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Quasiconformal solutions to elliptic
partial differential equations

David Kalaj

Abstract. In this paper, we assume that G and Ω are two Jordan domains in R
n with C2

boundaries, where n ≥ 2, and prove that every quasiconformal mapping f ∈ W2,1+ǫ
loc

of G onto Ω,

satisfying the elliptic partial differential inequality |LA[f ]| . (‖Df‖2 + |g|), with g ∈ Lp(G), where

p > n, is Lipschitz continuous. The result is sharp since for p = n, the mapping f is not necessarily

Lipschitz continuous. This extends several results for harmonic quasiconformal mappings.

Elliptisten osittaisdifferentiaaliyhtälöiden kvasikonformiset ratkaisut

Tiivistelmä. Tässä työssä oletamme, että G ja Ω ovat kaksi C2-reunaista Jordanin aluetta

avaruudessa R
n, missä n ≥ 2, ja todistamme, että jokainen kvasikonformikuvaus f ∈ W2,1+ǫ

loc
,

joka kuva alueen G surjektiivisesti alueeksi Ω ja toteuttaa elliptisen osittaisdifferentiaaliepäyhtälön

|LA[f ]| . (‖Df‖2 + |g|), missä g ∈ Lp(G) jollakin p > n, on Lipschitzin-jatkuva. Tulos on tarkka,

sillä kuvauksen f ei tarvitse olla Lipschitzin-jatkuva, jos p = n. Tämä yleistää useita harmonisia

kvasikonformikuvauksia koskevia tuloksia.

1. Introduction and statement of the main result

In the paper B = B
n denotes the unit ball in R

n, n ≥ 2. For a vector x =
(x1, . . . , xn) ∈ R

n, and a real matrix A = (aij)
n
i,j=1, we consider the vector norm

|x| = (
∑n

i=1 x
2
i )

1/2
and the matrix norms: Hilbert–Schmidt norm and induced norm

‖A‖ := (traceAtA)1/2 =

(

n
∑

i,j=1

a2ij

)1/2

and

|A| = sup{|Ax| : |x| = 1}.
We also consider the matrix function

l(A) = inf{|Ax| : |x| = 1}.
For further details on these and the notation in the remainder of the text, we refer
to [22].

Definition 1.1. A homeomorphism f : G → R
n, n ≥ 2 of a domain G in R

n is
called quasiconformal (q.c.) if f is in ACLn, and there exists a constant K, 1 ≤ K <
∞ such that

(1.1) |Df(x)|n ≤ K|Jf(x)|, |Df(x)| = max
|h|=1

|Df(x)h|,
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a.e. in G, where f ′(x) = Df(x) is the formal derivative. The smallest K ≥ 1 for
which this inequality is true is called the outer dilatation of f and is denoted by
KO(f). If f is quasiconformal, then the smallest K ≥ 1 for which the inequality

|Jf(x)| ≤ Kl(Df(x))n,

holds a.e. in G is called the inner dilatation of f and denoted by KI(f). The maximal
dilatation of f is the number K(f) = max{KI(f), KO(f)}. If K(f) ≤ K, f is said
to be K-quasiconformal. It is well-known that

KI(f) ≤ Kn−1
O (f), KO(f) ≤ Kn−1

I (f),

and hence KI(f) and KO(f) are simultaneously finite.

Definition 1.2. A continuous and nonconstant mapping f : G → R
n, n ≥ 2, in

the local Sobolev space W1,n
loc (G,R

n) is K-quasiregular, K ≥ 1, if

|Df(x)|n ≤ KJf (x)

for almost every x ∈ G.

We refer also to the monographs [33, p. 128] for this definition and the basic
theory of quasiregular mappings.

Notice that the condition u ∈ ACLn guarantees the existence of the first deriv-
ative of u almost everywhere (see [32]). Moreover, Ju(x) = det(Du(x)) 6= 0 for a.e.
x ∈ Ω. For a continuous mapping u, the condition (i) is equivalent to the fact that
u belongs to the Sobolev space W1,n

loc (Ω).
The Sobolev space Wk,p(Ω), k ∈ N and p ≥ 1, is defined to be the set of all

functions f on Ω such that for every multi-index η with |η| 6 k, the mixed partial
derivative

f (η) =
∂|η|f

∂xη11 . . . ∂xηnn
exists in the weak sense and is in Lp(Ω), i.e.

∥

∥f (η)
∥

∥

Lp <∞.

