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On the existence of cut points of
connected generalized Sierpiński carpets

Huo-Jun Ruan, Yang Wang and Jian-Ci Xiao

Abstract. In a previous work joint with Dai and Luo, we show that a connected generalized
Sierpiński carpet (or shortly a GSC) has cut points if and only if the associated n-th Hata graph
has a long tail for all n ≥ 2. In this paper, we extend the above result by showing that it suffices
to check a finite number of those graphs to reach a conclusion. This criterion provides a truly
“algorithmic” solution to the cut point problem of connected GSCs. We also construct for each
m ≥ 1 a connected GSC with exactly m cut points and demonstrate that when m ≥ 2, such a GSC
must be of the so-called non-fragile type.

Yhtenäisten yleistettyjen Sierpińskin mattojen katkaisupisteiden olemassaolosta

Tiivistelmä. Yhdessä Dain ja Luon kanssa osoitimme aiemmin, että yhtenäisellä yleistetyllä
Sierpińskin matolla on katkaisupisteitä, jos ja vain jos siihen liittyvällä kertaluvun n Hatan verkolla
on pitkä häntä kaikilla n ≥ 2. Tässä työssä yleistämme em. tulosta osoittamalla, että johtopäätöstä
varten riittää tarkastella äärellistä määrää näitä verkkoja. Tämä ehto antaa yhtenäisten yleistettyjen
Sierpińskin mattojen katkaisupisteongelmalle aidosti ”algoritmisen” ratkaisun. Lisäksi rakennamme
jokaisella m ≥ 1 yhtenäisen yleistetyn Sierpińskin maton, jolla on täsmälleen m katkaisupistettä, ja
osoitamme että tällainen matto on välttämättä ns. ei-haurasta tyyppiä, kun m ≥ 2.

1. Introduction

A large amount of common fractal sets are totally disconnected or at least have
infinitely many connected components. But there are indeed some of them which
are connected (e.g., the standard Sierpiński carpet). For a given pair of connected
fractals, an interesting question is whether they are mutually homeomorphic. In [9],
Whyburn came up with an elegant characterization concerning some special cases:
A metrizable topological space is homeomorphic to the standard Sierpiński carpet if
and only if it is a locally connected planar continuum of topological dimension 1 that
has no local cut points. Recall that for any connected topological space X, x ∈ X is
called a (global) cut point of X if X \ {x} is disconnected, and is called a local cut
point if x is a cut point of some connected neighborhood of itself.

When the given connected fractal is a self-affine set, a well-known result of
Hata [3] guarantees that it is also locally connected. Combining with Whyburn’s
result, the existence of local cut points becomes the key to determine whether a given
planar connected self-affine set is homeomorphic to the standard Sierpiński carpet.
However, it appears that developing a systematic approach for detecting the exis-
tence of local cut points, or even cut points, will be a difficult task. In [1], Akiyama,
Loridant and Thuswaldner characterize the existence of cut points of a special class
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of self-affine tiles. They considered the self-affine tile T =
⋃
d∈DM

−1(T + d), where
M is a integral matrix with characteristic polynomial x2 + ax + b, where a, b ∈ Z
are such that |a| < b and b ≥ 2, and D = {0, v, 2v, . . . , (b − 1)v} for some vector
v ∈ R2 such that v,Mv are linearly independent. It is shown in [1] that T has cut
points if and only if 2|a| ≤ b + 2. In [8], Wen studies the existence of cut points of
the so-called fractal necklaces. In particular, it is shown that some special classes
of fractal necklaces contain no cut points. Interested readers can refer to [2] for an
introduction to earlier relevant studies.

Together with Dai and Luo, the authors provided a criterion in [2] on the existence
of (local) cut points of a special class of planar self-similar sets called the generalized
Sierpiński carpets, which are defined as follows. Let N ≥ 2 and let D ⊂ {0, 1, . . . , N−
1}2 be a non-empty digit set with 1 < |D| < N2 (to avoid trivial cases), where |D|
denotes the number of elements in D. For each i ∈ D, define a similarity map ϕi by

ϕi(x) =
1

N
(x+ i), x ∈ R2.

We call the self-similar set F = F (N,D) associated with the iterated function system
(IFS for short) {ϕi : i ∈ D} a generalized Sierpiński carpet (or abbreviated to GSC).

For convenience, we regard the digit set D as the index set of the IFS {ϕi : i ∈
D} instead of enumerating it by {ϕ1, . . . , ϕ|D|}. Under this setting, the following
notations are typically used.

(1) For k ∈ Z+, Dk := {i = i1 · · · ik : i1, . . . , ik ∈ D}. Let D0 = {ϑ}, where ϑ
denotes the empty word. For k ≥ 0 and i ∈ Dk, we call i a word of length
|i| := k.

(2) Let D∗ =
⋃∞
k=1Dk and D∞ = {i1i2 · · · : ij ∈ D for all j ∈ Z+} denote the

collection of finite and infinite words, respectively;
(3) For i ∈ D∗, we call ϕi(F ) a level-|i| cell ;
(4) For 1 ≤ k ≤ n and i = i1 · · · in ∈ Dn, write i|k := i1 · · · ik to be the prefix of

i of length k. For i ∈ D∞ and k ≥ 1, i|k is similarly defined;
(5) For i, j ∈ D∗, write i ≺ j whenever i is a prefix of j, and i ⊀ j otherwise;
(6) For i ∈ D∗ and k ∈ Z+, iDk := {ij : j ∈ Dk}. Also let iD0 = {i}.
(7) For k ≥ 1 and i = i1 · · · ik ∈ Dk, ϕi := ϕi1 ◦ · · · ◦ ϕik . Also denote by ϕkj the

k-fold composition of ϕj for j ∈ D∗.
(8) For i ∈ D∗ and n ≥ 1, in := i · · · i︸ ︷︷ ︸

n terms

.

As in [2], for any graph G and any vertex v, we denote by G−{v} the subgraph
of G obtained by deleting v and all edges incident with v. We call v a cut vertex of
G if the subgraph G − {v} is disconnected. A connected component of G is just a
maximal connected subgraph of G.

The criterion of the existence of cut points in [2] is based on an examination on the
associated Hata graph sequence of F . For n ≥ 1, the n-th Hata graph Γn = Γn(N,D)
of F is defined by setting the vertex set to be Dn, and demanding that there is an
edge joining i, j ∈ Dn (i 6= j) if and only if ϕi(F ) ∩ ϕj(F ) 6= ∅.

Definition 1.1. [2] Let G = (V,E) be a connected graph. Given a cut vertex
v ∈ V of G, let G1(v), . . . , Gm(v) be all connected components of G − {v} with
|G1(v)| ≥ |G2(v)| ≥ · · · ≥ |Gm(v)|, where |Gi(v)| stands for the number of vertices
in Gi(v), 1 ≤ i ≤ m. Define

χ(G) = max{|G2(v)| : v is a cut vertex of G}
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if G has cut vertices, and χ(G) = 0 if G has none.

Sometimes it is convenient to say that the n-th Hata graph Γn has a long tail if
χ(Γn) ≥ |D|n−1 − 1. We have shown in [2] that a GSC has cut points if and only if
the correpsonding Γn has a long tail for all n.

Theorem 1.2. [2] A connected GSC F = F (N,D) has cut points if and only if
χ(Γn) ≥ |D|n−1 − 1 for all n ≥ 2.

There is one particular type of connected GSCs of which the existence of cut
points is relatively easy to determine. More precisely, a connected GSC F = F (N,D)
is called fragile if there is a decomposition of D, say D = D1 ∪D2 with D1 ∩D2 = ∅,
such that the intersection (⋃

i∈D1

ϕi(F )

)
∩

(⋃
i∈D2

ϕi(F )

)

is a singleton. That is to say, one can divide all level-1 cells into two groups meeting
at one single point. Clearly, that singleton is a cut point, and we do realize an easily
checked criterion for this type of GSCs (please see [2, Theorem 3.6]). A connected
GSC is called non-fragile if it is not fragile. Unfortunately, for non-fragile cases,
Theorem 1.2 requires us to examine the whole sequence {Γn}∞n=1. It is of particular
interest to ask whether one can detect the existence of cut points by checking only a
small section of that sequence. This is the main topic of the paper, and we will show
that the answer is affirmative. We also thank the anonymous referee for pointing out
that the notion of fragility is somewhat related to the D2 condition in [6].

Our main result is:

Theorem 1.3. Let F = F (N,D) be a non-fragile connected GSC. Then there
is some M ≥ 2 independent of N such that F has cut points if and only if χ(ΓM) ≥
|D|M−1.

More precisely, one can see from later proof that the constant M = 38 + 3 will
suffice. In addition, we look into the possible number of cut points. For simplicity,
denote by CF the set of cut points of any given connected GSC F .

Theorem 1.4. For every m ∈ Z+, there is some connected GSC F with #CF =
m.

Proof. Please see Example 7.1 for the construction. �

We remark that all GSCs constructed in Example 7.1 are fragile. This leads
to a natural question: Given any m ∈ Z+, is there a non-fragile connected GSC F
with #CF = m? When m = 1, the GSC in Figure 2 is as required. However, the
situation is completely different when m ≥ 2. More precisely, we have the following
observation.

Theorem 1.5. If F is non-fragile and #CF ≥ 2, then #CF = +∞.

Clearly, if two sets are homeomorphic then they have the same number of cut
points. Therefore, the above theorem indicates that for a fragile GSC F with 2 ≤
#CF <∞, F is not homeomorphic to any non-fragile GSC.

The organization of this paper is as follows. In Section 2, we collect some pre-
liminary results in [2] which will be used later. In Section 3, we record several basic
observations. Sections 4 and 5 are devoted to properties of essential cut vertices
of Hata graphs and the proof of Theorem 1.3, respectively. Section 6 presents the
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detailed proof (which is a bit complicated) of an auxiliary proposition in the proof
of Theorem 1.3. Finally, we construct some interesting examples, which demonstrate
Theorem 1.4, in Section 7.1 and prove Theorem 1.5 in Section 7.2.

2. Preliminary properties

For reader’s convenience, we invoke here some results in [2] which will be used
later.

Lemma 2.1. [2, Proposition 3.2] Suppose that there is some m ≥ 1 such that
Dm can be decomposed as Dm = I ∪ J with I ∩ J = ∅ and(⋃

i∈I

ϕi(F )

)
∩

(⋃
i∈J

ϕi(F )

)
= {x}

for some x ∈ F . Then F is fragile.

