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A simple proof of reflexivity and
separability of N1'? Sobolev spaces

RYAN ALVARADO, P1OTR HAJEASZ and LUKAS MALY

Abstract. We present an elementary proof of a well-known theorem of Cheeger which states
that if a metric-measure space X supports a p-Poincaré inequality, then the N*?(X) Sobolev space
is reflexive and separable whenever p € (1,00). We also prove separability of the space when p = 1.
Our proof is based on a straightforward construction of an equivalent norm on N1'?(X), p € [1,00),
that is uniformly convex when p € (1,00). Finally, we explicitly construct a functional that is
pointwise comparable to the minimal p-weak upper gradient, when p € (1, c0).

Yksinkertainen todistus Sobolevin avaruuksien N1-P
refleksiivisyydelle ja separoituvuudelle

Tiivistelma. Esitamme alkeellisen todistuksen tunnetulle Cheegerin lauseelle, jonka mukaan p-
Poincarén epiyhtilon toteuttavan metrisen mitta-avaruuden X Sobolevin avaruudet N'?(X) ovat
refleksiivisid ja separoituvia kaikilla p € (1,00). Osoitamme separoituvuuden my6s kun p = 1.
Todistuksemme perustuu kaikilla p € [1,00) suoraviivaiseen tapaan rakentaa avaruudelle N7 (X)
yhtépitdva normi, joka on tasaisesti konveksi, kun p € (1, 00). Lopuksi rakennamme eksplisiittisesti
funktionaalin, joka on pisteittdin verrannollinen minimaaliseen p-heikkoon ylégradienttiin, kun p €
(1,00).

1. Introduction

Sobolev spaces on metric-measure spaces M'? have been introduced in [10], and
soon after, many other definitions followed. Independently, Cheeger [3] and Shanmu-
galingam [17] introduced notions of Sobolev spaces on metric-measure spaces based
on the upper gradient of Heinonen and Koskela [13]. Their spaces are denoted by
H,y, and NP, respectively. While their definitions are different, it was observed by
Shanmugalingam [17, Theorem 4.10], that the spaces H;, and N? are isometrically
isomorphic when p > 1.

Throughout the paper we assume that (X, d, ;) is a metric-measure space with
a Borel regular doubling measure. In this setting, we define N'?(X), p € [1,00), as
the space of functions u € LP(X) that have an upper gradient in LP(X). N'P(X) is
a Banach space with respect to the norm

. 1/p
lullvioc) = (Nl + 0t gl )

Here, the infimum is taken over all upper gradients g of u. See Section 2 for additional
details regarding our setting and the space N'P(X).

If there are no rectifiable curves in X, then g = 0 is an upper gradient of any
function, and hence, N'?(X) = LP(X) isometrically. Therefore, in order to have a
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rich theory, we need a large family of rectifiable curves in X, which is guaranteed
when the space supports a p-Poincaré inequality. Recall that the space (X, d, )
supports a p-Poincaré inequality, p € [1,00), if the measure p is doubling and there
are constants cpr > 0 and A > 1 such that

1/p
][ |u —ug|du < cprdiam(B) (][ gpd,u)
B AB

for all balls B C X, for all Borel functions u € L _(X), and all upper gradients g of
u. Here, and in what follows, the barred integral stands for the integral average and
up = § yudp is the integral average of u over the ball B. Also, diam(B) denotes
the diameter of B, and A\B stands for a ball concentric with B and radius A times
that of B.

Cheeger [3] proved that if the space (X, d, ) supports a p-Poincaré inequality for
some p € (1,00), then the space N1P(X) is reflexive. In fact, he proved in this setting
that the space N'?(X) can be equipped with an equivalent uniformly convex norm,
from which reflexivity follows. His proof of reflexivity is, however, very difficult
and based on the celebrated construction of a measurable differentiable structure.
Later Keith [15] proved the existence of a measurable differentiable structure and
hence, reflexivity of NP(X), p € (1,00), under the so-called Lip-lip condition. As
demonstrated by Heinonen [12, Section 12.5|, for general metric-measure spaces,
N'?(X), p € (1,00), need not be reflexive.

A different approach to reflexivity was provided by Ambrosio, Colombo and Di
Marino [1]. They proved reflexivity of N'?(X), p € (1,00), under the assumptions
that the metric space X is metric-doubling, complete, and the measure p is finite on
balls. They did not, however, assume that the space supports a p-Poincaré inequality.
In fact, they proved reflexivity of a Sobolev type space W1?(X) whose definition is
based on a notion of p-relaxed slope, and they proved that the space is equivalent to
N'P(X) under the given assumptions. Their proof is actually quite difficult since it
involves methods of mass-transportation, gradient flows, I'-convergence, and Christ
dyadic cubes, just to name a few. A simplification of this proof of reflexivity in
the case when the space supports a p-Poincaré inequality was obtained by Durand-
Cartagena and Shanmugalingam [5]; their proof follows arguments from [1| and, in
particular, they use I'-convergence and Christ dyadic cubes to construct an equivalent
norm on N'?(X) that is uniformly convex.

Recently, Eriksson-Bique and Soultanis [7], proved reflexivity of N'P(X), p €
(1,00), under the assumption that the space has finite Hausdorff dimension. Their
proof is quite difficult too.

The purpose of this paper is to provide a further simplification of the proof of
reflexivity of N?(X) when p € (1, 00) and the space supports a p-Poincaré inequality.
In fact, we provide an explicit construction of an equivalent norm on N'?(X), p €
[1,00), which is uniformly convex when p € (1,00). Our arguments are based on
ideas from [1] and also [5], but our construction of the uniformly convex norm is
direct and it does not require I'-convergence nor Christ cubes.

A brief outline of our construction is below. All details can be found in Section 3.

For each k € Z, we select a covering of X by balls {BF};, of radii 2%, such
that the balls in the family {%Bf}l are pairwise disjoint. We say that balls B¥ and
BJ’-€ are neighbors if dist(Bf,Bf) < 2% and we denote neighbors by BF ~ BJ’?. It
follows from the doubling condition that the number of neighbors of a given ball B¥
is bounded by some constant N € N that is independent of k.
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For each € X, there is a smallest index i such that z € BF, and we write
B¥[x] := BF. Then for p € [1,00) and u € L. _(X) we define

1/p
Teu(@)ly =25 Y fupe — ugs” ]
j:Bj~BFz]
where the sum is taken over all neighbors of B*[z] = BF, and we set |Tpu(z)| :=

|Txu(z)];. Finally, we equip N'?(X), p € [1,00) with a new norm,

1/p
Julli, == (”U”ip(x) +hgl_>soljp H|Tk“‘pHiz)(X)> :

The main result of the paper reads as follows.

