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Refined horoball counting and conformal
measure for Kleinian group actions

Jonathan M. Fraser and Liam Stuart

Abstract. Parabolic fixed points form a countable dense subset of the limit set of a non-

elementary geometrically finite Kleinian group with at least one parabolic element. Given such a

group, one may associate a standard set of pairwise disjoint horoballs, each tangent to the boundary

at a parabolic fixed point. The diameter of such a horoball can be thought of as the ‘inverse cost’

of approximating an arbitrary point in the limit set by the associated parabolic point. A result

of Stratmann and Velani allows one to count horoballs of a given size and, roughly speaking,

for small r > 0 there are r−δ many horoballs of size approximately r, where δ is the Poincaré

exponent of the group. We investigate localisations of this result, where we seek to count horoballs

of size approximately r inside a given ball B(z,R). Roughly speaking, if r . R2, then we obtain an

analogue of the Stratmann–Velani result (normalised by the Patterson–Sullivan measure of B(z,R)).

However, for larger values of r, the count depends in a subtle way on z.

Our counting results have several applications, especially to the geometry of conformal measures

supported on the limit set. For example, we compute or estimate several ‘fractal dimensions’ of

certain s-conformal measures for s > δ and use this to examine continuity properties of s-conformal

measures at s = δ.

Tarkennettu rajakuulien laskenta ja Kleinin ryhmän vaikutuksen konformimitta

Tiivistelmä. Paraboliset kiintopisteet muodostavat ei-alkeellisen, geometrisesti äärellisen ja

vähintään yhden parabolisen alkion sisältävän Kleinin ryhmän rajajoukolle numeroituvan tiheän

osajoukon. Tällaiselle ryhmälle voidaan määritellä standardijoukko pareittain erillisiä rajakuulia,

joista jokainen sivuaa reunaa parabolisessa kiintopisteessä. Tällaisen rajakuulan läpimitta voidaan

tulkita ”käänteiseksi kustannukseksi” sille, että rajajoukon mielivaltaista pistettä arvioidaan vastaa-

valla parabolisella pisteellä. Stratmannin ja Velanin tulos antaa keinon tietyn kokoisten rajakuulien

laskemiseksi. Karkeasti sanottuna on pienillä arvoilla r > 0 suunnilleen r-kokoisia kuulia olemassa

r−δ kappaletta, missä δ on ryhmän Poincarén eksponentti. Tarkastelemme tämän tuloksen paikal-

lisia muotoja, joissa tavoitteemme on laskea suunnilleen r-kokoisten rajakuulien määrä annetussa

kuulassa B(z,R). Karkeasti sanottuna saamme vastineen Stratmannin–Velanin tulokselle (normi-

tettuna kuulan B(z,R) Pattersonin–Sullivanin mitalla), mikäli r . R2, mutta suuremmilla arvoilla

r riippuu lukumäärä hienosyisellä tavalla pisteestä z.

Lukumäärätuloksillamme on useita sovelluksia, erityisesti rajajoukon kantamien konformimit-

tojen geometriaan. Esimerkiksi laskemme tai arvioimme eräiden s-konformimittojen useita ”fraktaa-

liulottuvuuksia”, kun s > δ, ja tutkimme tämän avulla s-konformimitan jatkuvuusominaisuuksia,

kun s = δ.
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1. Introduction

1.1. Kleinian groups, parabolic points and horoballs. Let Γ denote a non-
elementary geometrically finite Kleinian group acting on the Poincaré ball model of
hyperbolic geometry, which models (d+ 1)-dimensional hyperbolic space by Dd+1 =
{z ∈ Rd+1 | |z| < 1} equipped with the hyperbolic metric dH defined by

ds =
2|dz|

1− |z|2 .

We write Sd = {z ∈ Rd+1 | |z| = 1} to denote the boundary at infinity of the space

(Dd+1, dH), and letting 0 = (0, . . . , 0) ∈ Dd+1, we write L(Γ) = Γ(0) \ Γ(0) to denote
the limit set of Γ. We will also make use of the upper half-space model Hd+1 =
Rd × (0,∞) equipped with the analogous metric, noting that we can move between
these models by applying a Möbius transformation (the Cayley transformation). For
more background on hyperbolic geometry, see [1, 2].

We will assume throughout that Γ contains parabolic elements i.e. maps which
fix precisely one point in Sd, and write P for the countable set of parabolic fixed
points. It is known (see [22, 21]) that we can associate a standard set of horoballs
(Euclidean balls with interior contained in Dd+1 which are tangent to the boundary at
a parabolic fixed point) {Hp}p∈P such that they are pairwise disjoint, do not contain
0, and given any p ∈ P and g ∈ Γ, we have g(Hp) = Hg(p). Roughly speaking, a
Kleinian group Γ is geometrically finite if it has a fundamental domain with finitely
many sides (we refer the reader to [5] for the precise definition). Write

δ = inf

{

s > 0

∣

∣

∣

∣

∑

g∈Γ

e−sdH(0,g(0)) < ∞
}

to denote the Poincaré exponent of Γ. This exponent δ turns out to be closely
related to the dimension theory of L(Γ) and associated measures. For example, both
the Hausdorff and box dimension of L(Γ) are given by δ in the geometrically finite
setting.

1.2. Notation. Throughout, we write A . B if there exists a constant C > 0
such that A 6 CB, and A & B if B . A. We write A ≈ B if both A . B and
A & B. The implicit constants are uniform but may depend on parameters which
are fixed throughout the paper, for example the group Γ. If we use this notation in a
situation where the implicit constants do depend on something more than Γ, we will
emphasise this explicitly. For example, if the implicit constant C in A . B depends
on an additional parameter α, then we will write A .α B.

We write B(z, r) to denote the closed (Euclidean) ball centred at z with radius
r > 0. We write |X| to denote the (Euclidean) diameter of a non-empty set X. This
is not to be confused with |z| which denotes the absolute value of a point z ∈ Rd.

1.3. Counting horoballs. We are interested in counting horoballs of a given
size. For example, given a geometrically finite Kleinian group Γ and r > 0, we
ask: how many horoballs of diameter approximately r should one expect to see?
Stratmann and Velani [22, Theorem 3] proved the following.

Theorem 1.1. There exists τ ∈ (0, 1) such that, for all sufficiently large k ∈ N,

#
{

p ∈ P | τk+1 6 |Hp| < τk
}

≈ τ−kδ.