Lemma 2.2. [2, Proposition 3.7] Let m, k ≥ 1 and let i, j ∈ Dm be two distinct
words. If there exists exactly one pair of i′, j ′ ∈ Dk such that ϕii′(F )∩ϕjj′(F ) 6= ∅,
then ϕi(F ) ∩ ϕj(F ) is a singleton.

Lemma 2.3. [2, Lemma 3.9] Let α ∈ {(0, 0), (N−1, 0), (0, N−1), (N−1, N−1)}
and let i, j ∈ D∗ with |i| = |j|. If ϕj(F ) ∩ ϕiα(F ) 6= ∅, then ϕi(

α
N−1

), which is a
vertex of the square ϕi([0, 1]2), is an element of ϕi(F ) ∩ ϕj(F ).

Lemma 2.4. [2, Lemma 4.6] Let n ≥ 1 and let j = j1 · · · jn ∈ Dn. Let ω, τ ∈ D\
{j1}. Then ωDn−1, τDn−1 belong to different connected components of Γn−{j} if and
only if ϕω(F ), ϕτ (F ) belong to different connected components of

⋃
η∈Dn\{j} ϕη(F ).

Lemma 2.5. [2, Corollary 4.7] Let k ≥ 1 and let j ∈ Dk be a cut vertex of Γk.
Suppose there are ω, τ ∈ D such that ωDk−1, τDk−1 belong to different connected
components of Γk − {j}. Then ωDq, τDq belong to different connected components
of Γq+1 − {j|q+1} for all 0 ≤ q < k.

Lemma 2.6. [2, Lemma 4.9] Let m ≥ 2 and let B1, . . . , Bm be connected com-
pact sets in R2 such that

⋃m
i=1Bi is also connected. If A ⊂ B1 satisfies that B1 \ A

remains connected and A∩Bi = ∅ for all i 6= 1, then (B1 \A)∪B2 ∪ · · · ∪Bm is also
connected.

3. Basic observations on graphs and GSCs

In the rest of this paper, F = F (N,D) is presumed to be any fixed connected
non-fragile GSC. We will record in this section some useful observations.

Lemma 3.1. Let G be a connected graph. If v0 is a cut vertex of G, then every
connected component of G− {v0} contains at least one vertex adjacent to v0.

Proof. Suppose that there is some connected component C of G − {v0} that
contains no neighbors of v0. Denote the vertex set of C by VC . Then for any v ∈ VC
and v′ /∈ VC , v, v′ are not adjacent. But this implies that G has at least two connected
components, which contradicts its connectedness. �

Lemma 3.2. Let (a, 0) ∈ D for some 0 ≤ a ≤ N − 1. If (a − 1, 0) /∈ D and
(a+ 1, 0) /∈ D, then (a, 0) is not a cut vertex of Γ1.
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Proof. Suppose on the contrary that Γ1−{(a, 0)} is disconnected. By Lemma 3.1,
there are two neighbor vertices of (a, 0) which belong to different connected compo-
nents of Γ1−{(a, 0)}. Note that (a−1, 1), (a, 1), (a+1, 1) are the only three possible
vertices that might be adjacent to (a, 0).

We claim that at least one of them is not a neighbor of (a, 0). Otherwise, since
ϕ(a−1,1)(F ) ∩ ϕ(a,0)(F ) 6= ∅ and ϕ(a+1,1)(F ) ∩ ϕ(a,0)(F ) 6= ∅, it is easy to see that

{(0, 0), (N − 1, 0), (0, N − 1), (N − 1, N − 1)} ⊂ D.

Equivalently, {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ F . So

ϕ(a−1,1)(F ) ∩ ϕ(a,1)(F ) ⊃ {ϕ(a−1,1)((1, 0))} = {ϕ(a,1)((0, 0))}

and hence the vertices (a−1, 1), (a, 1) are adjacent in Γ1. Similarly, (a, 1) and (a+1, 1)
are also adjacent. As a result, (a, 0) is not a cut vertex of Γ1. This is a contradiction.

The claim implies that (a, 0) has exactly two neighbors in Γ1. Without loss of
generality, assume them to be (a− 1, 1) and (a, 1) (other two cases can be similarly
discussed). Note that Γ1−{(a, 0)} has exactly two connected components such that
one contains (a − 1, 1) and the other contains (a, 1). Denoting the vertex set of the
former component by D1, we see that(⋃
i∈D1

ϕi(F )

)
∩

 ⋃
i∈D\D1

ϕi(F )

 =

(⋃
i∈D1

ϕi(F )

)
∩ϕ(a,0)(F ) = ϕ(a−1,1)(F )∩ϕ(a,0)(F ),

which is a singleton. As a result, F is fragile and we again obtain a contradiction. �

Lemma 3.3. Let n ≥ 1 and let i ∈ Dn. Then ϕj(F ) ∩ ϕii(F ) = ∅ for any
j ∈ Dn \ {i}.

Proof. We will skip the proof since this is a simple geometric observation. Please
see Figure 1 for an illustration. �

i

j i j

Figure 1. When ϕi([0, 1]
2) touches or does not touch the boundary of the unit square [0, 1]2.

In both cases, the small shaded square is ϕii([0, 1]
2).

4. Essential cut vertices of Hata graphs

To examine the value χ(Γn), we will transform the problem to the detection of
the existence of “essential cut vertices” defined as follows.

Definition 4.1. Let n ≥ 1 and let i = i1 · · · in ∈ Dn be a cut vertex of Γn.
We call i essential if there are i, j ∈ D \ {i1} such that iDn−1 and jDn−1 belong to
different connected components of Γn − {i}.

Note that every cut vertex of Γ1 is essential. We also remark that by Lemma 2.4,
i = i1 · · · in ∈ Dn is essential if and only if there are i, j ∈ D \ {i1} such that ϕi(F )
and ϕj(F ) belong to different components of

⋃
j∈Dn\{i} ϕj(F ).
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Example 4.2. The 2-nd Hata graph associated with the connected GSC in
Figure 2 has exactly five cut vertices

(0, 2)(0, 2), (0, 2)(2, 2), (1, 0)(1, 0), (2, 2)(0, 2), (2, 2)(2, 2).

It is easy to see that (1, 0)(1, 0) is an essential cut vertice while others are not.

Figure 2. A connected GSC, where N = 3 and D = {0, 1, 2}2 \ {(1, 1), (1, 2)}.

Lemma 4.3. Let n ≥ 1. If i ∈ Dn is an essential cut vertex of Γn, then i|k is an
essential cut vertex of Γk for all 1 ≤ k ≤ n.

Proof. This is a direct consequence of Lemma 2.5. �

When F is non-fragile, it has been proved in [2, Theorem 1.11] that F has cut
points if and only if χ(Γn) ≥ |D|n−1 for all n ≥ 2. The reason we turn to finding
essential cut vertices is based on the following simple observation.

Lemma 4.4. For n ≥ 2, χ(Γn) ≥ |D|n−1 if and only if Γn has an essential cut
vertex. As a result, the GSC F has cut points if and only if Γn has essential cut
vertices for all n ≥ 2.

Proof. Suppose χ(Γn) ≥ |D|n−1 and let i = i1 · · · in be the vertex of Γn achieving
χ(Γn). By [2, Lemma 4.5], there are i, j ∈ D\{i1} such that iDn−1 and jDn−1 belong
to different connected components of Γn − {i}. So i is an essential cut vertex of Γn.

Conversely, suppose that Γn has an essential cut vertex j = j1 · · · jn. By defini-
tion, there are two digits i′, j′ ∈ D\{j1} such that i′Dn−1 and j′Dn−1 belong to differ-
ent connected components of Γn−{j}. Therefore, χ(Γn) ≥ min{|i′Dn−1|, |j′Dn−1|} =
|D|n−1. �

The following result provides us with a convenient suffient condition for a con-
nected GSC to have cut points. In many circumtances, there is a cut vertex i of Γ1

satisfying the required conditions and hence the GSC has cut points.

Proposition 4.5. Let n ≥ 1 and let i be a cut vertex of Γn. Suppose that there
are Λ,Λ′ ⊂ Dn satisfying the following conditions:

(1) Λ∪Λ′ = Dn\{i}, Λ∩Λ′ = ∅ and there are i, j ∈ D with iDn−1 ⊂ Λ, jDn−1 ⊂
Λ′;

(2) Writing X1 =
⋃

j∈Λ ϕj(F ) and X ′1 =
⋃

j∈Λ′ ϕj(F ), we have X1 ∩X ′1 = ∅;
(3) Both of ϕi(X1) and ϕi(X

′
1) cannot intersect X1 and X ′1 simultaneously.

Then ik is an essential cut vertex of Γkn for all k ≥ 1.

Note that by Lemma 2.4, the first two conditions above indicate that i is essential.

Proof. For k ≥ 1, let Ek =
⋃

j∈Dkn\{ik} ϕj(F ), Xk = ϕik−1(X1) and X ′k =

ϕik−1(X ′1). By the conditions (1) and (2), E1 = X1 ∪X ′1. Note that

Ek = Ek−1 ∪ ϕik−1(E1) = Ek−1 ∪ (Xk ∪X ′k).
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By an induction argument, it is easy to see that Ek =
⋃k
t=1(Xt∪X ′t) for k ≥ 1. Write

Ck =
⋃k
t=1Xt and C ′k =

⋃k
t=1X

′
t. It is clear that Ck,C ′k are both compact sets and

Ek = Ck ∪ C ′k. We also have

(4.1) Xk+1 ∩X ′k+1 = ϕik(X1 ∩X ′1) = ∅, ∀k ≥ 1.

Moreover, we have by Lemma 3.3 that for all k ≥ 2 and q ≥ k + 1,

(Xq ∪X ′q) ∩ Ek−1 = (Xq ∪X ′q) ∩
⋃

j∈D(k−1)n\{ik−1}

ϕj(F )

⊂ ϕik(F ) ∩
⋃

j∈D(k−1)n\{ik−1}

ϕj(F ) = ∅.(4.2)

Without loss of generality, the condition (3) can be divided into three cases:
(3-1) ϕi(X1) ∩X1 = ∅ and ϕi(X

′
1) ∩X1 = ∅;

(3-2) ϕi(X1) ∩X ′1 = ∅ and ϕi(X
′
1) ∩X1 = ∅;

(3-3) ϕi(X1) ∩X1 = ∅ and ϕi(X
′
1) ∩X ′1 = ∅.