Theorem 1.1. Suppose that the space (X, d, ) supports a p-Poincaré inequality
for some p € [1,00). Then || - ||, is an equivalent norm on N'?(X). Moreover, if
p € (1,00), then the space N'?(X) with the equivalent norm || - ||, is uniformly
convex and hence, the space N'P(X) is reflexive.

The notion of uniform convexity is recalled in Section 2.5.

The construction of the norm || - [[7 ) is different from, but related to, the con-
structions given in [1, 5|. Recall that their constructions were less direct, as they
required I'-convergence and Christ cubes. The equivalence of the norms when p =1
is, however, new. As a corollary, we also prove

Theorem 1.2. Suppose that the space (X, d, ) supports a p-Poincaré inequality
for some p € [1,00). Then the space N'?(X) is separable.

It is well known that separability can be deduced from reflexivity when p €
(1,00), see [3], but separability in the case p = 1 seems to be new.

It follows from the proof of Theorem 1.1 (more specifically, Proposition 3.7) that
if p € [1,00), then there is C' > 1 such that

Cil”QuHLP(X) < hgl sup H|Tku|pHLp(X) < CngHLP(X)a
— 00

where g, is the minimal p-weak upper gradient of u. The next result shows not only a
comparison of norms, but a pointwise comparison under the additional assumptions
that X is complete and p > 1.

Theorem 1.3. Suppose that the space (X,d, u) is complete and supports a p-
Poincaré inequality for some p € (1,00). Then there exists a constant C' > 1 such
that for every u € N'P(X),

C'gu(z) < limsup |Tyu(z)| < Cg,(x) for p-ae z € X,

k—o0
where g, € LP(X) denotes the minimal p-weak upper gradient of u.

Remark 1.4. Note that we could replace |Tju(z)| in Theorem 1.3 by |Tiu(x)l,,
because the number of neighbors is bounded by N and all norms in RY are equivalent.
However, in Theorem 1.1 we have to work with |Tju/, in order to guarantee uniform
convexity of the norm.

The paper is structured as follows. In Section 2 we fix notation used in the paper,
recall basic definitions, and state known results that will be used in the subsequent
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sections. In Section 3 we carefully explain the statement of the main result, Theo-
rem 1.1, and we prove it. In Section 4 we prove Theorem 1.2 and finally, in Section 5
we prove Theorem 1.3.

Acknowledgements. We would like to thank Nicola Gigli from whom we learned
Proposition 4.1, and Giorgio Metafune for helpful comments.

2. Preliminaries

2.1. Notational conventions. Let Z denote all integers and N all (strictly)
positive integers. By C' we denote a generic constant whose actual value may change
from line to line. For nonnegative quantities, L, R > 0, the notation L < R will
be used to express that there exists a constant C' > 0, perhaps dependent on other
constants within the context, such that L < CR. If L < R and simultaneously
R < L, then we will simply write L ~ R and say that the quantities L and R are
equivalent (or comparable).

The characteristic function of a set £ will be denoted by xg.

We assume that all function spaces are linear spaces over the field of real numbers.

We use a convention that the names “Theorem” and “Proposition” are reserved
for new results, while well-known results and results of technical character are called
“Lemma” or “Corollary”.

2.2. Metric-measure spaces. A metric-measure space is a triplet (X,d, u)
where (X, d) is a metric space and p is a Borel measure such that 0 < u(B) < oo for
every ball B C X. We will assume that p is Borel regular, in the sense that every
p-measurable set is contained in a Borel set of equal measure. We will also assume
that p is doubling, i.e., there is a constant Cy > 1 such that p(2B) < Cyu(B) for
every ball B C X.

We will need the following version of the Lebesgue differentiation theorem.

Lemma 2.1. Assume that p is a Borel regular doubling measure on X and
u € L} (X). Then for p-a.e. v € X the following is true. If {B;}; is a sequence of

loc

balls such that x € B; for all i and diam(B;) — 0 as i — oo, then

(1) lim 4 wdp = u(x).
11— 00 Bz
Equality (1) is satisfied whenever z is a Lebesgue point of u. This result is well
known if ;4 is the Lebesgue measure in R", but the standard proofs easily generalize
to the case of metric-measure spaces equipped with a Borel regular doubling measure.

2.3. Integrating along curves in metric spaces and modulus of the path
family. By a curve in X, we mean a continuous mapping v: [a,b] — X. Given a
curve v, the image of ~y is denoted by || := v([a,b]) and ¢(v) stands for the length
of v. We will say that v is rectifiable if /() < 0o and the family of all non-constant
rectifiable curves in X will be denoted by I'(X). Every v € I'(X) admits a unique
(orientation preserving) arc-length parameterization 7: [0,£(y)] — X, and the arc-
length parameterization is 1-Lipschitz; see, e.g., [11, Theorem 3.2|. Given a curve
~v € I'(X) and a Borel measurable function ¢: |y| — [0, 0o], we define

[ ot | " )i

We can naturally define the integral over a curve for a general function by considering
the positive and negative parts of the function.
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Let I' C I'(X) and consider the collection F(I') of all Borel functions ¢o: X —
[0, 0o] satisfying

/gdle for all v € T.

v
Then, for each p € [1,00), the p-modulus of the family T' is defined as

Mod,(T") := inf / of dy.
geF
Note that Mod, is an outer-measure on I'(X) and, in particular, it is countably
subadditive; see, e.g., [11, Theorem 5.2]. A family of curves I' C T'(X) is called
p-exceptional if Mod,(I') = 0 and a statement is said to hold for Mod,-a.e. curve
v € I'(X) if the family of curves in I'(X) for which this statement does not hold is
p-exceptional.

For the next result, see |2, Proposition 2.45|. It follows from Holder’s inequality
and |2, Proposition 1.37(c)|.
Lemma 2.2. If a family of curves is p-exceptional for some p € (1,00), then it

is g-exceptional for every q € [1, p).

We will also need the following important result; see, e.g., [11, Theorem 5.7] and
[2, Lemma 2.1].

Lemma 2.3. (Fuglede’s lemma) Let p € [1,00) and assume that {gx}32, is a
sequence of Borel functions that converges in LP(X) to a Borel function g € LP(X).
Then, there is a subsequence {gg,}°,, such that for Mod,-a.e. curve v € I'(X), one
has

/gkids%/gds and /|gki—g|ds—>0 as i — 00,
gl gl vy

where all of the integrals are well defined and finite.

2.4. Sobolev spaces in metric-measure spaces. A Borel measurable func-
tion g: X — [0,00] is called an upper gradient of a Borel measurable function
u: X — [—o00,00] if

() mwm»—mwmns/g@,

Y

for every rectifiable curve ~: [a,b] — X, with the convention that |(£oo) — (% oo)\
oo. The function g shall be referred to as a p-weak upper gradient of u, p € [1,00
if (2) holds true for Mod,-a.e. curve v € I'(X).

