
Annales Fennici Mathematici
Volumen 48, 2023, 375–387

Nonlinear transport equations
and quasiconformal maps

Albert Clop and Banhirup Sengupta

Abstract. We prove existence of solutions to a nonlinear transport equation in the plane,

for which the velocity field is obtained as the convolution of the classical Cauchy kernel with the

unknown. Even though the initial datum is bounded and compactly supported, the velocity field

may have unbounded divergence. The proof is based on the compactness property of quasiconformal

mappings.

Epälineaariset kuljetusyhtälöt ja kvasikonformikuvaukset

Tiivistelmä. Todistamme ratkaisujen olemassaolon tason epälineaariselle kuljetusyhtälölle,

jonka nopeuskenttä on klassisen Cauchyn ytimen ja tuntemattoman kuvauksen konvoluutio. Vaik-

ka alkuarvo on rajallinen ja kompaktikantajainen, voi nopeuskentällä olla rajaton lähde. Todistus

perustuu kvasikonformikuvausten kompaktiusominaisuuteen.

1. Introduction

In this article we prove existence of global in time solutions to the following active
scalar equation,

(1)











d
dt
ω + v ·∇ω = 0,

v(t, ·) = K ∗ ω(t, ·),

ω(0, ·) = ω0.

In the above system, one has

K(z) =
eiθ

2πz
=

1

2π

(x cos θ + y sin θ, x sin θ − y cos θ)

x2 + y2
,

and θ ∈ [0, 2π] is fixed, while ω0 ∈ L∞ is a given compactly supported and real valued
function. This model arises as a natural counterpart to the classical planar Euler

system of equations in vorticity form, which is given also by (1) but with a different
choice for the kernel K, namely

K(z) =
i

2π z̄
=

1

2π

(−y, x)

x2 + y2
.

In both cases, the quantity ∂t+v ·∇ is called the material derivative of the unknown
ω : [0,∞) × C → R, and v is called the velocity. In Euler system, v represents
the velocity field of a perfect, incompressible, inviscid fluid, and ω is known as the
vorticity of the fluid.
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In Euler’s setting, the Biot–Savart law v = K ∗ ω can be written in terms of
complex derivatives as

(2) ∂ v =
iω

2
.

where ∂ = ∂x−i∂y
2

denotes the classical complex derivative. Since ω is real valued,
this ensures that v has divergence div(v) = 0, and its curl is curl(v) = ω. On the
other hand, and under enough regularity, the transport structure of the equation
guarantees for the solution the following representation formula,

(3) ω(t, X(t, x)) = ω0(x),

where X(t, x) is the flow of v, that is, the solution to the ODE
{

d
dt
X(t, x) = v(t, X(t, x)),

X(0, x) = x.

The incompressibility condition, i.e. div(v) = 0, guarantees X(t, ·) to be a measure
preserving self map of R2, and so the L1 norm of ω(t, ·) is constant in time. On the
other hand, if ω0 is essentially bounded, then ω is essentially bounded as well, and so
the L∞ norm of ω is also constant in time. So both the incompressibility of the fluid
and the boundedness of curl(v) are essential to get for ω uniform L1 and L∞ bounds.
These bounds are basic in the proof of Yudovich’s Theorem [11], which establishes
existence and uniqueness of global in time solutions to the Euler system under the
assumption ω0 ∈ L∞.

In contrast to (2), in our new setting (1) the kernel ensures now that

(4) ∂ v =
eiθ ω

2

where ∂ = ∂x+i∂y
2

denotes the anticonformal complex derivative. Especially, div(v)
needs not be identically 0, so the vector field v is not anymore incompressible. More-
over, classical Calderón–Zygmund Theory can be used to show that now, even for
bounded and compactly supported ω0, both div(v) and curl(v) may be unbounded
functions. Still the transport structure of the equation is unaffected by the change
on the kernel, and nice solutions ω(t, ·) admit again the representation formula (3),
although now the flow X(t, ·) needs not be measure preserving. As a consequence,
the control in time of both L1 and L∞ norms of ω(t, ·) is not so automatic, and might
even fail.

For certain linear transport models [5, 6, 7], it has been recently shown that their
well-posedness do not depend on the measure-preservation property of the flow and,
instead, the preservation of Lebesgue null sets is the only requirement. Such models
already show that Lebesgue null sets may be preserved by the flow if the velocity
field has non-zero or even unbounded divergence.

In the same way ‖∂ v ‖L∞ keeps bounded in time for any Yudovich solution to
the Euler system, in our setting (1) the quantity ‖∂ v ‖L∞ keeps bounded in time
as long as one is able to show the preservation of Lebesgue null sets, rather than
the preservation of Lebesgue measure through the flow. Having uniform bounds for
‖∂ v ‖L∞ immediately drives our attention to Reimann’s paper [10]. There it was
shown that such vector fields produce flows X(t, x) with the very special property of
being quasiconformal for every t > 0. Quasiconformal maps are known to Geometric
Function Theory experts to be a very well understood class of homeomorphisms, and
their compactness properties make them specially suitable for solving certain elliptic
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PDE problems. This time, though, we will use them for a purely hyperbolic PDE.
Our main result is as follows.

