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A large deviation principle for the
Schramm–Loewner evolution in the uniform topology

Vladislav Guskov

Abstract. We establish a large deviation principle for chordal SLEκ parametrized by capacity,

as the parameter κ → 0+, in the topology generated by uniform convergence on compact intervals

of the positive real line. The rate function is shown to equal the Loewner energy of the curve. This

strengthens the recent result of Peltola and Wang who obtained the analogous statement using the

Hausdorff topology.

Suurten poikkeamien periaate

Schrammin–Loewnerin evoluutiolle tasaisen topologian suhteen

Tiivistelmä. Osoitamme, että kapasiteetin avulla parametrisoitu jänteittäinen SLEκ toteuttaa

suurten poikkeamien periaatteen reaaliakselin kompaktien välien tasaisen suppenemisen virittämän

topologian suhteen, kun parametri κ → 0+. Lisäksi näytämme, että suppenemisvauhti on yhtä suuri

kuin käyrän Loewnerin energia. Tämä vahvistaa Peltolan ja Wangin viimeaikaisia tuloksia, jotka

antoivat vastaavan ilmiön Hausdorffin topologian suhteen.

1. Introduction

The Schramm–Loewner evolution with parameter κ > 0, subsequently referred to
as SLEκ, is a fractal random curve that connects two marked points a, b ∈ ∂D on the
boundary of a simply connected domain D in the complex plane. SLE curves arise
as scaling limits of interfaces in 2D critical lattice models, see, e.g., [8, 22, 24, 25],
and play an important part in the analysis of the geometry of the Gaussian free field
[17, 23].

In the last few years, starting with Wang’s paper [31], there has been substantial
interest in various questions related to large deviations of SLEκ as the parameter κ
tends to 0+ as well as +∞. One reason for this is that the large deviations rate
functions that appear in such statements turn out to be interesting quantities that
somewhat surprisingly provide links between random conformal geometry and other
areas such as Teichmüller theory and related parts of analysis and geometry, see [33].
The key quantity in this paper is the Loewner energy, defined below for chords, which
enters the story as the large deviations rate function for SLEκ as κ ↓ 0. (For a domain
D with given boundary points a, b, a chord is a simple curve in D connecting a and
b, otherwise staying in D.)

Chordal SLE curves are constructed using the Loewner differential equation

∂tgt(z) =
2

gt(z)− λt
, g0(z) = z ∈ H.
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Here, (λt)t≥0 is a continuous real-valued (driving) function and, for each t ≥ 0, the
solution gt is a conformal map from a simply connected subset of the upper half-
plane H onto H. If λ is smooth enough, the limit γ(t) = limy→0+ g

−1
t (λt + iy), t ≥ 0,

defines a chord in H connecting 0 with ∞. The parametrization of the curve that
one gets from this construction is called the capacity parametrization. Conversely,
starting with a chord γ connecting 0 with ∞ in H, one can recover the Loewner
driving function via the equation on the maps gt : H \ γ[0, t] → H, where the curve is
assumed to be parametrized so that hcap(γ[0, t]) = 2t, i.e., near infinity the map has
the following expansion gt(z) = z + 2t/z + o(1/|z|) as z → ∞. In the case of SLEκ,
one takes the driving function to be rescaled standard Brownian motion (

√
κB(t))t≥0.

It is a non-trivial fact that the above limit defines a curve in this case, see [20].
The analytic behavior of SLEκ curves depends strongly on the κ-parameter.

For example, with probability one, the Hausdorff dimension of the curve equals
min (1 + κ/8, 2), see [1], and it is known that for κ ≤ 4 the SLE curve is almost
surely simple [20]; in what follows we consider only this regime.

Now we give a heuristic description of large deviations for SLE. In the limit
as κ ↓ 0, it is not hard to see that the SLEκ curve converges to the deterministic
hyperbolic geodesic chord η connecting the two marked boundary points in D; by
definition this is the image of the imaginary axis under a conformal map from the
upper half-plane onto D taking 0 to a and ∞ to b. Hence if we take a suitable family
V of chords that does not include η, then

P [SLEκ ∈ V ] → 0 as κ ↓ 0.

The leading order convergence rate is provided by a large deviation principle, abbre-
viated LDP in the sequel. Roughly speaking, the probability decays exponentially
fast in 1/κ:

P [SLEκ ∈ V ] ≈ e−
I(V )
κ as κ ↓ 0.

The rate of decay is given by

I (V ) = inf
γ∈V

IL (γ) ,

where the rate function

IL(γ) =
1

2

ˆ ∞

0

(λ̇t)
2 dt

is the Loewner energy introduced by Wang in [31] and subsequently studied in a
number of papers, see, e.g., [21, 29, 30, 32]. Here, λ is the Loewner driving function
for γ, see below for further comments on this definition.

In the present paper IL only enters as the rate function and we will not consider
its other interpretations. Let us however very briefly mention some of the known
facts. First, we note that chords with finite Loewner energy are quite smooth: they
are known to be rectifiable quasi-slits, i.e., quasiconformal images of the geodesic η,
but not necessarily C1, see [19, 21]. Remarkably, the Loewner energy is invariant
with respect to reversing the curve, see [31]. It is possible to define the Loewner
energy for Jordan curves [21], which in this case is Möbius invariant. In this more
general setting the family of finite energy curves can be identified with the class of
Weil–Petersson quasicircles. The Loewner energy turns out to be (a constant times)
the Kähler potential for the Weil–Petersson metric on the Weil–Petersson Teichmüller
space, i.e., the set of Weil–Petersson quasicircles viewed as elements of the universal
Teichmüller space, see [2, 26, 32]. See also [9] for the emergence of the Loewner
energy in the context of the Szegő theorem.
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1.1. Main result. We first give the precise meaning to the large deviation
principle for SLE assuming a suitable topological space (S, τ) has been chosen.

Definition 1.1. We say that the chordal SLEκ curve γκ in a given topological
space (S, τ) satisfies the large deviation principle with a rate function IL : S → [0,∞]
if

1. limκ↓0 κ logP [γκ ∈ F ] ≤ −I(F ) for any closed subset F of S,
2. limκ↓0 κ logP [γκ ∈ G] ≥ −I(G) for any open subset G of S,

where I(V ) = infγ∈V IL(γ) for any subset V ⊂ S.

There are several natural choices of the topological space in the case at hand.
From Schilder’s theorem (see below) and the contraction principle (Theorem 4.2.1
in [5]) one immediately obtains the LDP using the Carathéodory topology on the
conformal maps solving the Loewner equation. Peltola and Wang obtained the LDP
for SLEκ curves viewed as sets, using the topology induced by the Hausdorff metric on
compact subsets. (See also [31] for another version based on the prescribed left/right
passage given marked points in H.)

In the present paper we establish the LDP for SLEκ curves, as κ ↓ 0, viewed
as continuous curves in the capacity parametrization, using the topology generated
by uniform convergence on compact intervals which in this context we shall call
the uniform topology. This strengthens the result obtained in [19] and places the
LDP result in perhaps a more natural setting. Moreover, in view of applications
it is technically useful to have this stronger LDP at hand: for example, there are
important “observables” that are continuous in the uniform topology but not in the
Hausdorff topology. One instance is the harmonic measure of the left side of the
curve, see [14] for detailed description. We will discuss other possible choices for the
topology in Section 7.