The next result shows that p-weak upper gradients can be approximated by upper
gradients in the L” norm; see e.g. [11, Lemma 6.3]

Lemma 2.4. If g is a p-weak upper gradient of w which is finite p-a.e., then for
every € € (0,00) there is an upper gradient g. of u such that

g. > g pointwise everywhere in X and ||g. — g|r(x) < €.

For p € [1, 00) we define N1?(X), to be the space of all Borel measurable functions
u: X — [—00,00] for which

1/p
3) thm:<WMp lmmm@) < o0,
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where the infimum is taken over all upper gradients g of u. Equivalently, we can take
the infimum over all p-weak upper gradients in (3) since every p-weak upper gradient
can be approximated in L? by upper gradients (Lemma 2.4).

The functional || - ||y1r(x) is a seminorm on NP and a norm on N'P(X) :=
NP(X)/~, where the equivalence relation u ~ v is given by ||u — vl nrexy = 0.
Furthermore, the space N'P(X) is complete and thus a Banach space, see [17, The-
orem 3.7].

For the next result see, e.g., [11, Corollary 7.7].

Lemma 2.5. Ifu,v € Nl’p(X) and u = v pointwise p-a.e. in X, then u ~ v i.e.,
the two functions define the same element in N7 (X).

For p € [1,00), every u € N*P(X) has a minimal p-weak upper gradient g, €
LP(X) in the sense that if ¢ € LP(X) is another p-weak upper gradient of u, then
g > g, pointwise p-a.e. in X, see, e.g., [11, Theorem 7.16]. Hence, the infimum in
(3) is attained with g,, which is given uniquely up to pointwise a.e. equality.

Recall that the pointwise lower Lipschitz-constant of a function n: X — R is
given by

(4) lipn(z) := liminf sup M, z e X.

r—0+t yEB(z,1) r
For the next lemma, see, e.g., [11, Lemma 6.7] or [14, Lemma 6.2.6].

Lemma 2.6. lipn is an upper gradient of any Lipschitz continuous function n
on a metric space.

Lemma 2.7. Fix p € [1,00) and suppose that u € N'?(X) and n: X — R is a
bounded Lipschitz function. Then nu € N'(X) and the function h := |n|g,+|u|lipn
is a p-weak upper gradient for nu, where g, € L(X) is the minimal p-weak upper
gradient of u.

Proof. The Leibniz rule for p-weak upper gradients, [14, Lemma 6.3.28|, the
fact that functions in N'?(X) are absolutely continuous on Mod,-a.e. curve, [11,
Lemma 7.6], and Lemma 2.6 imply that the function h := |n|g, + |u|lipn is a p-
weak upper gradient for nu. Since nu € LP(X) and h € LP(X), it follows that
nu € N (X). O

We say that (X, d, i) supports a p-Poincaré inequality, p € [1,00), if there exist
constants cpr > 0 and A > 1 such that

1/p
(5) ][ |u —ug|du < cprdiam(B) <][ q° d,u)
B AB

for all balls B C X, all Borel functions u € L _(X), and all upper gradients g of
u. Recall that we always assume that p is a Borel regular doubling measure in this
setting. In this situation we say that the space supports a p-Poincaré inequality with
constants cpy and .

The following lemma is an immediate consequence of Lemma 2.4.

Lemma 2.8. Suppose that X supports a p-Poincaré inequality for some p €
[1,00). If u € L} (X) is Borel, then

1/p
(6) ][ |u —ug|du < cprdiam(B) <][ g’ d,u) :
B AB
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for all balls B C X and all p-weak upper gradients g of u that are finite u-a.e.

2.5. Uniformly convex spaces. We begin with a definition due to Clarkson
[4]. We say that a normed space (Z, || - ||) is uniformly convez if for every € € (0, c0),
there exists § € (0,00) with the property that ||z + y|| < 2(1 — ) whenever z,y € Z
satisfy ||z = [y = 1, and ||z — y]| > .

From a geometric point of view, uniform convexity implies that the boundary
of the unit ball does not contain any segments and that the unit ball is, in a sense,
uniformly “round”.

The next result is well known, but it is not easy to find a proof in the literature.

Lemma 2.9. A normed space (Z,|| - ||) is uniformly convex if and only if for
every € € (0,00), there exists § € (0,00) with the property that ||z + y|| < 2(1 —9)
whenever x,y € Z satisty ||z| < 1, ||y|| < 1, and ||z — y|| > «.

Proof. One direction is clear. To see the other, fix ¢ € (0, 00) and suppose that
z,y € Z satisty ||z|, |yl <1 and ||z —y|| > e. Smce Z is uniformly convex, there
is 0 € (0,00) associated to the choice of £/3. Let § := min{e/6,6/3}. If either
]l <1—20 or [Jyl| <1 — 24, then ||z +y[| < 2(1 —d). If [[z[, [[yll > 1 — 29, then
7 := o/||z] and § := y/|ly| satisty = — Z[.]ly — §l| < 26, and hence, & — || >
e —460 > /3. Since ||Z]| = ||g]] = 1, uniform convexity yields [|Z + g|| < 2(1 —0) and
hence, [z + yl| < o — & + 13 + g1l + Iy — 71 < 2(1 - ). .

A clever proof of the next result that avoids the use of Clarkson’s inequalities
can be found in [14, Proposition 2.4.19].

Lemma 2.10. (Clarkson) LP(X) is uniformly convex for p € (1, 00).
For a proof of the following theorem, see, e.g., [14, Theorem 2.4.9|.

Lemma 2.11. (Milman—Pettis’ theorem) Every uniformly convex Banach space
is reflexive.

By /&, we will denote RM with the norm |z|, := (Zjle |xj|p)1/p, where © =
(21,...,2), and so LP(X, ¢4,) is a Banach space equipped with the norm

M 1/p
(7) (I)(f) = (ZH]C]HIEP(X)) ) where f:(f177fM)
j=1

Corollary 2.12. Ifp € (1,00) and M € N, then LP(X, ¢%,) is uniformly convex.
Proof. Since LP(X,¢%,) is isometric to LP(X,y), where
Xy=XUuUXU..uX=Xx{1,2,...,.M}
is the disjoint union of M copies of the measure space (X, i), the result follows from
Lemma 2.10. U

2.6. Dunford—Pettis theorem. Recall that a family of y-measurable functions
F is said to be equi-integrable if for every ¢ € (0, 00) there exists § € (0,00) such
that for every p-measurable set S C X with u(S) < ¢ we have

(8) sup/ |fldu <.
ferJs

The proof for the following version of the Dunford—Pettis theorem can be found
in, e.g., [8, Theorem 2.54].
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Lemma 2.13. (Dunford-Pettis’ theorem) Let F C L'(X). Then every sequence
in F has a subsequence that is weakly convergent in L'(X) if and only if the following
two conditions are satisfied:

(a) F is bounded in L'(X) and equi-integrable;
(b) for every ¢ € (0,00) one can find a pu-measurable set E C X such that
pu(E) < oo and

(9) sup /X\E|f\du<€-

fer

Remark 2.14. Observe that whenever p(X) < oo, condition (b) is trivially
satisfied by setting ¥ = X, which is why it is omitted in literature that discusses the
Dunford—Pettis theorem over spaces of finite measure.