Theorem 1. If the initial datum ω0 ∈ L∞ has compact support, there exists a

solution ω ∈ L1([0, T ], L∞) of (1) for every T > 0.

The paper is structured as follows. In Section 2 we prove existence of solutions
of (1). In Section 3 we show that (1) admits an equivalent formulation in terms of v

and a scalar valued function q, similar to the velocity formulation of Euler’s system,
and explain why this formulation fails to provide uniqueness of solutions.

Acknowledgements. The authors were partially supported by projects 2021 −
SGR−00071 (Govt. of Catalonia) and PID2020−112881GB−I00 and PID2021−
125021NAI00 (Govt. of Spain).

2. Existence theory for ω0 ∈ L
∞

Given compactly supported ω0 ∈ L∞(C), we look for scalar-valued functions
ω : [0,+∞) × C → R belonging to L1([0,+∞);L∞(C)) that solve the problem (1).
Our goal is to prove that a weak solution to (1) exists and can be represented by

ω(t, X(t, z)) = ω0(z)

where X are the trajectories of the vector field v. To this end, we start by mollifying
the datum ω0 to ωǫ

0 ∈ C∞ in such a way that

‖ωǫ
0‖∞ ≤ ‖ω0‖∞,

‖ωǫ
0‖1 ≤ ‖ω0‖1, and

ωǫ
0 has compact support,

and moreover ‖ωǫ
0 − ω0‖1 → 0, as ǫ → 0. Then, by virtue of the smooth theory (see

for instance [4, Theorem 2]), to each ωǫ
0 we can associate its unique solution ωǫ to

(5)











d
dt
ωǫ + vǫ ·∇ωǫ = 0,

vǫ(t, ·) = K ∗ ωǫ(t, ·),

ωǫ(0, ·) = ωǫ
0,

with K(z) = eiθ

2πz
. For each t ∈ R, ωǫ(t, ·) is continuous and compactly supported,

locally uniformly in time. As a consequence, the velocity field vǫ = K ∗ωǫ is at least
C1 in the space variable. This guarantees existence and uniqueness of a well defined
flow Xǫ of diffeomorphisms Xǫ(t, ·) : C → C such that

{

d
dt
Xǫ(t, z) = vǫ(t, Xǫ(t, z)),

Xǫ(0, z) = z.

Moreover, the solution ωǫ is obtained by translating the datum ωǫ
0 along the trajec-

tories Xǫ(t, x) of vǫ, that is,

ωǫ(t, Xǫ(t, z)) = ωǫ
0(z).

Having div(vǫ) ∈ L∞, it is clear that Xǫ(t, ·) preserves Lebesgue null sets. Thus, and
since ωǫ

0 ∈ L∞(C), we have ‖ωǫ(t, ·)‖∞ = ‖ωǫ
0‖∞.

The proof of Theorem 1 consists of proving convergence of the solutions ωǫ and vǫ

in an appropriate sense. As usually, the most delicate point is the following uniform
L1 bound,

‖ωǫ(t, ·)‖1 ≤ e2t ‖ω0‖∞ ‖ω0‖∞ | suppω0|.
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This, combined with the preservation in time of ‖ωǫ(t, ·)‖∞ and Lemma 3 below,
gives uniform bounds for vǫ, which are essential to find limit trajectories.

In the classical Euler’s setting, that is for the kernel K(z) = i
2πz̄

, the (uniform in
ǫ) L1 control of ωǫ(t, ·) is automatic from the measure-preserving property of the flow,
namely detDXǫ(t, ·)) = 1. In turn, this comes from the fact that div(vǫ)(t, ·) = 0

at every time t. Now, for K(z) = eiθ

2πz
, one certainly has div(vǫ)(t, ·) ∈ L∞ at any

time, due to the smoothness of vǫ, but as ǫ → 0 one might see ‖ div(vǫ)(t, ·)‖∞
blowing up, and with it any uniform bound on detDXǫ(t, ·) would also blow up. It
is very remarkable that under these circumstances still the uniform L1 control of ωǫ

is possible, and comes as a consequence of the fact that the flow consists of principal
quasiconformal maps which are conformal outside of the support of ω0, and moreover
with uniformly bounded distortion. To show this, step by step, we first need to recall
the following result, due to Reimann [10]. We only state it on the plane, although it
holds also in higher dimensions.

Theorem 2. Let v : [0, T ] × C → C be a continuous vector field, such that for

each t one has

lim sup
|z|→+∞

|v(t, z)|

|z| log |z|
< +∞.