Case 1. We have (3-1), i.e., X1 ∩X2 = ∅ and X1 ∩X ′2 = ∅. In this case,

X1 ∩ (X2 ∪ C ′2) = (X1 ∩X2) ∪ (X1 ∩X ′1) ∪ (X1 ∩X ′2) = ∅.

It then follows from (4.2) that for k ≥ 3,

X1 ∩

(
C ′k ∪

k⋃
t=2

Xt

)
= X1 ∩

(
k⋃
t=3

Xt ∪X ′t

)
⊂ E1 ∩

(
k⋃
t=3

Xt ∪X ′t

)
= ∅.

Combining this with Ek = X1∪
(
C ′k∪

⋃k
t=2Xt

)
and the condition (1), ik is an essential

cut vertex of Γkn.

Case 2. We have (3-2), i.e., X1 ∩ X ′2 = ∅ and X ′1 ∩ X2 = ∅. We will show by
induction that Ck ∩ C ′k = ∅ for all k ≥ 2. Then combining this with Ek = Ck ∪ C ′k
and the condition (1), ik is an essential cut vertex of Γkn.

Combining the condition (2) and (3-2), we have C1 ∩ C ′1 = ∅ and C2 ∩ C ′2 = ∅.
Suppose we have shown that Ct ∩ C ′t = ∅ for 1 ≤ t ≤ k. Then from (4.1),

Ck+1 ∩ C ′k+1 = (Xk+1 ∩ C ′k) ∪ (X ′k+1 ∩ Ck).

Note that

Xk+1 ∩ C ′k = Xk+1 ∩ (C ′k−1 ∪X ′k) = (Xk+1 ∩ C ′k−1) ∪ (Xk+1 ∩X ′k),

and Xk+1 ∩X ′k = ϕik−1(X2 ∩X ′1) = ∅. It then follows from (4.2) that

Xk+1 ∩ C ′k = Xk+1 ∩ C ′k−1 ⊂ Xk+1 ∩ Ek−1 = ∅.

Similarly, X ′k+1 ∩ Ck = ∅. This completes the induction process.

Case 3. We have (3-3), i.e., X1 ∩ X2 = ∅ and X ′1 ∩ X ′2 = ∅. In this case, it
follows that

(4.3) X2k−1∩X2k = ϕi2k−2(X1∩X2) = ∅ and X ′2k−1∩X ′2k = ϕi2k−2(X ′1∩X ′2) = ∅.

For k ≥ 1, let Yk = X2k−1 ∪X ′2k and Y ′k = X ′2k−1 ∪X2k. Then E2k =
⋃k
t=1(Yt ∪ Y ′t ).

It is also not hard to verify the following facts.
• For k ≥ 1, Yk+1 = ϕi2(Yk) and Y ′k+1 = ϕi2(Y

′
k);
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• For k ≥ 1, Yk ∩ Y ′k = ∅. In fact, since

Yk ∩ Y ′k = (X2k−1 ∪X ′2k) ∩ (X ′2k−1 ∪X2k),

the emptiness follows directly from (4.1) and (4.3);
• Y1 ∩ Y ′2 = ∅ and Y ′1 ∩ Y2 = ∅. To see this, first note that

Y1 ∩ Y ′2 = (X1 ∪X ′2) ∩ (X ′3 ∪X4)

= (X1 ∩X ′3) ∪ (X1 ∩X4) ∪ (X ′2 ∩X ′3) ∪ (X ′2 ∩X4).

Since X1 ⊂ E1, we see by (4.2) that X1 ∩ X ′3 = ∅. Similarly, X1 ∩ X4 and
X ′2∩X4 are both empty. Finally, X ′2∩X ′3 = ϕi(X

′
1∩X ′2) = ∅. So Y1∩Y ′2 = ∅.

One can show that Y ′1 ∩ Y2 = ∅ by an analogous argument.
In conclusion, this case is essentially the same as Case 2: Using i2 instead of i and
combining this with Lemma 4.3, ik is an essential cut vertex of Γkn for all k ≥ 1. �

Remark 4.6. Note that in the above proof, we actually show that X1 and X ′1
belong to different connected components of

⋃
j∈Dkn\{ik} ϕj(F ) for all k ≥ 1. Write

x to be the fixed point of the map ϕi. It follows from Lemma 3.3 and x ∈ ϕik+1(F )
that x 6∈ ϕj(F ) for all j ∈ Dkn \ {ik} and all k ≥ 1. By picking ω ∈ Λ and τ ∈ Λ′,
we know from [2, Theorem 4.2] that x is a cut point of F .

Corollary 4.7. Let n ≥ 1 and let i be an essential cut vertex of Γn such that
Γn − {i} has exactly two connected components. If ii is also an essential cut vertex
of Γ2n, then ik is an essential cut vertex of Γkn for all k ≥ 1.

Proof. Let V, V ′ be the vertex sets of the two connected components of Γn−{i},
respectively. In particular, V ∪ V ′ = Dn \ {i}. Let X1 =

⋃
j∈V ϕj(F ) and X ′1 =⋃

j∈V ′ ϕj(F ). Then

(4.4)
⋃

j∈D2n\{ii}

ϕj(F ) = (X1 ∪X ′1) ∪ (ϕi(X1) ∪ ϕi(X
′
1)).

Note that X1 and X ′1 are both connected. Thus, from (4.4) and the fact that ii is an
essential cut vertex of Γ2n, X1 and X ′1 belong to different connected components of⋃

j∈D2n\{ii} ϕj(F ). Using (4.4) again, both of ϕi(X1) and ϕi(X
′
1) cannot intersect X1

and X ′1 simultaneously. Now the corollary follows directly from Proposition 4.5. �

Proposition 4.8. Let n ≥ 3. If i = i1 · · · in ∈ Dn is an essential cut vertex of
Γn, then either i2 · · · in is an essential cut vertex of Γn−1, or i3 · · · in is an essential
cut vertex of Γn−2.

Since the proof of Proposition 4.8 involves a rather technical case-by-case dis-
cussion, we decide to present it in Section 6 so readers can move on without being
overwhelmed by tedious details. One can take this proposition for granted at this
moment and come back to the proof of it later.

Remark 4.9. In Proposition 4.8, i2 · · · in is not necessarily essential. For exam-
ple, consider the GSC as in Figure 3. It is not hard to see that the following facts
hold.

(1) The GSC is non-fragile and connected;
(2) (0, 0)(0, 0) is an essential cut vertex of Γ2;
(3) (0, 2)(4, 0)(0, 0)(0, 0) is an essential cut vertex of Γ4;
(4) (4, 0)(0, 0)(0, 0) is not an essential cut vertex of Γ3.
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Figure 3. From left to right: the initial pattern, the GSC and the 2-nd Hata graph.

5. Detecting essential cut vertices in finitely many steps

5.1. Positions of neighbor cells. One of the key ingredient in the proof of
Theorem 1.3 is the grid structure in the construction of GSCs. More precisely, every
basic square to be concerned with is surrounded by at most 8 squares of the same
side length, and we will label these positions as in Figure 4. For convenience, we
write P := {↑, ↓,←,→,↙,↘,↖,↗} as the collection of these labels. The following
definition is rather a way of notation.

↙ ↓ ↘

← →

↖ ↑ ↗

Figure 4. The eight neighbor squares and their labels.

Definition 5.1. For every i ∈ D∗ and t ∈ P , denote i(t) to be the element in
D|i|, if there is such one, satisfying the following conditions:

(1) ϕi(t)([0, 1]2) is the square (of the same size) lying exactly in the position t
adjacent to ϕi([0, 1]2);

(2) ϕi(t)(F ) ∩ ϕi(F ) 6= ∅.
The second condition guarantees that ϕi(t)(F ) is a neighbor cell of ϕi(F ). The

following is a simple geometric observation.

Lemma 5.2. Let i, j ∈ D∗ and let P ⊂ P be such that i(t), j(t) are well defined
for all t ∈ P . Then for any A ⊂ F ,(⋃

t∈P

ϕi(t)(F )

)
∩ ϕi(A) = ∅⇐⇒

(⋃
t∈P

ϕj(t)(F )

)
∩ ϕj(A) = ∅.

Proof. By the self-similarity, for each fixed t ∈ P , ϕi(t)(F )∩ϕi(A) is just a scaled
copy of ϕj(t)(F ) ∩ ϕj(A). So one of them is empty if and only if the other is empty.
Then the lemma follows immediately. �

5.2. Proof of Theorem 1.3. Now let us begin the proof. Let M be a large
positive integer that will be specified later and assume that χ(ΓM) ≥ |D|M−1. Then
there exists by Lemma 4.4 an essential cut vertex i = i1 · · · iM of ΓM . By definition,
we can find i∗, j∗ ∈ D \ {i1} such that i∗DM−1 and j∗DM−1 belong to different
connected components of ΓM−{i}. Equivalently (by Lemma 2.4), ϕi∗(F ) and ϕj∗(F )
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belong to different components of
⋃

j∈DM\{i} ϕj(F ), namely Ci∗ and Cj∗ . For 1 ≤ n ≤
M , write

Vn = {j ∈ Dn : ϕj(F ) ⊂ Ci∗}, Cn =
⋃
j∈Vn

ϕj(F )

and
V ′n = Dn \ ({i|n} ∪ Vn), C ′n =

⋃
j∈V ′n

ϕj(F ).

Note that both of Cn,C ′n are finite unions of level-n cells and Cn ∩C ′n = ∅. Further-
more, {Cn}Mn=1 and {C ′n}Mn=1 are both increasing sequences.

Recall that P = {↑, ↓,←,→,↙,↘,↖,↗}. For 1 ≤ n ≤M , let

Pn = {t ∈ P : ϕi|n(t)(F ) ⊂ Cn} and P ′n = {t ∈ P : ϕi|n(t)(F ) ⊂ C ′n}.
That is to say, Pn (resp. P ′n) records positions of level-n cells that are “adjacent” to
ϕi|n(F ) and contained in Cn (resp. C ′n). Clearly, Pn ∩ P ′n = ∅. Since i|n is a cut
vertex of Γn, it follows from Lemma 3.1 that Pn and P ′n are both non-empty. In
particular, by Definition 5.1, we see that Cn ∩ ϕi|n(F ) 6= ∅ and C ′n ∩ ϕi|n(F ) 6= ∅.

