s . It is more suitable here to think
Xs as the quadric of equation {Qs|Ls=0

= 0}, in that way the assumptions (1) and
(2) amounts to say that this quadric {Qs|Ls=0

= 0} is nondegenerate and contains at
least one nonzero vector in Qn

s for every s ∈ S. We need to introduce the following
map associated to the pair (Q,L) over QS

ψ : P1(QS) → Sym2(Qn
S),

(α : β) 7→ αQ+ βL2.

This induces at each place s ∈ S, a (local) map ψs(αs : βs) = αsQs + βsL
2
s.

The assumption (3) says that the range of ψ is in the subspace Sym2
ir.(Q

n
S) con-

sisting of quadratic forms in Sym2(Qn
S) which are not proportional to rational form

over QS . The complement consisting of quadratic forms over Qn
S (resp. Qn

s ) which
are proportional to a rational form is denoted Sym2

rat.(Q
n
S) (resp. Sym2

rat.(Q
n
s )).
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Case 1. If we are in the case where ψs assumes its values in Sym2
ir.(Q

n
s ) for every

s ∈ S, there is nothing to prove. Indeed, Corollary 2.2. in [20] already gives the
required result.

Now we treat the case of interest here.

Case 2. Suppose there exists a place v ∈ Sf such that the range of ψv is in
Sym2

rat.(Q
n
v ). This means concretely that for any not both zero couple of constants

(αv, βv) ∈ Q2
v we have that αvQv + βvL

2
v is proportional to a quadratic form Q0

with rational coefficients, thus αvQv + βvL
2
v = λvQ0 for some λv ∈ Q∗

v, in particular
ψv(1 : 0) = Qv and ψv(0 : 1) = Lv are proportional to a rational form. Thus we
can write Lv = µvL0 where L0 is a rational linear form and µv ∈ Q∗

v and from the
definition of Q0 we have that αvQv|Lv=0 = λvQ0|L0=0 and in particular SO(Qv|Lv=0) =
SO(Q0|L0=0). Now for each s ∈ S we denote by Hs the stabilizer of the pair (Qs, Ls)
to be the subgroup of SLn(Qs) leaving both invariant Qs and Ls. Following [20,
Lemma 4.1], since Qv and Lv are both proportional to rational forms then we can
arrange a basis {w1, . . . , wn−1, u} consisting of rational vectors with the condition
that {Lv = 0} = 〈w1, . . . , wn−1〉 and Lv(u) = u. Hence we can find a g ∈ SLn(Q)

such that Hv = g−1

[
SO(Qv|Lv=0) 0

0 1

]
g.

Let us define the hypersurface defined over Q by X0 = {Q0 = L0 = 0} =
{Q0|L0=0 = 0} and set

H0 := g−1

[
SO(Q0|L0=0) 0

0 1

]
g.

Clearly we have Xv = X0 and Hv = H0 where v is as chosen above. The form
Q0|L0=0 is nondegenerate thus H0 is semisimple, it is also isotropic which implies that
H0 is noncompact and isotropic at v. Moreover, from the rationality of Q0|L0=0 we
infer that H0 is defined over Q. Therefore the triple (X0, Q0|L0=0, H0) satisfies all
the conditions of Theorem 1.1 unless the connectedness for H0 which is not ensured
at all. To remedy to this situation we can consider the connected component of the
identity of H0 which we denote H+

0 . The point is that H+
0 is now connected but it

is not obvious that the other properties (isotropy and rationality) are preserved by
performing this operation. The key fact is that H+

0 has finite index in H0 thus since
H+

0 is still noncompact and therefore isotropic, in addition H+
0 is defined over Q

since H0 is (see e.g. [3, Prop. 1.2(b)] and also [22, 2.3.2 and Remark 2 just after]. A
last remark concerns the conservation by the connected component under the central
isogeny. This point is quite crucial since at some stage in the proof of the Theorem 1.1

we need to pass to the universal covering. The fact that π : H̃0 → H0 is an isogeny

defined over Q, we have that H+
0 = π(H̃0)

+ = π(H̃0

+
) (see e.g. [3, Cor. 1.4 (b)]).

Hence π induces an central isogeny π+ : H̃0

+ → H+
0 where H̃0

+
is simply connected.