Refined horoball counting and conformal measure for Kleinian group actions 327

So, from a global point of view, we should expect to see roughly r−δ horoballs
of diameter approximately r, provided r is sufficiently small. Our main interest is in
refining this result to provide local information. That is, given z ∈ L(Γ) and R > 0,
we ask: how many horoballs of diameter approximately r should we expect to find in
the ball B(z, R)? The following result is due to Melián and Velani [17, Theorem 3],
see also [3, Section 12.3] and [14, Theorem 3].

Theorem 1.2. For all sufficiently small τ ∈ (0, 1), all z ∈ L(Γ), and all R > 0,
there exists a constant Cz,R such that for all k ∈ N such that τk < Cz,R, we have

#
{

p ∈ P ∩ B(z, R) | τk+1 6 |Hp| < τk
}

≈τ τ−kδµδ(B(z, R)).

Here µδ denotes the Patterson–Sullivan measure, see Section 1.4. Theorem 1.2
provides an (appropriately normalised) local analogue of Theorem 1.1, provided that
the horoballs we are counting are sufficiently small in relation to R. Our goal is to
first provide an “effective” version of the above theorem (that is, be more explicit
about the constant Cz,R and its dependency on z and R). Our second goal is then to
explore what happens outside the scope of Theorem 1.2, that is, when the horoballs
we are counting are relatively large compared to R. As we will see, these results will
depend on the relationship between r and R, as well as the proximity of the point
z to horoballs of large diameter. For further literature regarding equidistribution of
parabolic points, we refer the reader to [6, 7, 18].

1.4. The Patterson–Sullivan measure µδ and the global measure for-

mula. The limit set of Γ supports a Γ-ergodic conformal measure of maximal Haus-
dorff dimension known as the Patterson–Sullivan measure. This measure was first
constructed by Patterson [19] in the Fuchsian case (i.e. the case when d = 1), and
later generalised by Sullivan [23] to higher dimensions. Technically speaking, there
are a whole family of Patterson–Sullivan measures (see [8]), but as much of the theory
for each measure is the same, we simply fix one and discuss the Patterson–Sullivan
measure. We denote the Patterson–Sullivan measure by µδ with δ referring to the
Poincaré exponent of Γ (which is also the Hausdorff dimension of L(Γ) and of µδ).

Since we are assuming that Γ contains parabolic elements, the Patterson–Sullivan
measure does not obey a simple power law (as in, for example, the convex co-compact
case), and instead exhibits ‘parabolic fluctuation’. Stratmann and Velani [22, Theo-
rem 2] established a global measure formula for the Patterson–Sullivan measure µδ,
which quantifies this parabolic fluctuation, see (1.1). This is a formula which gives
the measure of an arbitrary ball up to uniform constants and has a host of useful
applications, for example concerning dimension theory. We recall the statement here,
for which we require some notation. Given p ∈ P , we write k(p) to denote the max-
imal rank of a free abelian subgroup of the stabiliser of p, denoted by Stab(p) 6 Γ.
In particular, this abelian subgroup must be generated by k(p) parabolic elements,
noting that Stab(p) cannot contain any loxodromic elements, as this would violate
discreteness of Γ. It is easy to see that 1 6 k(p) 6 d for all p ∈ P , and we define

kmin = min{k(p) | p ∈ P},
kmax = max{k(p) | p ∈ P}.

Let z ∈ L(Γ) and T > 0, and define zT ∈ Dd+1 to be the point on the geodesic ray
joining 0 and z which is hyperbolic distance T from 0. The global measure formula
states that

(1.1) µδ(B(z, e−T )) ≈ e−Tδe−ρ(z,T )(δ−k(z,T ))



328 Jonathan M. Fraser and Liam Stuart

where k(z, T ) = k(p) if zT ∈ Hp for some p ∈ P and 0 otherwise, and

ρ(z, T ) = inf{dH(zT , y) | y /∈ Hp}
if zT ∈ Hp for some p ∈ P and 0 otherwise.

1.5. The s-conformal measures µs. An important feature of the Patterson–
Sullivan measure is that it is a conformal measure for the action of Γ. For s > 0, we
say that a Borel probability measure µ is s-conformal for Γ if for all g ∈ Γ and for
all Borel measurable A ⊆ Sd,

µ(g(A)) =

ˆ

A

|g′|s dµ.

In the case of the Patterson–Sullivan measure, we have s = δ. However, Sullivan [24]
was also able to show that, provided Γ contains parabolic elements, given any s > δ,
there exists an s-conformal measure µs supported on L(Γ). These measures exhibit
substantially different behaviour than the Patterson–Sullivan measure. For example,
[23, Corollary 20] states that these measures must be purely atomic, with atoms at
the parabolic fixed points of L(Γ). An important fact which we will use throughout
is that given p ∈ P , µs({p}) is uniformly comparable to |Hp|s (see [22, Lemma 3.4]).

We use our refined horoball counting results to study the geometry of the confor-
mal measures µs, for example, proving a ‘global measure formula’, see Theorem 2.8.
We are especially interested in ‘continuity properties’ of µs at s = δ. Clearly, µs is
not continuous at s = δ in any reasonable topological sense. For example, µs cannot
converge weakly to µδ as s → δ since lim infs→δ µs({p}) > 0 = µδ({p}) for all para-
bolic points p ∈ P . Therefore, we will probe continuity of µs at s = δ in a weaker
and more aesthetic sense, see Corollaries 2.9 and 2.13.

2. Results and applications

We split this section into several parts, the first part pertaining to our main
counting results for horoballs. Following this we provide three application sections
concerning Diophantine approximation, global measure formulae and dimension the-
ory, respectively.

2.1. Main results: refined horoball counting. Our first result is the follow-
ing refinement of Theorem 1.2, which establishes that an appropriately normalised
analogue of Theorem 1.1 holds provided one is counting horoballs of size roughly less
than the square of the scale of the localisation.

Theorem 2.1. For all sufficiently small τ ∈ (0, 1) there exists C ∈ (0, 1) such

that for all z ∈ L(Γ), all sufficiently small R > 0 and all k ∈ N such that τk < CR2,

we have

#
{

p ∈ P ∩ B(z, R) | τk+1 6 |Hp| < τk
}

≈τ τ−kδµδ(B(z, R)).

We defer the proof of Theorem 2.1 until Section 3.1. This theorem demands
further scrutiny of the case when the horoballs are large compared to the scale of the
localisation. First let us observe that we always have a theoretical upper bound for
the local horoball counts, consistent with the precise value obtained in Theorem 2.1.
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Theorem 2.2. Let τ ∈ (0, 1), z ∈ L(Γ), and R ∈ (0, 1). If k ∈ N is such that

τk . R, then

#
{

p ∈ P ∩ B(z, R) | τk+1 6 |Hp| < τk
}

.τ τ−kδµδ(B(z, R)).