Suppose that the distributional derivatives ∂v(t, ·) and ∂v(t, ·) are locally integrable

functions of z ∈ C, and moreover suppose that

sup
t∈[0,T ]

‖∂v(t, ·)‖∞ ≤ C0 < ∞.

Then, v admits a unique flow X(t, z) of Kt-quasiconformal maps X(t, ·) : C → C,

and

Kt ≤ exp

(

2

ˆ t

0

‖∂v(s, ·)‖∞ ds

)

.

We wish to remark here the existence of a counterpart to this theorem, with ∂ v

replaced by ∂ v+λ Im(∂ v), where one may choose λ to be a constant λ ∈ D or also a
smooth, compactly supported function with ‖λ‖∞ < 1. The change in the operator
may result in a change in the bounds for Kt as well. See [8, Theorem 1] for more
details. This counterpart may produce extensions to Theorem 1, as we will explain
later on.

We will be using also the following elementary properties of the convolution with

K(z) = eiθ

2πz
.

Lemma 3. Let f : C → C be given, and assume f ∈ L∞.

(a) If f ∈ L1, then K ∗ f ∈ L∞ and

(6) ‖K ∗ f‖∞ ≤ C ‖f‖
1

2

1 ‖f‖
1

2

∞,

(b) If f has compact support, then

(7) ‖K ∗ f‖∞ ≤ C | supp f |
1

2 ‖f‖∞.

(c) If f is compactly supported, then

lim sup
|x|→∞

|x| |K ∗ f(x)| ≤ C < +∞

with C depending only on ‖f‖∞ and | supp(f)|.
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Proof. Let us consider a real number R > 0. For each such R and given any
two arbitrary points x and y in the plane, we can always divide the plane into two
regions, |x− y| ≤ R and |x− y| > R. Therefore,

|K ∗ f(x)| ≤

ˆ

C

|K(x− y) f(y)| dA(y)

=

ˆ

|x−y|≤R

|K(x− y) f(y)| dA(y) +

ˆ

|x−y|>R

|K(x− y) f(y)| dA(y)

≤ ‖f‖∞

ˆ

|x−y|≤R

C

|x− y|
dA(y) +

C

R

ˆ

|x−y|>R

|f(y)|dy

≤ CR ‖f‖∞ +
C

R
‖f‖1.

If we minimize the term on the right hand of the inequality as a function of R,

the best possible value attainable is R = ‖f‖
1

2

1 ‖f‖
− 1

2

∞ . This gives the bound (6).
The bound (7) is an immediate consequence of (6). Concerning (c), let us assume
that diam(supp(f)) = 2R. It is not restrictive to assume 0 ∈ supp(f), so that

supp(f) ⊂ D(0, R). Then, at points x such that |x| > 2R one has

|K ∗ f(x)| ≤ C

ˆ

|y−x|≤R

|f(y − x)|

|y|
dA(y) ≤ C‖f‖∞

ˆ

|y−x|≤R

1

|y|
dA(y)

≤ C‖f‖∞
R2

|x| − R
≤ C

‖f‖∞ diam(supp(f))2

|x|
,

as claimed. �

In order to proceed with the proof of Theorem 1, we start with the following
Lemma. It states the quasiconformality of the flow Xǫ(t, ·). As a consequence,
optimal distortion estimates for the euclidean distance and the Lebesgue measure
are also stated below.

Lemma 4. Let t > 0 be fixed. Then:

(a) Xǫ(t, ·) is Kt-quasiconformal, with 1 ≤ Kt ≤ e|t|‖ω0‖∞.

(b) One has

|Xǫ(t, z)−Xǫ(t, z0)|

|Xǫ(t, z)−Xǫ(t, w0)|
≤ eπKt

(

|z − z0|

|z − w0|

)
1

Kt

for any z, z0, w0 ∈ C and any time t ∈ [−T, T ].
(c) There exists a constant C = C(Kt) such that

|Xǫ(t, E)|

|Xǫ(t, D)|
≤ C(Kt)

(

|E|

|D|

)
1

Kt

.

whenever D ⊂ C is a disk and E ⊂ D is measurable.

Proof. The structure of the Cauchy Kernel makes it clear that

2‖∂vǫ(t, ·)‖∞ = ‖ωǫ(t, ·)‖∞ = ‖ωǫ
0‖∞ ≤ ‖ω0‖∞.

Moreover, from Lemma 3 (c) we know that vǫ(t, ·) vanishes at ∞ like C
|z|

. Therefore,

lim sup
|z|→∞

|vǫ(t, z)|

|z| log (e+ |z|)
≤ C < +∞.
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Thus, all the requirements in Reimann’s Theorem 2 are fulfilled, and quasiconfor-
mality follows, with quasiconformality constant

Kt ≤ exp

(

2

ˆ t

0

‖∂ vǫ(s, ·)‖∞ ds

)

≤ et‖ω0‖∞

and by definition, Kt ≥ 1. Therefore, part (a) is clear. Part (b) says that quasicon-
formal maps are quantitatively quasisymmetric. The interested reader should check
[1, Corollary 12.6.4] for a detailed proof. Part (c) follows from [1, Theorem 13.1.5]
and the classical area distortion estimates for Kt-quasiconformal maps. �

We address the interested reader to the proof of [1, Theorem 13.1.5] to see that
the constant C(Kt) at (c) in the above result may be chosen to be an increasing, and
hence locally bounded, function of Kt.