That is, the Sobolev space Wk,p(Ω) is defined as

Wk,p(Ω) = {u ∈ Lp(Ω) : Dηu ∈ Lp(Ω) ∀|η| 6 k} .
The natural number k is called the order of the Sobolev space Wk,p(Ω). There are
several choices for a norm for Wk,p(Ω). The following is one of the equivalent norms:

‖u‖k,p,Ω = ‖u‖Wk,p(Ω) :=







(

∑

|α|6k ‖Dαu‖pLp(Ω)

)
1
p

, 1 6 p <∞;

max|α|6k ‖Dαu‖L∞(Ω) , p = ∞.

If k = 0, we use the notation ‖u‖p,Ω = ‖u‖k,p,Ω.
For a function (a mapping) u defined in a domain Ω, we define |u|∞ = sup{|u(x)| :

x ∈ Ω}. We say that u ∈ Ck,α(Ω), 0 < α ≤ 1, k ∈ N, if

‖u‖l,α :=
∑

|η|≤l

|Dηu|∞ +
∑

|η|=l

sup
x,y∈Ω

|Dηu(x)−Dηu(y)| · |x− y|−α <∞.

In this paper, we study quasiconformal solutions of differential inequalities of the
type |Lu| ≤ M |Du|2 + |g|, with Lp integrable g. Here L is a homogeneous second-
order uniformly elliptic linear operator with coefficients that are continuous up to
the boundary; see Section 2 for details. In particular, we are interested in the global
Lipschitz and Hölder regularity of solution u.
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A mapping f of a set S in Euclidean n-space R
n into R

n, n ≥ 2, is said to belong
to the Hölder class (Lipschitz class) Lipα(S), 0 < α < 1 (α = 1), if there exists a
constant M > 0 such that

(1.2) |f(x)− f(y)| ≤M |x− y|α

for all x and y in S. If G is a bounded domain in R
n and if f is quasiconformal

in G with f(G) ⊂ R
n, then f is in Lipα(S) for each compact S ⊂ G, where α =

KI(f)
1/(1−n) and KI(f) is the inner dilatation of f . Simple examples show that f

need not be in Lipα(G) even when f is continuous in G. On the other hand, Martio
and Näkki in [25] showed that if f induces a boundary mapping that belongs to
Lipα(∂G), then f is in Lipβ(G), where

(1.3) β = min(α,KI(f)
1/(1−n)).

Moreover, the exponent β is sharp. In particular, when G = Ω = B and f : B → B is
K-quasiconformal and there is a constant C = C(K, f(0), n) such that

|f(x)− f(y)| ≤ C|x− y|α, x, y ∈ B,

where α = K1/(1−n). The last result is due to Vuorinen and Fehlmann [8].
In a recent paper by Kalaj and Saksman [21] it was shown that if f is a quasi-

conformal mapping of the unit disk onto a Jordan domain with C2 boundary such
that its weak Laplacian ∆f ∈ Lp(B2), for p > 2, then f is Lipschitz continuous.
The condition p > 2 is also necessary. Furthermore, it was also shown in the same
paper that if p = 1, then f is absolutely continuous on the boundary of B

2. In
a certain sense, the results from [21] optimize the results of the Kalaj, Mateljević,
Pavlović, Partyka, Sakan, Astala, Manojlović [16, 17, 19, 18, 27, 28, 29, 30, 14, 15, 5],
since it does not assume that the mapping is harmonic, neither its weak Laplacian
is bounded. Furthermore, the two-dimensional result by Kalaj and Saksman in [21]
has been extended by Kalaj and Zlatičanin in [22] to a higher-dimensional case.

In [15], the study of the Lipschitz property of self-maps u : B2 → B
2 satisfying

the elliptic partial differential inequality |Lu| . (‖Du‖2+1) was initiated. Here and
in what follows, a(u) . b(u) means that there is a constant C that does not depend
on a function u such that a(u) ≤ Cb(u). We will also use the symbol a(u) ≃ b(u)
which, means that there is a constant C ≥ 1 such that a(u)/C ≤ b(u) ≤ Ca(u).

Generalizing these ideas to higher dimensions, we now proceed to consider qua-
siconformal mappings u : G → Ω between two smooth domains G and Ω in R

n,
satisfying the elliptic partial differential inequality of the form |Lu| . (‖Du‖2 + |g|)
for some g ∈ Lp(G), where p > n/2. We are interested in the conditions under which
the quasiconformal mapping u is in Lipα(G), for β < α < 1, where β is defined in
(1.3).