3. The main result

In this section we will carefully record all of the notation and technical lemmata
used in the poof of the main result, Theorem 1.1, and then we will prove it. The
reader is reminded that we are always assuming (X, d, pt) is a metric-measure space,
where p is a Borel regular doubling measure. However, unless explicitly stated, we
do not assume that the space supports a p-Poincaré inequality.

3.1. Notation. For each k € Z, let {Bi}?i(lk), M (k) € NU{oo}, be a covering

of X by balls of radius 27 such that the balls in the family {%Bl}f‘i(lk) are pairwise
disjoint. The existence of such coverings follows from the familiar 5r-covering lemma.
The doubling property of the measure p implies that for each fixed 6 € [1, 00),

the family {HBi}?i(lk) of enlarged balls has bounded overlapping, in the sense that
there exists a constant Cy € [1, 00) such that . xgp,(z) < C for every x € X. Note
that Cy depends only on 6 and C; (the doubling constant of p). In particular, Cy is
independent of k.

For each k € Z, we have a different family of balls (referred to as balls of gener-
ation k) and we will write B¥ := B; if we wish to stress for which k € Z the family
was constructed.

We say that balls B} and B are neighbors if dist(B}, BY) < 2%, and we will
write Bf ~ BJ"-C in this case. Note that there exists N € N, such that each ball has
at most N neighbors, where N depends only on the doubling constant of p and, in
particular, is independent of k.

If Bi1,...,Bin, n; <N are all of the neighbors of B; then we set

B/L'7ni+17 ooy Bi,N = Bz

That is, we set the last N —n; balls in the sequence {B; ; }é\le to be identical copies of
B;. While this construction is somewhat formal, for reasons that will be clear later,
we need to have the same number of balls “around” each of the B;’s.

Let A; := By and A; := B;\ (B1U---UB;_;) for each i > 2. Then X = Ui‘i(lk) A;,
and so, in particular, {Az}i\i(lk) is a partition of X into pairwise disjoint sets. For
each x € X, there is a unique 7 such that x € A;. In other words, 7 is the smallest
index such that x € B;. As such, we define Blz] := B; and set Bz, j| := B, for
j € [1, N]. In particular, Blz, j| = Blz] if j € (n;, N].
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For u € Li (X) and k € Z, we define
M(k)

(10) Spu = Z UB; XA;»

i=1
and note that Spu(z) = upp, for each x € X. According to Lebesgue’s differentiation

theorem (Lemma 2.1), Spu — u pointwise p-a.e. in X as k — oo.
For u € L (X) and k € Z, we also define

loc
Tku(x) = oF [UB[J;] — UB[z,1]; - - - UBJz] — uB[x,N]] S RN,
for z € X, or equivalently,
M (k)
Tiu —QkZ zl""’uBi_uBi,N}XAi'

Observe that if x € A; and n; < N (the actual number of neighbors of Blz] = B;),
then the vector Tju(z) € RY has zeros in the last N — n; components, i.e.,

Tiu(z) == 2"[up, — up,,, ..., up, — up,, ,0,.. .,0].

Equipping RY with the £}, norm, p € [1,00), we have

1/p
| Tyu(z)|, = 2" (Z |upBla) — J]I”)
M (k)

(11) 1/p
— 9ok Z <Z lup, — ) X4, (7).

In particular,

M(k) N
Thu(x)| = [Tyu(z)), = 2 Z sl — s =25 Y Y |up, — up,,| xa,(2).
=1 j=1
Clearly the norms |- | and | - \p are equivalent on RY, but we will have to work with

the norm | - |, in order to prove uniform convexity of N'*. Note that when RY is
equipped with | - |,, the LP(X, %) norm of Tyu is

M) N 1/p
H‘Tk“‘pHm( Z lus, — us,, [n(A)"?)" ;
=1 j5=1
where we have used the fact that the A;’s are pairwise disjoint.
Fix p € [1,00) and define
1/p
(12) Hqup (HuH )+ hmsup H\Tku|pHLp(X)> for each u € NP(X).

Observe that components of Tpu(x) are averaged difference quotients of w in all
possible directions, i.e., over all balls that are neighbours of Bz]. As we shall see,
in some sense |Tju| (or |Tjul,) is an approximation of the minimal p-weak upper
gradient of u (see Lemma 3.4, Proposition 3.7, and Theorem 5.1).

3.2. Auxiliary results. In this subsection we will prove technical lemmata
which will be needed in the proof of the main result (Theorem 1.1).
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Lemma 3.1. Suppose that the space supports a p-Poincaré inequality (5) for
some p € [1,00). Then there exists a constant C' = C(p,Cy,cp1) > 0 such that if
u € L (X) is Borel measurable and g is a p-weak upper gradient of u that is finite

[-a.e., then for each k € Z, we have

1/p
(13) |Tiu(z)|, < C <][ g’ d,u) for all x € X.
5ABlz]
Therefore, there is a constant C" = C'(p, Cy, Cpr, A) > 0 such that
(14) | Tiady |y < Clllincr

Consequently, if u € N'?(X), then the sequence {T}u}rez is bounded in LP(X, ).

Proof. Fix k € Z and = € X, along with j € [1, N]. Since B[z] and Bz, j| are
neighbors (by definition) we have that B[z, j] C 5B[z] C 10B[z, j]. Therefore, the
doubling condition of p implies that u(B[z, j]) ~ u(5B]z]). Applying Lemma 2.8 to
the pair (u, g) we can estimate

|uBz] — UBwj| < B — UsBl| + |UsBE] — UBL,j)]

1/p
S][ u — uspp| du < C27F (][ 9" du) ;
5B]z] 5AB|z]

where C € (0, 00) depends only on Cy and cpy. From the formula for |Tju|,, we have

N 1/p 1/p
(15) | Thu(x)], < 2F (Z C’p2kp][ g7 dﬂ) =C. NP <][ g’ du) :
AB|z] 5AB|z]

j=1 5

where C' and N only depend on Cy and cpy. This proves (13).
Turning our attention to proving (14), observe that estimate (15) is equivalent

to
M(k) 1/p
(16) Teu(z)], < C-NYP [ XAi(:c)][ g )

because the right hand sides of (15) and (16) are equal. The bounded overlapping of
the family of enlarged balls {5)\Bi}i]\i(1k) and the fact that A; C B; together yield

M (k)

M (k)
1Tl ) < CPND~ pl(As) (]éw g du) <Ny /m 7 du < gl
i=1 i i=1 ¢

where C" = C'(p, Cyq, Cpr, A).
Finally, if u € N"P(X) then (14) applied with g = g, € LP(X) proves bounded-
ness of {Tyu}rez in LP(X, 0%,). O

The next result follows immediately from the definition of ||-||7 , in (12), Lemma 2.5,
and Lemma 3.1.