By Proposition 4.8, there is a sequence 1 ≤ k1 < k2 < · · · ≤M − 2 such that for
all p:

(1) ikp · · · iM is an essential cut vertex of ΓM−kp+1;
(2) kp < kp+1 ≤ kp + 2.

Note that P is a finite set. So taking M large enough in the beginning, we can find
n1 < n2 such that

{Pkn1
,P ′kn1

} = {Pkn2
,P ′kn2

}.

For example, since P has at most 2−1·3|P| = 2−1·38 distinct unordered pairs of disjoint
subsets, taking M = 38 + 3 will suffice. By Lemma 4.3, ikn1

· · · ikn2
is also essential.

To avoid complicated subscripts, we may replace kn1 , kn2 with n1, n2, respectively,
and write

ω := in1+1 · · · in2 .

Furthermore, let
Pω = {t ∈ P : ϕi|n1

(ϕω(t)(F )) ⊂ Cn2} and
P ′ω = {t ∈ P : ϕi|n1

(ϕω(t)(F )) ⊂ C ′n2
}.

(5.1)

Since i|n2 = i|n1ω, it is easy to see that for any t ∈ P , the juxtaposition of i|n1 and
ω(t) equals i|n2(t). As a consequence, we have

(5.2) Pω ⊂ Pn2 , P ′ω ⊂ P ′n2
.

Lemma 5.3. There are i, j ∈ D\{in1+1} with ϕi|n1 i
(F )∩Cn1 6= ∅ and ϕi|n1j

(F )∩
C ′n1
6= ∅.
Proof. We will prove the lemma by contradiction. Suppose on the contrary that

ϕi|n1+1(F ) is the only level-(n1 + 1) cell in ϕi|n1
(F ) which intersects Cn1 .

Claim. There exists some level-n1 cell in Cn1 that contains at least two level-
(n1 + 1) cells intersecting ϕi|n1

(F ).

Otherwise, for every level-n1 cell ϕj(F ) ⊂ Cn1 with ϕj(F ) ∩ ϕi|n1
(F ) 6= ∅, we

see by Lemma 2.2 that ϕj(F ) ∩ ϕi|n1
(F ) is merely a singleton. If there are more

than one such cells, then in1+1 ∈ {(0, 0), (N − 1, 0), (0, N − 1), (N − 1, N − 1)}. By
Lemma 2.3, these singletons must be identical (i.e., {ϕi|n1

(
in1+1

N−1
)}). So in conclusion,
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Cn1∩ϕi|n1
(F ) is just a singleton. Recall that Cn1 ,C

′
n1

are both finite union of level-n1

cells and they are disjoint. Therefore, ⋃
j∈Vn1

ϕj(F )

 ∩
 ⋃

j∈Dn1\Vn1

ϕj(F )

 = Cn1 ∩ (C ′n1
∪ ϕi|n1

(F )) = Cn1 ∩ ϕi|n1
(F )

is a singleton. By Lemma 2.1, F is fragile and we obtain a contradiction. This proves
the claim.

Let ϕη(F ) ⊂ Cn1 be a level-n1 cell as in the above claim. Recall from our
hypothesis in the beginning that ϕi|n1+1(F ) is the only level-(n1 + 1) cell in ϕi|n1

(F )
meeting ϕη(F ). Without loss of generality, Figure 5 illustrates all possibilities.

For the second and third cases in Figure 5, it is easy to see that

{(0, 0), (N − 1, 0), (0, N − 1), (N − 1, N − 1)} ⊂ D

and hence
ϕi|n1

(F ) ∩ ϕη(F ) ⊃ {ϕη((0, 1)), ϕη((1, 1))}.
This contradicts the fact that ϕi|n1+1(F ) is the only level-(n1 + 1) cell in ϕi|n1

(F )
meeting ϕη(F ).

Now let us consider the first case in Figure 5. For convenience, write in1+1 =
(a, 0). Since ϕi|n1+1(F ) is the only level-(n1 + 1) cell in ϕi|n1

(F ) which intersects
ϕη(F ), it is not hard to see that (a− 1, 0), (a+ 1, 0) /∈ D. Recall that in1+1 · · · in2 is
an essential cut vertex. In particular, in1+1 is a cut vertex of Γ1. But this contradicts
Lemma 3.2.

η

i|n1
i|n1+1

η

i|n1
i|n1+1

η

i|n1
i|n1+1

Figure 5. Local structure between ϕi|n1
(F ) and ϕη(F ).

The existence of j can be showed similarly. In fact, if we denote by Dn the union of
level-n cells contained in Cj∗ (recall this notation in the beginning of this subsection),
then applying an analogous argument as above, one can find j ∈ D \ {in1+1} such
that ϕi|n1j

(F ) ∩Dn1 6= ∅. Since Dn1 ⊂ C ′n1
, this completes the proof. �

Remark 5.4. Let i, j be two digits as in the above lemma. Since Cn1+1 (resp.
Dn1+1) collects all level-(n1 +1) cells contained in the connected component Ci∗ (resp.
Cj∗), we see that ϕi|n1 i

(F ) ⊂ Cn1+1 (resp. ϕi|n1j
(F ) ⊂ Dn1+1 ⊂ C ′n1+1). In particular,

i, j must be distinct.

Now we define

(5.3) B =
⋃
{ϕj(F ) : j ∈ Dn2 , i|n1 ≺ j, ϕj(F ) ⊂ Cn2}

and

(5.4) B′ =
⋃
{ϕj(F ) : j ∈ Dn2 , i|n1 ≺ j, ϕj(F ) ⊂ C ′n2

}.
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That is to say, B (resp. B′) is the union of those level-n2 cells in the level-n1 cell
ϕin1

(F ) which are contained in Cn2 (resp. C ′n2
). Since Cn2 ∩ C ′n2

= ∅, B ∩B′ = ∅.
Corollary 5.5. There is at least one level-(n1 +1) cell contained in B (resp. B′).

In particular, both of B and B′ are non-empty.

By the definitions of B and B′, it is clear that
Pω = {t ∈ P : ϕi|n1

(ϕω(t)(F )) ⊂ B} and
P ′ω = {t ∈ P : ϕi|n1

(ϕω(t)(F )) ⊂ B′},
(5.5)

where Pω,P ′ω are as in (5.1). Since Cn2 ∪ C ′n2
=
⋃

j∈Dn2\{i|n2}
ϕj(F ), we also have

⋃
j∈D|ω|\{ω}

ϕj(F ) = ϕ−1
i|n1

 ⋃
j∈D|ω|\{ω}

ϕi|n1j
(F )

 = ϕ−1
i|n1

(B) ∪ ϕ−1
i|n1

(B′) =: U ∪ U ′.

As a result,

⋃
j∈D2|ω|\{ωω}

ϕj(F ) =

 ⋃
j∈D|ω|\{ω}

ϕj(F )

 ∪ ϕω
 ⋃

j∈D|ω|\{ω}

ϕj(F )


= (U ∪ U ′) ∪ ϕω(U ∪ U ′)
= (U ∪ ϕω(U)) ∪ (U ′ ∪ ϕω(U ′)).

Since B ∩B′ = ∅, we have U ∩ U ′ = ∅ and hence ϕω(U) ∩ ϕω(U ′) = ∅.
Lemma 5.6. The following facts hold.
(1) There are distinct i, j ∈ D such that ϕi(F ) ⊂ U and ϕj(F ) ⊂ U ′;
(2) Both ϕω(U) and ϕω(U ′) cannot intersect U and U ′ simultaneously.

Proof. By Corollary 5.5, there are distinct i, j ∈ D such that ϕi|n1 i
(F ) ⊂ B and

ϕi|n1j
(F ) ⊂ B′. Thus ϕi(F ) ⊂ ϕ−1

i|n1
(B) = U and ϕj(F ) ⊂ ϕ−1

i|n1
(B′) = U ′. This

establishes (1).
For (2), note that by the definition of U , Definition 5.1, (5.5) and (5.2),

U ∩ ϕω(U ′) = ϕ−1
i|n1

(B) ∩ ϕω(U ′)

=
(⋃
{ϕj(F ) : j ∈ D|ω| \ {ω}, ϕi|n1j

(F ) ⊂ B}
)
∩ ϕω(U ′)

=
(⋃
{ϕω(t)(F ) : t ∈ P , ϕi|n1

(ϕω(t)(F )) ⊂ B}
)
∩ ϕω(U ′)

=

(⋃
t∈Pω

ϕω(t)(F )

)
∩ ϕω(U ′) ⊂

 ⋃
t∈Pn2

ϕω(t)(F )

 ∩ ϕω(U ′).(5.6)

Similarly,

(5.7) U ′ ∩ ϕω(U ′) ⊂

 ⋃
t∈P ′n2

ϕω(t)(F )

 ∩ ϕω(U ′).

Also note that ϕi|n1
(U ′) = B′ ⊂ C ′n2

. Since {Cn}Mn=1 is increasing, we have

(5.8)

 ⋃
t∈Pn1

ϕi|n1 (t)(F )

 ∩ ϕi|n1
(U ′) ⊂ Cn1 ∩ C ′n2

⊂ Cn2 ∩ C ′n2
= ∅.
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Recall that {Pn1 ,P ′n1
} = {Pn2 ,P ′n2

}.
(I) Pn1 = Pn2 . In this case, combining Lemma 5.2 with (5.6) and (5.8),

U ∩ ϕω(U ′) ⊂

 ⋃
t∈Pn1

ϕω(t)(F )

 ∩ ϕω(U ′) = ∅.

(II) Pn1 = P ′n2
. In this case, combining Lemma 5.2 with (5.7) and (5.8),

U ′ ∩ ϕω(U ′) ⊂

 ⋃
t∈Pn1

ϕω(t)(F )

 ∩ ϕω(U ′) = ∅.

Similarly, ϕω(U) cannot intersect U and U ′ simultaneously. This establishes (2) and
hence completes the proof. �

Proof of Theorem 1.3. Note that in the above proof, we actually show that the
conditions in Proposition 4.5 are fulfilled with i = ω, X1 = U and X ′1 = U ′. As a
consequence, ωk is an essential cut vertex of Γk|ω| for all k ≥ 1. By Lemma 4.3, Γn
has essential cut vertices for all n ≥ 1. Recalling Lemma 4.4, the GSC F contains
cut points. �

By Remark 4.6, if a non-fragile connected GSC has cut points, then we can even
find a cut point which is the fixed point of ϕi for some i ∈ D∗.