In order to state our main result, let S denote the space of continuous capacity-
parameterized simple curves in the upper half-plane started at the origin

S =
{

γ ∈ C
(

[0,∞),H
)

: γ(0) = 0, γ[0,∞) is a simple curve,

and hcap(γ[0, t]) = 2t for t ∈ [0,∞)
}

.
(1)

We endow this space with the topology τ of uniform convergence on compact intervals
of the positive real line (compact convergence).

Theorem 1.1. As κ ↓ 0, SLEκ satisfies the large deviation principle in the
topological space (S, τ) with the Loewner energy IL as a good rate function1.

Although the space S is not complete, it is a natural choice for our setup since
SLEκ curves, for κ ≤ 4, are simple almost surely.

As a side remark, we would like to mention another formulation of the result.
It would have been quite natural to state the theorem using the (slightly weaker)
“strong topology” on curves modulo reparametrization: We say that the sequence of
curves {γn}n converges to γ in the strong sense if

lim
n→∞

dT (γn, γ) = 0,

where the metric is given by

dT (γ1, γ2) = inf
ϕ
‖γ1 − γ2 ◦ ϕ‖∞,[0,T ],

1The notion of good rate function is explained in Section 3.
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the infinum is taken over all increasing homeomorphisms ϕ : [0, T ] → [0, T ]. Analo-
gously to compact convergence, the strong convergence for chords with infinite capac-
ity is defined by saying that the strong convergence takes places for the restrictions
of curves to the initial segments with half-plane capacity 2T for every T > 0. We
choose however to use the capacity parametrization in the statement since this is
what is actually proved.

Acknowledgments. I would like to thank Fredrik Viklund for helpful discussions
and numerous revisions of this work as well as constant motivation in the process. I
am grateful to Ellen Krusell for many valuable comments and inspiring conversations.
Furthermore, I also want to thank Yilin Wang and Yizheng Yuan, who read the draft
of this work and provided insightful remarks, as well as the referee who pointed out
several improvements. The work is supported by the Swedish Research Council (VR),
Grant 2019-04152.

2. Setup and outline of the proof

Schilder showed in 1966 that the family of rescaled Brownian motions {√εB}ε>0

satisfies the LDP on the Polish space2 (C([0, T ],R), ‖ · ‖∞) with the Dirichlet energy
ID as a rate function. The Dirichlet energy is directly connected with the Loewner
energy IL of a chord γ in the upper half-plane, driven by λ. By definition:

IL(γ) = ID(λ).

This connection gives hope to deduce LDP for SLE from LDP for Brownian motion
by means of the contraction principle. In order to carry out this strategy the Loewner
map, from a space of driving functions to the space of curves, has to be continuous.
The continuity of the map depends on the chosen topology on the space of curves.
Unfortunately the Loewner map is continuous neither in the Hausdorff topology nor
in the uniform topology which makes direct application of the contraction principle
impossible. Therefore, the proof requires direct validation of the inequalities for open
and closed sets as stated in Definition 1.1 above.

The proof of the main result is divided into two parts: the proof for a finite time
interval [0, T ] and its extension to [0,∞). The former utilizes analytic results specific
to SLE while the latter follows from the general Large Deviations theory.

Since the proof for finite time will constitute the bulk of the paper, for the most
part we will work with the space of curves run up to finite capacity time:

ST =
{

γ ∈ C
(

[0, T ],H
)

: γ(0) = 0, γ[0, T ] is a simple curve,

and hcap(γ[0, t]) = 2t for t ∈ [0, T ]
}

.
(2)

Moreover, it is sufficient to consider the case T = 1 due to the scale invariance of
SLEκ.

Let DT be the biggest subset of C ([0, T ],R) such that every λ ∈ DT generates
a curve under the Loewner transformation λ → L(λ). Throughout the paper we
will use the following notation for SLEκ : γ

κ = L (
√
κB), where B is the standard

Brownian motion, or just γ if it is clear that we work with SLEκ from the context.
The Loewner differential equation for the inverse conformal map ft = g−1

t , which
maps H to a slit domain H\γ[0, t], is given by

(3) ∂tft(z) = −f ′
t(z)

2

z − λt
, f0(z) = z.

2 Complete separable metric space.
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Given a real-valued function with appropriate regularity one obtains a growing chord
{γ(t)}t∈[0,T ] via γ(t) = limy→0+ ft(λt + iy). Above we have denoted by DT the class
of driving functions that generate curves; we stress however that there is currently
no known direct characterization of this class and finding one is an interesting open
problem. Nevertheless, some sufficient conditions are available. For example, it is
known that if a continuous function λ : [0, T ] → R has finite Dirichlet energy, then it
generates a simple curve [6]. This case will be of most interest to us.

Under ft the point λt on the real line is mapped to the tip of the curve γ(t).

However, quite often it is more convenient to work with the centered map f̂t(z) =
ft(λt + z), which makes the origin to be the preimage of the tip γ(t). Moreover, in
further derivations ft, without any additional indices, will denote the conformal map
for SLEκ, that is, the solution to (3) with λ =

√
κB.

The main part of the proof follows the logic of standard arguments to derive
sample path large deviations. First, we show that SLE satisfies LDP on ST in the
topology generated by the supremum norm. The general line of reasoning follows
ideas used in the proof of Schilder’s theorem as presented, for example, in the mono-
graph of Bulinski and Shiryaev [3]. The cornerstone of the SLE specific argument
is that, for any β ∈ (0, 1) and certain constant c > 0, the derivative of the SLE

map satisfies the inequity |f̂ ′
t(iy)| ≤ cy−β uniformly in t ∈ [0, T ] with very high

probability if κ is small enough. The reason why this is the case is that the deriva-
tive near the preimage of the tip of the curve controls the regularity in the capacity
parametrization, as well as various related quantities, see, e.g., [10, 11].

The proof for closed sets is based on a classic idea of approximating stochas-
tic processes. For example, in the proof of Schilder’s theorem Brownian motion B
can be approximated by a piece-wise linear function Bn with n nodes. The limit
limn→∞Bn = B a.s. allows us to work with approximating processes Bn instead of
B which makes certain calculations possible that would produce infinite quantities
otherwise. Similarly, we are going to approximate the SLEκ curve γκ with a certain
processes γn. Of course, there could be many candidates for these processes. As
was shown in [27] if γn is a Loewner curve driven by appropriate approximation of√
κB, then almost surely limn→∞ ‖γκ − γn‖∞ = 0. Among many possible choices

of approximating processes, piece-wise linear approximation of the driving function
proved to be the most fruitful.

An important technical building block in the proof of convergence of γn to SLEκ

is the derivative estimate mentioned above. More specifically, one needs to control
the lower bound of the probability of the event

Pn
def
=
{

|f̂ ′
t(iy)| ≤ ψ(n)y−β for y ∈ [0, 2−n], t ∈ [0, 1]

}

,

for a certain sub-power function (see below) ψ and a free parameter β ∈ (0, 1). It
will allow us to control the convergence rate of ‖γκ − γn‖∞, where γn = L (

√
κBn)

and Bn is a piece-wise linear approximation of Brownian motion.
The proof for open sets partly follows the derivation of Schilder’s theorem. It

is possible to use more or less the same argument due to the result obtained in [12]
which allows precise comparing of Loewner maps with close driving functions.