Corollary 3.2. Suppose that the space supports a p-Poincaré inequality for
some p € [1,00). Then |- ||}, N'"?(X) — [0,00) as in (12) is a well-defined norm
on N'?(X) and there exists C' € (0, 00) satisfying

ull7, < Cllullyirxy for allu € NWP(X).
The reader is reminded of the definition of Syu in (10).
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Lemma 3.3. Let u € N'"?(X) with p € [1,00) and assume that {h;}2, is a
sequence of nonnegative Borel functions in LP(X) such that

(17) |Spu(z) — Spu(y)| < /hk ds,

il
whenever k € N, x,y € X satisfy d(z,y) > 27%, and v is a rectifiable curve connecting
x and y. If {hy}2, contains a subsequence that converges weakly in LP(X) to some
nonnegative Borel function h € LP(X), then h is a p-weak upper gradient of u and
hence, h > g, pointwise p-a.e. in X, where g, € LP(X) is the minimal p-weak upper
gradient of u.

Proof. Without loss of generality, we can assume that {hy}3°, converges weakly
in LP(X) to some Borel function h € LP(X). Then by Mazur’s lemma (see, e.g., [14,
p. 19]), there exists a sequence

L(k)
ge =Y apehy = h in LP(X) as k — oo,
=k

where a;, > 0 and Zf:(? ape = 1 for each k € N (with L(k) € N). By further
passing to a subsequence, if necessary, we can assume that g, — h pointwise u-
a.e. in X as k — oo. Consider the corresponding family of convex combinations
of Spu, v, = EZL:(? ageSeu. Since Spu — u pointwise p-a.e. in X by Lebesgue’s
differentiation theorem (Lemma 2.1), we have that vy — u pointwise u-a.e. in X, as
well.

Clearly, if d(x,y) > 27% for some k € N and v € I'(X) connects z and y, then by
(17) we have

(18) o) = )| < [ guds

gl
Define @: X — [—o0,00] by setting u(x) := limsup,_, ., vk(z) for every x € X and
note that & = u pointwise p-a.e. in X. We will prove that @ is finite everywhere
on the image |vy| for Mod,-a.e. curve 7 € I'(X). To this end, by Fuglede’s lemma
(Lemma 2.3), there is a set Iy C I'(X) with Mod,(I'y) = 0 and a subsequence of
{9}, (also denoted by {gx}72 ) such that

(19) /gkds—>/hds €eR ask— oo,
v v

for every curve v € T'(X) \ I';. Next, let E be the set of all z € X for which the
convergence vi(z) — u(z) € R does not hold, and set

Iy :={yel(X): 7| C E}.

Note that F2 C X is y-measurable and p(E) = 0, which implies that |[oo- x|/ zrx) =
0. This, together with the observation that oo - xg € F(I'y), immediately gives
Mod,(I's) = 0 and hence, Mod,(I'y UT'3) = 0.

Now fix a curve v € T'(X) \ (I'; UT'2) and let 4 be the arc-length parameterization
of 4. We claim that the sequence {vg(7(s))}2, of real numbers is bounded for every
s € [0,4(v)]. Let s € [0, ()] and note that since v ¢ I'y, there is a point ¢ € [0, £(7)]
such that 7(t) € E. By definition of the set F, we have that vg(7(t)) — u(5(¢)) € R.
In particular, {vy(7(¢))}%2, is a bounded sequence. To proceed, it is enough to
consider the scenario when s < t as the other case is handled similarly. If 7(s) = 7(¢)
then {vg(7(s))}%2; is bounded by the choice of . If, on the other hand, 7(s) # 7(¢)
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then we have d(¥(t),7(s)) > 27* for all sufficiently large k € N and so, by appealing
to (18) we can write

o (F())] < [vr(F(s)) — ve(F())| + [0k (F(1))]

< / G + |G| < / g ds + |0 G(0))|-

v

(20)

Since v ¢ I'y, we have that fﬂ/ gk ds converges to the finite number (19), as kK — oo
and hence, is bounded. Therefore, the right-hand side of (20) is bounded by a finite
constant that is independent of k, and it follows that {v(7(s))}?2; is a bounded
sequence for each fixed s € [0,€(y)]. Consequently, @ is finite on the image ||
whenever v € I'(X) \ (I'y UT).

Moving on, we claim next that h is a p-weak upper gradient of u. Fix v €
['(X)\ (I'UTy) and let 2,y € X be the end-points of 4. If x = y, then the inequality
la(z) — u(y)| < fwhds is trivially satisfied, since @(x) = a(y) € R. If  # y, then
d(z,y) > 27% for all k € N, large enough, and so (18) is satisfied. Since v ¢ I'; UTy,
we have that (19) holds and a(x), u(y) € R. As such, we can estimate

k—o00 k—00

la(z) — u(y)| < limsup |vg(x) — ve(y)] < limsup/gk ds = /hds.
0l ol

Therefore, h € LP(X) is a p-weak upper gradient of @, and hence @ € N'*(X). Since
u = U pointwise p-a.e. in X and both u and @ belong to N'*(X), the function h is
also a p-weak upper gradient of u by Lemma 2.5. Therefore, h > g, pointwise u-a.e.
in X by the definition of a minimal p-weak upper gradient. This completes the proof
of Lemma 3.3. 0

We will show that the sequence hy := 4|Tjul, satisfies the hypotheses of Lem-
ma 3.3. We first verify estimate (17).

Lemma 3.4. Let u € L. _(X) and suppose that v is a rectifiable curve in X

loc

with endpoints x and y. If d(z,y) > 2% for some k € Z, then

|Sku(z) — Sru(y)| < 4/ |Tyul,ds,

Y

where Siu is as in (10).

Proof. We can assume that 7: [0, L] — X is parametrized by arc-length and
x =(0), y =~(L). Consider a partition

O=to<ti < ---<tp,=1L,
of [0, L] such that the length of each subinterval [t;_1, ;] satisfies
2_(k+1) <t —-t1< 2_k.