Moreover, if k ∈ N is such that τk+1 > 2R, then

#
{

p ∈ P ∩B(z, R) | τk+1 6 |Hp| < τk
}

6 1.

We defer the proof of Theorem 2.2 until Section 3.2. Clearly the theoretical
upper bound given above is far from being achieved in general once we are beyond
the scope of Theorem 2.1. For example, if z = p is a parabolic fixed point and R is
sufficiently small compared to |Hp|, then there can be no horoballs tangent to points
in B(p, R) of diameter much bigger than R2 apart from Hp itself. This is made precise
in Theorem 2.4 below. The interesting and most subtle case is when z is relatively
far from parabolic fixed points associated with large horoballs. In this case, there
may be many ‘intermediate’ horoballs present, but we should not expect as many as
the theoretical maximum described in Theorem 2.1.

Theorem 2.3. For all sufficiently small τ ∈ (0, 1) there exist c1 > 1 and c2 ∈
(0, 1) such that for all sufficiently small R > 0 and all k ∈ N such that R2 < τk < R
and z ∈ L(Γ) for which there exists p0 ∈ P with

c1τ
k/2 6 |z − p0| 6 c2

√

R|Hp0|
we have

#
{

p ∈ P ∩ B(z, R) | τk+1 6 |Hp| < τk
}

&τ τ−kδµδ(B(z, τk/2))

(

R

τk/2

)k(p0)

.

In particular, if δ = kmin = kmax, then

#
{

p ∈ P ∩ B(z, R) | τk+1 6 |Hp| < τk
}

≈τ

(

R

τk

)δ

.

We defer the proof of Theorem 2.3 until Section 3.3. We note that it will always
be possible to apply Theorem 2.3 for some z ∈ L(Γ) close to a given parabolic fixed
point p0. In particular, for z0 6= p0 and f a parabolic transformation fixing p, the
sequence fn(z0) approaches p0 at a polynomial rate (≈ 1/n with implicit constants
depending on z0 and f). Therefore if R is sufficiently small compared with |Hp0|, and
we choose k to ensure that the interval we need to bound |z−p0| within is sufficiently
large compared to the square of the right end of that interval, that is,

c2
√

R|Hp0| − c1τ
k/2

c22R|Hp0|
is sufficiently large, then we can choose n such that

c1τ
k/2 6 |fn(z0)− p0| 6 c2

√

R|Hp0|.
Finally, we provide a result in the other direction. If z is relatively too close to a
parabolic point associated with a large horoball |Hp|, then there cannot be other
large horoballs contributing to the local count apart from possibly Hp itself.
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Theorem 2.4. Let λ ∈ (1, 2], c > 1, z ∈ L(Γ), and R > 0. If there exists p0 ∈ P
with

c|Hp0|Rλ > c2R2λ + (|z − p0|+R)2,

then

#
{

p ∈ P ∩ B(z, R) | cRλ 6 |Hp|
}

6 1.

We defer the proof of Theorem 2.4 until Section 3.4. It is useful to note that the
assumption in Theorem 2.4 guarantees

√
cRλ/2 > |z − p0|

which forbids the assumption of Theorem 2.3 with τk = Rλ and c1 =
√
c. Moreover,

the assumption in Theorem 2.4 always holds when z = p ∈ P and R is small enough
in terms of |Hp|, λ and c. When λ < 2, we can take c = 1 but for λ = 2, we need
c > |Hp0|−1.

2.2. Application: Diophantine approximation and counting rationals.

Diophantine approximation is traditionally the study of how well real numbers are ap-
proximated by rationals. There are well-established links between this and hyperbolic
geometry, especially via the modular group PSL(2,Z). For additional information
on (the more general theory of) Diophantine approximation on Kleinian groups, we
refer the reader to [4, 20]. For example, an application of [4, Theorem DT’] recovers
the one-dimensional case of Dirichlet’s Theorem.

Consider the upper half-plane model H2, and the action of the Kleinian group
Γ = PSL(2,Z) on H2. It is an easy exercise to show that L(Γ) = R∪ {∞}, δ = kmax

= kmin = 1, P = Q∪{∞}, and |Hp/q| ≈ 1/q2 for p/q ∈ P with p, q coprime integers.
Thus, through applications of Theorems 2.1, 2.3, and 2.4, we get the following results
which may be expressed purely in terms of real numbers (that is, having nothing a

priori to do with hyperbolic geometry). Corollary 2.5 and 2.7 are straightforward to
derive directly using basic Diophantine properties of rationals, but we include their
statements as simple examples of how our work can be applied. Corollary 2.6 is
perhaps more interesting in its own right.

Corollary 2.5. For all sufficiently small τ ∈ (0, 1), there exists C ∈ (0, 1) such

that for all sufficiently small R > 0, all z ∈ R, and for all k ∈ N such that τk < CR2,

we have
∑

q∈N:
τ−k<q26τ−k−1

# {p ∈ Z | gcd(p, q) = 1, |p/q − z| 6 R} ≈τ τ−kR.

Corollary 2.6. For all sufficiently small τ ∈ (0, 1) there exist c1 > 1 and c2 ∈
(0, 1) such that for all sufficiently small R > 0 and all k ∈ N such that R2 < τk < R
and z ∈ R for which there exist coprime p0 ∈ Z and q0 ∈ N with

c1τ
k/2 6 |z − p0/q0| 6 c2q

−1
0

√
R

we have
∑

q∈N:
τ−k<q26τ−k−1

# {p ∈ Z | gcd(p, q) = 1, |p/q − z| 6 R} ≈τ τ−kR.
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Corollary 2.7. Let λ ∈ (1, 2], c > 1, z ∈ R, and R > 0. If there exist coprime

p0 ∈ Z and q0 ∈ N such that

c
Rλ

q20
> c2R2λ + (|z − p0/q0|+R)2,

then

#
{

p ∈ Z, q ∈ N | gcd(p, q) = 1, |p/q − z| 6 R, cRλ 6 1/q2
}

6 1.

2.3. Global measure formulae for conformal measures. We are interested
in obtaining global measure formulae for the s-conformal measures µs. These formu-
lae will of course be rather different from (1.1) for s > δ since these measures are
purely atomic. Using Theorem 2.1, we obtain the following global measure formula
for the measures µs.