The extension of the LDP to the positive real line [0,∞) is done via generalized
version of the projective limit theorem proved by de Acosta (Theorem 4, [4]). The
topology in this construction is induced by the compact convergence.

Here is a brief description of how the paper is organized. In Section 3 we show that
the Loewner energy satisfies the definition of a rate function from Large Deviations
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theory; we also present one useful property specific for closed sets. In Sections 4 and
5 we establish derivative estimates on which the main argument in Section 6 will be
build. Section 6 consists of three parts: proof for finite time, which is subdivided
into cases of closed and open sets, and extension to [0,∞).

3. The Loewner energy as rate function

Here we give the definition of a rate function, prove that the Loewner energy
satisfies this definition and present one property which will be used later.

Definition 3.1. A function I : S → [0,∞] is said to be a good rate function if
it satisfies the following properties:

1. I 6≡ ∞,
2. I is lower semi-continuous,
3. The level set {λ : I(λ) ≤ c} is compact for every c ∈ [0,∞).

In fact, the second property follows from the third one but is stated together due
to convention.

One of the motivations for this definition is based on the uniqueness property
of a rate function, i.e., if a family of probability measures satisfies LDP, then the
associated rate function is unique. To obtain this property it is enough to require the
underlying space S to be regular and the rate function to be lower semi-continuous.
Moreover, requiring compactness of the level sets of the rate function gives additional
nice properties (hence, good in the name).

Recall that the Dirichlet energy of a function λ ∈ C([0, T ] ,R) is given by

ID (λ) =

{

1
2

´ T

0
(λ̇t)

2 dt, if λ is absolutely continuous,

∞, otherwise.

In the introduction we have mentioned that the Dirichlet energy serves as the rate
function in the LDP for Brownian motion (Schilder’s theorem). In fact, it is a good

rate function in the sense of Definition 3.1.

Lemma 3.1. [3, Lemma 2, §4, Appendix 8] The Dirichlet energy is a good rate
function on C([0, T ] ,R) endowed with the uniform topology.

The connection between Loewner and Dirichlet energies is given by the following
definition.

Definition 3.2. Let γ be a Loewner chord in H and λγ its driving function. The
Loewner energy of γ equals the Dirichlet energy of its driving function

IL (γ) = ID (λγ) .

Naturally, one expects the Loewner energy to be a good rate function as well. Be-
fore proceeding with a proof of this fact we first need to state a couple of preliminary
lemmas which will be used repeatedly in this paper.

Lemma 3.2. [12, Lemma 2.3] For j = 1, 2, let f
(j)
t satisfy the chordal Loewner

equation (3) with a driving function λj ∈ C ([0, T ]). Then for x+iy ∈ H the following
deterministic inequality holds uniformly in t ∈ [0, T ]

∣

∣

∣
f
(1)
t (x+ iy)− f

(2)
t (x+ iy)

∣

∣

∣
≤ ‖λ1 − λ2‖∞

√

1 +
4

y2
.
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Lemma 3.3. [6, Theorem 2] Let λ ∈ C ([0, T ]) be a real-valued function with

finite Dirichlet energy and f̂ be the corresponding centered Loewner map. Then
uniformly in t ∈ [0, T ] and y > 0

log |f̂ ′
t(iy)| ≤

1

2
ID(λ).

Now we are in shape to prove the following result on the Loewner energy.

Lemma 3.4. The Loewner energy is a good rate function on (ST , ‖ · ‖∞).

Proof. We need to show that for all c > 0 sets Vc = {γ ∈ ST : IL(γ) ≤ c} are
compact in ST . In a metric space compactness is equivalent to sequential compact-
ness, thus we proceed by choosing arbitrary sequence of curves {γn}n in Vc and let
{λn}n be the corresponding driving functions.

There is one-to-one correspondence between curves and driving functions with
bounded energies due to the fact that finite energy driving functions generate simple
curves (see [6, Theorem 2] or [31, Proposition 2.1]). Hence, the preimage of Vc consists
of exactly those driving functions whose Dirichlet energy is less or equal than c, i.e.,

L−1 (Vc) = {λ ∈ C([0, T ],R) : ID(λ) ≤ c} .
By Lemma 3.1, the Dirichlet energy ID is a good rate function on (C ([0, T ]) , ‖ · ‖∞)
which, by the definition of a good rate function, implies that the preimage L−1 (Vc)
is compact in C ([0, T ]). Hence, there exists a subsequence {nj}j such that

{

λnj

}

j

converges uniformly to some limiting function λ ∈ L−1 (Vc).
Now we show that corresponding subsequence of curves

{

γnj

}

j
converges uni-

formly to γ = L (λ) ∈ Vc. Fix y > 0 and consider a decomposition
∣

∣γ(t)− γnj
(t)
∣

∣ ≤
∣

∣

∣
γ(t)− f̂t(iy)

∣

∣

∣
+
∣

∣

∣
γnj

(t)− f̂
(nj)
t (iy)

∣

∣

∣
+
∣

∣

∣
f̂t(iy)− f̂

(nj)
t (iy)

∣

∣

∣
.

The first two terms are bounded with a help of Lemma 3.3
∣

∣

∣
γ(t)− f̂t(iy)

∣

∣

∣
+
∣

∣

∣
γnj

(t)− f̂
(nj)
t (iy)

∣

∣

∣
≤
ˆ y

0

(∣

∣

∣
f̂ ′
t(ir)

∣

∣

∣
dr +

∣

∣

∣
(f̂

(nj)
t )′(ir)

∣

∣

∣

)

dr ≤ 2yec/2.

The third term is bounded by Lemma 3.2
∣

∣

∣
f̂t(iy)− f̂

(nj)
t (iy)

∣

∣

∣
≤ ‖λ− λnj

‖∞
√

1 +
4

y2
.

Hence, for a fixed y > 0 and uniformly in t we have

lim
j→∞

∣

∣

∣
f̂t(iy)− f̂

(nj)
t (iy)

∣

∣

∣
= 0.

Put together it yields a bound

lim
j→∞

‖γ − γnj
‖∞ ≤ 2yec/2.

Since the choice of y > 0 was arbitrary we conclude

lim
j→∞

‖γ − γnj
‖∞ = 0.

To sum up, any sequence of curves {γn}n in Vc contains a subsequence that converges
to a limit in Vc. Hence, the set Vc is compact in ST . �

Once again, the Loewner energy IL (γ) of a curve by definition equals the Dirichlet
energy ID (λγ) of its driving function, so from now on we drop the subscripts and
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distinguish both energies by their arguments. In what follows the convention I(V ) =
infx∈V I(x) is adopted.

In the beginning of this section we mentioned that requiring compactness of the
level sets of a rate function provides additional nice properties. One of them is the
following lemma which will be used in the proof of LDP for closed sets.

Lemma 3.5. [3, Lemma 1, §3, Appendix 8] If I is a good rate function and F is
a closed subset of ST , then the following limit holds

(4) lim
δ↓0

I
(

F δ
)

= I (F ) ,

where F δ = {γ ∈ ST : ∃γ̃ ∈ F, ‖γ − γ̃‖∞ ≤ δ} is the δ-neighborhood of the set F .