It follows from our results that when G and Ω are diffeomorphic images of the
closed n-ball, then the quasiconformality of u combined with the Lp-integrability of
|Lu| for p > n/2 guarantee that u is in Lipα(G), where α = 2 − p

n
. In particular if

p = n, then u ∈ Lipα(B) for α < 1 and if p > n, then u is Lipschitz.
A Jordan domain G in the space is a diffeomorphic image of the open unit

ball in n-dimensional space. We say that the Jordan domain is C2 smooth if the
diffeomorphism is a twice differentiable function which, along with its inverse and
has a C2 extension to the boundary. This is the main result of this paper.
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Theorem 1.3. Let n ≥ 2 and p > n/2 and assume that g ∈ Lp(G), where G is
a bounded Jordan domain with C2 boundary in R

n and let Ω be a bounded Jordan
domain Ω ⊂ R

n with C2-boundary. Assume further that

(1) f : G onto−→ Ω is K-quasiconformal,
(2) for some ǫ > 0, f ∈ W2,1+ǫ

loc (G) and
(3) f has second order partial derivatives a.e. which satisfy the elliptic differential

inequality inequality

(1.4) |Lf | ≤M‖Df‖2 +N |g|,
where M and N are two constants.

Then

• If p < n, then f is globally Hölder continuous with the Hölder exponent
α = max{2− n

p
, K1/(1−n)}.

• If p = n, then f is globally Hölder continuous for every α ∈ (0, 1).
• If p > n, then f is globally Lipschitz continuous. In this case f ∈ C1,α

loc , where
α = 1− n/p.

The proof of Theorem 1.3 uses a bootstrapping argument and Sobolev embedding
theorem. The conclusion is optimal, and for p = n, the mapping need not be locally
Lipschitz continuous (see Example 1.5 below). The condition of quasiconformality in
our main result is also crucial. Indeed, there exist harmonic diffeomorphisms of the
unit disk onto itself that have no Lipschitz extension up to the boundary.

Since harmonic functions, i.e. smooth solution to the PDE ∆f = 0, are C∞, the
following corollary, which is new in the cases n ≥ 3, is an immediate consequence of
the main result.

Corollary 1.4. Let f be a quasiconformal harmonic mapping between two Jor-
dan domains in R

n with C2 boundary. Then f is Lipschitz continuous.

Example 1.5. Let f(w) = w logα(1/|w|), 0 < α < n−1
n

and assume that r <

e−(n−1)/n. Then f is a quasicoformal mapping from the ball B(0, r) := rB onto the
ball B(0, δ), δ = r logα(1/r), such that ∆f ∈ Ln(B(0, r)), and f is not Lipschitz
continuous. For the sake of simplifying calculations, we set n = 3 and assume that
w = (x, y, z).

Then for ρ = |w|, by direct calculations we get

J(w, f) = log−1+3α

[

1

ρ

](

−α + log

[

1

ρ

])

and

‖Df‖2 = 4−α log−2+2α

[

1

ρ2

]

(

4α2 + 4α log
[

ρ2
]

+ 3 log2
[

ρ2
])

.

The second relation implies that f is not Lipschitz continuous near w = 0.
Then it is clear that

‖Df‖3
J(w, f)

is bounded when w → 0. This implies that f is quasiconformal in B(0, r) for r ∈
(0, 1). Furthermore

ρ2|∆f(x, y, z)|3 = ρ2

(
∣

∣

∣

∣

∣

α2 log−4+2α [1/ρ]
(

−1 + α + 3
2
log [ρ2]

)2

ρ2

∣

∣

∣

∣

∣

)3/2

.
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Since
ˆ r

0

log−6+3α [ρ−2] log3 [1/ρ]

ρ
dρ =

8−2+α(− log r)−2+3α

2− 3α
,

it follows that
ˆ r

0

ρ2|∆f(x, y, z)|3 dρ

is convergent if and only if α < 2/3. Moreover,
ˆ r

0

ρ2|∆f(x, y, z)|p dρ

diverges for every p > 3. In other words ∆f ∈ Ln(B(0, r)), and also we can easily
show that D2f ∈ Ln(B(0, r)) ( f ∈ W2,n(B(0, r))) but ∆f 6∈ Lp(B(0, r)) for p > n.

2. Preliminary results for elliptic operator

Let A(x) = {aij(x)}ni,j=1 be a symmetric matrix function defined in a bounded
domain Ω ⊂ R

n: aij(x) = aji(x) for every i, j and x ∈ Ω. Assume that

(2.1) Λ−1 ≤ 〈A(x)ξ, ξ〉 ≤ Λ for |ξ| = 1,

where Λ is a constant ≥ 1 or written in coordinates

(2.2) Λ−1 ≤
n
∑

i,j=1

aij(x)ξiξj ≤ Λ for

n
∑

i=1

ξ2i = 1.