Our next key point is the following elementary fact. From now on, we will write

J ǫ(t, z) = detDXǫ(t, z)

to denote the jacobian determinant of Xǫ(t, ·) at the point z. Note this jacobian is
well defined and non-vanishing, because Xǫ(t, ·) is a diffeomorphism.

Lemma 5. Let Xǫ(t, ·) be as before, and assume that ωǫ
0 has compact support.

Then for any t > 0 one has the implication

ωǫ
0(z) = 0 =⇒ ∂Xǫ(t, z) = 0,

in other words Xǫ(t, ·) is conformal away from suppωǫ
0.

Proof. The Kt-quasiconformality of Xǫ(t, ·) ensures the existence of a well-

defined, uniformly elliptic Beltrami coefficient µǫ(t, ·) = ∂Xǫ(t,·)
∂Xǫ(t,·)

, and moreover we

know that

‖µǫ(t, ·)‖∞ ≤
Kt − 1

Kt + 1
.

The smoothness in time of ∂Xǫ(t, z) and ∂Xǫ(t, z) guarantees that t 7→ µǫ(t, z) is

also smooth. From the equation for the flow Ẋǫ(t, z) = vǫ(t, Xǫ(t, z)) and the chain
rule we get that

∂ vǫ(t, Xǫ(t, z)) =
d
dt
∂Xǫ(t, z) ∂Xǫ(t, z)− ∂Xǫ(t, z) d

dt
∂Xǫ(t, z)

J ǫ(t, z)

=
d
dt
µǫ(t, z) (∂Xǫ(t, z))2

J ǫ(t, z)
=

d
dt
µǫ(t, z)

1− |µǫ(t, z)|2
∂Xǫ(t, z)

∂Xǫ(t, z)
.

On the other hand, from the kernel structure we have

2|∂ vǫ(t, Xǫ(t, z))| = |ωǫ(t, Xǫ(t, z))| = |ωǫ
0(z)|.

Thus
d
dt
|µǫ(t, z)|

1− |µǫ(t, z)|2
≤

∣

∣

d
dt
µǫ(t, z)

∣

∣

1− |µǫ(t, z)|2
=

1

2
|ωǫ

0(z)|.

Now, given any time t > 0, we can integrate on (0, t) the above inequality to obtain
that

(8) log

(

1 + |µǫ(t, z)|

1− |µǫ(t, z)|

)

≤ t |ωǫ
0(z)|,

since Xǫ(0, z) = z implies µǫ(0, z) = 0. Now, if ωǫ
0(z) = 0 then necessarily µǫ(t, z) = 0

and hence ∂Xǫ(t, z) = 0. The claim follows. �
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Remark 6. The above proof also shows that, at time t = 0,

ωǫ
0(z)

2
=

1

2
ωǫ(0, ·)(z) = ∂vǫ(0, z) =

d

dt
[µǫ(t, z)]t=0 .

That is, the initial vorticity determines the time derivative of the Beltrami coefficient
at time t = 0. Thus, it is natural to ask for the dependence of Xǫ(t, ·) under second-
order perturbations of µǫ(t, z).

Now, it just remains to observe that vǫ(t, ·) cannot grow without control as
|z| → ∞. This, together with the conformality of the flow outside of suppωǫ

0, provides
improved area estimates which are essential for the control of ‖ωǫ(t, ·)‖1.

Lemma 7. Let Xǫ(t, ·) be as before, and assume that ω0 has compact support.

(a) For each t, ǫ there exists bǫ(t) ∈ C such that lim|z|→∞ |Xǫ(t, z)−z−bǫ(t)| = 0.
(b) One has |Xǫ(t, E)| ≤ Kt |E| for each set E ⊃ suppωǫ

0.

Proof. By Lemma 5 we know that Xǫ(t, ·) is conformal on a neighborhood of ∞.
Therefore, it has around ∞ a Laurent series development whose higher order term is
linear,

Xǫ(t, z) = aǫ(t)z + bǫ(t) +
cǫ(t)

z
+ . . .