Theorem 2.8. Fix τ and C permitted by Theorem 2.1. Let z ∈ L(Γ) and R > 0
be sufficiently small. Then

µs(B(z, R)) ≈τ R2(s−δ)µδ(B(z, R))

+
∑

k∈N:
CR26τk<R

#{p ∈ P ∩B(z, R) | τk+1 6 |Hp| < τk} τks + |Hp′|s

where p′ ∈ P ∩ B(z, R) is chosen to maximise |Hp′| given that |Hp′| > τk for all

integers k with τk < R. If no such p′ exists then we take |Hp′|s = 0.

Proof. Since µs is purely atomic with atoms at points in P , we get

µs(B(z, R)) =
∑

p∈P∩B(z,R)

µs({p})

=
∑

k∈N:
τk<CR2

∑

p∈P∩B(z,R):
τk+16|Hp|<τk

µs({p}) +
∑

k∈N:
CR26τk<R

∑

p∈P∩B(z,R):
τk+16|Hp|<τk

µs({p}) + µs({p′}).(2.1)

Applying Theorem 2.1 to the first term gives us
∑

k∈N:
τk<CR2

∑

p∈P∩B(z,R)

τk+16|Hp|<τk

µs({p}) ≈τ

∑

k∈N:
τk<CR2

τk(s−δ)µδ(B(z, R)) ≈τ R2(s−δ)µδ(B(z, R))

and so (2.1) becomes

R2(s−δ)µδ(B(z, R)) +
∑

k∈N:
CR26τk<R

∑

p∈P∩B(z,R):

τk+16|Hp|<τk

µs({p}) + µs({p′})

≈τ R2(s−δ)µδ(B(z, R))

+
∑

k∈N:
CR26τk<R

#{p ∈ P ∩ B(z, R) | τk+1 6 |Hp| < τk} τks + |Hp′|s,

as required. �

A few remarks are in order. Firstly, this global measure formula expresses the
measure of an arbitrary ball as the sum of three terms. The first term

R2(s−δ)µδ(B(z, R))
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is the only term which is always non-zero and corresponds to parabolic points inside
B(z, R) with associated horoballs having diameter at most a constant multiple of R2.
This may, as we shall see, take care of all of the measure of B(z, R). The first term
also involves µδ(B(z, R)), and so we may apply (1.1) to re-express this in terms of R
and the familiar parabolic fluctuation function ρ(z, T ) = ρ(z,− logR).

The second term
∑

k∈N:
CR26τk<R

#{p ∈ P ∩B(z, R) | τk+1 6 |Hp| < τk} τks

is the most subtle and corresponds to parabolic points inside B(z, R) with associated
horoballs having diameter at least a constant multiple of R2 and at most R. There
may be none of these and so this term can drop out. Moreover, even if there are
some but the associated horoballs have diameter . R2, then the second term can be
subsumed into the first. If the second term is non-zero, it is useful to observe that it
can be bounded from above by

.τ Rs−δµδ(B(z, R)).

This uses Theorem 2.2 and then sums the truncated geometric series. In particular,
this bound would dominate the first term if it were obtained. Moreover, we may use
our results in Theorems 2.3 and 2.4 to estimate the second term if the assumptions
are satisfied.

The third term

|Hp′|s

may again drop out. However, if it is present, then we can bound it by

Rs .τ |Hp′|s 6 1

and these bounds clearly cannot be improved. If the third term is present, then it
will dominate the first term provided s > kmax and the theoretical upper bound for
the second term provided δ > kmax.

As a consequence of our global measure formula we obtain a ‘continuity type
result’ for µs at s = δ. Roughly speaking, it says that the µs measure of a small
enough ball is uniformly comparable to the µδ measure of the same ball up to at
most an atom as s → δ.

Corollary 2.9. There exists a uniform constant A > 1 such that for all z ∈ L(Γ)
and R > 0 sufficiently small either

A−1 6 lim inf
s→δ

µs(B(z, R))

µδ(B(z, R))
6 lim sup

s→δ

µs(B(z, R))

µδ(B(z, R))
6 A

or there exists a point p ∈ P ∩B(z, R) and a weight α = α(z, R, s) > 0 such that

A−1 6 lim inf
s→δ

(µs − α∆p)(B(z, R))

µδ(B(z, R))
6 lim sup

s→δ

(µs − α∆p)(B(z, R))

µδ(B(z, R))
6 A,

where ∆p is a unit point mass at p.

Proof. By Theorem 2.8

R2(s−δ)µδ(B(z, R)) . µs(B(z, R)) . Rs−δµδ(B(z, R))

provided there does not exist p ∈ B(z, R) ∩ P with |Hp| > 2R. In this case the first
result holds. However, if there does exist p ∈ B(z, R)∩P with |Hp| > 2R, then there
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is only one such p and

R2(s−δ)µδ(B(z, R)) . (µs − µs({p})∆p)(B(z, R)) . Rs−δµδ(B(z, R))

and the second result holds with α = µs({p}). �

2.4. Application: dimension theory of conformal measures. For a more
detailed analysis on the dimensions of measures, we refer the reader to [9, 12]. We
write dimH for the Hausdorff dimension of a set or measure, but omit the defi-
nition. Let µ denote a finite compactly supported Borel measure on Rd, and let
F = supp(µ) = {x ∈ Rd | µ(B(x, r)) > 0 for all r > 0} denote the support of µ. The
upper box dimension of µ is given by

dimBµ = inf
{

s | ∃C > 0: ∀ 0 < r < |F | : ∀x ∈ F : µ(B(x, r)) > Crs
}

and the lower box dimension of µ is given by

dimBµ = inf
{

s | ∃C > 0: ∀r0 > 0: ∃ 0 < r < r0 : ∀ x ∈ F : µ(B(x, r)) > Crs
}

.

If dimBµ = dimBµ, then we write dimBµ to denote the common value and call it the
box dimension of µ. The Assouad dimension of µ is defined by

dimAµ

= inf

{

s > 0 | ∃C > 0: ∀ 0 < r < R < |F | : ∀x ∈ F :
µ(B(x,R))

µ(B(x, r))
6 C

(

R

r

)s
}

.

The Assouad spectrum of µ attempts to understand the gap between the box and
Assouad dimensions of a measure. For θ ∈ (0, 1), the Assouad spectrum of µ is
defined by

dimθ
Aµ = inf

{

s > 0 | ∃C > 0: ∀ 0 < r < |F | : ∀x ∈ F :
µ(B(x, rθ))

µ(B(x, r))
6 C

(

rθ

r

)s
}

.