4. Derivative estimate

This section shows that for any β ∈ (0, 1) the derivative of the inverse Loewner

map f̂t(z) = ft(
√
κBt + z) satisfies a bound of the form |f̂ ′

t (iy) | ≤ cy−β uniformly
in t ∈ [0, 1] with very high probability if κ is sufficiently small, and where c does not
depend on κ. Throughout we need to be careful to keep track of the κ-dependence
of constants.

4.2. Moment estimate. To begin with, we would like to show that for some

p > 0, that depends on κ, the expectation E

[

|f̂ ′
t(iy)|p

]

is bounded uniformly in

t ∈ [0, 1] and y > 0 . For this purpose the reverse Loewner flow will be especially
convenient. Let ht(z) be the reverse SLE flow, i.e., the solution to

ḣt(z) =
−2

ht(z)−
√
κBt

, h0(z) = z.

Then for any fixed t > 0, the function z 7→ ht(z) has the same distribution as that of

z 7→ f̂t(z) [13, Lemma 5.5]. In particular, h′t(z) and f̂ ′
t(z) have the same law, hence

for x > 0, by the Chebyshev inequality

P

[

|f̂ ′
t(iy)| ≥ x

]

= P [|h′t(iy)| ≥ x] ≤ x−p
E [|h′t(iy)|p] .

The derivation of the upper bound is based on a certain martingale for the reverse
flow, see [10]. For this let us introduce a little bit of notation: set Zt = ht −

√
κBt

and Yt = Im ht.

Lemma 4.1. [13, Theorem 5.5] The stochastic process {Mt}t≥0 given by

Mt = |h′t (z) |pY
p−κr

2
t (sin argZt)

−2r

is a local martingale if p and r are the locus of r2 −
(

1 + 4
κ

)

r + 2
κ
p = 0.

The reverse Loewner flow implies that Yt ≥ y and trivially (sin argZt)
−2r ≥ 1 for

r ≥ 0. Consequently, for any t ≥ 0 the local martingale Mt is bounded from below

Mt = |h′t (z) |pY
p−κr

2
t (sin argZt)

−2r ≥ 0,

hence it is supermartingale (see Chapter 7 of [18]). Now we can use the supermartin-
gale property of Mt to deduce

E [|h′t (z) |p] ≤ E

[

|h′t (z) |p
(

Yt
y

)p−κr
2

(sin argZt)
−2r

]

≤
(

y

|z|

)−2r

.
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Note that in the first inequality we have used the aforementioned properties

1 ≤ Yt
y

and 1 ≤ (sin argZt)
−2r ,

which yield the restrictions r ≥ 0 and p − κr
2

≥ 0. Together with the quadratic
equation in Lemma 4.1, they provide admissible values of p, of which the largest
possible one is given by

p0 =

{

1 + 2
κ
+ κ

8
, κ < 4,

2, κ ≥ 4.

Of course, one can pick any p between zero and the largest value in order for the
moment estimate to hold. Since we are interested in small κ, we choose p = 2

κ
to

simplify further expressions. Therefore, we will utilize the following bound, for x > 0,

(5) P

[

|f̂ ′
t (iy) | ≥ x

]

≤ x−
2
κ .

4.2. Dyadic decomposition. In this subsection we estimate from below the
probability of the following event:

{

|f̂ ′
t(iy)| < cy−β, y ∈

[

0, 2−n
]

, t ∈ [0, 1]
}

,

where f̂t (iy) = ft (
√
κBt + iy); c and β ∈ (0, 1) are κ-independent parameters.

First, recall the Koebe distortion theorem.

Lemma 4.2. (Koebe distortion theorem) Let f : D → C be a conformal map
from a simply connected region D and set d = dist(z, ∂D) for z ∈ D. Then for
r ∈ [0, 1)

1− r

(1 + r)3
|f ′ (z) | ≤ |f ′ (w) | ≤ 1 + r

(1− r)3
|f ′ (z) |, |z − w| ≤ rd.

The proposition stated below will help us to control the derivative |f̂ ′
t(iy)|. Con-

sider the dyadic decomposition of the rectangle in the (t, y)-plane into the union of
rectangles

Sk,m =
{

(t, y) : t ∈
[

k2−4m, (k + 1)2−4m
]

, y ∈
[

2−(m+1), 2−m
]}

.

2−n

2−(n+1)

2−(n+2)

0 1

Figure 1. Dyadic decomposition of the rectangle.

The idea is that we can control the derivative |f̂ ′
t(iy)| inside a given rectangle by

its value at the corner:

(6) |f̂ ′
t(iy)| . |f̂ ′

k2−4m(i2−m)| for (t, y) ∈ Sk,m.
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The following proposition originates from [10] but is adapted to our setting since we
need to know how different constants depend on κ explicitly. In what follows we use
the notation k = 1, n to denote k ranging over the set {1, . . . , n}.

Proposition 4.1. (Dyadic decomposition) Let f be the inverse Loewner flow
driven by λ. Fix β ∈ (0, 1) and n ∈ N. If for any integers m ≥ n and k ∈ 1, 24m the
derivative satisfies

|f̂ ′
k·2−4m

(

i2−m
)

| ≤ 2βm,

then for all y ∈
[

2−(m+1), 2−m
]

and t ∈ [k2−4m, (k + 1)2−4m] we have

(7) |f̂ ′
t (iy) | ≤ c1 (1 + pk,m)

c2 y−β,

where

pk,m =

(

2m sup
s∈[0,2−4m]

|λk2−4m+s − λk2−4m |
)2

,

and c1, c2 are universal, κ-independent, constants.

Proof. The inequality (6) is obtained in three steps: for (t, y) ∈ Sk,m we derive
it in the following order

(8) |f ′
t(λt + iy)|

(a)

. |f ′
t(λt + i2−m)|

(b)

. |f ′
k2−4m(λt + i2−m)|

(c)

. |f ′
k2−4m(λk2−4m + i2−m)|.

(a) Applying the Koebe distortion theorem, Lemma 4.2, to the conformal map

f̂t yields

(9) |f̂ ′
t (iy) | ≤ 12|f̂ ′

t

(

i2−m
)

| for y ∈
[

2−(m+1), 2−m
]

.

(b) Next we obtain the bound |f ′
t+s (z) | . |f ′

t (z) |. Expand ft (ξ) around z to
get

ft (ξ) = ft (z) + f ′
t (z) (ξ − z) +

1

2
f ′′
t (z) (ξ − z)2 + o

(

(ξ − z)2
)

.

We can rearrange this expression to obtain a univalent function of canonical form.
Define Ft : D → C by setting

Ft(w) =
ft (yw + z)− ft (z)

f ′
t (z) y

.

It has the following expansion around the origin

Ft(w) = w +
f ′′
t y

2f ′
t (z)

w2 + o
(

w2
)

.

That is Ft(0) = 0 and F ′
t (0) = 1, so we can apply the Bieberbach’s conjecture (de

Branges’ theorem) which tells that the absolute value of the second coefficient is
bounded by 2:

(10)

∣

∣

∣

∣

f ′′
t (z) y

2f ′
t (z)

∣

∣

∣

∣

≤ 2.

We are going to use it to obtain a bound on |∂tf ′
t |. For that differentiate the Loewner

equation (3) with respect to z:

∂tf
′
t = − 2f ′′

t

z − λt
+

2f ′
t

(z − λt)
2 ,
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which gives us an estimate on the time-derivative:

|∂tf ′
t | ≤

∣

∣

∣

∣

2f ′′
t

z − λt

∣

∣

∣

∣

+

∣

∣

∣

∣

2f ′
t

(z − λt)
2

∣

∣

∣

∣

.