Also, from Lemma 3 (b) and the integral representation of Xǫ(t, ·), we know that

|Xǫ(t, z)− z| =

∣

∣

∣

∣

ˆ t

0

vǫ(s,Xǫ(s, z))

∣

∣

∣

∣

ds ≤

ˆ t

0

|vǫ(s,Xǫ(s, z))| ds

≤

ˆ t

0

C(K) ‖ωǫ(s, ·)‖∞ | suppωǫ(s, ·)|
1

2 ds

≤

ˆ t

0

C(K) ‖ωǫ
0‖∞ |Xǫ(s, suppωǫ

0)|
1

2 ds

≤ C(K) ‖ωǫ
0‖∞

ˆ t

0

|Xǫ(s, suppωǫ
0)|

1

2 ds

≤ C(K) ‖ωǫ
0‖∞ t | suppωǫ

0|
1

2 max
0≤s≤t

‖J ǫ(s, ·)
1

2‖L∞(suppωǫ
0
).

Above, the maximum term on the right hand side (even depending on t and ǫ) is
finite and stays bounded as |z| → ∞, due to the smoothness in t and z of Xǫ(t, z).
Thus, for every fixed t and ǫ > 0 one has

(9) lim
|z|→∞

|Xǫ(t, z)− z|

|z|
= 0.

As a consequence, (9) tells us that necessarily aǫ(t) = 1, and so (a) follows. To see
(b), we observe that Xǫ(t, ·)− bǫ(t) is a principal Kt-quasiconformal map, because

|Xǫ(t, z)− bǫ(t)− z| = O(1/|z|)

as |z| → ∞. Moreover, it is conformal outside of suppωǫ
0 by Lemma 5. Hence, by [2,

Theorem 13.1.2], we have the following area distortion estimates,

|Xǫ(t, E)| = |Xǫ(t, E)− bǫ(t)| ≤ Kt |E|

∀E ⊃ supp(ωǫ
0), as claimed. �

We are now in position of getting the L∞ bounds for vǫ.

Proposition 8. Let t > 0 be fixed. If ω0 is compactly supported, then

(a) ‖ωǫ(t, ·)‖∞ ≤ ‖ω0‖∞,
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(b) ‖ωǫ(t, ·)‖1 ≤ ‖ω0‖∞ et‖ω0‖∞ | suppωǫ
0|,

(c) ‖vǫ(t, ·)‖∞ ≤ C e
t
2
‖ω0‖∞ ‖ω0‖∞ | suppωǫ

0|
1

2 .

Proof. Claim (a) can be proved by recalling that ωǫ(t, ·) ◦ Xǫ(t, ·) = ωǫ
0(·) and

the facts that Xǫ(t, ·) preserves Lebesgue-null sets and ‖ωǫ
0‖∞ ≤ ‖ω0‖∞. For (b), we

use Lemmas 4 (a), 5 and 7 (b) to obtain for t > 0 that

‖ωǫ(t, ·)‖1 =

ˆ

C

|ωǫ(t, z)| dA(z) =

ˆ

C

|ωǫ
0(ζ)| J

ǫ(t, ζ) dA(ζ)

≤ ‖ωǫ
0‖∞

ˆ

suppωǫ
0

J ǫ(t, ζ) dA(ζ) = ‖ωǫ
0‖∞ |Xǫ(t, suppωǫ

0)|

≤ ‖ωǫ
0‖∞Kt | suppω

ǫ
0| ≤ ‖ω0‖∞ et‖ω0‖∞ | suppωǫ

0|

as desired. Estimate (c) follows from Lemma 3 (b). �

The exponential-in-time control on ‖vǫ(t, ·)‖∞ allows for locally uniform bounds
of Xǫ in time and space, and if 0 ≤ s < t then

(10) |Xǫ(t, z)−Xǫ(s, z)| ≤

ˆ t

s

|vǫ(r,Xǫ(r, z))| dr ≤ C| suppω0|
1

2 (e
t
2
‖ω0‖∞−e

s
2
‖ω0‖∞).

With such bounds at hand, Lemma 9 below guarantees the existence of a limit flow
map X : [0,∞)×C → C such that X(t, ·) : C → C is Kt-quasiconformal at each time
t.

Lemma 9. There exists a sequence ǫ = ǫj > 0 with ǫj → 0 and a map

X : [0,+∞)× C → C such that:

(a) limj→+∞Xǫj = X uniformly on compact subsets of [0,+∞)× C.

(b) For each t ∈ [0,+∞), the map X(t, ·) : C → C is Kt-quasiconformal.

Proof. To prove the claim (a), we start by reminding from Lemma 4 (b) that for
any three points z0, z, w ∈ C and any t > 0 we have

|Xǫ(t, z)−Xǫ(t, z0)|

|Xǫ(t, w)−Xǫ(t, z0)|
≤ eπKT

(

|z − z0|

|w − z0|

)
1

KT

.