In addition, we suppose that

(2.3) A ∈ C0(Ω).

For a function or mapping u that is twice weakly differentiable a.e. in Ω and
which satisfies

(2.4) L[u] = LA[u] :=
n
∑

i,j=1

aij(x)Diju(x),

subjected to conditions (2.2) and (2.3), we consider the following differential inequal-
ity

(2.5) |L[u]| . (‖Du‖2 + |g|),

where g ∈ Lp(Ω) and Du is the differential matrix of u. Here p > 1. The inequality
(2.5) is considered in the strong sense, i.e. we consider the inequality for almost every
x ∈ Ω.

Lemma 2.1. Assume that H : Rn → R is a C2 differentiable function and let w
be a strong solution to equation (2.5). Let h = H ◦ w. Then

|LA[h]| ≤ C1(H,A)‖Dw‖2 + C2(H,A)|g|.

Moreover, if for some p > n/2, w ∈ W2,p
loc , then H ◦ w ∈ W2,p

loc .
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Proof. BecauseH and w are double differentiable for almost every x = (x1, . . . , xn),
by direct calculations we get

∂2(H ◦ w)(x)
∂xk∂xℓ

=
n
∑

i=1

∂ [ ∂H
∂wi

∂wi

∂xk
]

∂xℓ
=

n
∑

i=1

[

∂ [ ∂H
∂wi

]

∂xℓ

∂wi

∂xk
+
∂H

∂wi

∂2wi

∂xk∂xℓ

]

=
n
∑

i=1

[[

n
∑

j=1

∂2H

∂wj∂wi

∂wj

∂xk

]

∂wi

∂xℓ

]

+
n
∑

i=1

∂H

∂wi

∂2wi

∂xk∂xℓ

=

n
∑

i,j=1

∂2H

∂wi∂wj

[

∂wi

∂xk

∂wj

∂xℓ

]

+

n
∑

i=1

∂H

∂wi

∂2wi

∂xk∂xℓ
.

So

(2.6)
∂2(H ◦ w)(x)

∂xk∂xℓ
=

n
∑

i=1

[[

n
∑

j=1

∂2H

∂wj∂wi

∂wj

∂xk

]

∂wi

∂xℓ

]

+

n
∑

i=1

∂H

∂wi

∂2wi

∂xk∂xℓ
.

Further,

∑

k,ℓ

akℓ(x)
∂2(H ◦ w)(x1, . . . , xn)

∂xk∂xℓ

=
∑

k,ℓ

akℓ(x)
n
∑

i,j=1

∂2H

∂wi∂wj

[

∂wi

∂xk

∂wj

∂xℓ

]

+
∑

k,ℓ

akℓ(x)
n
∑

i=1

∂H

∂wi

∂2wi

∂xk∂xℓ
.

Therefore

LA[h](x) =
∑

k,ℓ

akℓ(x)
n
∑

i,j=1

∂2H

∂wi∂wj

[

∂wi

∂xk

∂wj

∂xℓ

]

+
n
∑

i=1

∑

k,ℓ

akℓ(x)
∂H

∂wi

∂2wi

∂xk∂xℓ

=
∑

k,ℓ

akℓ(x)
n
∑

i,j=1

∂2H

∂wi∂wj

[

∂wi

∂xk

∂wj

∂xℓ

]

+
n
∑

i=1

∂H

∂wi
LA[wi].

Thus

|LA[h]| ≤ C(H,A)‖Dw‖2 + | 〈∇H,LA[w]〉 |
≤ C(H,A)‖Dw‖2 + |∇H|∞(‖Dw‖2 + |g|).

(2.7)

Hence

(2.8) |LA[h]| ≤ (C(H,A) + |∇H|∞)‖Dw‖2 + |∇H|∞|g|.
In order to obtain the last claim, assume first that n/2 < p < n. Since w ∈ W2,p

loc ,

it follows that w ∈ W1,q
loc for q = np/(n − p), by Sobolev embedding theorem. Thus

q > 2p > n. Hence w is also continuous up to choice of representative by Morrey’s
inequality, see e.g. Proposition 2.3 below. A vector-valued first order chain rule (of
Ambrosio–Dal Maso [3]) thus gives H ◦ g ∈ W1,q

loc ∩ C with D(H ◦ w) = DH(w)Dw
almost everywhere. A similar first order chain rule using the fact that DH ∈ C1

gives DH(w) ∈ W1,q
loc ∩ C. Now, since DH(w) ∈ W1,q

loc ∩ L∞
loc and Dw ∈ W1,p

loc ∩ Lq
loc a

product rule of Sobolev functions yields that DH(w)Dw ∈ W1,s
loc , where s = min{(1