After substituting (10) and noticing that |z − λt| ≥ Imz ≡ y the inequality becomes

|∂tf ′
t | ≤

10|f ′
t|

y2
.

It allows us to estimate the following logarithmic derivative:

∂t log |f ′
t | ≤

|∂tf ′
t |

|f ′
t |

≤ 10

y2
.

Integration over [t, t+ s] yields

|f ′
t+s (z) | ≤ e

10s
y2 |f ′

t (z) |.
In our application of this inequality it amounts to

(11) |f ′
t

(

λt + i2−m
)

| ≤ e10|f ′
k2−4m

(

λt + i2−m
)

|, t ∈
[

k2−4m, (k + 1)2−4m
]

.

(c) Lastly we obtain the inequality |f ′
t (λt+s + iy) | . |f ′

t (λt + iy) |, where the real
parts of the spatial arguments differ. Note that s varies within the interval [0, y4].
The family of points {λt+s + iy}s∈[0,y4] is restricted to the semi-disk around λt of
radius

R
def
= R(t, y) =

√

√

√

√y2 +

(

sup
s∈[0,y4]

|λt+s − λt|
)2

.

Let us consider the function g (w) = ft (λt +Rw) as a conformal map from the
rectangle S = {x+ iy ∈ C : x ∈ [−1, 1] , y ∈ [0, 1]}. The following two points

wτ =
λτ − λt + iy

R
, τ = t, t+ s,

both belong to S and Imwt = Imwt+s = y/R. Adjusting the Koebe distortion
theorem to the geometry of the domain S, see Lemma 8.1 in the Appendix for the
proof, we obtain the following estimate

|g′ (wt+s) | ≤ c̃1

(

R(t, y)

y

)c̃2

|g′ (wt) |,

where c̃1, c̃2 are universal constants (do not depend on κ). Hence, for s ∈ [0, y4], the
inequality can be rewritten in the original notation as

(12) |f ′
t (λt+s + iy) | ≤ c̃1

(

R(t, y)

y

)c̃2

|f ′
t (λt + iy) |

Combining (9), (11) and (12) together gives us the chain (8) with missing factors.
That is, for y ∈

[

2−(m+1), 2−m
]

and t ∈ [k2−4m, (k + 1)2−4m],
(13)

|f̂ ′
t(iy)| ≤ 12e10c̃1



1 +

(

2m sup
s∈[0,2−4m]

|λk/22m+s − λk/22m |
)2




c̃2/2

|f̂ ′
k/24m(i2

−m)|.

The claim follows by setting c1 = 12e10c̃1 and c2 = c̃2/2. �
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Although the lemma we have just proved holds for any Loewner map, we are
interested in its application to SLE. Returning to the convention when f denotes the
inverse Loewner map driven by

√
κB, we introduce the following event

(14) En
def
=

∞
⋂

m=n

24m−1
⋂

k=0

{

|f̂ ′
t (iy) | ≤ c1 (1 + pk,m)

c2 y−β : (t, y) ∈ Sk,m

}

,

where

pk,m = κ

(

2m sup
s∈[0,2−4m]

|B(k2−4m + s)− B(k2−4m)|
)2

.

Proposition 4.1 allows us to give an upper bound on the probability of the complement
event.

Proposition 4.2. For fixed β ∈ (0, 1) and κ < β/2 we have

(15) P [Ec
n] ≤

42n

1− 4−(
β
κ
−2)

4−
βn
κ .

Proof. Applying the union bound, Proposition 4.1 and the estimate (5) we obtain
the following upper bound, for κ < β/2,

P [Ec
n] ≤

∞
∑

m=n

24m−1
∑

k=0

P

[

|f̂ ′
k2−4m

(

i2−m
)

| > 2βm
]

≤
∞
∑

m=n

2−2(β
κ
−2)m =

4−(
β
κ
−2)n

1− 4−(
β
κ
−2)

. �

We would like to have the estimate |f̂ ′
t (iy) | ≤ ψ(n)y−β, where ψ is a deterministic

sub-power function and not a random variable like in (14). For that we define the
event

(16) Pn
def
=
{

|f̂ ′
t(iy)| ≤ ψ(n)y−β for y ∈ [0, 2−n], t ∈ [0, 1]

}

,

where the n-dependent factor is given by

ψ(n) = c1 (1 + log n)c2 ;

the κ-independent constants c1 and c2 are precisely those from Proposition 4.1. The
events Pn and En satisfy the following inclusion relation

En∩
{

2m sup
s∈[0,2−4m]

|B(k2−4m+s)−B(k2−4m)| <
√

logn

κ
: k = 0, 24m − 1, m ≥ n

}

⊂ Pn.

This inclusion together with Proposition 4.2 allow us to estimate the probability of
the complement of Pn

P [P c
n] ≤ P [Ec

n] +
∞
∑

m=n

24m−1
∑

k=0

P

[

2m sup
s∈[0,2−4m]

|B(k2−4m + s)−B(k2−4m)| ≥
√

log n

κ

]

≤ 42n

1− 4−(
β
κ
−2)

4−
βn
κ + 24n+1Jκ(n)e

− 22n−1 log n
κ ,

(17)

where Jκ(n) =
∑∞

m=0 2
4me−

(4m−1)4n log n
2κ which vanishes whenever κ ↓ 0. The bound

(17) is obtained with the help of the classic estimate for Brownian motion, for x > 0:

P

[

sup
s∈[0,T ]

|B(s)| ≥ x

]

≤ 2e−
x2

2T .
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In the next section we will need analogous result for a similar event but using a
different y-scale, namely

(18) Hn
def
=
{

|f̂ ′
t(iy)| ≤ ψ(n)y−β for y ∈ [0, 1/

√
n], t ∈ [0, 1]

}

.

The upper bound of the probability of the compliment follows immediately from
Proposition 4.2 by changing the scale from 2−n to 1/

√
n and is given by

(19) P [Hc
n] ≤

n2

1− 4−(
β
κ
−2)

e−
β log n

κ + 24n+1Jκ(n)e
− 22n−1 log n

κ .

5. Approximation of SLEκ

In this section we consider curves generated by approximations of Brownian mo-
tion. Let Bn denote a piece-wise linear approximation of Brownian motion, i.e.,

Bn(t) = n (B(tk)−B(tk−1)) (t− tk−1) +B(tk−1) for t ∈ [tk−1, tk),

where {tk}nk=1 is a partition of [0, 1] into n equal intervals. In [27] Tran showed
that γn = L (

√
κBn) converges almost surely to SLEκ in the supremum norm. The

convergence follows from the following estimate obtained in the aforementioned paper

P



‖γκ − γn‖∞ ≤ ϕ(n)
√
n
1−
√

1+β
2



 ≥ 1− c3
nc4

,

where β ∈ (0, 1), ϕ is a sub-power function and c3, c4 are κ-dependent constants.
Recall that ϕ : [0,∞) → [0,∞) is called a sub-power function if for every α > 0

lim
x→∞

ϕ(x)

xα
= 0.