Let us now choose a disk D(0, R) that contains z0, w so that |w − z0| ≥ 1. Then for
any z with |z − z0| < 1

|Xǫ(t, z)−Xǫ(t, z0)| ≤ eπKt

(

|z − z0|

|w − z0|

)
1

Kt

|Xǫ(t, w)−Xǫ(t, z0)|

≤ eπKt

(

|z − z0|

|w − z0|

)
1

Kt

(|Xǫ(t, w)|+ |Xǫ(t, z0)|)

≤ C(T,R, ‖ω0‖∞) (|z − z0|)
α(T )

where α(T ) = e−T‖ω0‖∞ , and C(T,R, ‖ω0‖∞) is a constant that depends on T , R and
‖ω0‖∞. This constant is finite because sup{|X(t, z)| : t ∈ [0, T ], z ∈ D(0, R)} < +∞,
as a consequence of (10). Similarly, (10) also shows that

|Xǫ(t, z0)−Xǫ(t0, z0)| ≤

ˆ t

t0

|vǫ(x,Xǫ(s, z0))| ds

≤ C | supp(ω0)|
1

2 (e
t
2
‖ω0‖∞ − e

t0
2
‖ω0‖∞) ≤ C(T, ‖ω0‖∞) |t− t0|
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As a consequence, Xǫ(·, ·) is equicontinuous at every point (t0, z0). It is also locally
uniformly bounded in time and space, by (10). Therefore, Arzela–Ascoli theorem
ensures for every sequence Xǫj the existence of a subsequence (which we denote also
Xǫj) converging locally uniformly to a map X : [0, T ] × C → C. In particular, and
because the convergence is locally uniform in time and space, we also have Xǫ(t, ·)
converging to X(t, ·) for the same subsequence, and for each t ∈ [0, T ]. By classical
tools in Geometric Function Theory [2, Theorem 3.1.3], each of the partial maps
X(t, ·) can only be either Kt-quasiconformal (as Xǫ(t, ·) itself), or constant. To see
that it cannot be a constant map, note that quasisymmetry bounds are preserved by
uniform limits, and moreover they are easily made two sided, whence quasisymmetry
bounds guarantee bijectivity. Therefore, X(t, ·) is Kt-quasiconformal at every time
t. �

It is worth mentioning that the inverse maps Xǫj(t, ·)−1 of Xǫj(t, ·) must accu-
mulate somehere too, and the accumulation point needs be the inverse map X(t, ·)−1

of X(t, ·). So abusing of notation we will assume that both sequences Xǫj(t, ·) and
Xǫj(t, ·)−1 converge, respectively, to X(t, ·) and X(t, ·)−1. We note also that the
inverse maps X(−t, ·) = X(t, ·)−1 are well defined Kt-quasiconformal maps.

By setting ω(t, ·) = ω0(X(−t, ·)) we obtain a well defined L∞([0,+∞);L∞(C))
function. We also define v(t, ·) = K ∗ ω(t, ·).

Theorem 10. With the above notation, there exists a sequence ǫ = ǫj > 0 with

limj ǫj = 0 such that

(a)
´ T

0
‖ωǫ(t, ·)− ω(t, ·)‖1 dt → 0, as j → +∞, and

(b)
´ T

0
‖vǫ(t, ·)− v(t, ·)‖∞ dt → 0, as j → +∞.

Proof. One has

‖ωǫ(t, ·)−ω(t, ·)‖1 ≤ ‖ωǫ
0(X

ǫ(−t, ·))−ω0(X
ǫ(−t, ·)‖1+‖ω0(X

ǫ(−t, ·)−ω0(X(−t, ·)‖1.

At the first term, we consider a disk D such that suppωǫ
0, suppω0 ⊂ D, and use the

higher integrability of quasiconformal jacobians. Indeed, if ǫ = ǫj and 0 < t < T ,
then Xǫ(t, ·) is Kt-quasiconformal and hence J ǫ(t, ·) ∈ Lp

loc whenever 1 < p < Kt

Kt−1

and, in particular, also for any p ∈ (1, eT ‖ω0‖∞

eT ‖ω0‖∞−1
) because Kt ≤ eT ‖ω0‖∞ for any

t ∈ [0, T ]. Therefore

‖ωǫ
0(X

ǫ(−t, ·))− ω0(X
ǫ(−t, ·)‖1 =

ˆ

|ωǫ
0 − ω0| J

ǫ(t, ·)

≤ ‖ωǫ
0 − ω0‖Lp′(D) ‖J

ǫ(t, ·)‖Lp(D)

≤ ‖ωǫ
0 − ω0‖

1

p′

L1(D) ‖ω
ǫ
0 − ω0‖

1

p

L∞(D) ‖J
ǫ(t, ·)‖Lp(D).