This is possible because L = £(y) > d(x,y) > 27%. Since 7 is parametrized by the
arc-length, it follows that

(21) CYitor b)) = ti — tica < 27",
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Observe that
|Spu(z) — Spuly)| < Z | Sku(v(t:)) — Sku(v(tiz1))]
(22)
- Z ’uB[V(ti)] — UB[y(ti—1)] ’
i=1
On the other hand, if i € {1,...,m} is fixed then for any t € [t,_1,t;] we have

(23) |uBly) = U] < [UBwE) — uBR@ | + [UBH®] — UBR @

It follows from (21) that the distance between «(¢) and any of the points ~(¢;_;) and
v(t;) is less than 27% and hence, each of the balls B[y(t;_,)] and B[y(;)] is a neighbor
of B[y(t)]. Combining this with (23) and the formula for |T,u(y(t))|, in (11) yields

|uBlye)) — uBp@- | < 227 | Teu(y (1)) p.

Therefore, integration with respect to t € [t;_1,t;] gives

t;
(t: — tien)|uBp ) — U | < 2-27° / | Teu((1))lp dt
ti—1

Since t; — t;_; > 2~ * 1) we have

ti
|uBly)) — UBh_| < 4 /t | Tru(y(t))]p dt
1—1

Given that i € {1,...,m} was arbitrary, we can add the inequalities in (22) to obtain
L
|Spu(z) — Spu(y)| < 4/ | Tu(y(t))|, dt = 4/ |Tul,ds. O
0 vy

Next we show that if the space supports a p-Poincaré inequality for some p €
[1,00), and u € N'?(X), then we can always extract a subsequence of {|Tyul,}72,
that converges weakly in LP(X). In the case when p > 1, we can rely on the reflexivity
of LP and Lemma 3.1. However, the case of p = 1 is more delicate; it relies on the
Dunford—Pettis theorem (Lemma 2.13) and some ideas from [9].

For the next result, see also [9, Lemma 6]. We will only need it for p = 1.

Lemma 3.5. Suppose that the space supports a p-Poincaré inequality for some
p € [1,00). If u € N"P(X), then every subsequence of {|TjulP}32, has a further
subsequence that is weakly convergent in L'(X).

Proof. Fix u € N'?(X). We will prove that {|Tyul}32, satisfies (a) and (b) in
Lemma 2.13.

To verify (b), fix ¢ € (0,00) and k£ € N. Since inequality (13) is satisfied with
g = gu € LP(X), we have

| Tru(z)[ S][ ghdp = Z XAi(:L‘)][ gPdp  for every x € X.
5AB|z] i—1 5AB;

Consequently, since A; C B;, for every measurable set S C X, we have

/ g, dp.
5AB;

M (k)

,LLSﬂB /
24 /Tu”duN gy dp <
(24) | Tul Z WGABY) Josn,

1: SNB;#2
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Fix z, € X, R > 6\, and let Sg := X \ B(z,,2R). Each of the balls B; has
radius 2% < 1 < \. Thus, if Sg N B; # @, then 5AB; N B(x,, R) = &, by a simple
application of the triangle inequality, and hence (24) and the bounded overlapping
of the balls {5AB;}; yield

/ | Teulp dp S / gudp <e,
X\B(z0,2R) X\B(zo,R)

provided R is sufficiently large. This proves condition (b) in Lemma 2.13 with F :=
B(z,,2R).

Next, we prove that condition (a) holds. Note that Lemma 3.1 implies that
{|Txulp}p2, is bounded in L'(X). Thus it remains to prove that the family is equi-
integrable.

Fix ¢ € (0,00) and k € N, and let 0 € (0,00) be any number. The value of o
will be fixed later.

Given a pu-measurable set S C X, we define G to be the collection of all integers
€ [1, M (k)] satistying u(S N B;) < ou(5AB;), and we let B consist of all integers
€ [1,M(k)] \ G. Note that u(5AB;) < u(SN B;)/o for all i € B. Thus G and B

partition the set of integers in [1, M (k)] and (24) yields

(25) /\Tku|p du < O, (JZ / ghdp+ ) / ) :

i€g i€B

where the constant C; does not depend on o or k.
Assume that the overlapping constant of the balls {5AB;}; is bounded by C,.
Now we fix o € (0, 00) such that

3
Coollgully < 57~

20,

Then the first sum in (25) can be estimated by
£
26 o / gvdu < C. a/ Pdpu < —
(26) ; 5AB 7 Jx 20,
Regarding the second sum in (25), we have
(27) Z / ghdp < 02/ gvdp where G := U 5AB;.
ieB OABi ¢ icB

Note that

(SN B) C S
(28) n(@) <Y nsan) < 3 M :15).

g
€8 iEB

Absolute continuity of the integral yields 6 € (0, 00) such that

e
29 Pd
( ) /C;gu M<201027

provided u(G) < 5. )
Let 0 := 00/Cy. If u(S) < 6, then pu(G) < § by (28) and hence (29) is satisfied.
This, in concert with (25), (26), and (27) yield

p _
/S|Tku|pd,u<01(20 + Cs 20102) =g,

and that completes the proof of the equi-integrability and the proof of Lemma 3.5. [
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Corollary 3.6. Suppose the space supports a p-Poincaré inequality for some
p € [1,00). If u € N'P(X) then, every subsequence of {|Tyul,}?>, has a further
subsequence that converges weakly in LP(X).

Proof. If p > 1, then the sequence {|Tjul,}7°, is bounded in LP(X') by Lemma 3.1,
and the result follows from the reflexivity of LP(X). If p = 1, then the existence of
a weakly convergent subsequence is guaranteed by Lemma 3.5. U

3.3. Proof of the main result.

Proof of Theorem 1.1. We need to prove that:
o - li, = Il llvrex) on N'P(X) when p € [1, 00);
e the norm || - ||, is uniformly convex on N'*(X) when p € (1,00).

Then reflexivity of N'?(X), p € (1,00), will follow directly from the Milman-Pettis
theorem, Lemma 2.11.

Therefore, the proof of Theorem 1.1 is contained in Proposition 3.7 and Propo-
sition 3.9 below.

Proposition 3.7. Suppose the space supports a p-Poincaré inequality for some
p € [1,00). Then there exists C' = C(p, Cyq, cp1, A) € (0,00) such that

47 gullroo) < Timsup [[|Teuly|| o < Cllgullzoe),
—00

for all w € N'?(X). Consequently, |lul[, = [Jul n1sx) for all u € N'YP(X).