In fact, the latter subgroup is explicitely given by

H̃0

+
= g−1

[
Spin(Q0|L0=0) 0

0 1

]
g.

To sum up, given an arbitrary ε > 0, the triple (X0, Q0|L0=0, H
+
0 ) satisfies all the

conditions of Theorem 1.1 for S1 = {v} thus there exists a nonzero x ∈ Zn
S such that

x ∈ Xε
S i.e.

|Qs(x)|s < ε and |Ls(x)|s < ε for each s ∈ S.
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4. Proof of Corollary 1.3

We proceed in the same way as the previous corollary. Let us consider a quadratic
form Q and a linear map M = (L1, . . . , Lr) satisfying all the assumptions of the corol-
lary 1.3. For each s ∈ S, we define the following variety Xs = V (Qs, L1,s, . . . , Lr,s)
defined over Qn

s , in fact, for pratical reasons it is more suitable to see this variety as
Xs = V (Qs|Ms=0). Geometrically the locus of Xs is defined by a quadratic {Qs = 0}
cutted out by the intersection of the hyperplanes of equations {Li,s = 0} (1 6 i 6 r),
the later intersection is just the kernel ofMs i.e.Xs = V (Qs| kerMs

). It is assumed that
rankMs = r for every s ∈ S, thus dimkerMs = n−r, that is to say, L1,s, . . . , Lr,s are
linearly independent over Qs. If we denote by Bs the symmetric bilinear form associ-
ated to Qs, we can consider the following orthogonal decompositon of the quadratic
space (Qn

s , Qs) with respect to B:

(Qn
s , Qs) = (kerMs, Qs| kerMs

)
⊕

((kerMs)
⊥, Qs|(kerMs)⊥)

and let {e1, . . . , en} a basis of Qn
s adapted to this decompostion above, that is, Ms =

〈e1, . . . , en−r〉 and M⊥
s = 〈en−r+1, . . . , en〉 such that B(ek, el) = 0 for all 1 6 k 6 n−r

and n− r+1 6 k 6 n. Now for any s ∈ S, we set the following subgroup of SLn(Qs)
given in the adapted basis by

Hs =

[
SO(Qs|kerMs

) 0
0 Ir

]
.

We claim that Hs leaves invariant both Qs and Ms for each s ∈ S. Indeed let
h ∈ Hs, and A an element of SO(Qs|kerMs

) such that

h =

[
A 0
0 Ir

]
.

Note that, as given, the range of A is necessarily within the subspace kerMs. Let
x be a vector in Qn

s which decomposes into x = x1 + x2 with x1 ∈ kerMs and
x2 ∈ (kerMs)

⊥. Therefore Ls(hx) = Ls(h(x1, x2)
t) = Ls(Ax1 ⊕ x2) = Ls(Ax1) +

Ls(x2) = 0+Ls(x2) = Ls(x1)+Ls(x2) = Ls(x), thus Ls is Hs-invariant. In the other
hand, using the same decomposition for x we get

Qs(hx) = Q(Ax1 ⊕ x2) = Qs| kerMs
(Ax1) +Qs(x2) = Qs(x1) +Qs(x2) = Q(x).

In particular, the claim shows that Hs acts linearly on Xs = V (Qs| kerMs
). Now

given any constants α1, . . . , αr in QS not all zero, the form α1,sL1,s + . . .+ αr,sLr,s is
irrational for every place s ∈ S\{v} and proportional to a rational form for s = v.
Let us set f0 := Qv + α1,vL1,v + . . . + α1,vLr,v, it is clear that f0 is proportional to
a rational form and a suitable choice of constants allows us to assume that f0 has
rational coefficients. The crucial fact is that f0| kerMv

= Qv|kerMv
is also a quadratic

form with rational coefficients since kerMv is a Q-subspace. Thus if we put

H0 =

[
SO(f0|kerMv

) 0
0 Ir

]
,

then H0 = Hv is a algebraic subgroup of SLn(Qv) which is defined over Q and which
acts on X0 = Xv. Moreover, for the same reasons as in the previous corollary, H+

0

is a connected semisimple algebraic subgroup which is isotropic at v since Qv| kerMv

is isotropic, in particular H+
0 has no compact factors. We obtain a rational triple
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by taking (X0, f0| kerMv
, H+

0 ), since it satisfies all the conditions of Theorem 1.1 for
S1 = {v}, we infer that for any ε > 0, we can find a nonzero x ∈ Zn

S such that

|Qs(x)|s < ε and |Li,s(x)|s < ε for each s ∈ S and 1 6 i 6 r.