The Assouad spectrum is continuous in θ. Moreover, the limit as θ → 1 is known
to exist, and is referred to as the quasi-Assouad dimension, denoted by dimqAµ, and
the limit as θ → 0 is the upper box dimension of µ. We can relate the above notions
of dimension as follows:

dimHµ 6 dimBµ 6 dimBµ 6 dimθ
Aµ 6 dimqAµ 6 dimAµ

for all θ ∈ (0, 1).
We are interested in the dimension theory of the s-conformal measures µs. Cer-

tain dimensions are not well-suited to this problem. For example, it is immediate
using the fact that µs is purely atomic for s > δ that µs is exact dimensional with
dimension 0 and so the Hausdorff, packing and entropy dimensions of µs are 0 for
all s > δ. Moreover, the Assouad dimension of µs is ∞ for all s > δ. This is less
trivial, but it follows from a result of Kaufman and Wu [16, Lemma 2] that µs is
not doubling, which gives dimAµs = ∞ (see [15, Lemma 3.2]). The lower dimension
and lower spectrum, which are natural duals to the Assouad dimension and Assouad
spectrum, are also not well-suited. In fact, any measure with an atom immediately
has lower spectrum and lower dimension identically 0. In contrast, the box dimension
and Assouad spectrum are perfectly suited to studying µs.
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Theorem 2.10. For all s > δ,

max{s, 2s− kmin} 6 dimBµs 6 dimBµs 6 max{2s− δ, 2s− kmin}
Moreover, for θ ∈ (0, 1/2],

max{s, 2s− kmin}
1− θ

6 dimθ
Aµs 6

max{2s− δ, 2s− kmin}
1− θ

and for θ ∈ (1/2, 1),

max{2θ(s− kmin) + kmin, 2s− kmin}
1− θ

6 dimθ
Aµs 6

max{2s− δ, 2s− kmin}
1− θ

.

In particular, dimqAµs = ∞.

We defer the proof of Theorem 2.10 until Section 3.5. Note that the above
estimates become precise formulae provided δ > kmin.

Corollary 2.11. If s > δ > kmin, then

dimBµs = dimBµs = 2s− kmin

and dimθ
Aµs =

2s− kmin

1− θ

for all θ ∈ (0, 1).

We do not know if the bounds from Theorem 2.10 are sharp in the case δ < kmin.
It would be interesting to consider this further. We established that dimqAµs = ∞,
but it would be interesting to know whether or not this holds for arbitrary purely
atomic measures with perfect support. Indeed, it follows from the result of Kaufman
and Wu that dimAν = ∞ for such measures ν.

Question 2.12. Let (X, σ) be a compact metric space and ν be a Borel measure
on X with dimqAν < ∞. Is it true that ν({x}) = 0 for every accumulation point x
in the support of ν?

As discussed above, we are especially interested in ‘continuity properties’ of µs

at s = δ. One approach to this problem is to check if various fractal dimensions
vary continuously at s = δ. This fails in a very dramatic way for the Hausdorff,
Assouad and quasi-Assouad dimensions for example since dimHµδ = δ > 0 and
dimAµδ = dimqAµδ = max{kmax, 2δ−kmin} < ∞. More interestingly, for θ ∈ (0, 1/2],

lim inf
s→δ

dimθ
Aµs >

max{δ, 2δ − kmin}
1− θ

> dimθ
Aµδ

and so dimθ
Aµs is not continuous at s = δ, despite being positive and finite for all

s > δ. However,
dimBµs → max{δ, 2δ − kmin} = dimBµδ

and
dimBµs → max{δ, 2δ − kmin} = dimBµδ

as s → δ and so we get another continuity type result, this time cast in the language
of dimension.

Corollary 2.13. The functions s 7→ dimBµs and s 7→ dimBµs defined for s ∈
[δ,∞) are continuous at s = δ. If δ > kmin, then s 7→ dimBµs is well-defined and

affine for all s ∈ [δ,∞).

For reference, the Assouad dimension of µδ was found in [11] and the quasi-
Assouad dimension, Assouad spectrum and box dimensions of µδ were found in [13].
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3. Remaining proofs

3.1. Proof of Theorem 2.1. Fix τ ∈ (0, 1) which later we will see must be
chosen sufficiently small depending only on the group Γ. Let C1R

2 > r > 0, where
the constant C1 ∈ (0, 1) is to be determined, and let z ∈ L(Γ). We first recall that
due to [22, Theorem 1], there exists a constant κ > 0 such that for sufficiently small
r > 0,

(3.1) L(Γ) ⊆
⋃

p∈P :
|Hp|>r

Π

(

κ

√

r

|Hp|
Hp

)

with multiplicity . 1. Here Π denotes the radial projection from 0 onto the boundary
Sd and λHp (λ > 0) denotes the ‘squeezed horoball’ tangent to the boundary at p

but with diameter λ|Hp|. For notational convenience, we write λp = κ
√

r/|Hp|.
Therefore, for sufficiently small R, we have

µδ(B(z, R)) .
∑

p∈P∩B(z,R):
r6|Hp|<R

µδ (Π (λpHp)) +
∑

p∈P :
Π(λpHp)∩B(z,R)6=∅

R6|Hp|

µδ (Π (λpHp) ∩B(z, R)) .

A simple disjointness argument shows that the number of p ∈ P satisfying the con-
ditions of the second sum must be 6 Kd, where Kd is a constant dependant only on
d. Furthermore, note that for all p ∈ P , we have |Π (λpHp) | .

√
r <

√
C1R, and so

we can choose C1 dependant on the implied constants such that |Π (λpHp) | < R.
The lower dimension, denoted by dimL, is a notion dual to the Assouad dimension.

We refer to [12] for the definition of lower dimension, but for our purposes we use
that when the lower dimension of a measure is positive, one can effectively bound
from below the ratio of the measure of concentric balls. In particular, it was shown in
[11] that dimLµδ > 0. Therefore, by choosing p ∈ P satisfying the conditions of the
second sum and an appropriate z′ ∈ Π (λpHp) ∩ B(z, R), for fixed 0 < ε < dimLµδ,
we have

µδ(B(z, R))

µδ (Π (λpHp) ∩ B(z, R))
&

µδ(B(z′, R))

µδ (Π (λpHp) ∩B(z, R))

&

(

R

|Π (λpHp) |

)dimLµδ−ε

&

(

1√
C1

)dimLµδ−ε

where we have used the fact that µδ is doubling. In particular, we can also ensure
C1 is chosen (dependant on the implied constants) sufficiently small to ensure

(3.2)
µδ(B(z, R))

µδ (Π (λpHp) ∩ B(z, R))
> 100Kd.