p
+

1
∞
)−1, (1

q
+ 1

q
)−1} = p. Thus H ◦ w ∈ W2,p

loc . If p ≥ n, then we chose q > n arbitrary
and repeat the previous proof. �
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Lemma 2.2. Let p ≥ 1. If g is a C2 bi-Lipschitz diffeomorphism between two
domains G and Ω in R

n and if h is a strong solution of the strong elliptic partial
differential inequality |LA[h](x)| . ‖Dh(x)‖2 + k(x), x ∈ Ω, where k ∈ Lp(Ω), then
f = h ◦ g is a strong solution of the strong elliptic partial differential inequality

|LB[f ](y)| . ‖Df(y)‖2 + k1(y),

for y ∈ G where k1 ∈ Lp(G), and B(y) = (g′(y))−1 · A(g(y)) · ((g′(y))−1)
T
, y ∈ G.

Moreover, for every p > n, h ∈ W2,p
loc if and only if for every p > n, f = h ◦ g ∈ W2,p

loc .

Proof. Let x ∈ Ω and let g̃ = g−1. Then h(x) = f(g̃(x)), y = (y1, . . . , yn) =
g̃(x) = (g1(x), . . . , gn(x)), x = (x1, . . . , xn). Now we have

(2.9) hxi
=

n
∑

j=1

fyjg
j
xi
.

This equality is in the weak and in the strong sense. In the weak sense because of [34,
Theorem 2.2.2], and in the strong sense, because by assumption h is differentiable
almost everywhere and g is smooth. This also follows from [11, eq. 7.19]. By applying
again [34, Theorem 2.2.2] to fyj (g̃(x)) · gjxi

, in view of D(uv) = uDv + vDu (see e.g.
[11, eq. 7.18]) we obtain the following equality:

(2.10) hxixℓ
=

n
∑

j=1,k=1

fyjykg
j
xi
gkxℓ

+

n
∑

j=1

fyjg
j
xixℓ

,

for almost every x (which is also in weak and strong sense). Moreover (2.10) implies
that f ∈ W2,p

loc ⇒ h ∈ W2,p
loc . The opposite implication is also proven similarly.

Furthermore,

n
∑

i,ℓ=1

aiℓ(x)hxixℓ
=

n
∑

i,ℓ=1

aiℓ(x)

n
∑

j=1,k=1

fyjykg
j
xi
gkxℓ

+

n
∑

i,ℓ=1

aiℓ(x)

n
∑

j=1

fyjg
j
xixℓ

=

n
∑

j=1,k=1

[

n
∑

i,ℓ=1

aiℓ(x)g
j
xi
gkxℓ

]

fyjyk +

n
∑

i,ℓ=1

aiℓ(x)

n
∑

j=1

fyjg
j
xixℓ

.

(2.11)

Now if

B = B(y) = (bjk)
n
j,k=1,

where

bjk =
n
∑

i,ℓ=1

aiℓ(x)g
j
xi
gkxℓ
,

then

B(y) = Dg̃(x)A(x) (Dg̃(x))T .

Thus

λ2gλA|ξ|2 ≤ 〈Bξ, ξ〉 ≤ Λ2
gΛA|ξ|2, ξ ∈ R

n,

where

λg = inf
x
l(g̃′(x))

and

Λg = sup
x

|g̃′(x)|.
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By combining (2.9) and (2.11) we get

|LB[f ]| ≤ |LA[h]| + C‖Df‖ ≤ C1‖Dh‖2 + C2k + C3‖Df‖
≤ C4‖Df‖2 + C5k + C6‖Df‖ . (‖Df‖2 + k1).

In the last inequality we used the simple inequality a2 + a ≤ 2(a2 + 1), and k1(y) =
k(x) + 1. �

Proposition 2.3. (Morrey’s inequality) Assume that n < p ≤ ∞ and assume
that U is a domain in R

n with C1 boundary. Then there exists a constant C depending
only on n, p, and U such that

(2.12) ‖u‖C0,α(U) ≤ C‖u‖W1,p(U)

for every u ∈ C1(U) ∩ Lp(U), where

α = 1− n

p
.

Remark 2.4. Since i : W1,p(U) → Cα(U) defined by i(u)(x) = u(x) for almost
every x ∈ U , is a continuous embedding, provided that U has C1 boundary it follows
that (2.12) does hold for every u ∈ W1,p(U).