Proof. Fix v € N'?(X) and let g, € LP(X) denote the minimal p-weak upper
gradient of w. In view of Lemma 3.1, we immediately have that

(30) lim sup H|Tku|pHLp(X) < Cllgullzrx)
k—o0

for some C' = C(p, Cy, cp1, \) € (0,00).
To see the opposite inequality, take a subsequence {|Tjul,}32, of {|Thul,}32,
such that

(31) lim [/, ul,

] = lim inf ||| Tiul,

HLP(X) HLI’(X)'

In light of Corollary 3.6, by passing to a further subsequence, we can assume
{|Th,ulp}32, converges weakly in LP(X). Let |T'|(u) € LP(X) be a Borel representative
of the weak limit of {|T},ul,}32, and set hy, := 4|Tpul, and h := 4|T'|(u). Note that
h and each hy, are nonnegative Borel functions. Since {hy, }32, converges weakly to
hin LP(X), by appealing to Lemma 3.4, we can conclude that the pair ({hk}z"zl, h)
satisfies the hypotheses of Lemma 3.3. Therefore, we have that h is a p-weak upper
gradient of v and hence, h > g, pointwise p-a.e. in X. Combining this fact with (31)
and the lower semicontinuity of the LP-norm (with respect to the weak convergence),

we can estimate

o —1 7
> h]gr_l)glf H|Tku|pHLIJ(X) =4 ]lggo 1 | Lo )

liiris;jp I |Tku|PHLP(X)

(32)
> 47l o) = 47 gull e (x)-
The proof of Proposition 3.7 is now complete. OJ

Remark 3.8. Combining (30) and (32) we can conclude that for p € [1,00),
there is a finite constant £ = £(p, Cy, cpr, A) > 1 satisfying

h,fgi;lf H|Tku|PHLp(X) < ligl_)s;jp H|Tku|PHLp(X) < §li]£gg§f H‘Tku‘pHLI’(X)’
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for every u € N'P(X).

We will now proceed to showing that || - ||, is uniformly convex on N'” when
p € (1,00).

Proposition 3.9. Suppose the space supports a p-Poincaré inequality for some
p € (1,00). Then the norm |- |5, is uniformly convex on N'?(X). In particular, the
Banach space (N'P(X), || - [|n1r(x)) Is reflexive.

Proof. Fix € € (0,00). We will first prove that there exists § € (0, 00) such that
|u+ |}, <2(1—0) whenever u,v € N'"P(X) satisfy |lul|}, < 1, [|v[|j,, < 1, and
|lu—wl[f, >e. Fix u,v € N'*(X) as above. Then by definition of || -
that

1/ 1/
33) (el + 1Tl l)) <1 and (Bl + [1T0b ) <1

for all sufficiently large k£ € N. In light of Remark 3.8, we can estimate

3, we have

e <=l < (= vl + € mind [ Th(u — )

1/
§§<||u—v|| )+hm1an|Tku Tkv|pHLp(X> p’

where we have used the fact that £ > 1 and T} is linear in obtaining the last inequality.
Consequently, (33) and

(34) (Jlu— v||]£p(X) + ||| T — Tkv|pHLp(X )Up > e/¢,

hold true for all sufficiently large k£ € N. Fix such a k. Since Tyu and Tyv are vectors
in RV, we can write

N
H|Tku|pHip(X) - Z HTlquip(x) and H|Tkv|l’HiP(X Z HT’?UHLP (X)’?
=1

where Tyu = (T}u, ..., TNu) and Tyv = (T}v, ..., TP v). Therefore, if we let
fo=w"Tu,...., Tu) and g¢:= (v,T}v,...,TNv),

then f,g € LP(X, () and, with ® defined as in (7), a rewriting of (33) and (34)
yields

1/
(el + Tl [ x)) < 1.

1/
(”UHiP(X) + H‘Tkv|pHip(x)> T<a

o(f)

®(g)

and /
1/p
®(f—9) = (Hu - UH%P(X) + H|Tk‘u Tkv‘pHLP(X ) > e/¢.

By Corollary 2.12, LP(X, £}_,) is uniformly convex and so (keeping in mind Lemma 2.9)
there exists ¢ € (0,00), which depends on ¢ and &, but is independent of f and g (in
particular, ¢ is independent of u, v, and k), such that

/p
@) (ot ol + 1Tt o)) = 20 +9) < 2(1-6).

Note that we have used the linearity of T} in obtaining the equality in (35). Given
that (35) holds for all sufficiently large k € N, it follows that [ju + v||7, < 2(1 —9).
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To complete the proof of the proposition, suppose that u,v € N'P(X) are such
that [|ul|7, = |lv][i, =1, and ||u —v||7, > €. Then, for all & € (0, 1) sufficiently close
to 1, we have that fu, v € N'P(X) satisfy [|Qull},, [|0v]|}, < 1 and [|fu— 6|}, > €.
As such, we have [|0u + 0v||7,, < 2(1 —§) by what has been established above. Since
¢ is independent of 0, passing to the limit as 0 — 17 yields [Ju + v[]] , < 2(1 —9).
Given that € € (0, 00) was arbitrary, it follows that |- ||7 , is a uniformly convex norm
on N'7(X).

Finally, the assertion that (N'?(X), |- || n1r(x)) is reflexive follows as an immedi-
ate consequence of the Milman—Pettis theorem (see Lemma 2.11) and the fact that a
reflexive space remains reflexive for an equivalent norm. The proof of Proposition 3.9
is now complete. O

This completes the proof of Theorem 1.1. O

4. Separability from reflexivity

In this section we will prove separability of N'?(X) for p € [1,00) (Theorem 1.2).
In its proof we will employ a general result that provides a mechanism for using
reflexivity to establish separability, see Proposition 4.1. Recall that we always assume
that the measure on X is doubling and Borel regular.

Throughout this section, all vector spaces are over the field of real numbers. Also,
as a notational convention, if S is a set of vectors then we let spang S and span S
denote the set of all finite linear combinations of vectors in S with coefficients in Q
and R, respectively.

Proposition 4.1. If T: V — W is a linear and bounded injective map of a
reflexive Banach space V into a separable normed space W, then V' is separable.

Proof. It suffices to prove that the unit ball B C V' is separable. Given that W
is separable, there is a set {vy: k € N} C B such that the set {T'(vy): k € N} is
dense in T'(B). Since spang{vi: k € N} C span{v;: k € N} is countable and dense,
we conclude that span{vy: k € N} is separable and hence, it suffices to prove that

(36) span{v,: k € N} N B is dense in B.

Let v € B. Then, there exists a sequence {vy,}; € B such that T'(vy,) — T'(v)
in W as i — oo. Since {v,}; is bounded in V' and V is reflexive, by passing to a
subsequence, we can assume that {v, }; converges weakly in V' to some © € V. Then
Mazur’s lemma yields a sequence of convex combinations that converge to v in the
norm on V:

L(3)
(37) span{vg: k € N} N B> Zamvkj — 0 inV asi— oo,

j=t

where «; ; > 0 and ZJLSZ) «;; = 1 with L(i) € N. Appealing to the boundedness and
linearity of T', we have

L(i) L(3)
o= i (Lo, ) = i 3ot = 0

j=i j=i

Since T is injective, we conclude that © = v and (36) now follows from (37) because
v € B was chosen arbitrarily. O
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Lemma 4.2. Suppose that the space (X,d, i) supports a p-Poincaré inequality
for some p € [1,00). Then the space Lip,(X) of Lipschitz functions with bounded
support is a dense subset of N?(X).