Also, using the multiplicity in the cover (3.1) and the fact that µδ is doubling, we get

µδ(B(z, R)) & µδ(B(z, 2R)) &
∑

p∈P∩B(z,R):
r6|Hp|<R

µδ (Π (λpHp)) .

Combining this with (3.2) gives
∑

p∈P∩B(z,R):
r6|Hp|<R

µδ (Π (λpHp)) . µδ(B(z, R)) .
∑

p∈P∩B(z,R):
r6|Hp|<R

µδ (Π (λpHp)) + µδ(B(z, R))/100
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and so, using [22, Corollary 3.5] which gives a fomula for the µδ measure of the radial
projection of a squeezed horoball, we have

(3.3) µδ(B(z, R)) ≈
∑

p∈P∩B(z,R):
r6|Hp|<R

µδ (Π (λpHp)) ≈ rδ
∑

p∈P∩B(z,R):
r6|Hp|<R

( |Hp|
r

)k(p)/2

.

With this estimate in place, we now follow the argument from [22, Proof of Theorem
3]. We wish to consider 0 < r < C1C2R

2, where C2 is some constant to be determined.
Explicitly, (3.3) implies the existence of a constant C3 > 1 such that

(3.4) µδ(B(z, R))/C3 6 rδ
∑

p∈P∩B(z,R):
r6|Hp|<R

( |Hp|
r

)k(p)/2

6 C3µδ(B(z, R)).

Note that from our arguments above, C3 can be chosen independently of τ, z, R and
r, as none of the implied constants used in the derivation of (3.3) depend on these
quantities. Furthermore, for 1 6 α < C1R

2/r,

µδ(B(z, R))/C3 6 (αr)δ
∑

p∈P∩B(z,R):
αr6|Hp|<R

( |Hp|
αr

)k(p)/2

6 C3µδ(B(z, R))

which implies

∑

p∈P∩B(z,R):
r6|Hp|<αr

( |Hp|
r

)k(p)/2

=
∑

p∈P∩B(z,R):
r6|Hp|<R

( |Hp|
r

)k(p)/2

−
∑

p∈P∩B(z,R):
αr6|Hp|<R

( |Hp|
r

)k(p)/2

> r−δ(1/C3 − C3α
kmax/2−δ)µδ(B(z, R)).

We now choose C2 to be small enough to ensure that we can make α sufficiently
large, in particular, such that

α−kmax/2(1/C3 − C3α
kmax/2−δ) > C4

is satisfied for some constant C4 = C4(α) > 0. Recall here the well-known estimate
δ > kmax/2. Combined with (3.4), we get

∑

p∈P∩B(z,R):
r6|Hp|<αr

1 ≈α r−δµδ(B(z, R))

and the result follows provided we can choose α = 1/τ . However, this will be possible
for τ sufficiently small depending only on C3 and other fixed constants. Finally, C is
chosen (depending on τ) to be C = C1C2.

3.2. Proof of Theorem 2.2. Let τ ∈ (0, 1), z ∈ L(Γ), and R ∈ (0, 1). If k ∈ N

is such that τk . R, then

µδ(B(z, R)) >
∑

p∈P∩B(z,R):
τk+16|Hp|<τk

µδ(B(p, τk+1/10) ∩ B(z, R))

&τ

∑

p∈P∩B(z,R):

τk+16|Hp|<τk

µδ(B(p, |Hp|) ∩B(z, R)) &τ τkδ
∑

p∈P∩B(z,R):

τk+16|Hp|<τk

1
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and the result follows. In the above we used (1.1), that µδ is doubling, and that,
since τk . R, we can ensure that B(p, |Hp|)∩B(z, R) contains a ball of radius & |Hp|
for the p we sum over.

If k ∈ N is such that τk+1 > 2R, then since horoballs Hp (p ∈ P ) are pairwise
disjoint, it is immediate that

#
{

p ∈ P ∩B(z, R) | τk+1 6 |Hp| < τk
}

6 1.

3.3. Proof of Theorem 2.3. We switch to the upper-half space model Hd+1 =
Rd × (0,∞) and may assume that p0 = 0 ∈ P . Then 0 has a set of k(0) parabolic
elements which all fix 0 and generate a free abelian group of rank k(0). We conjugate
0 to ∞ by applying the isometry ι which inverts in the sphere centred at 0 with radius
1. Note that ι does not preserve orientation, but this is not an issue. Conjugating
the parabolic elements fixing 0 by ι results in a collection {f1, . . . , fk(0)} of parabolic
elements of the form

fi(z) = Aiz + ti

for some ti ∈ Rd and some finite order orthogonal matrix Ai acting on the boundary
Rd. (Formally this only defines f on the boundary, but this is extended to Hd+1 by
f(z, ω) = (f(z), ω).) Further, by taking sufficiently large powers of the fi, we may
assume without loss of generality that they all take the form fi(z) = z+ti. Moreover,
we may assume that

|ti| ≈ |Hp0|−1

for all i, where the implicit constants may depend on the matrices Ai. This can be
seen by restricting to a 2-dimensional slice through Hd+1 which is stabilised by fi
(namely, the span of ti and a vector normal to the boundary) and then applying the
following 2-dimensional argument.

Lemma 3.1. Suppose d = 1 and 0 ∈ P ⊆ R ∪ {∞}. Then there exists f ∈ Γ 6
PSL(2,R) and α > 0 such that for all z ∈ H2,

f(z) =
z

αz + 1

where α ≈ |H0|−1. In particular, conjugating by the circle inversion ι given by

ι(z) = 1/z gives ιfι−1 = z + α.

Proof. We have g(p′) = 0 and H0 = Hg(p′) = g(Hp′) for one of the finitely many
inequivalent parabolic points p′ and some g ∈ Γ. Since there are only finitely many
inequivalent parabolic points, we may assume that p′ = ∞ and Hp′ = {x+ai : x ∈ R}
for some uniform constant a > 0. Since g(∞) = 0,

g(z) =
u

z + v

for some u, v ∈ R \ {0} with u < 0. Moreover, ∞ is fixed by a parabolic element
which we may assume is of the form h(z) = z + b for some uniform constant b > 0.
Then, by direct calculation, we have

gh−1g−1(z) =
z

(−b/u)z + 1
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and so we can take α = −b/u and f = gh−1g−1. Then

|H0| = |g(Hp′)| = sup
z∈Hp′

Im

(

u

z + v

)

= sup
x∈R

Im

(

u

x+ ai+ v

)

= sup
x∈R

−au

(x+ v)2 + a2
=

−u

a
≈ 1/α

as required. �

Before proceeding, we also need a small modification of Theorem 2.1.