Proposition 2.5. [11, Theorem 9.15, Lemma 9.17] Let Ω be a C1,1 domain in
R

n and let L be a strictly elliptic operator in Ω with coefficients aij ∈ C(Ω). Then,
if f ∈ Lp(Ω) with 1 < p <∞, the Dirichlet problem Lu = f in Ω with the boundary
condition u ∈ W 1,p

0 (Ω) has a unique solution u ∈ W 2,p(Ω). Moreover,

(2.13) ‖u‖2,p,Ω ≤ C‖f‖p,Ω.
Note that functions on W1,p(Ω) that vanish continuously in ∂Ω are in W1,p

0 (Ω)
(See [11, p. 154]). Thus

Corollary 2.6. Under assumptions of Proposition 2.5, if the condition u ∈
W1,p

0 (Ω) is replaced by the condition that u vanishes continuously in ∂Ω, we have

(2.14) ‖u‖2,p,Ω ≤ C‖f‖p,Ω.
Proposition 2.7. Let Ω be a domain in R

n with a (possible empty) C1,1 bound-
ary portion T ⊂ ∂Ω and assume that Ω1 ⋐ Ω ∪ T is a relatively compact domain
with smooth boundary in Ω ∪ T . Let u ∈ W2,p(Ω), 1 < p <∞, be a strong solution
of Lu = f ∈ Lp(Ω) in Ω with u = 0 in T, in the sense of W1,p, where L is a strongly
elliptic operator with aij ∈ C0(Ω).

(a) Then

(2.15) ‖u‖2,p,Ω1 ≤ C1 (‖u‖p,Ω + ‖f‖p,Ω) ,
where C1 depends on n, p,Λ,Ω,Ω1, ωA.

(b) Moreover, if f ∈ Lq, with some q > p, then u ∈ W2,q
loc (Ω ∪ T ), u = 0 in T in

the sense of W1,q, and u satisfies the estimate (2.15) with p replaced by q:

(2.16) ‖u‖2,q,Ω1 ≤ C1 (‖u‖q,Ω + ‖f‖q,Ω) .
(c) Furthermore, if p > n, then there exists ũ ∈ C1,α, such that u = ũ almost

everywhere, and

(2.17) ‖ũ‖C1,α(Ω1) ≤ C2 (‖ũ‖p,Ω + ‖f‖p,Ω + 1) ,

where α = 1 − n
p
, and C2 depend on n, p,Λ,Ω,Ω1, ωA. In particular, u is

Lipschitz continuous and has an essentially bounded gradient in Ω1.
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Proof of Proposition 2.7. First of all the part (a) follows from [11, Theorem 9.13].
Moreover, the part (b) follows from [11, Lemma 9.16].

Let us prove the part (c). By abusing the notation ũ = u and using Morrey’s
inequality, Remark 2.4, and (2.15) we have that

‖u‖C1,α(Ω1) ≤ C(‖∇u‖Cα(Ω1) + 1)

≤ C(‖∇2u‖Lp(Ω1) + 1) ≤ C(‖u‖2,p,Ω1 + 1) ≤ C (‖u‖p,Ω + ‖f‖p,Ω + 1) .

Here, C can vary from one occurrence to the next but depends on the constants
n, p,Λ,Ω, ωA. �

Proposition 2.8. [11, Corollary 9.18]. Let Ω be a C1,1 domain in R
n, and let the

operator L be strictly elliptic in Ω with coefficients aij ∈ C(Ω). Then if f ∈ Lp(Ω),
p > n/2, ϕ ∈ C(∂Ω), the Dirichlet problem Lu = f in Ω, u = ϕ on ∂Ω, has a unique
solution u ∈ W2,p

loc (Ω) ∩ C(Ω).
Proposition 2.9. [10, Sobolev embedding theorem] Let p < n and assume that

Ω is a bounded domain in R
n with C1 boundary. Furthermore, let

1

p
− 2

n
=

1

q
− 1

n
,

i.e. q = np/(n− p). If u ∈ W2,p(Ω), then

(2.18) ‖u‖1,q,Ω ≤ C‖u‖2,p,Ω.

3. Proof of the main result

We begin with

Lemma 3.1. Under conditions of Theorem 1.3 we have

(3.1) f ∈ W2,p
loc (G).