In our application we need to know explicitly how the constants c3, c4 and the
sub-power function ϕ depend on κ. In the original proof the parameter κ was fixed
since the emphasis was on the behavior in the limit n → ∞. Our situation is the
opposite, we are interested in the behavior when n is fixed while κ ↓ 0.

Proposition 5.1. Fix β ∈ (0, 1). Then for any κ < β/2 and ζ∈
(

0, 1
2

(

1−
√

1+β
2

))

there exists N = N(β, ζ) ∈ N such that for any integer n > N

(20) P
[

‖γ − γn‖∞ ≥ n−ζ
]

≤ B(n, κ)n−β
κ ,

where

(21) B (n, κ) = c0 + 24n+1Jκ(n) +
n2

1− 4−(
β
κ
−2)

and c0 is a universal constant.

Examining the proof in [27] we see that the inequality

‖γ − γn‖∞ ≤ n−ζ

holds on the intersection of the following two events:

1) Hn =
{

|f̂ ′
t(iy)| ≤ ψ(n)y−β for y ∈ [0, 1/

√
n] , t ∈ [0, 1]

}

,

with ψ(n) = c1(1 + log n)c2;

2) Ln =
{

osc (
√
κB, 2/n, [0, 1]) ≤

√

2/nϕL (n/2)
}

,

where ϕL is a sub-power function.
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The estimate (19) covers the first event while the second one can be deduced from
the following lemma.

Lemma 5.1. [15, Theorem 3.2.4] Let B be the standard Brownian motion on
[0, 1]. There is an absolute constant c0 <∞ such that for all 0 < δ ≤ 1 and r > c0

P

[

osc(
√
κB(t), δ, [0, 1]) ≥ r

√

δ log (1/δ)
]

≤ c0δ
(r/c0)

2

κ .

For our application pick δ = 2/n and, for example, r =
√
2c0. Then the sub-

power function ϕL(x) = c0
√
2 log x gives the second assumption with the probability

estimate given by

P [Lc
n] ≤ c0 (n/2)

− 2
κ .

A union bound then implies

P
[

‖γ − γn‖∞ ≥ n−ζ
]

≤ P [Hc
n] + P [Lc

n]

n2

1− 4−(
β
κ
−2)

e−
β log n

κ + 24n+1Jκ(n)e
− 22n−1 log n

κ + c0 (n/2)
− 2

κ ,

which gives estimate (20).

6. Large deviation principle: proof of Theorem 1.1

This section proves Theorem 1.1. The proof is divided into three parts, which
are completed in their own subsections: first we derive the theorem for a finite time
interval [0, T ], where closed and open sets are treated separately, and afterwards
extend the obtained result to the time interval [0,∞). As mentioned in the outline
of the proof, for finite time it is sufficient to consider the interval [0, 1] due to scale
invariance of SLE.

6.1. Closed sets. In this section γ is SLEκ and γn is the Loewner curve driven
by

√
κBn, where Bn is a piece-wise linear approximation of Brownian motion. Let F

be a closed subset of S1; recall the definition of this space in (2). For any δ > 0 and
n ∈ N consider the following decomposition

(22) P [γ ∈ F ] = P [γ ∈ F, ‖γ − γn‖∞ < δ] + P [γ ∈ F, ‖γ − γn‖∞ ≥ δ] .

The main idea is to show that in the limit κ ↓ 0 the first term is dominant if we tune
the parameters n and δ appropriately.

(a) Denote by F δ the δ-neighborhood of F . Then, we have

P [γ ∈ F, ‖γ − γn‖∞ < δ] ≤ P
[

γn ∈ F δ
]

≤ P
[

I (γn) ≥ I
(

F δ
)]

.

The Loewner energy of the curve γn can be computed explicitly due to piece-wise
linearity of the driving function. We have

2

κ
I(γn) =

2

κ
I
(√

κBn

)

=
n
∑

k=1

n (B(tk)−B(tk−1))
2 .

Standard properties of Brownian motion imply that the terms of this sum are mu-
tually independent and normally distributed. Hence, the sum has a χ2-distribution
which allows us to give the following estimate, valid for κ < I(F δ)/n,

P
[

I (γn) ≥ I(F δ)
]

=
1

2
n
2 Γ(n

2
)

ˆ ∞

2I(Fδ)
κ

x
n
2
−1e−

x
2 dx ≤

4
(

2I(F δ)
κ

)
n
2
−1

2
n
2 Γ(n

2
)

e−
I(Fδ)

κ .
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This provides the upper bound on the first term in (22):

(23) P [γ ∈ F, ‖γ − γn‖∞ < δ] ≤ A (κ, n) e−
I(Fδ)

κ ,

where

A(κ, n) =
4
(

2I(F δ)
κ

)
n
2
−1

2
n
2 Γ(n

2
)

.

(b) The second term in (22) can be first bounded using trivial inclusion:

P [γ ∈ F, ‖γ − γn‖∞ ≥ δ] ≤ P [‖γ − γn‖∞ ≥ δ] .

Next, we use convergence of the approximating curve to SLE, see Section 5. Proposi-
tion 5.1 states that for any β ∈ (0, 1), κ < β/2 and ζ ∈ (0, 1

2
(1−

√

(1 + β)/2)) there
exists a natural number N = N(β, ζ) such that for all n > N

P
[

‖γ − γn‖∞ ≥ n−ζ
]

≤ B (κ, n) e−
β log n

κ ,

where

B(κ, n) = c0 + 24n+1Jκ(n) +
n2

1− 4−(
β
κ
−2)

.

If we choose n = n(δ, ζ, β) such that δ > n−ζ , then the second term in (22) is bounded
by

(24) P [γ ∈ F, ‖γ − γn‖∞ ≥ δ] ≤ B (κ, n) e−
β log n

κ .

Therefore, combining (23) and (24) together gives

P [γ ∈ F ] ≤ A (κ, n) e−
I(Fδ)

κ +B (κ, n) e−
β logn

κ ,

and after taking the logarithm of both sides and multiplying by κ we obtain

κ log P [γ ∈ F ] ≤ −I
(

F δ
)

+ κ logA (κ, n) + κ log

(

1 +
B (κ, n)

A (κ, n)
e−

β log n−I(Fδ)
κ

)

.

If n is big enough, that is, if n > e
I(F )
β , then in the limit κ ↓ 0 the last two terms will

vanish since

lim
κ↓0

B (κ, n)

A (κ, n)
= lim

κ↓0

(

c0 + 24n+1Jκ(n) +
n2

1−4
−( β

κ−2)

)

2
n
2 Γ(n

2
)

4
(

2I(F δ)
κ

)n
2
−1

= 0

and

lim
κ↓0

κ logA(κ, n) = lim
κ↓0

(

κ log
4
(

2I(F δ)
)

n
2
−1

2
n
2Γ(n

2
)

−
(n

2
− 1
)

κ log κ

)

= 0.

Therefore, we obtain
lim
κ↓0

κ log (P [γ ∈ F ]) ≤ −I(F δ).

Lemma 3.5 asserts that taking the limit δ ↓ 0 gives us the first part of Theorem 1.1
for finite time, namely

lim
κ↓0

κ log (P [γ ∈ F ]) ≤ −I(F ) for any closed F ⊂ S1.