6. Proof of Proposition 4.8

To show Proposition 4.8, suppose on the contrary that i2 · · · in is not an essential
cut vertex of Γn−1. We will prove that this either leads to a contradiction (as in Case
1, Subcase 2.1 and Case 3 later) or that i3 · · · in is an essential cut vertex of Γn−2 (as
in Subcase 2.2 later).

Our hypothesis implies that {iDn−2 : i ∈ D \ {i2}} lies in one connected compo-
nent of Γn−1 − {i2 · · · in}. By Lemma 2.4 again, the set

(6.1) E :=
⋃

i∈D\{i2}

ϕi(F )

is a subset of some connected component of
⋃

j∈Dn−1\{i2···in} ϕj(F ). Therefore, ϕi1(E)

=
⋃
j∈D\{i2} ϕi1j(F ) is contained in exactly one connected component, denoted by C ,

of
⋃

j∈Dn\{i} ϕj(F ).

Lemma 6.1. There exists i∗ ∈ D \ {i1} such that ϕi∗(F ) ∩ ϕi1i2(F ) 6= ∅ but
ϕi∗(F ) ∩ C = ∅.

Proof. Let B1 = C ∪ ϕi1(F ) and A = ϕi1(F ) \ C 6= ∅. Then B1 = C ∪ A is a
disjoint union. It follows from C ⊃ ϕi1(E) that B1 is connected and A ⊂ ϕi1i2(F ).

Suppose that ϕj(F ) ∩ ϕi1i2(F ) = ∅ for all j ∈ D \ {i1}. Then
(6.2) ϕj(F ) ∩ A ⊂ ϕj(F ) ∩ ϕi1i2(F ) = ∅, ∀j ∈ D \ {i1}.
Note that {B1} ∪ {ϕj(F ) : j ∈ D \ {i1}} is a family of connected compact sets such
that their union F is connected. Since B1 \ A = C is also connected, by (6.2) and
Lemma 2.6,

G := C ∪

 ⋃
j∈D\{i1}

ϕj(F )

 = (B1 \ A) ∪

 ⋃
j∈D\{i1}

ϕj(F )
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is connected. By the definition of C , G ⊂
⋃

j∈Dn\{i} ϕj(F ). Thus
⋃
j∈D\{i1} ϕj(F )

is contained entirely in some component of
⋃

j∈Dn\{i} ϕj(F ). This contradicts the
essentiality of i and hence the set J := {j ∈ D \ {i1} : ϕj(F ) ∩ ϕi1i2(F ) 6= ∅} is
non-empty.

Moreover, suppose that ϕj(F )∩C 6= ∅ for all j ∈ J . Then
⋃
j∈J ϕj(F ) ⊂ C and

hence
⋃
j∈J∪{i1} ϕj(F ) ⊂ B1. Note that

ϕi(F ) ∩ A ⊂ ϕi(F ) ∩ ϕi1i2(F ) = ∅, ∀i ∈ D \ (J ∪ {i1}).

Applying Lemma 2.6 again, we see that

H := C ∪

 ⋃
i∈D\(J∪{i1})

ϕi(F )

 = (B1 \ A) ∪

 ⋃
i∈D\(J∪{i1})

ϕi(F )


is connected. Since

⋃
j∈J ϕj(F ) ⊂ C , H contains all level-1 cells except ϕi1(F ). Since

H ⊂
⋃

j∈Dn\{i} ϕj(F ), this contradicts the essentiality of i. �

Lemma 6.2. Let i∗ ∈ D be as in Lemma 6.1. If there exists j ∈ D\{i1, i∗} such
that ϕj(F ) ∩ ϕi1i2(F ) 6= ∅, then ϕj(F ) ∩ ϕi∗(F ) 6= ∅ and ϕj(F ) ∩ C = ∅.

Proof. If there is such a digit j, then both of ϕj(F ) and ϕi∗(F ) are level-1 cells
which intersect the level-2 cell ϕi1i2(F ). Thus ϕi1i2([0, 1]2) must locate at one of the
corners of the square ϕi1([0, 1]2), i.e., i2 ∈ {(0, 0), (N−1, 0), (0, N−1), (N−1, N−1)}.
From ϕj(F )∩ϕi1i2(F ) 6= ∅ and Lemma 2.3, ϕi1(

i2
N−1

) ∈ ϕj(F ). Similarly, ϕi1(
i2

N−1
) ∈

ϕi∗(F ). As a result, ϕi1(
i2

N−1
) ∈ ϕj(F )∩ϕi∗(F ), which implies that ϕj(F ) and ϕi∗(F )

belong to the same connected component of
⋃

j∈Dn\{i} ϕj(F ). Combining this with
the fact that ϕi∗(F ) ∩ C = ∅, we have ϕj(F ) ∩ C = ∅. �

For each i ∈ D \ {i1} satisfying ϕi(F ) ∩ ϕi1i2(F ) 6= ∅ and ϕi(F ) ∩ C = ∅, we
define

I(i) := {ij : j ∈ D, ϕij(F ) ∩ ϕi1i2(F ) 6= ∅}.

Now let us prove Proposition 4.8 by a case-by-case discussion on the cardinality of
I(i).

Case 1. For each i ∈ D satisfying ϕi(F ) ∩ ϕi1i2(F ) 6= ∅ and ϕi(F ) ∩ C = ∅,
we have |I(i)| = 1. Fix any such digit and denote it by i∗. Then there is exactly
one level-2 cell in ϕi∗(F ) that intersects ϕi1i2(F ). Recall that ϕi∗(F ) ∩ C = ∅ and
ϕi1(E) ⊂ C , where E is as in (6.1). So ϕi∗(F )∩ϕi1(E) = ∅, i.e., ϕi1i2(F ) is also the
only level-2 cell in ϕi1(F ) which intersects ϕi∗(F ). By Lemma 2.2, ϕi1(F ) ∩ ϕi∗(F )
is a singleton, say {x∗}. Let

D1 = {i ∈ D : iDn−1 and i∗Dn−1 belong to the same connected component of Γn−{i}}

and let D2 = D \ D1. Note that i1 ∈ D2.
Here is an observation: If i ∈ D \ {i1} satisfies ϕi(F ) ∩ ϕi1(F ) 6= ∅ but ϕi(F ) ∩

ϕi1i2(F ) = ∅, then i ∈ D2. In fact, note that for every such i,

ϕi(F ) ∩ ϕi1(E) = ϕi(F ) ∩ ϕi1
( ⋃
j∈D\{i2}

ϕj(F )
)

= ϕi(F ) ∩ ϕi1(F ) 6= ∅.
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Since ϕi1(E) ⊂ C , we have ϕi(F ) ⊂ C . But recall that ϕi∗(F ) ∩ C = ∅. Thus
i ∈ D2. As a result,( ⋃

j∈D1

ϕj(F )

)
∩

( ⋃
j∈D2

ϕj(F )

)
=

( ⋃
j∈D1

ϕj(F )

)
∩ ϕi1(F )

=

 ⋃
j∈D1

ϕj(F )∩ϕi1i2
(F ) 6=∅

ϕj(F )

 ∩ ϕi1(F ).(6.3)

Subcase 1.1. The digit i∗ is the only element in D \ {i1} such that ϕi∗(F ) ∩
ϕi1i2(F ) 6= ∅. In this case, we immediately have by (6.3) that( ⋃

j∈D1

ϕj(F )
)
∩
( ⋃
j∈D2

ϕj(F )
)

= ϕi∗(F ) ∩ ϕi1(F ) = {x∗}.

Thus F is fragile, which leads to a contradiction.

Subcase 1.2. There is some digit i∗ ∈ D\{i1, i∗} such that ϕi∗(F )∩ϕi1i2(F ) 6= ∅.
We claim that ϕi∗(F ) ∩ ϕi1(F ) = {x∗} and i∗ ∈ D1 for every such i∗. In fact,
in this subcase, ϕi1i2([0, 1]2) should locate at one of the corners of ϕi1([0, 1]2). By
Lemma 2.3, we have ϕi1(

i2
N−1

) ∈ ϕi∗(F ) ∩ ϕi1(F ) and ϕi1(
i2

N−1
) ∈ ϕi∗(F ) ∩ ϕi1(F ).

Thus x∗ = ϕi1(
i2

N−1
) and ϕi∗(F ) ∩ ϕi∗(F ) 6= ∅. In particular, i∗Dn−1 and i∗Dn−1

belong to the same connected component of Γn − {i}. In other words, i∗ ∈ D1.
Moreover, we have ϕi∗(F ) ∩ C = ∅ since ϕi∗(F ) ∩ C = ∅ and C is a connected
component. In conclusion, the digit i∗ satisfies that ϕi∗(F ) ∩ ϕi1i2(F ) 6= ∅ and
ϕi∗(F ) ∩ C = ∅. By our original assumption of Case 1, |I(i∗)| = 1. Using the
same arguments as in the beginning of Case 1, ϕi∗(F )∩ϕi1(F ) is a singleton so that
ϕi∗(F ) ∩ ϕi1(F ) = {x∗}. This completes the proof of the claim.

From the claim and (6.3),( ⋃
j∈D1

ϕj(F )

)
∩

( ⋃
j∈D2

ϕj(F )

)
=

 ⋃
j∈D1

ϕj(F )∩ϕi1i2
(F ) 6=∅

ϕj(F )

 ∩ ϕi1(F ) = {x∗}.

So F is fragile and we again arrive at a contradiction.

Case 2. There exists i∗ ∈ D satisfying the conditions in Lemma 6.1 with |I(i∗)| =
2. Rotating and reflecting if necessary, Figures 6(A),(B) illustrate all possibilities.
Recall the notation E in (6.1).

Subcase 2.1. Consider the case as in Figure 6(A), where i2 = (b, 0) and I =
{i∗(b− 1, N − 1), i∗(b+ 1, N − 1)} for some 0 < b < N − 1. Since ϕi1i2(F ) intersects
both ϕi∗(ϕ(b−1,N−1)(F )) and ϕi∗(ϕ(b+1,N−1)(F )),

{(0, 0), (N − 1, 0), (0, N − 1), (N − 1, N − 1)} ⊂ D.
Note that at least one of (0, 0) and (N − 1, 0) is not i2, say (0, 0). Then

C ∩ ϕi∗(F ) ⊃ ϕi1(E) ∩ ϕi∗(F ) ⊃ ϕi1(ϕ(0,0)(F )) ∩ ϕi∗(ϕ(0,N−1)(F )) 6= ∅.
This is a contradiction.