Lemma 3.2. Fix C as in Theorem 2.1. For sufficiently small τ ∈ (0, 1), all

z ∈ L(Γ) and all sufficiently large k ∈ N, we have

#
{

p ∈ P ∩B(z, (2/
√
C)τk/2) | 2τk+1 6 |Hp| < τk/2

}

≈τ τ−kδµδ(B(z, τk/2)).

Proof. The .τ direction of the lemma is immediate from Theorem 2.1. For the &τ

direction, let τ0 be a suitable value of τ from the statement of Theorem 2.1 such that

τ0 6 1/2, and choose τ = τ 30 . Fix z ∈ L(Γ). Note that the ball B(z, (2/
√
C)τ

(k−1)/2
0 )

is large enough to directly apply Theorem 2.1 to obtain

#
{

p ∈ P ∩B(z, (2/
√
C)τ

(k−1)/2
0 ) | τk+1

0 6 |Hp| < τk0

}

≈τ τ−kδ
0 µδ(B(z, τ

k/2
0 ))

for sufficiently large k ∈ N. Replacing k by 3k + 1 and using τ = τ 30 , this further
gives

#
{

p ∈ P ∩ B(z, (2/
√
C)τk/2) | τk+2/3 6 |Hp| < τk+1/3

}

≈τ τ−kδµδ(B(z, τk/2)).

for sufficiently large k ∈ N. This proves the &τ direction of the lemma since

2τk+1 6 τk+2/3 6 τk+1/3 6 τk/2,

recalling that τ = τ 30 6 1/8. �

An equivalent definition of geometric finiteness due to Bowditch [5, Definition
(GF2)] guarantees the existence of λ > 0 such that ι(L(Γ)) ⊆ Vλ ∪ {∞} where Vλ is
the Euclidean λ-neighbourhood of the span of {f1, . . . , fk(0)}. Fix τ as in Lemma 3.2.
Observe that ι−1(Vλ) is the complement of two spheres tangent at 0 both of diameter
≈ 1. Therefore, noting that τk 6 |z|2 6 R < τk/2 by assumption, ι−1(Vλ)∩B(z, τk/2)
is contained in a . (|z|+ τk/2)2 . R neighbourhood of a k(0)-dimensional plane, see
Figure 1, and so

NR

(

L(Γ) ∩B(z, (2/
√
C)τk/2)

)

. NR

(

ι−1(Vλ) ∩ B(z, τk/2)
)

.

(

τk/2

R

)k(0)

.

p0

τk/2

z . R

Figure 1. An illustration showing how ι−1(Vλ) ∩ B(z, τk/2) is squeezed between two spheres

tangent at p0 (in this picture we have k(p0) = 1).



Refined horoball counting and conformal measure for Kleinian group actions 339

z pfn(p) x z + (2/
√
C)τk/2

R R/3

Figure 2. An illustration in the case where d = 1 showing how the horoballs in the set B(x,R/3)

are moved into the set B(z,R) by using a parabolic map f fixing 0. The dashed arc represents the

circle that the horoball Hp is dragged along by repeated applications of f .

Using this estimate and Lemma 3.2, apply the pigeonhole principle to find x ∈
B(z, (2/

√
C)τk/2) such that

#
{

p ∈ P ∩ B(x,R/3) | 2τk+1 6 |Hp| < τk/2
}

&τ τ−kδµδ(B(z, τk/2))

(

R

τk/2

)k(0)

.

The idea is to ‘pull’ the horoballs in the above expression into our target set B(z, R)
using (ι conjugates of) {f1, . . . , fk(0)}, see Figure 2.

Let Γ0 = 〈f1, . . . , fk(0)〉 and note that Γ0(ι(x)) is a lattice with ‘separation’

(3.5) max
i

|ti| ≈ |H0|−1.

Since
|z|

(2/
√
C)τk/2

>
c1τ

k/2

(2/
√
C)τk/2

=
c1
√
C

2

and
|z|
R

>
c1τ

k/2

τk/2
= c1

we can choose c1 = c1(τ) sufficiently large to ensure that

(3.6)
0.999

|z|2 6
1

|y|2 6
1.001

|z|2

for all y ∈ B(z, (2/
√
C)τk/2 + R). Therefore, we can choose c2 sufficiently small to

ensure

(3.7) |ι(B(z, R))| > 2|ι(B(x,R/3))| > R

|z|2 >
1

c22|H0|
> 100max{λ,max

i
|ti|}.

Note that c2 does not depend on |H0| but does depend on the implicit constants in
(3.5). To deduce (3.7) we use that ι is conformal and its Jacobian derivative at y 6= 0

is 1/|y|2 multiplied by an orthogonal matrix. Using (3.7) we immediately find f ∈ Γ0

such that

f(ι(P ∩ B(x,R/3))) ⊆ ι(B(z, R))

and therefore

(ι−1fι)(P ∩ B(x,R/3))) ⊆ B(z, R).

Here the fact that |ι(B(z, R))| > 100λ was used to ensure that the orbit Γ0(ι(x))
cannot miss the target ι(B(z, R)) as it passes noting that Γ0(ι(x)) is contained in a
k(0)-dimensional plane which is itself a subset of Vλ.

For the above choice of f , we also get

(3.8) 1/2 6
|ι−1fι(Hp)|

|Hp|
6 2.
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To deduce (3.8) we again use conformality of ι and (3.6). Using (3.8), for all p ∈
P ∩ B(x,R) satisfying 2τk+1 6 |Hp| < τk/2, we get

τk+1 6 |ι−1fι(Hp)| < τk.

This completes the proof. Finally, note that if δ = kmin = kmax, then µδ is δ-Ahlfors–
David regular and the lower bound provided above agrees with the upper bound from
Theorem 2.2 up to constants.

3.4. Proof of Theorem 2.4. Clearly we can have p0 ∈ B(z, R) and |Hp0| >
cRλ, so it remains to prove that if such p0 is present, then it is unique. If p0 is not
unique, then we must be able to associate an axes oriented right-angled triangle with
hypotenuse of length |Hp0|/2, horizontal side of length |z − p0| + R and opposite
side strictly smaller than |Hp0|/2− cRλ which has vertices at the centre of Hp0, the
boundary of Hp0, and (the vertex associated with the right-angle) above p0 at ‘height’
> cRλ, see Figure 3. Otherwise, using disjointness of horoballs, no other horoballs
of size > cRλ can be tangent to a point in B(z, R).

p0

|z − p0|+R

< |Hp0 |/2− cRλ

Figure 3. A picture of the associated right-angled triangle.