Proof of Lemma 3.1. Here we use the bootstrapping argument improving the
regularity of f until we reach the right exponent in the right-hand of (3.10). Assume
that a ∈ G and assume that B(a, r) ⊂ Ω. Assume w.l.o.g. that r = 1 and a = 0.
Let 0 < r0 < 1. In this case we repeat the “cycling” argument two times. First of all
we use (1.4) and f ∈ W1,n

loc to conclude that L[f ] ∈ Lq1(B), where q1 = min{n/2, p}.
We assume w.l.o.g. that q1 > 1 + ǫ. Now Proposition 2.7, b) implies that f ∈
W2,q1

loc (r1B) for some r1 ∈ (r0, 1). Now the Sobolev embedding theorem gives f ∈
W1,min(n,np/(n−p))

loc (r1B). Then (3.10) gives L[f ] ∈ Lmin(n,p)
loc (r1B). Furthermore from

Proposition 2.8, f ∈ W2,min(n,p)
loc (r2B) for some r2 ∈ (r0, r1). Then f ∈ W1,p

loc (r2B).

Now we use Proposition 2.8 again to conclude that f ∈ W2,p
loc (r3B) for some r3 ∈

(r0, r2). Since every K ⋐ G can be covered by a finite number of such balls B(a, r3),
we obtain that f ∈ W2,p

loc (G). �

Proof of Theorem 1.3. By our assumption on the domain and image domain, we
may fix diffeomorphisms ψ : Ω → B and ϕ : B → G that are C2 up to the boundary.
We then define h : B → [0, 1] by setting

h(x) := 1− |ψ(f(ϕ(x)))|2 for x ∈ B.

As ω(x) = ψ(f(ϕ(x))) is a homeomorphism of the unit ball onto itself, for δ = 1/2
there exists r0 < 1, such that

(3.2) |x| ≥ r0 =⇒ |ω(x)| ≥ 1/2.
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Now define w(x) = f(ϕ(x)). Since f is K-quasiconformal, it follows from Defi-
nition 1.1, that

|l(Df(x))|
|Df(x)| ≥ 1

K2/n
.

Then for
l(ϕ) := inf

x∈B
l(Dϕ(x))

we have

(3.3)
l(Dw(x))

‖Dw(x)‖ ≥ l(ϕ)√
nK2/n‖|Dϕ(x)|‖∞

.

Furthermore, h(x) = 1− |ψ(w(x))|2 and we have

∇h(x) = −2(Dψ(w(x)) ·Dw(x))Tω(x).
Since ψ is a diffeomorphism up to the boundary, we get

(3.4) |∇h(x)| ≤ C1(ψ, ϕ)|Dw(x)|, x ∈ B

where C1 depends on ψ and ϕ. Then we get from (3.2) and (3.3)

|∇h(x)| ≥
(

min
|x|≥r0

|ω(x)|l(D(ψ(w(x))))

)

· l(Dw(x))

> C(ψ, ϕ,K, r0)|Dw(x)|, |x| ≥ r0

(3.5)

where

C(ψ, ϕ,K, r0) =
l(ϕ)

2
√
nK2/n‖|Dϕ(x)|‖∞

inf
r0≤|x|<1

l(D(ψ(w(x)))).

From (3.4) and (3.5) we get for r0 ∈ (0, 1) the estimate

(3.6) |∇h(x)| ≃ |Dw(x)| for r0 ≤ |x| < 1.

By Lemma 3.1 we have f ∈ W2,p
loc . Furthermore Lemma 2.2 implies that w ∈ W2,p

loc .
By (3.4), (3.1) and (2.18) for Ω1 = r0B we have for n/2 < p < n

‖∇h(x)‖Lnp/(n−p)(r0B) . ‖Dw(x)‖Lnp/(n−p)(r0B) ≤ C;

and for p > n we have from (2.17) that

‖∇h(x)‖L∞(r0B) . ‖Dw(x)‖L∞(r0B) ≤ C.

It follows that for any p ∈ (n/2, n) and q ∈ (1, np/(n− p)] we have that

(3.7) ∇h ∈ Lq(B) if and only if Dw ∈ Lq(B).

For p = n and q ∈ (1,+∞) we have that

(3.8) ∇h ∈ Lq(B) if and only if Dw ∈ Lq(B).

Also for p > n and q ∈ (1,+∞] we have that

(3.9) ∇h ∈ Lq(B) if and only if Dw ∈ Lq(B).

By Lemma 2.2 we obtain

(3.10) |LB[w]| . ‖Dw‖2 + |g ◦ ϕ|,
where

B(y) = (g′(y))−1 · A(g(y)) ·
(

(g′(y))−1
)T
,

and then by Lemma 2.1, we have

(3.11) |LB[h]| . ‖Dw‖2 + |g ◦ ϕ|.
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We use a bootstrapping argument as in [5, 21, 22], based on the following impli-
cation:

(3.12) if Dw ∈ Lq(B) with n < q < 2n, then Dw ∈ Lna/(2n−a)(B),

where a = min{q, 2p}. To prove the implication (3.12), assume that Dw ∈ Lq(B)
for an exponent q ∈ (n, 2n). Then (3.11) and our assumption on g verify that
LB[h] ∈ Lmin{q/2,p}(B). Since h vanishes continuously on the boundary ∂B, we may
apply (2.14), Lemma 2.1 and (2.18) to obtain that ∇h ∈ Lna/(2n−a)(B) which yields
the claim according to (3.7), (3.8) and (3.9).