Subcase 2.2. Consider the case as in Figure 6(B), where i2 = (a, 0) and I =
{i∗(a − 1, N − 1), i∗(a,N − 1)} for some 0 < a ≤ N − 1. In particular, (a − 1, N −
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1), (a,N − 1) ∈ D. Moreover, since ϕi∗(ϕ(a−1,N−1)(F )) ∩ ϕi1i2(F ) 6= ∅, we have
(0, 0), (N−1, N−1) ∈ D. Since ϕi1(E)∩ϕi∗(F ) = ∅, we see that (a−1, 0), (a+1, 0) /∈
D and

(6.4) ϕi1(F ) ∩ ϕi∗(F ) = ϕi1(ϕ(a,0)(F )) ∩ (ϕi∗(ϕ(a−1,N−1)(F ) ∪ ϕ(a,N−1)(F ))).

i1

i∗

i1i2

i1

i∗

i1i2

i1

i∗

i1i2

(A) Subcase 2.1. (B) Subcase 2.2. (C) Case 3.

Figure 6. Subcases 2.1, 2.2 and Case 3, where the shaded region in (B) illustrates ϕi1(E).

We will prove by contradiction that i3 · · · in is an essential cut vertex of Γn−2 in
this subcase. Otherwise,

⋃
j∈D\{i3} ϕj(F ) is contained in exactly one connected com-

ponent of
⋃

j∈Dn−2\{i3···in} ϕj(F ). Thus we can find a component C ′ of
⋃

j∈Dn\{i} ϕj(F )

which contains ϕi1i2(
⋃
j∈D\{i3} ϕj(F )). Note that

C ′ ∩ ϕi∗(F ) ⊃ ϕi1i2

 ⋃
j∈D\{i3}

ϕj(F )

 ∩ ϕi∗(F )

⊃ ϕi1i2

 ⋃
j∈{(0,0),(a,0)}\{i3}

ϕj(F )

 ∩ ϕi∗(F ) 6= ∅.

Recall that ϕi∗(F ) ∩ C = ∅. Thus C ′ ∩ C = ∅, i.e., they are different components
of
⋃

j∈Dn\{i} ϕj(F ).

Claim. (a, 1) /∈ D, (a+1, 1) ∈ D and ϕ(a−1,1)(F )∩ϕ(a,0)(F ) = ∅ (if (a−1, 1) ∈ D).
Firstly, if (a, 1) ∈ D then (a, 1) ∈ D \ {i2}, and we have by (6.4) and the self-

similarity of F that

C ′ ∩ C ⊃ ϕi1i2

 ⋃
i∈D\{i3}

ϕi(F )

 ∩ ϕi1
 ⋃
j∈D\{i2}

ϕj(F )


⊃ ϕi1i2

 ⋃
i∈{(a−1,N−1),(a,N−1)}\{i3}

ϕi(F )

 ∩ ϕi1(ϕ(a,1)(F )) 6= ∅,

which leads to a contradiction. Secondly, if ϕ(a−1,1)(F ) ∩ ϕ(a,0)(F ) 6= ∅ then (N −
1, 0), (0, N − 1) ∈ D, and we will obtain a contradiction as in Subcase 2.1. Finally,
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combining these two observations and the fact that (a−1, 0), (a+1, 0) /∈ D, we must
have (a+ 1, 1) ∈ D (otherwise, F is disconnected). This establishes the claim.

But now it is easy to see that

ϕ(a,0)(F ) ∩

 ⋃
i∈D\{(a,0)}

ϕi(F )

 = ϕ(a,0)(F ) ∩ ϕ(a+1,1)(F )

is a singleton. This means that F is fragile and we again arrive at a contradiction.

Case 3. There exists i∗ ∈ D satisfying the conditions in Lemma 6.1 with |I(i∗)| =
3. Rotating and reflecting if necessary, Figures 6(C) illustrates all possibilities. In
this case, we again have

{(0, 0), (N − 1, 0), (0, N − 1), (N − 1, N − 1)} ⊂ D

and will obtain a contradiction as in Subcase 2.1.

7. Possible numbers of cut points

7.1. Constructions. It is also interesting to consider the possible number of
cut points of any connected GSC F . We have the following possibilities.

(1) F has no cut points (e.g., the standard Sierpiński carpet).
(2) F has exactly one cut point. For example, the GSC in Figure 2 satisfies this

requirement, i.e., (1/2, 0) is the only cut point of F . Please see Lemma 4.1 in
[7] for a detailed proof.

(3) F has more than one but still finitely many cut points. Please see Example 7.1.
(4) F has countably many cut points. For example, take N = 3 and

D = {(0, 1), (1, 0), (1, 1), (1, 2), (0, 2), (2, 1), (2, 2)}.

Please see Figure 7. In this case, the collection of cut points of F is a subset
of

{(1/2, 1/3)} ∪ {ϕi((1/2, 1/3)) : i ∈ D∗},
and it is easy to see that {ϕn(1,0)((1/2, 1/3)) : n ≥ 1} are cut points of F . One
can modify the argument in Example 7.1 (by considering the union of all
horizontal and vertical line segments instead) and get a rigorous proof.

(5) F has uncountably many cut points. This happens trivially when F is a
line segment. For example, take N = 3 and D = {(0, 0), (1, 0), (2, 0)} (so
F = F (N,D) is just the interval [0, 1]× {0}).

Figure 7. A GSC with countably many cut points.

The following example establishes Theorem 1.4.
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Example 7.1. Given any positive integer m ≥ 3, we can construct a connected
GSC with exactly (2m− 3) cut points. For example, let

Λk = {(k, i) : 0 ≤ i ≤ m− 1} ∪ {(k + 1, i) : m ≤ i ≤ 2m− 1}, 0 ≤ k ≤ 2m− 2,

and set

Dm = {(0, i) : m ≤ i ≤ 2m− 1} ∪ {(2m− 1, i) : 0 ≤ i ≤ m− 1} ∪
m−1⋃
k=0

Λ2k.

We claim that the GSC F = F (2m,Dm) has exactly (2m− 3) cut points. Please see
Figure 8(A) for the case when m = 3.

Here is a sketch of proof of the above claim, which is a modification of the proof
of [7, Lemma 4.1]. Note that there are infinitely many line segments of slope m in F .
Denote A to be the union of all line segments in F of slope m and ∞ (i.e., vertical
ones). It is not hard to see that A is a connected subset of F , and A \ {x} remains
connected unless

x ∈
{(

i

2m
,
1

2

)
: 2 ≤ i ≤ 2m− 2

}
=: C.

For any x /∈ C and any y ∈ F \ {x}, there is some i ∈ D∗m such that y ∈ ϕi(F )
but x /∈ ϕi(F ). Since ϕi(F ) contains infinitely many line segments of slope m and
∞, ϕi(F ) and A \ {x} (which are both connected) belong to the same connected
component of F \ {x}. In particular, y and A \ {x} belong to the same connected
component of F \ {x}. It then follows from the arbitrariness of the choice of y that
F \ {x} is connected. On the other hand, it is easy to see that every point in C is
indeed a cut point of F . Thus F contains exactly |C| = 2m− 3 cut points.

The above construction settles the existence of GSCs containing an odd number
(≥ 3) of cut points. For even numbers, just set

D′m = Dm ∪ {(2m− 2, i) : m ≤ i ≤ 2m− 1}.

Similarly as above, it is not hard to see that the new GSC F ′ = F ′(2m,D′) contains
exactly (2m− 4) cut points(

2

2m
,
1

2

)
,

(
3

2m
,
1

2

)
, . . . ,

(
2m− 3

2m
,
1

2

)
.

Please see Figure 8(B) for the case when m = 3.

(A) 3 cut points. (B) 2 cut points.

Figure 8. GSCs with exactly 3 and 2 cut points.

7.2. Non-fragile cases. In this subsection, we prove Theorem 1.5. To this end,
we need a series of observations as follows.
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Lemma 7.2. For any x ∈ F , F \ {x} has at most eight connected components.
Moreover, none of these components is trivial.

Proof. Let i = i1i2 · · · ∈ D∞ be an infinite word such that {x} =
⋂∞
n=1 ϕi|n(F ).

Writing En =
⋃

j∈Dn\{i|n} ϕj(F ), it is easy to see that {En} is an increasing sequence
and F \ {x} =

⋃∞
n=1En. Suppose on the contrary that we can find nine distinct

connected components C1, . . . ,C9 of F \{x}. Select zi ∈ Ci. Note that {zi}9
i=1 ⊂ En0

for some large n0. Since En0 ⊂ F \{x}, zi and zj must belong to different components
of En0 whenever i 6= j. So En0 contains at least nine components. Equivalently,
Γn0 − {i|n0} has at least nine components. Since i|n0 has at most eight neighbors in
Γn0 , this contradicts Lemma 3.1.

For the second statement, suppose that {z} is a trivial connected component
of F \ {x}. Since z 6= x, we can find a word i ∈ Dn for some large n such that
z ∈ ϕi(F ) but x /∈ ϕi(F ). The connectedness of F implies that ϕi(F ) is also
connected. So z and ϕi(F ) belong to the same connected component of F \ {x}.
This is a contradiction. �

Lemma 7.3. For any x ∈ F , the space F \ {x} is locally path connected. In
particular, the connected components and the path connected components of F \{x}
are the same.

Proof. We claim that for every open set U of F \ {x}, each path connected
component of U is open in F \ {x}. As a result, for any y ∈ U , the path connected
component of U containing y is a neighborhood of y. Since U is arbitrary, F \ {x} is
locally path connected.

For the claim, let C be a path component of U and let z ∈ C . Since U is
open and z 6= x, we can choose n so large that for every i ∈ Dn with z ∈ ϕi(F ),
ϕi(F ) ⊂ U ⊂ F \ {x}. Recall that a connected self-similar set is always path
connected (please refer to [4, Theorem 1.6.2]). So for every such i, ϕi(F ) is path
connected and hence ϕi(F ) ⊂ C .