However, for such a triangle Pythagoras’ Theorem ensures

(|Hp0|/2)2 < (|Hp0|/2− cRλ)2 + (|z − p0|+R)2

which in turn gives

c|Hp0|Rλ < c2R2λ + (|z − p0|+R)2

contradicting the assumption in the theorem.

3.5. Proof of Theorem 2.10. We first estimate dimBµs from above. By
Theorem 2.8 and (1.1), for all z ∈ L(Γ) and R > 0 sufficiently small,

µs(B(z, R)) & R2(s−δ)µδ(B(z, R)) & R2(s−δ)Rmax{δ,2δ−kmin} = Rmax{2s−δ,2s−kmin}

which proves dimBµs 6 max{2s− δ, 2s− kmin}.
We now estimate dimBµs from below, which we do in two different ways to

account for the maximum. Let p ∈ P be such that k(p) = kmin, and let zn ∈ L(Γ) be
such that zn → p with |zn − p| strictly decreasing and |zn − p|/|zn+1 − p| → 1. Such



Refined horoball counting and conformal measure for Kleinian group actions 341

a sequence exists taking zn = fn(z0) for some z0 6= p and f a parabolic map fixing p.
Choose a sequence of Rn → 0 such that

Rn < |zn − p| < 101Rn

100
.

Note this means that for n large enough, we have k(zn,− logRn) = kmin and ρ(zn,
− logRn) > − logRn − C for some constant C > 0, and so applying (1.1) gives
µδ(B(zn, Rn)) . R2δ−kmin

n . Furthermore, for n large enough, there can only be finitely
many parabolic points p′ ∈ B(zn, Rn) satisfying |Hp′| > 10R2

n, and they all must
satisfy |Hp′| . R2

n by Theorem 2.4. For a given R ∈ (0, R1), let n be such that
Rn+1 6 R < Rn. Applying Theorem 2.8 gives, for sufficiently large n,

µs(B(zn, R)) 6 µs(B(zn, Rn)) . R2(s−δ)
n R2δ−kmin

n +R2s
n = R2s−kmin

n . R2s−kmin

which proves dimBµs > 2s− kmin.
To derive the other lower bound, choose a sequence pn ∈ P such that τn+1 6

|Hpn| < τn for some τ ∈ (0, 1). Such a sequence (and τ) exists by Theorem 2.1. For
each n ∈ N, let Rn > 0 denote the smallest real number such that ρ(pn,− logRn) = 0
(note that such a number must exist as pn is parabolic) and therefore |Hpn| ≈ Rn.
For a given R ∈ (0, R1), let n be defined uniquely such that Rn+1 6 R < Rn. Then,
by Theorem 2.8,

µs(B(pn, R)) 6 µs(B(pn, Rn)) . R2s−δ
n +Rs

n + |Hpn|s . Rs
n . Rs

which proves dimBµs > s, as required.
As for dimθ

Aµs, the upper bound (for all θ ∈ (0, 1)) is a consequence of a general
upper bound in terms of the upper box dimension proved in [10, Proposition 4.1].
For the lower bound, we first prove an estimate which holds for all θ ∈ (0, 1). Choose
p ∈ P such that k(p) = kmin and |Hp| ≈ 1 and choose zn ∈ L(Γ) such that zn → p,
and Rn → 0 satisfying

Rn < |zn − p| < min

{

Rθ
n,

101Rn

100

}

.

Then, for sufficiently large n,

µs(B(zn, R
θ
n))

µs(B(zn, Rn))
&

1

R2s−kmin
n

=

(

Rθ
n

Rn

)(2s−kmin)/(1−θ)

which gives dimθ
Aµs > (2s−kmin)/(1−θ), as required. This also proves dimqAµs = ∞.

Next we prove a lower bound which will take on a different form depending
on whether θ 6 1/2 or θ > 1/2. Let p, p′ be distinct parabolic fixed points with
|Hp| ≈ |Hp′| ≈ 1 and let f be a parabolic element fixing p′. Let pn = fn(p). For
large integers n it is readily seen, e.g. [13, Lemma 4.3], that

|Hpn| = |Hfn(p)| = |fn(Hp)| ≈ |fn(p)− p′|2 → 0

as n → 0 with implicit constants depending on f and p. First suppose θ < 1/2 with
the θ = 1/2 case following by continuity of the Assouad spectrum, see [12]. Choose
Rn = |Hpn|. By Theorem 2.8,

µs(B(pn, Rn)) . R2s−δ
n +Rs

n + |Hpn|s . Rs
n.

Moreover,

|pn − p′| = |fn(p)− p′| .
√

Rn
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Therefore, since θ < 1/2, for large enough n, |pn − p′| < Rθ
n and therefore

µs(B(pn, R
θ
n))

µs(B(pn, Rn))
&

|Hp′|s
Rs

n

&

(

Rθ
n

Rn

)s/(1−θ)

which gives dimθ
Aµs > s/(1− θ), as required. Now suppose θ > 1/2. We may assume

δ < kmin since otherwise the claimed bound does not improve on the previously
established lower bound. Choose Rn such that

Rθ
n = |pn − p′| ≈

√

|Hpn|.

For large enough n, all horoballs tangent to a point in B(pn, Rn) have diameter
. |Hpn| ≈ R2θ

n . Moreover, note that

exp(−ρ(pn,− logRn)) & R2θ−1
n

since ρ(pn,− logRn) can be bounded naively above by

log

(

Rn

|Hpn|

)

6 log(R1−2θ
n )

up to an additive constant, see Figure 4.

Sd
pn

Hp′

(pn)− logRn

Hpn

Figure 4. Estimating ρ(pn,− logRn) from above by the hyperbolic distance between (pn)− logRn

and the ‘tip’ of Hpn
.

Therefore, by Theorem 2.8 and (1.1) and using that δ < kmin,

µs(B(pn, Rn)) . R2θ(s−δ)
n µδ(B(pn, Rn)) + |Hpn|s . R2θ(s−δ)

n Rδ+(2θ−1)(δ−kmin)
n .

Therefore, for large enough n,

µs(B(pn, R
θ
n))

µs(B(pn, Rn))
&

|Hp′|s

R
2θ(s−δ)+δ+(2θ−1)(δ−kmin)
n

&

(

Rθ
n

Rn

)(2θ(s−kmin)+kmin)/(1−θ)

which gives dimθ
Aµs > (2θ(s− kmin) + kmin)/(1− θ), as required.
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