Above, ‖ωǫ
0−ω0‖L1(D) → 0 as j → ∞, and ‖ωǫ

0−ω0‖L∞(D) ≤ 2‖ω0‖L∞(D). In order to
bound ‖J ǫ(t, ·)‖Lp(D), we use the reverse Hölder property of quasiconformal jacobians,
and combine it with by Lemma 7 (b). We obtain

‖J ǫ(t, ·)‖Lp(D) =

(
ˆ

D

J ǫ(t, ·)p
)

1

p

≤ C(p,Kt) |D|
1

p
−1

ˆ

D

J ǫ(t, ·)

= C(p,Kt) |D|
1

p
−1|Xǫ(t, D)| ≤ C(p,Kt) |D|

1

p ≤ C(p,KT ) |D|
1

p

because the constant C(p,Kt) may be chosen to be non-decreasing in K⊔ (see for
instance [2, (13.24)]). Concerning the second term, let us choose ωn

0 ∈ C0 such that
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‖ωn
0 − ω0‖1 ≤ 1/n and ‖ωn

0‖∞ ≤ ‖ω0‖∞. Then

‖ω0(X
ǫ(−t, ·))− ω0(X(−t, ·))‖1 ≤ ‖ω0(X

ǫ(−t, ·))− ωn
0 (X

ǫ(−t, ·))‖1

+ ‖ωn
0 (X

ǫ(−t, ·))− ωn
0 (X(−t, ·))‖1

+ ‖ωn
0 (X(−t, ·))− ω0(X(−t, ·))‖1

Above, again because of the higher integrability of quasiconformal jacobians,

‖ω0(X
ǫ(−t, ·))− ωn

0 (X
ǫ(−t, ·))‖1 =

ˆ

|ω0 − ωn
0 | J

ǫ(t, ·)

= ‖ω0 − ωn
0‖Lp′(D) ‖J

ǫ(t, ·)‖Lp(D)

≤ ‖ω0 − ωn
0‖

1

p′

L1(D) ‖ω
n
0 − ω0‖

1

p
∞ ‖J ǫ(t, ·)‖Lp(D)

≤ n
−1

p′ 2
1

p ‖ω0‖
1

p
∞ ‖J ǫ(t, ·)‖Lp(D)

and similarly for ‖ωn
0 (X(−t, ·)) − ω0(X(−t, ·))‖1 (note X(t, ·) is also Kt-quasicon-

formal, whence its jacobian determinant satisfies as well a reverse Hölder inequal-
ity). Thus each of these two terms can be made smaller than δ/3 if n is chosen
large enough. The control of the second term comes by continuity. Precisely, as
Xǫ(−t, ·) → X(−t, ·) and ωn

0 is continuous, there is ǫ > 0 such that ‖ωn
0 (X

ǫ(−t, ·)−
ωn
0 (X(−t, ·))‖∞ < δ/3. Thus (a) follows. For the proof of (b), use (a) and Lem-

ma 3 (b). �

The above convergence result suffices to prove that ω is a weak solution to the
desired nonlinear transport equation. Existence is proved.

As we said in the introduction, Reimann’s Theorem 2 extends (as proven in [8,
Theorem 1]) to vector fields v such that

∂ v+λ Im(∂ v) ∈ L∞,

that is, the flow X(t, ·) of these vector fields consists of quasiconformal mappings.
Above, one may choose λ ∈ C to be a constant with |λ| < 1, or also a smooth, com-
pactly supported function λ ∈ C∞

c (C) with ‖λ‖L∞(R2) < 1. This makes it reasonable
to look for extensions of Theorem 1 to other kernels K(z) different than the one we

used here K(z) = eiθ

2πz
. The new kernels K we have in mind are complex multiples of

the fundamental solution of the operator ∂ v+λ Im(∂ v).

3. The velocity formulation

Let us recall that the Euler’s system of equations is given, in its original formu-
lation, in terms of the velocity field v. Namely, one has the following equivalence











ωt + v ·∇ω = 0,

v = i
2πz̄

∗ ω,

ω|t=0 = ω0

⇐⇒











vt+v ·∇v = −∇p,

divv = 0,

curlv |t=0 =
1
2
ω0.

where p is the scalar valued pressure function. It turns out that a similar equivalent
formulation can be provided for (1), and this is our goal in the present section. From
now on, we denote

C =

(

1 0
0 −1

)
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and set Mθz = eiθ C z = eiθ z̄. Thus, indeed Mθ is the R-linear map with matrix

Mθ =

(

cos θ sin θ
sin θ − cos θ

)

To avoid formalities, we reduce ourselves to the smooth setting, and assume the
datum ω0 : C → R is smooth and compactly supported. Let us remind that K(z) =

Kθ(z) =
eiθ

2πz
.

Proposition 11. The scalar-valued function ω : [0, T ]×C → R is a weak solution

of

(11)











ωt + v · ∇ω = 0,

v = K ∗ ω,

ω|t=0 = ω0,

if and only if v : [0, T ]× C → C and q : [0, T ]× C → R solve

(12)



















vt + v · ∇v = −Mθ∇q,

−∆q = div(v) div(Mθv),

curl(Mθv)|t=0 = 0,

div(Mθv)|t=0 = ω0,

also in the weak sense.