We then claim that in our situation one has Dw ∈ Lq(B) with some exponent

(3.13) q

{

= 2p, if p ≤ n;

> 2n, if p > n.

The higher integrability of quasiconformal self-maps of B [26, Sect. 2.15]; see also [4],
makes sure that Dw = D(f ◦ ϕ) ∈ Lq(B) for some q > n. To prove (3.13) fix an
exponent q0 > n obtained from the higher integrability of the quasiconformal map
w such that Dw ∈ Lq0(B). By reducing q0 if necessary, we may well assume that
q0 ∈ (n, 2n) and

(3.14) q0 6∈ {2m/(2m−1 − 1), m = 3, 4, . . .}.
For example, we can choose q0 = n+ 1

jπ
, for a big enough integer j.

If q0 ≥ 2p, then we are necessarily in the case p ≤ n by our assumed q0 < 2n,
and (3.13) immediately follows. If q0 < 2p instead, we iterate (3.12) and deduce
inductively that Dw ∈ Lak(B) for k = 0, 1, 2, . . . , k0, where a0 = q0 and ak satisfy
the recursion ak+1 = nak

2n−ak
until we reach a constant that is bigger or equal to 2n.

Namely, by solving the previous recursion we get

ak =
nq0

q0 − 2k(q0 − n)
,

which are real numbers, for every positive integer k, in view of (3.14). So ak > 2n
with q0 − 2k(q0 − n) > 0 if and only if

(3.15) 21+k(q0 − n) > q0.

Let k0, be the first index such that (3.15) holds. Then ak0 > 2n. Let

(3.16) q = min{ak0 , 2p}.
Thus we may assume that Dw ∈ Lq(B) with q satisfying (3.13).
Now if p < n. Then q = ak0 = 2p and so Dw ∈ L2p(B). Since a = min{q, 2p} =

2p, we get from (3.12) that Dw ∈ Lnp/(n−p)(B). Now by Morrey’s inequality, w is
Hölder continuous with the Hölder exponent α = 2− n

p
. The mapping w is also Hölder

continuous with the exponent K1/(1−n) by the result of Vuorinen and Fehlmann [8].
So it is Hölder continuous with the Hölder exponent α′ = max{2− n

p
, K1/(1−n)}. The

same holds for the mapping f as claimed. For p = n we use the previous case by
choosing p′ < p close enough to p.

Assume now that p > n. We know that Dw ∈ Lq(B) with some q > 2n.
Furthermore (3.11) shows that Lh ∈ Lmin{p,(q/2)}(B). As min{p, (q/2)} > n, we get
from (2.17) that

(3.17) ∇h ∈ L∞(B).
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Thus by (3.9) Dw ∈ L∞(B) and hence w is Lipschitz continuous. This implies that
f is Lipschitz continuous. In particular LA[f ] ∈ Lp. Now from Proposition 2.7, by

taking T = ∅, and Ω1 any compact set of Ω, we get that f = f̃ ∈ C1,α(Ω1), where
α = 1− n/p. �

Remark 3.2. The conclusion of our main result (Theorem 1.3) will still hold
(with very little modification) if we assume that the domains have merely C1,1 bound-
aries, and we expect that the same is true, provided that they have C1,α boundaries
for α ∈ (0, 1). The same proof works for quasiregular mappings having a continuous
extension up to the boundary, or even more general, in Theorem 1.3 the condition
“f is quasiconformal” can be replaced by the condition “f is a proper quasiregular
mapping”. The case n = 2 for quasiconformal harmonic mappings between Jordan
domains in the plane with C1,α boundaries is settled in [13]. We notice that this is
not true for domains with merely C1 boundaries as it is known for the planar case
by some classical results. More precisely there is a univalent conformal mapping of
the unit disk onto a Jordan domain with C1 boundary such that f is not globally
Lipschitz continuous. We also refer to related results for biharmonic mappings [6].

Acknowledgments. I would like to thank the anonymous referee for careful
reading of several versions of this manuscript and his/her helpful comments that
had a significant impact on this paper. He/she suggested to add the assump-
tion f ∈ W2,1+ǫ

loc (G) so that the proposed proof could be done. We believe that

f ∈ W2,1
loc (G) is also sufficient.
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