6.2. Open sets. Let G be an open subset of S1 and assume I(G) < ∞,
otherwise the LDP inequality is trivial. For every α > 0 there is a curve γα ∈ G such
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that I(γα) ≤ I(G) + α and, since the set is open, G contains an open ball B (γα, rα)
around γα with some positive radius rα. Thus, if γ denotes SLEκ, by monotonicity

P [γ ∈ G] ≥ P [‖γ − γα‖∞ < rα] .

For y > 0 consider the following decomposition

|γ(t)− γα(t)| ≤ |γ(t)− f̂t(iy)|+ |γα(t)− f̂α
t (iy)|+ |f̂t(iy)− f̂α

t (iy)|,
where ft and fα

t are the solutions to the Loewner equation with driving functions√
κB and λα = L−1 (γα) correspondingly. The middle term is deterministic and can

be bounded from above with the help of Lemma 3.3:

|γα(t)− f̂α
t (iy)| ≤

ˆ y

0

|(f̂α
t )

′(is)| ds ≤ ye
1
2
I(γα).

Denote R(α, y) = 1
2
(rα− ye

1
2
I(γα)), which is positive if y < y0 = rαe

− 1
2
I(γα). Then, we

can decompose the sum of the two remaining terms as

P

[

‖f̂t(iy)− f̂α
t (iy)‖∞ + ‖γ(t)− f̂t(iy)‖∞ > 2R

]

≤ P

[

‖f̂t(iy)− f̂α
t (iy)‖∞ > R

]

+ P

[

‖γ(t)− f̂t(iy)‖∞ > R
]

.

So we obtain the inequality

P
[

‖γ − γα‖∞ < rα
]

≥ P
[

‖f̂t(iy)− f̂α
t (iy)‖∞ ≤ R

]

− P
[

‖γ(t)− f̂t(iy)‖∞ ≥ R
]

.(25)

The second term can be dealt with if we employ the event Pn, defined in (16):

Pn =
{

|f̂ ′
t(iy)| ≤ ψ(n)y−β for y ∈ [0, 2−n], t ∈ [0, 1]

}

, ψ(n) = c1(1 + log n)c2 .

We decompose the event A =
{

‖γ(t)− f̂t(iy)‖∞ ≥ R
}

into A = A∩ Pn +A∩ P c
n, so

its probability can be bounded as

P [A] ≤ P [A ∩ Pn] + P [P c
n] .

We claim that for small enough y the first term vanishes. On the event Pn

|γ(t)− f̂t(iy)| ≤
ˆ y

0

|f̂ ′
t(is)| ds ≤

ψ(n)

1− β
y1−β.

If we restrict our attention to y < min (y0, y1, 2
−n) where y1 is the solution to

ψ(n)

1− β
y1−β
1 =

1

2

(

rα − y1e
1
2
I(γα)

)

= R(α, y1),

then A ∩ Pn = ∅. The probability of P c
n was bounded in (17), hence, for y <

min (y0, y1, 2
−n) and κ < β/2 we have

(26) P

[

‖γ(t)− f̂t(iy)‖∞ ≥ R
]

≤ 42n

1− 4−(
β
κ
−2)

4−
βn
κ + 24n+1Jκ(n)e

− 22n−1 log n
κ .

Now we move to the first term in (25). The inequality for the Loewner maps can
be translated to the corresponding driving functions due to Lemma 3.2. Namely, the
following deterministic inequality holds

(27) ‖f̂t(iy)− f̂α
t (iy)‖∞ ≤ ‖

√
κB − λα‖∞

√

1 +
4

y2
,
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which by monotonicity implies that

P

[

‖f̂t(iy)− f̂α
t (iy)‖∞ ≤ R

]

≥ P



‖
√
κB − λα‖∞ ≤ R

√

1 + 4
y2



 .

The remaining analysis of this term follows that of Schilder’s theorem. The idea
now is to use absolute continuity of λα and apply Girsanov’s theorem to consider
B − 1√

κ
λα as Brownian motion under a new measure. However, in order to control

the Radon–Nikodym derivative we approximate λα by a smooth function with very
close Dirichlet energy.

For any ε ∈ (0, α) it is possible to find an absolutely continuous function ϕε ∈
C2 ([0, 1]) such that ϕε(0) = 0 and I (λα − ϕε) < ε2/2. The latter condition ensures

closeness of the energies. Since
√

I(·) is an L2 ([0, 1])-norm of a derivative, by the
triangle inequality

√

I(ϕε) ≤
√

I (λα) +
√

I (λα − ϕε) ≤
√

I(λα) +
ε√
2
.

Moreover, for any t ∈ [0, 1], by the Cauchy–Schwarz inequality

|λα(t)− ϕε(t)| ≤
ˆ t

0

|λ̇α(s)− ϕ̇ε(s)| ds ≤
√

2tI (λα − ϕε) ≤ ε.

Taking the supremum yields ‖λα − ϕε‖∞ ≤ ε. Hence, for any ε < 1
2

R
√

1+ 4
y2

and

δ < 1
2

R
√

1+ 4
y2

the following inclusion holds

B (ϕε, δ) ⊂ B



λα,
R

√

1 + 4
y2



 ,

which by monotonicity implies

P



‖
√
κB − λα‖∞ ≤ R

√

1 + 4
y2



 ≥ P
[

‖
√
κB − ϕε‖∞ ≤ δ

]

.

By the Girsanov theorem,

(28) B̃t = Bt −
1√
κ

ˆ t

0

ϕ̇ε(s) ds

is the standard Brownian motion under the new measure which we denote by P̃. In
our setting it is convenient to apply the Girsanov’s theorem the other way around.
That is, we start with a Brownian motion B̃ under the probability measure P̃, then
B from (28) is the Brownian motion under P. The connection between P and P̃, for
the event in question, is given by

P

[

‖B̃‖∞ ≤ δ√
κ

]

= Ẽ

[

1

{

‖B̃‖∞ ≤ δ√
κ

}

exp

{

− 1√
κ

ˆ 1

0

ϕ̇ε(s) dB̃(s)−
1

2κ

ˆ 1

0

ϕ̇ε(s)
2 ds

}]

.
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Integrating by parts, the first term in the exponent is bounded by
∣

∣

∣

∣

ˆ 1

0

ϕ̇ε(s) dB̃(s)

∣

∣

∣

∣

≤ hε‖B̃‖∞, with hε = 2 sup
t∈[0,1]

(|ϕ̇ε(t)|+ |ϕ̈ε(t)|) .

The second term in the exponent is precisely the Dirichlet energy of ϕε, hence

(29) P

[

‖f̂t(iy)− f̂α
t (iy)‖∞ ≤ R

]

≥ e−
I(ϕε)+hεδ

κ P

[

‖B‖∞ ≤ δ√
κ

]

.

Combining (29) and (26) in (25) we obtain

P [γ ∈ G] ≥ e−
I(ϕε)+hεδ

κ P

[

‖B‖∞ ≤ δ√
κ

]

− 42n

1− 4−(
β
κ
−2)

4−
βn
κ + 24n+1Jκ(n)e

− 22n−1 logn
κ .

If we choose n, so that β log n > I(ϕε) + hεδ, then

lim
κ↓0

κ logP [γ ∈ G] ≥ −I(ϕε)− h(ε)δ ≥ −
(

√

I(λα) + ε
)2

− hεδ.