Proof. We first go from (12) to (11). We identify R2 ≡ C, and write the system
(12) in complex notation,



















vt+v ∂ v+v ∂ v = −eiθ∇q,

−∆q = div(v) div(eiθv̄),

Im(∂(eiθv̄))|t=0 = 0,

Re(∂(eiθv̄))|t=0 = ω0.

Now, taking ∂ on the first equation, and obtain

(∂ v)t + v ∂(∂ v) + v ∂(∂ v) + ∂ v(∂ v+∂v) = −∂(eiθ∇q)

or equivalently,

(∂ v)t + v ·∇(∂ v) + ∂ v div v = −
1

2
eiθ ∆q.

We now multiply by e−iθ, and use the C-linearity of the transport operator d
dt
+v ·∇

to get

(e−iθ ∂ v)t + v ·∇(e−iθ ∂ v) + e−iθ ∂ v div v = −
1

2
∆q.

After taking real and imaginary parts,

(13)

{

Re((e−iθ∂ v)t + v ·∇(e−iθ∂ v)) + Re(e−iθ∂ v) divv = −1
2
∆q,

Im((e−iθ∂ v)t + v ·∇(e−iθ∂ v)) + Im(e−iθ∂ v) div v = 0.

The above equations may be seen as scalar conservation laws for Re(e−iθ ∂ v) and
Im(e−iθ ∂ v). The second one is homogeneous, and so from the initial condition

2 Im(e−iθ∂ v)|t=0 = − curl(Mθ v)|t=0 = 0

we deduce that at any time t > 0

2 Im(e−iθ∂ v) = − curl(Mθ v) = 0.
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To see this, simply call ρ = 2 Im(e−iθ∂ v) and note it satisfies the following initial
value problem,

{

d
dt
ρ+ div(ρ v) = 0,

ρ(0, ·) = 0,

which has ρ = 0 as its unique solution, due to the smoothness of v. As a consequence,
e−iθ∂ v ∈ R and so if we now denote ω = 2Re(e−iθ∂ v), then

ω = div(eiθv̄).

Thus the first equation at (13) implies that

ωt + v ·∇ω + ω div v = −∆q.

Now, since the second equation at (12) tells us that ω div v = −∆q, we necessarily
have for ω a homogeneous transport equation

ωt + v ·∇ω = 0

together with the initial condition ω|t=0 = div(eiθv̄)|t=0 = ω0 as claimed.
For the converse implication, we start by noting that our choice of the kernel K

and the second equation in (11) tell us that 2e−iθ∂v = ω, which by assumption is
real valued. We now use the first equation in (11), together with the C-linearity of
the complex operator, to get

∂ vt+v ·∂(∂ v) + v · ∂(∂ v) = 0

or equivalently

∂(vt+v ·∂ v+v · ∂ v) = ∂ v divv .

We now complex conjugate at both sides of the equality, multiply by eiθ, and use
C-linearity of the transport operator, and obtain

(14) ∂(eiθ(vt+v ·∂ v+v · ∂ v)) =
ω

2
div v .

By assumption, the right hand side above is real, whence eiθ(vt+v ·∂ v+v · ∂ v) is
a conservative vector field. Thus there exists a scalar valued potential q such that

eiθ(vt+v ·∂ v+v · ∂ v) = −∇q.

This automatically gives the first equation at (12). Moreover, if we take real parts
at (14),

−
1

2
∆q =

1

2
div(eiθ(vt+v ·∂ v+v · ∂ v)) =

ω

2
div v

or equivalently

−∆q = div(v) div(Mθ v)

as claimed. The third and fourth equations in (12) are automatic from the second
and fourth in (11). �

One of the initial motivations to find the above equivalent formulation was to look
for energy estimates that help in proving that the problem (1) has indeed a unique
solution, exactly in the same way uniqueness for Euler’s is proven in [3, pp. 320–
321]. Unfortunately, and in contrast to the case of Euler’s incompressible system,
the velocity formulation does not seem to help in proving uniqueness. Indeed, if v1,v2

are two solutions to (1) with the same datum ω0, then the difference v = v1−v2

may fail to belong to L2, but it certainly belongs to Lp for any p > 2. Thus the
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energy E(t) = Ep(t) = 1
p
‖v ‖pp is well defined. Moreover, the velocity formulation

(12) provides us with the estimate

E ′(t) ≤ C1E(t) + C2 q E(t)1−
1

q + C3E(t)1−
1

p

for all large values of q, and where the constants C1, C2, C3 are independent of q
and t. In the very special Euler’s setting, the value p = 2 is allowed, and the
velocity equation provides for E2(t) a similar inequality with C1 = C3 = 0, which
immediately implies uniqueness (as it forces E(t) = 0 for t > 0). In our setting,
though, the presence of the C3 term explicitly breaks the argument. Thus new ideas
seem to be needed for proving uniqueness for bounded solutions of (1).
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