For a proof see [2, Corollary 5.15|. In fact, they proved density of compactly
supported Lipschitz functions under the additional assumption that the space X
is complete. Without assuming completeness of X, the same proof gives density
of Lipschitz functions with bounded support. Completeness of X, since the space is
equipped with a doubling measure, implies that bounded and closed sets are compact
and hence Lipschitz functions with bounded support have compact support.

Lemma 4.2 follows also from Theorem 8.2.1 and the proof of Proposition 7.1.35
in [14].

We are now ready to present the

Proof of Theorem 1.2. Suppose first that p > 1. Note that (X, d) is a separable
metric space since p is a doubling measure on X and so, LP(X) is separable by
[14, Proposition 3.3.55]. Clearly, the identity mapping ¢: N'P(X) — LP(X) is a
linear and bounded injective map. Now, since the space N'P(X) is reflexive by
Proposition 3.9, Proposition 4.1 immediately implies that N1?(X) is separable.

Suppose next that p = 1 and fix ¢ € (1,00). It follows from Hélder’s inequality
that X supports a g-Poincaré inequality and by what we have already shown, N19(X)
is separable so, there is a dense subset {¢;: i € N} of N19(X).

Fix x, € X and for each k € N choose a Lipschitz function with bounded support
n € Lip,(X) such that n, = 1 on B(z,, k). We will prove that F := {n¢;: k,i € N}
is a dense subset of N11(X).

We first need to show that F C Nb(X). Fix k,i € N. It follows from Lemma 2.7
that nx; € NM(X) and hy; := |nk|gy, + |0i]lipmk is a g-weak (hence, also 1-weak
by Lemma 2.2) upper gradient for n,1;, where g,, € L9(X) is the minimal g-weak
upper gradient for ¢; € LI(X). Since ng € Lip,(X), it follows from (4) that lip 7y is
a bounded function with bounded support. Therefore, by Holder’s inequality we can
conclude that nv;, hy; € L'(X) and hence, nip; € NM(X), as wanted.

In light of Lemma 4.2 it suffices to prove that any Lipschitz function with bounded
support can be approximated in the N norm by functions in F. Fix u € Lip,(X)
and let k, € N be such that suppu C B(x,, k), so my,u = u pointwise in X. Since
u € NY(X), there is a sequence {1, }; such that t;, — u in N"9(X) as j — oo.
Then it easily follows from Lemma 2.7 that

U — N, Vi, = Nk, (U —1Pi;) — 0 in Nb(X) as j — oo,
This completes the proof of Theorem 1.2. O

5. Pointwise estimates

The purpose of this section is to prove Theorem 1.3. In order to do so, it suffices
to prove the following theorem.

Theorem 5.1. Fix p € (1,00) and suppose that X supports a q-Poincaré in-
equality for some q € [1,p). Then there exists a constant C' > 1 such that for all
u e NW(X),

(38) C~tgu(z) < limsup |Thu(z)| < Cgu(z) for p-ae. v € X,

k—o0

where g, € LP(X) denotes the minimal p-weak upper gradient of u.
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Indeed, Theorem 5.1 and the following deep result due to Keith and Zhong [16]
(see also [6], [14, Theorem 12.3.9]) immediately yield Theorem 1.3.

Lemma 5.2. (Keith and Zhong) Let (X,d, ) be a complete metric-measure
space that supports a p-Poincaré inequality for some p € (1,00). Then there exists
q € [1,p) such that X supports a g-Poincaré inequality.

In the proof of Theorem 5.1 we will make use of the Hardy-Littlewood maximal
operator of a function g € LL (X)) which is defined by

loc

(Mg)(z) == sup][ lg|dp for all z € X.
B(z,r)

r>0

We will use the boundedness of the maximal function in L?(X), [14, Theorem 3.5.6]:

Lemma 5.3. If 1 is a doubling measure on a metric space X and p € (1,00,
then there is a constant C' depending on p and the doubling constant of the measure
only, such that |Mg||Lr(x) < C||g||r(x) for all g € LP(X).

Proof of Theorem 5.1. Assume that the ¢-Poincaré inequality holds with con-
stants p; and X. Since all norms in RY are equivalent, it suffices to prove that there
exists a constant C' > 1 such that for all u € N'7(X),

(39) C~'gu(z) < limsup |Tyu(z)], < Cgu(r) for prae. z € X,

k—o00
Fix u € N'"?(X). The second inequality in (39) follows from (13) and the Lebesgue
differentiation theorem (Lemma 2.1) whenever z is a Lebesgue point of g2. Indeed,
it is immediate from Holder’s inequality that X supports a p-Poincaré inequality and
so, Lemma 2.8 implies the pair (u, g,,) satisfies the p-Poincaré inequality (5).

There remains to prove the first inequality in (39). Our plan in this regard is to
apply Lemma 3.3 with hy, := 4sup;s, [Tjul, and h := 4limsup,_, |Trul, in order
to conclude that h is a p-weak upper gradient for w. To this end, first observe that
clearly each hy and h are nonnegative Borel functions. Moreover, Lemma 3.4 implies
that if d(z,y) > 27% for some z,y € X and k € N, and 7 is a rectifiable curve
connecting x and y, then

|Sku(z) — Sru(y)| < /4|Tku|p ds < /hk ds,
2! 2!
where Siu is as in (10). Hence, (17) in Lemma 3.3 holds.
Next, we claim that {hy}ren converges to b in LP(X).
Since g, is a p-weak upper gradient of wu, it is also a g-weak upper gradient by
Lemma 2.2. Since g, is finite p-a.e., (13) in Lemma 3.1 (used here with ¢ in place of
p) yields

1/q
(40) |Thu(x)|, S |Tru(z)]y S (][ gl dﬂ) < (Mgg)l/q(ﬁ) for every z € X,
5

N Blz]
where the implicit constant is independent of k. Note that in (40), the first inequal-
ity is a consequence of the fact that all norms on RY are equivalent, and the last
inequality follows from doubling condition and the definition of M. Therefore, we
have that hy < (Mgg)l/  pointwise on X for every k € N. On the other hand, since
g9 € [P/9(X) and p/q > 1, the boundedness of M on LP/9(X) (Lemma 5.3) implies
that hy < (Mg?)Y? € LP(X). Clearly, {hj}ren converges pointwise to h and so,
by Lebesgue’s dominated convergence theorem, we have that hy — h in LP(X). In
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particular, {hy }ren converges weakly to hin LP(X). Therefore, {hy}ren and h satisfy
the hypotheses of Lemma 3.3, and it follows that h is a p-weak upper gradient for
uw which, in turn, implies that h > g, pointwise p-a.e. in X by the definition of a
minimal p-weak upper gradient. This completes the proof of the first inequality in

(39) and, in turn, the proof of Theorem 5.1. O
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