To conclude take the limits in the following order: first δ ↓ 0, then ε ↓ 0 and finally
α ↓ 0 to obtain the desired result for open sets

lim
κ↓0

κ log P [γ ∈ G] ≥ −I (G) .

This concludes the proof of large deviation principle for the case T <∞.

6.3. Extension. So far we have proved that LDP holds in the space of curves
restricted to the finite time interval [0, T ] endowed with the Borel σ-algebra, where
the topology is induced by the supremum norm. In this section we extend the result
to the whole positive real line [0,∞).

Let us define the projective system {ST , pT ′,T}, where T, T ′ ∈ [0,∞), and for
every T < T ′, pT ′,T : ST ′ → ST is the restriction map. These maps are continuous
and surjective; pT,T is the identity and pT ′′,T = pT ′′,T ′ ◦ pT ′,T for T < T ′ < T ′′.
Moreover, we define the restriction maps pT : S → ST which satisfy pT = pT ′,T ◦ pT ′

for T < T ′.
Let S be the Borel σ-algebra of subsets of S generated by the topology which

in turn is induced by the maps {pT}T∈[0,∞). This is the topology that comes from
uniform convergence on [0, T ] for every T > 0. Let {µκ}κ>0 be the family of SLE
measures given by

µκ (V ) = P [γκ ∈ V ] , V ⊂ S.
The extension follows from the result obtained by de Acosta [4, Theorem 4] which

states that {µκ}κ>0 satisfies the large deviation principle on (S,S) with the good rate
function I if

(i) For each T ∈ [0,∞), the family {µκ ◦ p−1
T }κ>0 satisfies the large deviation

principle on (ST ,B(ST )) with the rate function IT : ST → [0,∞].
(ii) There exists I : S → [0,∞] such that it has compact level sets and for all

T ∈ [0,∞) and γT ∈ ST

IT (γT ) = inf{I(γ) : γ ∈ p−1
T (γT )}.

The first item was proven in the previous sections. The second one follows from
the fact that any curve γT ∈ ST can be extended along a geodesic to the curve γ̃ in
S. Moreover, the extended piece does not contribute to the Dirichlet energy so that
IT (γT ) = I(γ̃) and, hence, (ii) is satisfied.
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This concludes the extension of LDP to the space S, equipped with topology of
uniform convergence on compact intervals, and completes the proof of Theorem 1.1.

7. Further comments

As was noted in the introduction the large deviation statement for SLE curves
depends on the topology. For example, one could consider the SLE curves as

(1) Subsets of the upper half-plane H;
(2) Continuous curves in H:

(a) modulo reparametrization;
(b) in the half-plane capacity parametrization;
(c) in the Natural Parametrization;

(3) p-variation paths;
(4) Elements of a suitable Besov space.

The first item was dealt with in [19], where the authors considered the SLE
curves as subsets of the upper half-plane and measured distances with the Hausdorff
metric. The second item part (b) was the objective of the present paper (and (a)
follows as well). It would be interesting to try to prove the LDP using the Natural
Parametrization, i.e., for SLEκ—the d-dimensional Minkowski content, and for finite
Loewner energy curves—the arclength. However, more work would be needed to
address this problem, e.g., since analytic properties of Loewner curves, in particular
SLE, depend on the choice of parametrization (cf. [10] and [16]).

It would also be interesting to try to consider the SLE curves as p-variation paths.
It was established in [7] that SLEκ (for κ 6= 8) enjoys p-variation regularity

‖γκ‖p-var,[0,1] =



sup
P

|P|
∑

i=1

|γ(ti)− γ(ti−1)|p




1/p

<∞ for all p > min
(

1 +
κ

8
, 2
)

,

where P is a partition of [0, 1]. Approach based on the p-variation distance offers a
parametrization-free study of SLE curves since the topology generated by the induced
metric includes all parametrization-dependent topologies. We refer to the same paper
for a discussion of Besov regularity.

There is also alternative way to prove LDP for SLE in the uniform topology
based on the inverse contraction principle. One should start with LDP in a weaker
topology, for example, the Hausdorff topology, see [19], and then lift the topology to
a stronger one by showing exponential tightness of SLE measures, namely

∀M > 0 ∃ compact set KM ⊂ ST : lim
κ↓0

κ logP [γκ ∈ Kc
M ] < −M.

It seems that deriving exponential tightness would require the same machinery as
in our proof for closed sets, where the main work was to estimate probability of the
derivative estimate for the inverse SLE map. However, once we have obtained that
probability estimate it is no problem to work out estimates for both open and closed
sets.

LDP on [0, T ] in
the Hausdorff topology

LDP on [0, T ] in
the uniform topology

Inverse Contraction Principle

On a different note, the technique used in the proof for open sets can be applied
to derive the support theorem for SLE that was shown by Tran and Yuan in [28].
Unfortunately the bound (15) is not well suited for taking the limit n → ∞ and at
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this stage the proof for SLE support goes through only for small κ. Nevertheless,
one can try to improve the moment estimate (5) in order to eliminate the factor 42n

in (15), so that the bound would be well adapted for taking the limit n→ ∞.

8. Appendix: distortion estimate in the rectangle

The following lemma originates from [10].

Lemma 8.1. Let z1, z2 ∈ S = {x + iy : x ∈ [−1, 1] , y ∈ [0, 1]} and assume
Im z2, Im z1 ≥ y. Then for any conformal map f : 2S → C there are universal
constants c1, c2, both greater than one, such that

|f ′ (z2) | ≤ c1y
−c2|f ′ (z1) |.

Proof. Let (Sj,k)j,k be the dyadic decomposition of the domain S, i.e., the collec-
tion of rectangles given by

Sj,k =

{

x+ iy : x ∈
[

j

2k
,
j + 1

2k

]

, y ∈
[

2−(k+1), 2−k
]

}

.

Pick one rectangle Sj,k and consider two points z, w ∈ Sj,k inside. They are at most

distance D =
√
5 · 2−(k+1) away from each other. To compare the derivatives at these

points we apply Koebe distortion theorem, Lemma 4.2. The point closest to the
boundary of 2S, say z, is at least distance d = 2−(k+1) away from it. In order to cover
the distance between z and w by intervals of length rd, with r ∈ (0, 1), we need at
most ⌈D/rd⌉ = ⌈

√
5/r⌉ of them. That is we need to apply Koebe distortion ⌈

√
5/r⌉

times. Hence, for any w, z ∈ Sj,k

(30) |f ′ (w) | ≤ c(r)|f ′ (z) |, with c(r) =

(

1 + r

(1− r)3

)⌈
√
5/r⌉

.

Note that the constant in the inequality does not depend on our choice of Sj,k, it is
uniform for all rectangles. This is the main advantage of the dyadic decomposition.

Now we return to initial points z1 and z2 we started with. Both of them are
at least y away from the real line by the assumption. Let k ∈ N be such that
y ∈ [2−(k+1), 2−k], that is,

k =

⌊

log2
1

y

⌋

.

There exists a path from z1 to z2 that goes through at most 2 (k + 1) squares. Hence,
applying the estimate (30) 2 (k + 1) times we obtain

|f ′ (z2) | ≤ c1y
−c2|f ′ (z1) |,

where c1 = c(r)2 and c2 = 2 log2 c(r). For example, if r is chosen to be 1/2, then
c1 = 1210 and c2 = 2 log2 12. �
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