To conclude, one has to remark that since Qs is rational and x ∈ Zn
S = (AS ∩ Q)n,

Qs(x) ∈ Q for every s ∈ S. Since Q is discrete in every completion, we deduce that
if ε is small enough we can find x ∈ Zn

S − {0} such that

Qs(x) = 0 and |Li,s(x)|s < ε for each s ∈ S and 1 6 i 6 r. �

5. Existence of rational triples (X0,H0, f0) for general varieties

In this section we adress some remarks concerning the class of varieties X which
falls into the conditions of the theorem. The varieties involved in the theorem are
called complete intersection in the litterature and they have been subject to extensive
research until now and still many problems remains open concerning those projective
varieties. From our point of view, we are more concerned with the invariant theory
of the space of homogeneous polynomials.

In order to apply the main theorem one has to find a rational triple (X0, H0, f0)
such that XS (resp. HS) can be splited in the form XS = V (f0) ×XS2

(resp. HS =
H0 ×HS2

) without loss in generality we assume that S1 = {v} for some v ∈ Sf thus
S2 = S\{v}. In particular H0 acts rationally on the Q-hypersurface X0 = V (f0).

Bounds on the degrees (d1, . . . , dr) of the generators of the ideal of X.

• A first constrain is the equality Xv = X0, that is, in algebraic terms

V (f1,v, . . . , fr,v) = V (f0).

Applying Hilbert’s Nullstellensatz in an algebraic closure of Qv yields
√

(f0) =
√

(f1,v, . . . , fr,v)

where
√
J is the radical of an ideal J in Qv[x1, . . . , xn], in particular there exists an

integer ρ > 0 and (homogeneous) polynomials P1, . . . , Pr over Qv such that

(5) f ρ
0 = P1f1,v + . . .+ Prfr,v

Let us denote by Ni (resp. di) the total homogeneous of Pi (resp. fi,v) for each
1 6 i 6 r. Thus the previous equality reads in terms of degrees as

(6) ρ deg f0 = max
16i6r

{Ni + di}.

Let us assume that the degrees are ordered as follows N1 > N2 > . . . ≥ Nr and
d1 > d2 > . . . > dr, then (6) reads

(7) ρ deg f0 = N1 + d1.

When di 6= 2 (1 6 i 6 r), upper bounds for ρ can be effectively computed, the
following sharp estimates for ρ are due to Kollár [17, Corollary 1.7].

(8) ρ ≤
{
d1d2 . . . dr if r ≤ n,

d1d2 . . . dn−1dr if r > n,

and for each 1 6 i 6 r

(9) Ni + di = deg(Pifi,v) ≤
{
(1 + d0)d1d2 . . . dr if r ≤ n,

(1 + d0)d1d2 . . . dn−1dr if r > n,
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where d0 denotes deg f0. To sum up, saying that Xv equals the hypersurface X0 =
V (f0) amounts to find some polynomials (Pj)16i6r such that

f ρ
0 = P1f1,v + . . .+ Prfr,v

where ρ satisfies condition (8) and after (9) we get that for every 1 6 i 6 r,

(10) 0 ≤ deg(Pj) ≤
{
(1 + d0)d1d2 . . . dr − dj if r ≤ n,

(1 + d0)d1d2 . . . dn−1dr − djif r > n.

The equidimensional case: If we assume that d1 = . . . = dr = d 6= 2, we obtain
the following bounds for every 1 6 i 6 r,

(11) 0 ≤ deg(Pj) ≤
{
(1 + d0)d

r − d if r ≤ n,

(1 + d0)d
n − d if r > n.

If we want that the right hand in (6), that is, f ρ
0 to have only degree d, then necessarily

ρ = 1 and from (11) we get that the polynomials Pi should be constant polynomials
αi (1 6 i 6 r)

(12) f0 = α1f1,v + . . .+ αrfr,v.