Moreover, since
⋃

j∈Dn:z /∈ϕj(F ) ϕj(F ) is a compact subset of R2, the distance be-
tween it and the singleton {z} is a positive real number, say δ. Then for 0 < r < δ,

{y ∈ F \ {x} : |y − z| < r} ⊂
⋃

j∈Dn:z∈ϕj(F )

ϕj(F ) ⊂ C .

This indicates the openness of C . �

Motivated by [10], we introduce the following definition.

Definition 7.4. Let F be a connected GSC. Suppose that x ∈ F and C is a
connected component of F \ {x}.

(1) The component C is called vertical if C meets both [0, 1]×{0} and [0, 1]×{1};
(2) The component C is called horizontal if C meets both {0}× [0, 1] and {1}×

[0, 1];
(3) The component C is called corner-like if it is neither vertical nor horizontal.

We also call any path ` ⊂ [0, 1]2 vertical (resp. horizontal) if ` meets both
[0, 1] × {0} and [0, 1] × {1} (resp. {0} × [0, 1] and {1} × [0, 1]). As a consequence
of Lemma 7.3, every vertical (resp. horizontal) component of F \ {x}, where x ∈ F ,
contains a vertical (resp. horizontal) path. Recall that CF denotes the set of cut
points of F .
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Proposition 7.5. If there is some x ∈ CF and some connected component of
F \ {x} that is corner-like, then #CF = +∞.

Proof. Denote the corner-like connected component in the assumption by C .
So C is neither vertical nor horizontal. Without loss of generality, assume that
C ∩ ([0, 1] × {1}) = ∅ and C ∩ ({1} × [0, 1]) = ∅. Let a∗ = min{a : (a, b) ∈ D},
b∗ = min{b : (a∗, b) ∈ D} and write i∗ = (a∗, b∗) ∈ D. Recalling Definition 5.1, we
have i∗(↖), i∗(←), i∗(↙), i∗(↓) /∈ D. Writing y = ϕi∗(x), it is easy to see that

ϕi∗(C ) ∩ ((ϕi∗(F ) \ {y}) \ ϕi∗(C )) = ∅.

Moreover,

ϕi∗(C ) ∩

 ⋃
i∈D\{i∗}

ϕi(F )

 ⊂ ϕi∗(C ) ∩

(⋃
t∈P

ϕi∗(t)(F )

)

⊂ ϕi∗(C ) ∩

 ⋃
t∈{↑,↗,→,↘}

ϕi∗(t)(F )


= ϕi∗(C ) ∩ (ϕi∗([0, 1]× {1}) ∪ ϕi∗({1} × [0, 1])) = ∅,

implying that ϕi∗(C ) is a connected component of F \ {y}. In particular, y ∈ CF .
Since C is nontrivial (recall Lemma 7.2) and ϕi∗ is strictly contractive, ϕi∗(C ) 6= C .

Further, it follows from the self-similarity of F that ϕ2
i∗(C ) is a connected com-

ponent of ϕi∗(F \ {y}) = ϕi∗(F ) \ {ϕi∗(y)}. By Lemma 3.3,

dist(ϕ2
i∗(C ), ϕi(F )) ≥ dist(ϕ2

i∗(F ), ϕi(F )) > 0, ∀i ∈ D \ {i∗}.

Since F = ϕi∗(F ) ∪
⋃
i∈D\{i∗} ϕi(F ), ϕ2

i∗(C ) should be a connected component of
F \ {ϕi∗(y)}, and it is not equal to C and ϕi∗(C ) for the reason as before. By
an easy induction process, we can show that ϕni∗(C ) is a connected component of
F \ {ϕn−1

i∗ (y)} for all n ≥ 1, and ϕni∗(C ) 6= ϕmi∗(C ) whenever n 6= m. Combining with
Lemma 7.2, #CF must be infinity. �

Corollary 7.6. If 0 < #CF <∞, then for every x ∈ CF , the connected compo-
nents of F \ {x} are either all vertical or all horizontal.

Proof. Since 0 < #CF <∞, the above proposition tells us that every connected
component of F \ {x} is either vertical or horizontal. Suppose there are two compo-
nents C ,C ′ of F \ {x} such that C is vertical but C ′ is horizontal. By Lemma 7.3,
C and C ′ are both path connected. So there is a vertical path in C and a horizon-
tal path in C ′. But these two paths must intersect with each other, implying that
C ∩ C ′ 6= ∅ and hence C = C ′. This is a contradiction. �

As a result, for any x ∈ CF and any pair of vertical connected components C ,C ′

of F \{x}, C is either to the left or to the right of C ′. More precisely, we have either

sup{x : (x, y) ∈ C } ≤ inf{x : (x, y) ∈ C ′} for all y ∈ {0, 1}

or vice versa.

Proposition 7.7. If 0 < #CF < ∞, then for every x ∈ CF , F \ {x} contains
exactly two connected components that are both vertical or both horizontal.

Proof. Let i = i1i2 · · · ∈ D∞ be an infinite word such that {x} =
⋂∞
n=1 ϕi|n(F ),

and recall that F \ {x} =
⋃∞
n=1En, where En :=

⋃
j∈Dn\{i|n} ϕj(F ) is as in the proof
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of Lemma 7.2. By the above corollary, we may assume without loss of generality that
all connected components of F \ {x} are vertical.

Let C be a component of F \ {x}. Since C is vertical, it cannot be contained in
one single level-1 cell. In particular, C * ϕi1(F ). So for any n ≥ 1, C ∩ En 6= ∅.
Combining this with En ⊂ F \ {x}, C must contain some connected component, say
Cn, of En. By definition, there is a connected component of the graph Γn − {i|n} of
which the vertex set Vn is such that Cn =

⋃
j∈Vn ϕj(F ). Recalling Lemma 3.1, we

can further find ωn ∈ Vn that is adjacent to i|n, i.e., ϕωn(F ) ∩ ϕi|n(F ) 6= ∅. Hence

dist(x,C ) ≤ dist(x,Cn) ≤ dist(x, ϕωn(F )) ≤ 2
√

2N−n, ∀n ≥ 1.

Combining with the fact that C is vertical and path connected, we can find vertical
paths {`n}∞n=1 in C such that dist(`n, x) ≤ 2N−n.

Suppose the lemma is false, i.e., there are two vertical (path) connected com-
ponents C ′,C ′′ of F \ {x} other than C . Without loss of generality, assume that
C ,C ′′,C ′ lie from left to right. Similarly as above, we can find vertical paths {`′n}∞n=1

in C ′ such that dist(`′n, x) ≤ 2N−n. For every n, select zn ∈ `n and z′n ∈ `′n with
|x − zn| ≤ 2N−n and |x − z′n| ≤ 2N−n, respectively. Denoting by `(zn, z′n) the line
segment joining zn and z′n, it is easy to see that |z − x| ≤ 2N−n for all z ∈ `(zn, z′n).

Since C ′′ is vertical, there is a vertical path ` ⊂ C ′′. Clearly, ` ∩ `n = ∅ and
`∩ `′n = ∅ for all n. Since C ′′ lies in the “middle” of C and C ′, ` must meet `(zn, z′n)
and hence dist(`, x) ≤ 2N−n for all n. This further tells us that x ∈ `, which leads
to a contradiction since ` ⊂ C ′′ ⊂ F \ {x}. �

Corollary 7.8. Assume that 0 < #CF < ∞ and let x ∈ CF . If connected
components of F \ {x} are all vertical (resp. horizontal), then for any y ∈ CF , all
components of F \ {y} are also vertical (resp. horizontal).

Proof. By Lemmas 7.3 and 7.7, there are exactly two vertical path connected
components of F \ {x}. In particular, we can find two disjoint vertical paths `, `′ ⊂
F \ {x}. Note that at least one of them does not pass y. Without loss of generality,
assume that y /∈ `. By Corollary 7.6, connected components of F \{y} are all vertical
or all horizontal. In the former case, there is nothing to prove. In the latter case, each
of those components contains a horizontal path. But all these paths must meet the
vertical path `. Therefore, they belong to the same connected component of F \ {y},
which is a contradiction. �

Lemma 7.9. Suppose 0 < #CF < ∞, x ∈ CF and C is a vertical connected
component of F \ {x}. Then

C ∩ ((F + (0, 1)) \ {x}) 6= ∅ and C ∩ ((F + (0,−1)) \ {x}) 6= ∅.
In particular, (F \{x})∪(F +(0, 1)) and (F \{x})∪(F +(0,−1)) are both connected.

Proof. Without loss of generality, suppose on the contrary that C is vertical but
C ∩ ((F + (0, 1)) \ {x} = ∅. By Proposition 7.7, we may also assume that C is the
leftmost component of F \ {x}. Thus

C ∩ (F + i) = ∅, ∀i ∈ {(1, 1), (1, 0), (1,−1)}.
Letting i∗ = (a∗, b∗) be as in the proof of Proposition 7.5, we see that

ϕi∗(C ) ∩

 ⋃
i∈D\{i∗}

ϕi(F ) \ {ϕi∗(x)}

 = ϕi∗(C ) ∩

(⋃
t∈P

ϕi∗(t)(F ) \ {ϕi∗(x)}

)
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⊂ ϕi∗(C ) ∩ (ϕi∗(↑)(F ) \ {ϕi∗(x)}) = ϕi∗(C ∩ ((F + (0, 1)) \ {x})) = ∅.

This implies that ϕi∗(C ) is a connected component of F \ {ϕi∗(x)}. Further, since
ϕi∗(C ) ⊂ ϕi∗(F ), it is corner-like. By Proposition 7.5, we obtain a contradiction.

Combining with the connectedness of F and Proposition 7.7, it is easy to see that
the second statement holds. �

Lemma 7.10. Let x ∈ CF and suppose that F \{x} contains exactly two vertical
connected components Cx,1 and Cx,2. If Cx,1 lies to the left of Cx,2, then

F ∩ ({0} × [0, 1]) = Cx,1 ∩ ({0} × [0, 1]), F ∩ ({1} × [0, 1]) = Cx,2 ∩ ({1} × [0, 1]).

Proof. We first claim that x /∈ {0, 1} × [0, 1]. Suppose on the contrary that
x ∈ {0} × [0, 1] and let `x,1 ⊂ Cx,1 be a vertical path. Then δ := dist(x, `x,1) > 0.
Since x lies in the leftmost side of the unit square and Cx,2 is to the right of Cx,1,
dist(x,Cx,2) ≥ dist(x, `x,1) = δ > 0. But as in the proof of Proposition 7.7, there are
vertical paths in Cx,2 that is arbitrarily close to x. This is a contradiction. Similarly,
x /∈ {1} × [0, 1].