• Rationality conditions Xv = X0 = V (f0) with f0 rational. The relation (5)
shows that if the polynomial f0 has rational coefficients then some linear combination
(over Qv) of the fi,v’s must be rational. In particular, this and (12) explain why the
condition (3) in both corollaries 1.2 and 1.3 is necessary.

From complete intersections towards invariant group of the ideal of

definition. The main issue is that given a variety X defined over a field of charac-
teristic zero K, say a complete intersection, to find the largest subgroup of G = SLn|K

which acts trivially on the ideal of definition IX . For instance, let us be given a com-
plete intersection X = V (f1, . . . , fr) where f1, . . . , fr are homogeneous polynomial of
degrees d1 ≤ . . . ≤ dr. The ideal of definition of X is given by IX = 〈f1, . . . , fr〉. The
central role is played by the stabilizer H of the ideal which is defined to be

Hs =
⋂

16i6r

{g ∈ G | g.fi = fi}.

The ideal stabilizer Hs obviously does act on Xs for every s ∈ S, and it gives
an action of HS on XS induces by the usual of G = PSLn on the vector space of
homogeneous polynomials in Qs[x1, . . . , xn]. In particular Hs contains AutG(X) the
group automorphism of X under G which is the pointwise stablizer of Xs under G.
The ideal stabilizer is an algebraic subgroup of G given by the following equations in
the variables (gi,j)

fk(gx) = fk(x) and det(gi,j)− 1 = 0.

Let us try to solve those equation with g = (gi,j)i,j, for this let us explicit the
coefficients of the fk and assume that they are of form

fk(x1, . . . , xn) =
∑

|α|=dk

a(k)α xα1

1 . . . xαn

n .

Therefore we have n equations which takes places in K[x1, . . . , xn](dk)[(gi,j)i,j]

∑

|α|=dk

a(k)α

((
n∑

j1=1

g1j1xj1

)α1

. . .

(
n∑

jn=1

gnjnxjn

)αn

− xα1

1 . . . xαn

n

)
= 0,
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∑

|α|=dk

a(k)α


 ∑

|β|=α1

(
α1

β

)
(g11x1)

β1 . . . (g1nxn)
βn


 . . .


 ∑

|β|=αn

(
αn

β

)
(gn1x1)

β1 . . . (gnnxn)
βn




=
∑

|α|=dk

a(k)α xα1

1 . . . xαn

n .

We do not need to go further to observe that such compuations unless we are dealing
with low degrees (i.e. d = 2, 3) leads to tremendous compuations and trying to
obtain the ideal stabilizer in such a way is quite compromized. Using elimination
when d = 2, 3 one could provide the required invariant groups where the solutions

g = (gi,j) are given by functions of the coefficients a
(k)
α of the fk’s. A last step would

be to decide if the invariant group is compact/semisimple/isotropic which could ask
some additional efforts, this task is crucial in order to apply our main theorem.

Final comments. The main problem is to determine the ideal stabilizer H of
a given projective variety X = V (f1, . . . , fr). This consists in finding a subgroup H
such that

K[x1, . . . , xn]
H = K[f1, . . . , fr].

This question is dual to the Invariant theory, indeed in invariant theory we fix a group
G and we try to understand the ring of invariants k[X ]G of the variety X. This theory
has reached a good level of maturity, notably with the rise of the geometric invariant

theory (G.I.T. [26]) and more recently with the theory of prehomogeneous spaces for
which we hope that we could derive an analog of the work of Yukie ([38]) using our
main theorem. In terms of category, the invariant theory is an attempt to understand
the image of the functor

F (X) : Grps → Rings
G → k[X ]G.

The so called Inverse Invariant theory consists the dual situation, namely the
image of the following functor given a fixed projective variety

F (X)∗ : Rings → Grps
A → G

where we define the functor F (X)∗ as follows F (X)∗(A) = G if A = k[X ]G. As far
as we know, this theory has been only developped for finite groups and in particular
for linear groups over finite fields. The latter has been studied in detail by Neusel
using tools from algebraic topology such as Steenrod operations. It should be very
interesting to have such a theory for linear groups over fields in null characteristic
and to have a criterion which ensures that the group obtained is reductive or/and
noncompact. If we could have such theory it would open a large range of applications
and more particularly for solving the diophantine inequalities in (1).

Acknowledgements. We thank the referee for the valuable remarks which have
strongly improved the quality of the paper.
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