Suppose there is some z ∈ F ∩ ({0} × [0, 1]) but z /∈ Cx,1. Then z ∈ Cx,2 and
we can find a vertical path `z ⊂ Cx,2 passing z. Since Cx,1 lies to the left of Cx,2

and z lies in the leftmost side of the unit square, every vertical path in Cx,1 must
intersect `z. This is impossible since Cx,1∩Cx,2 = ∅. Now we obtain a contradiction,
so F ∩ ({0} × [0, 1]) ⊂ Cx,1. Similarly, F ∩ ({1} × [0, 1]) ⊂ Cx,2. This establishes the
equalities. �

Proposition 7.11. Assume that 0 < #CF < ∞ and let j ∈ D and x ∈ CF .
If ϕj(x) ∈ CF while ϕj(x) /∈ ϕi(F ) for every i ∈ D \ {j}, then ϕj(y) ∈ CF for all
y ∈ CF .

Proof. If y = x then there is nothing to prove, so it suffices to consider when
y 6= x. By Proposition 7.7, we may assume that F \{x} contains exactly two vertical
connected components Cx,1 and Cx,2. Without loss of generality, assume that Cx,1

lies to the left of Cx,2, and write xj = ϕj(x) for convenience.
We claim that j± (0, 1) /∈ D. Suppose on the contrary that j+ (0, 1) ∈ D. Then

xj /∈ ϕj+(0,1)(F ). Note that

ϕj+(0,1)(F ) ∪ (ϕj(F ) \ {xj}) = ϕj+(0,1)(F ) ∪ ϕj(F \ {x})

=
(F + (0, 1)) ∪ (F \ {x})

N
+

j

N

is a scaled copy of (F + (0, 1)) ∪ (F \ {x}). Then, since connected components of
F \ {x} are both vertical, we see from Lemma 7.9 that ϕj+(0,1)(F )∪ (ϕj(F ) \ {xj}) is
connected. Similarly, if j − (0, 1) ∈ D then ϕj−(0,1)(F )∪ (ϕj(F ) \ {xj}) is connected.
Writing Λ = {j, j ± (0, 1)} ∩ D, we see that

⋃
t∈Λ

ϕt(F ) \ {xj} = (ϕj(F ) \ {xj}) ∪

 ⋃
t∈D∩{j±(0,1)}

ϕt(F )


is a connected set. Since

F =

(⋃
t∈Λ

ϕt(F )

)
∪

(⋃
t/∈Λ

ϕt(F )

)
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is connected, applying Lemma 2.6 (toB1 =
⋃
t∈Λ ϕt(F ), A = {xj} and {B2, . . . , Bm} =

{ϕt(F ) : t /∈ Λ}) gives us the connectedness of

F \ {xj} =

(⋃
t∈Λ

ϕt(F ) \ {xj}

)
∪

(⋃
t/∈Λ

ϕt(F )

)
,

which contradicts that xj ∈ CF . This proves the claim.
By Proposition 7.7 and Corollary 7.8, F \ {xj} contains exactly two vertical

connected components. Denote by Cxj ,1 (resp. Cxj ,2) the component of F \ {xj}
containing ϕj(Cx,1) (resp. ϕj(Cx,2)). Note that

Cxj ,1 ∪ Cxj ,2 = F \ {xj} =

 ⋃
i∈D\{j}

ϕi(F )

 ∪ ϕj(F \ {x})
=

 ⋃
i∈D\{j}

ϕi(F )

 ∪ ϕj(Cx,1) ∪ ϕj(Cx,2).

So we can decompose D \ {j} = V1 ∪ V2 such that

Cxj ,1 =

(⋃
i∈V1

ϕi(F )

)
∪ ϕj(Cx,1) and Cxj ,2 =

(⋃
i∈V2

ϕi(F )

)
∪ ϕj(Cx,2).

For convenience, write FVp =
⋃
i∈Vp ϕi(F ) for p = 1, 2.

Again, by Proposition 7.7 and Corollary 7.8, F \{y} contains exactly two vertical
connected components. Denote the left one by Cy,1 and the right one by Cy,2. Since
j ± (0, 1) /∈ D and Cx,1 lies to the left of Cx,2,

∅ = FV1 ∩ ϕj(Cx,2)

=

 ⋃
t∈P:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(Cx,2)

=

 ⋃
t∈{↗,→,↘}:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(Cx,2)

=

 ⋃
t∈{↗,→,↘}:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(Cx,2 ∩ ({1} × [0, 1]))

=

 ⋃
t∈{↗,→,↘}:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(F ∩ ({1} × [0, 1])),

where the last equality follows from Lemma 7.10. Thus ⋃
t∈{↗,→,↘}:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(F ∩ ({1} × [0, 1])) = ∅.
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Since Lemma 7.10 also implies that F ∩ ({1} × [0, 1]) = Cy,2 ∩ ({1} × [0, 1]), writing
yj = ϕj(y), we have

(
FV1 \ {yj}

)
∩ ϕj(Cy,2) ⊂

 ⋃
t∈{↗,→,↘}:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(Cy,2)

=

 ⋃
t∈{↗,→,↘}:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(Cy,2 ∩ ({1} × [0, 1]))

=

 ⋃
t∈{↗,→,↘}:j(t)∈V1

ϕj(t)(F )

 ∩ ϕj(F ∩ ({1} × [0, 1])) = ∅.

Similarly, we can show that
(
FV2 \ {yj}

)
∩ ϕj(Cy,1) = ∅. So the set

F \ {yj} =
(
ϕj(Cy,1) ∪

(
FV1 \ {yj}

))
∪
(
ϕj(Cy,2) ∪

(
FV2 \ {yj}

))
,

as a union of two disjoint closed subsets of F \ {yj}, should be disconnected. In
particular, yj ∈ CF . �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Recall that in the proof of Theorem 1.3, we actually show
that there are x ∈ CF and ω ∈ D∗ such that ϕω(x) = x (please see Remark 4.6). Since
we can regard F as the attractor associated with {ϕi : i ∈ Dn} for all n ≥ 1, we may
assume without loss of generality that ω ∈ D1. By Lemma 3.3, ϕ2

ω(F ) ∩ ϕi(F ) = ∅
for all i ∈ D \ {ω}. So x = ϕ2

ω(x) /∈ ϕi(F ) for every such i.
Since #CF ≥ 2, there is some y ∈ CF with y 6= x. By Proposition 7.11, ϕω(y) ∈

CF . Then it follows from an easy induction process that ϕnω(y) ∈ CF for all n ≥ 1.
Note that for any k ∈ Z+, ϕkω is an bijection on R2. Thus, from the facts that y 6= x
and x is the fixed point of ϕω, ϕnω(y) 6= ϕmω (y) whenever n 6= m. So we obtain an
infinite number of cut points of F , which completes the proof. �

Lemma 7.12. Let F be a non-fragile connected GSC and let x ∈ CF . Then
there is some infinite word i = i1i2 · · · ∈ D∞ such that {x} =

⋂∞
n=1 ϕi|n(F ) and

ϕ−1
i|n (x) ∈ CF for all n ≥ 1.

Proof. Let Λ = {i ∈ D : x ∈ ϕi(F )}. We first show that there is some i1 ∈ Λ
such that x is a cut point of ϕi1(F ). Otherwise, ϕi(F ) \ {x} is connected for every
i ∈ D. Combining with the fact that x ∈ CF , we can decompose D as D = D1 ∪D2,
where D1 ∩ D2 = ∅, such that

F \ {x} =

(⋃
i∈D1

ϕi(F ) \ {x}

)
∪

(⋃
i∈D2

ϕi(F ) \ {x}

)
=: F1 ∪ F2

is a disjoint union. If Λ ∩ D1 = ∅, then x /∈ F1 and hence F1 =
⋃
i∈D1

ϕi(F ), so the
set

F = F1 ∪ F2 ∪ {x} = F1 ∪ (F2 ∪ {x}),
as a disjoint union of two closed sets, is disconnected. This is a contradiction. So
Λ ∩ D1 6= ∅. Similarly, Λ ∩ D2 6= ∅. However, this implies that(⋃

i∈D1

ϕi(F )

)
∩

(⋃
i∈D2

ϕi(F )

)
= (F1 ∪ {x}) ∩ (F2 ∪ {x}) = {x},
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which contradicts the fact that F is non-fragile.
In conclusion, there is some i1 ∈ D with x ∈ ϕi1(F ) such that ϕi1(F ) \ {x}

is disconnected. By the self-similarity, x1 := ϕ−1
i1

(x) ∈ CF . Applying the same
argument to the cut point x1 (instead of x) as above, we can find some i2 ∈ D such
that x1 ∈ ϕi2(F ) and ϕi2(F ) \ {x1} is disconnected. So x2 := ϕ−1

i2
(x1) = ϕ−1

i1i2
(x)

is a cut point of F . Repeating this process, we obtain sequences {in}∞n=1 ⊂ D and
{xn}∞n=1 ⊂ F , where xn := ϕ−1

i1···in(x), such that for every n ≥ 1, ϕin(F ) \ {xn−1} is
disconnected (with the interpretation x0 = x). Thus, writing i = i1i2 · · · , we have

ϕ−1
i|n (x) = ϕ−1

in
(ϕ−1

i|n−1
(x)) = ϕ−1

in
(xn−1) ∈ CF .

Furthermore, x = ϕi|n(xn) ∈ ϕi|n(F ) for all n and hence {x} =
⋂∞
n=1 ϕi|n(F ). This

completes the proof. �

Corollary 7.13. Let F be a non-fragile connected GSC. If #CF = 1, then the
unique cut point of F is the fixed point of ϕi for some i ∈ D.

Proof. Let x be the unique cut point of F . By the above lemma, there is an
infinite word i1i2 · · · such that {x} =

⋂∞
n=1 ϕi1···in(F ) and ϕ−1

i1···in(x) ∈ CF for all
n ≥ 1. So we must have ϕ−1

i1···in(x) = x for all n ≥ 1. This is possible only when
in ≡ i for some i ∈ D and x is the fixed point of ϕi. �

From Theorem 1.5 and Corollary 7.13, if there is no digit i ∈ D such that the
fixed point of ϕi belongs to CF , then the given non-fragile connected GSC F has
either none or infinitely many cut points.
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